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Abstract. We present an adaptive algorithm for low Mach number reacting flows with 
complex chemistry. Our approach uses a form of the low Mach number equations that 
discretely conserves both mass and energy. The discretization methodology is based on a 
robust projection formulation that accommodates large density contrasts. The algorithm 
uses an operator-split treatment of stiff reaction terms and includes effects of differential 
diffusion. The basic computational approach is embedded in an adaptive projection 
framework that uses structured hierarchical grids with sub cycling in time that preserves 
the discrete conservation properties of the underlying single-grid algorithm. We present 
numerical examples illustrating the performance of the method on both premixed and non
premixed flames. 
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1. Introduction 

Detailed modelling of time-dependent reacting flows with realistic chemical mechanisms 
places severe demands on computational resources. One approach to reducing this 
computational cost is the use of local adaptive mesh refinement to reduce the total number 
of computational zones that must be advanced for a specific problem. Local refinement for 
steady combustion has been discussed by a number of authors. See for example, Smooke et 

al. [36], Coelho and Pereira [7], de Lange and de Goey [10], Mallens et al. [22] Somers and 
de Goey [34] and Bennett and Smooke [4] and the references cited in these works. 

For time-dependent flows, Najm et al. [26] couple a local refinement algorithm for species 
and temperature with a vortex method for momentum. Pember et al. [28] present an adaptive 
projection algorithm for time-dependent low Mach number combustion using simplified 
kinetics and an assumption of Lewis number of one. The methodology in Pember et al. [28] 
uses a hierarchical structured refinement approach based on the local adaptive projection 
methodology developed by Almgren et al. [3]. The method presented here represents a 
generalization of the Pember et al. methodology to incorporate complex chemistry and the 
effects of differential diffusion. 

A key consideration in developing a structured refinement algorithm is the choice of 
single-grid algorithm. For incompressible flows, projection-based fractional step methods 
have proven to provide an efficient approach that is well suited to adaptive refinement. For 
low Mach number reacting flows, two different projection-based sequential algorithms have 
been proposed. One of these approaches has been used by Knio et al. [18] and Najm et al. 

[25] to model flows with complex chemistry. Their approach is based on a computational 
framework for low Mach number reacting flows developed by McMurtry et al. [23] and 
Rutland and Ferziger [32]. 

The single-grid algorithm that forms the basis for our adaptive algorithm uses an 
alternative numerical approach that is similar to the method used by Pember et al. [28]. 

The basis for the approach was first introduced by Lai [19] and Lai et al. [20]. Related 
implementations or extensions include Hilditch and Colella [13] and Pember et al. [29, 27]. 
The key elements in the extension of the algorithm presented in Pember et al. [28] to the 
current setting are the use of a symmetric operator-split approach that is second-order 
accurate in time and the treatment of differential diffusion. 

Although our approach is similar in spirit to the approach of Knio et al. and Najm 
et al., there are two major differences. First, in the approach of Knio et al. and Najm et 

al., an evolution equation for density is derived by differentiating the equation of state in 
time and usill,g the temperature and species evolution equations to replace the temporal 
derivative of those quantities by spatial operators. Temperature is then computed directly 
from the equation of state. In our approach, we solve for species mass densities and enthalpy 
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as primary unknowns. We construct a conservative discretization for mass and energy but 
allow the approximate solution to drift off the constraint imposed by the equation of state 
at fixed ambient pressure. In section 2, we discuss how this drift is controlled. 

The second major difference between our approach and that of Knio and Najm relates to 
the projection step of the algorithm. The first step of the algorithm computes an intermediate 
velocity field that does not satisfy the constraint. The projection step corrects the velocity 
so that the low Mach number divergence constraint is satisfied. Knio and Najm formulate 
a projection algorithm in terms of a constant-coefficient pressure-Poisson equation to be 
solved at each time step. Here, we define the projection as an orthogonal decomposition 
of velocity in a density-weighted space. While our approach leads to a somewhat more 
expensive variable-coefficient elliptic solve, it has the advantage that it easily accommodates 
large density contrasts (SOO:l). (see Almgren et al. [1] and Sussman et al. [35]). 

The remainder of the paper is organized as follows. In section 2, we introduce 
the mathematical model and describe the computational framework for the projection 
methodology. We will not discuss in detail the Godunov-type upwind advection algorithm 
for computing advective derivatives (this aspect of algorithm is identical to those detailed 
in Almgren et al.[l] and Pember et al.[2S]). In section 3, we present the second-order time 
discretization of the species and enthalpy equations, including the operator-split treatment of 
detailed chemistry and the discretization of the terms due to differential diffusion. In section 
4, we give an overview of our adaptive methodology, focusing primarily on modifications to 
the methodology presented in [1, 2S] required for the present application. In section 5, we 
present results of applying this numerical solution algorithm to two problems: the evolution 
of a strong vortex interacting in two dimensions with a planar premixed H2-02 flame, and 
the response of a co-flow axisymmetric laminar CH4-02 flame to a periodically modulated 
fuel stream. The final section presents some conclusions and discusses future generalizations 
of the methodology. 

