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Abstract. An asymptotic solution is obtaine4 corresponding to a very intense 
pulse: a sudden strong increase and fast subsequent decrease of the water level at 
the boundary of semi-infinite fissurized-porous stratum. This flow is 'of practical 
interest: it gives a model of a groundwater flow after a high water period or after 
a failure of a dam around" a collector of liquid waste .. 

It is demonstrated that the fissures have a dramatic influence on the groundwater 
flow increasing the penetration depth and speed of fluid penetration into the 
stratum. A characteristic property of the flow in fissurized-porous stratum is 
the rapid breakthrough of the fluid at the first st,age deeply into the stratum 
via a system of cracks, feeding of porous blocks by the fluid in cracks, and at a 
later stage feeding of advancing fluid flow in fissures by the fluid, accumulated in 
porous blocks. 
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1 Introduction 

As is well known (see (1,2,3)) a gently sloped groundwater flow in porous stratum supported 
by a horizontal impermeable bed can be described by the Boussinesq equation: 

[1.1] 

Here h(x, t) is the water level (Figure l(a)), x is the coordinate reckoned from the vertical 
boundary of the stratum, t is time, /'i, = pgk/2mf-L is a coefficient assumed to be a constant 
for the case of a homogeneous rock in the stratum. Furthermore, k is the rock permeability, 
m its porosity, 9 the acceleration of gravity, p and f-L the fluid properties (its density and 
dynamic viscosity). The horizontal extent of the stratum is considered to be large, so that 

the flow region is considered to be semi-infinite: ° ~ x < 00. 

The boundary condition for the problem of a very intense pulse, which will be considered 
here for fissurized-porous rock (Figure l(b)), is formulated as follows: At the initial moment 
t = -T, the water level at the vertical boundary x = ° starts to increase and quickly reaches 
a level ho much higher than the initial groundwater level in the stratum. After a short time 
T, i.e. at t = 0, the water level at the boundary x = ° returns to the initial value. The 
solution to this problem describes groundwater flow in a river or channel bank after a short 
flood or after the breakthrough of a dam separating a channel or river from a reservoir of 
liquid waste. 

Thus the boundary condition at the vertical boundary of the stratum x = ° takes the 
form 

h(O, t) = hol(O) , 0= tiT [1.2] 

where 1(0) is a dimensionless function equal to zero at 0 = -1, and at 0 > 0, and non
negative at -1 < 0 < 0. 

Furthermore, we consider the initial water level in the stratum as negligible in comparison 
with ho, and so we assume the initial condition in the form 

h(x, -T) = 0, ° ~x < 00. [1.3] 

An accurate description of the function 1 (0) is in fact not needed, because we are interested 
in the flow at large times, t' ).. > T, i.e., at 0 > > 1. •. . . 
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For a purely porous stratum the asymptotic behavior of the groundwater flow under 
consideration is given by the "dipole" self-similar solution, obtained in (4) (see also (5,3)): 

(=~, 
xf 

o ::; ( ::;.1, h - 0, (~1. 

[1.4] 

Here xf (see Figure I(a)) is the longitudinal extent of the groundwater "dome", equal to 

1 

Xf = 2(5Qt)4 , [1.5] 

and Q is the "dipole moment" of the initial water height distribution, equal to 

Q = 100 

xh(x, O)dx . [1.6] 

It can be easily shown that the dipole moment of the water height distribution in the dome 
for porous stratum 

Q(t) = 100 

xh(x, t)dx 

remains time invariant so that Q(t) ~ Q at arbitrary time t > O. 

[1. 7] 

A generalization of this dipole problem taking into account capillary retention of ground
water and forced drainage was proposed in (6). Numerical computations for this extended 
dipole problem were performed in (7). In the present Note we qualitatively answer the ques
tion of practical importance: What is the effect of cracks always present in the rock on the 
groundwater "dome" evolution? We .will show. that fissurization of the rock has a dramatic 
effect on the evolution of the groundwater dome, so that predictions based on a model of 
purely porous stratum are completely inadequate even for a tiny degree of fissurization. 

2 Basic model 

We use, in application to the groundwater flow, the basic idea of the "double-porosity" model 
(8,3). According to this model the rock is considered to consist of t~o mutually embedded 
porous media with a fluid exchange between thein.· The first porous medium is the ordinary 
medium of the porous blocI(s,· and the second is the medium in which the cracks play the role 
of pores and the blocks play the role.(}fgIains~. At every x and t we introduce not a single, but 
two water levels, hB and he: mean water levels in porous blocks and in fissures around the 
plane under consideration: hB = hB(x, t); he = hc(x, t). Generally speaking these levels 
are different. Indeed, the system of cracks occupies only a small part (in· comparison with 
pores) of the void volume of rocks. -At-the same time;- the-cracks are much wider than pores, 
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so that the fluid mobility in cracks is essentially larger. The difference between water levels 
in pores and cracks stimulates the water exchange between cracks and porous blocks, and 
this exchange is not instantaneous, it requires a certain time. We assume naturally that this 
exchange between two components of double-porous media is a quasi-steady one, i.e. that 
its intensity is proportional to the difference of squares of water levels in both media. The 
balance of groundwater in both media gives us the following system of equations 

[2.1] 

[2.2] 

Here a is an exchange coefficient, assumed to be constant, and the coefficients fi,B and fi,e 

appear in the same form as in the derivation of the Boussinesq equation 

pgkB 
fi,B=--

2mfL ' 

pgke 
fi,e =--

2mEfL ' 
[2.3] 

where kB is the permeability of porous blocks, ke is the permeability of the system of cracks, 
and E is the ratio of "crack porosity" (relative volume of cracks) to the porosity of the porous 
blocks, usually a very small quantity. Therefore E « 1, and fi,e » fi,B. 

We consider for the system [2.1]-[2.2] the same problem of a very intense pulse. Therefore 
the boundary and initial conditions assume the form 

. t 
hB(O, t) = he(O, t) = ho f(-) 

T 
[2.4] 

where ho is the maximum level,· Tis ·theduration ·of· pulse, and the function f( ()}. -0 at·· 
() > 0, f(-I) = f(O) = 0, f(~) > 0 at -1 < () < O. Furthermore 

hB(x, -T) = he(x, -T) - 0 , O:s;x<oo. [2.5] 

Condition [2.5] .reflects the fact that the initial water level in the blocks and fissures is 
negligible iJj. comparison with ho. Under.the condition [2.5] the system [2.1]-[2.2] becomes a 
degenerate one, and this leads to a finit~ speed of the dome extension. The usual condition 
at infinity should be added: 

hB(oo, t) = he(oo, t) = 0 . [2.6] 

The system [2.1]-[2.2], together with the boundary and initial conditions [2.4], [2.5], [2.6] at 
t > 0, has an integral of the same "dipole" type: 

100 X[hB(X, t) + Ehd(x, t)]dx = const = Q at t 2: o. 
o -

[2.7] 

Here Q is the value of the integral at L., O. 
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To derive this integral we add equations [2.1]and [2.2]' multiply the resulting equation by 
x and integrate from x = 0 to x = 00. Integrating by parts the terms xa~xh~ and xa~xh~, 
and using the boundary conditions [2.4] and [2.6] for t ;::: 0 we obtain 

d reX) 
dt io x[hB(x, t) + che(x, t)]dx = 0 

from which the conservation law [2.7] follows immediately. 

3 Computational experiment 

By introducing the dimensionless variables 

x 
(= vi h ' K-e OT 

he 
He = ho ' 

<:. ". [2.7] 

[3.1] 

we reduce the basic system of equations and boundary and initial conditions to a convenient 
dimensionless form: 

and 
HB(O,fJ) 

HB(~' -1) 
HB(OO,fJ) 

He(O, fJ) = j(fJ) ,. 

- He(~,-l) - 0, 

- He( 00, fJ) = 0 . 

[3.2] 

[3.3] 

We remind that f(fJ) - 0 at fJ ;::: o. The system [3.2] should be solved for 0 ::; ~ < 00 and 
fJ > -1. The total dipole momentum can be represented in the dimensionless form: 

[3.4] 

The system [3.2] was integrated numerically under the boundary and initial conditions [3.3] 
for several sets of realistic values of parameters. 

In Figures 2-4 we present the results of numerical experiments for typical values of 
parameters 

(3 = 10-2 , c = 10-4 . [3.5] 

The function f (fJ) was assumed to have a piecewise linear shape: 

f(fJ) = fJ +1 at fJ fJ , -1< < *<0·, 
fJ* + 1 

[3.6] 
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Figure 2(a) shows the distributions of HB and He for e = 10.00; e = 100.00 and e = 1000.00. 
The insert shows in more detail the distribution of groundwater levels in cracks and blocks 
near the front x = x f for e = 10.00. In fact this Figure gives a good check of the accuracy 
of the numerical method. Indeed, the dimensionless velocity of the fluid tongue extension 

rate V = d~f / de can be considered as a constant at a short time interval near e = eo when 
~f = ~fo, and the distribution of groundwater levels near ~ = ~fO as a steady one, so that 

HB = HB(() , He = He(() , 

so that ( = 0 corresponds to ~ = ~f = ~fo + V(e - eo). Then equations [3.2] assume the form 

V dHB /'i,B d?H1_(3(H2 _ H2) = 0 
d( + /'i,e de B e 

(3.1) 

Near ( = 0 the first equation of [3.8] takes the form 

because the terms /'i, B / /'i,e d2H1/ de and (3 H1 can be neglected. Near ( = 0 the behavior of 
the function Hc(() is a linear one, He = -A(, where A is a certain positive constant. Then 
[3.9] gives HB = -((3A2/3V)C, so that 

1 1 

HiJ = ((3/3AV)3 He . 

1 
The insert in Figure 2(a) demonstrates this proportionality of H3 to He with the proper 
· value of the proportionality constant. Furthermore, Figure 3 demonstrates the evolution of 
the dipole moment both by· components and as a whole. We see that the dipole moment 
quickly becomes concentrated in the blocks, although the fluid propagation and groundwater 
dome extension is mostly due to the flow in cracks. 

Figure 4( a) represents the evolution of the total mass of fluid in porous blocks and cracks .. 
· Figure 4(b) represents the extension of the groundwater dome, Le:; the function x f( t) (curve. 
1), and the function x*(t)' (>curve 2) - the extension of the zone where the groundwater 

· level in blocks is higher than in cracks. For comparison, the extension of the groundwater 
dome in purely porous stratum under the same conditions is presented in Figure 4(b) (curve 
3). Remarkably this comparison demonstrates that the basic amount of fluid is moving like 
it would in purely porous stratum. However, the flow in fissures plays the role of a long 
precursor forerunning the bq.,sic flow. 
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4 Conclusions 

The mathematical model proposed in the present Note allowed us to come to the following 
conclusions. 

1. The fissures influence the flow dramatically: the amount of groundwater entering the 
stratum is larger, as are the depth and speed of penetration of fluid. 

2. At any time the groundwater dome is divided into two regions: a blocks-dominated one, 

adjacent to the boundary where the groundwater level in blocks is larger than that in 
fissures, and fissures-dominatedregion, adjacent to the front where the groundwater 
level in the fissures is larger than that in blocks. 

3. The groundwater enters the stratum via the fissures and at any fixed place the fissures 
at first feed the blocks. Later the porous blocks start to feed the fissures supporting 
the fluid advancement to the depth of the stratum via the fissures. 

4. Rather early the total amount of fluid available in the stratum becomes concentrated 

in blocks. However the forerunning flow in fissures ahead of the basic mass of fluid 
can be a dangerous agent of contamination. The correct evaluation of contamination 

should take into account fissurization of rocks. 

Acknowledgment. This work was supported by the National Science Foundation un
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Figure Captions 

Figure 1. (a) Dome extension in porous stratum. 

(b) Dome extension in fissurized-porous stratum. The water levels in porous blocks hs 

and cracks he are different. 

Figure 2. (a) Fluid levels in porous blocks and cracks at t = 10.00. 

(b) Fluid levels in porous blocks and cracks at t = 100.00. 

(c) Fluid levels in porous blocks and cracks at t = 1000.00. 

Figure 3. Dipole moments in porous blocks and cracks. A major part of the dipole moment 
is concentrated in porous blocks. 

Figure 4. (a) Evolution of the bulk fluid mass in fissurized porous stratum. A major part 
of the fluid is contained in porous blocks. 

(b) Comparison of the groundwater dome extension in fissurized porous and purely porous 
strata. The curve (1) corresponds to xf(t) in fissurized porous stratum, the curve (3) cor
responds to xf(t) in purely porous stratum. The boundary x*(t) (curve (2)) corresponds to 
hB(x*, t) = hc(x*, t). 

, , 
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