2. Mathematical model and computational framework 

The model presented here is based on the model for low Mach number combustion 
introduced by Rehm and Baum [30] and rigorously derived from low Mach number 
asymptotic analysis by Majda and Sethian [21]. We consider a gaseous mixture ignoring 
Soret and Dufort effects, body forces and radiative heat transfer, and assume a mixture 
model for species diffusion[37, 17]. For low-speed flow in an unconfined domain, we can 
write 

p(x, t) = Po + 'if(x, t) 

where Po is the ambient thermodynamic pressure. The low Mach number model assumes 
that the perturbational pressure field, 'if/Po rv 0 (1\112 ), whereM is the Mach number, and 
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that all thermodynamic quantities are independent of Jr. In the low Mach number limit, 

the equations describing momentum transport and conservation of species and enthalpy are 
given by 

DU 
P- = - ''\7Jr + \,1 . T 

Dt ' 
(1) 

apYm . ---at + \,1 . U pYm = \,1 . pVm VYm - Wm, (2) 

aa
Ph + \,1 . U ph = \,1. ,\ \,1T + L \,1. phm(T)Vm VYm 
t m 

(3) 

where p is the density, U is the velocity, Ym is the mass fraction of species m, h is the 
enthalpy of the gas mixture, and T is the temperature. Here, Wm , the destruction rate for 
pYm due to chemical reactions, is specified via a collection of fundamental reactions using a 
CHEMKIN-III[16] compatible database. The stress tensor is given by 

(
aUi aUj 2 ) 

T = ~l - + - - -l5ij \,1 . U 
aXj OXi 3 

where ~(Ym, T) is the viscosity, Vm are the species mixture-averaged diffusion coefficients[14]' 
,\ is the thermal conductivity and hm(T) is the enthalpy of species m. These evolution 
equations are supplemented by an equation of state: 

'" Ym 
Po = pRmixT = pnT L.J W 

m m 
(4) 

where W m is the molecular weight of species m, and by a relationship between enthalpy, 
species and temperature: 

(5) 
m 

Neither species diffusion nor reactions redistribute total mass; hence, we have L::m Vm VYm = 

o and L::m wm = O. Summing the species equations and noting that L::m Ym = 1, we see that 
(2) implies the continuity equation 

ap at + \,1 . pU = O. (6) 

The evolution specified by (1-3) is subject to the constraint on velocity that 

\1. U = _1_ (\,1. ,\VT + LPVm VYm · V'hm) 
pCpT m 

+~ L W \1. PVm VYm + ~ L (hm(T) - W) wm == S 
P m Wm P m Cp,mixT Wm 

(7) 

where W = (L::m Ym/Wm)-l and Cp,mix = L::m Ymdhm/dT. The constraint (7) is obtained 
by differentiating the equation of state along particle paths and replacing the Lagrangian 
derivatives by expressions obtained from (2, 3, 5). 
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As discussed in the introduction, we have written the low Mach number equations in a 
form that directly expresses conservation of both species and enthalpy. In a fractional step 
approach it is impossible to numerically conserve species and enthalpy while satisfying the 
equation of state (4). In our approach we discretely conserve both species and energy so that 

. the evolution of these quantities does not satisfy the equation of state (with T determined 
from (5)). In order to prevent the algorithm from drifting too far off the equation of state 
we add a correction term to the constraint (7); namely, we use the modified constraint 

\1 . U = S + f Cp,mix - ~ (p - Po) -= S (8) 
6.t Cp,mixP 

where p is the thermodynamic pressure, defined by (4) as a function of the species densities 
and enthalpy and f is a numerical damping factor, f < 1. This additional term serves 
to damp the system back onto the ambient equation of state if the solution drifts off that 
constraint. (See Pember et al. [28] for a discussion of this term and a heuristic for its 
derivation. ) 

Computational framework 

In this section we give an overview of the projection formulation for solving (1-3) subject 
to the modified constraint (8). The reader is referred to Pember et at. [28], and Almgren et 

al. [1] for details of the algorithm. For the methodology described in this paper, the velocity, 
species densities and enthalpy are all defined at cell centers, denoted by a subscript-ij. 
The perturbational pressure, 11, is a nodal quantity with values denoted by subscripts
i + 1/2, j + 1/2 that is defined at 1/2 time levels. 11 is used to compute a cell-centered gradient, 
'\h at tn+Y2 in the momentum equation (1). 

The overall projection formulation is a multistep process. In the first step, we use 
an unsplit second-order Godunov procedure to predict a time-centered advection velocity, 
U ADV,*, using the cell-centered data at t n and the lagged pressure gradient from the interval 
centered at tn-%. The provisional field, U ADV,*, represents a normal velocity on cell edges 
analogous to a MAC-type staggered grid discretization of the Navier-Stokes equations (see 
[12], for example). However, U ADV,* fails to satisfy the time-centered divergence constraint. 
We apply a discrete projection by solving the elliptic equation 

DMAC!_GMAC¢MAC = DMACUADV,* _ (sn + 6.t n sn - sn-1) (9) 
pn 2 6.t n-1 

for ¢MAC, where DMAC represents a centered approximation to a cell-based divergence 
from edge-based velocities, and GMAC represents a centered approximation to edge-based 
gradients from cell-centered data. The solution, ¢MAC, is then used to define 

UADV = UADV,* _ ~GMAC¢MAC. 
pn 
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U ADV is a second-order accurate, staggered-grid vector field at tn+Yz that discretely satisfies 

the constraint (8), and is used for computing the time-explicit advective derivatives for U, 
ph and pYm. 

In the next step of the algorithm we advance the advection··reaction-diffusion system 
for U, ph, and pYm . First we advance ph and pYm to tn+l. This procedure is itself a complex 
multistep process that is discussed in detail in the next section. Given the new-time values 
for ph, pYm and p = ~m pYm we compute the temperature and fluid viscosity at tn+l and 
evaluate sn+l using finite difference approximations. 

vVe then compute an intermediate velocity field, Un+l,* using the lagged pressure 
gradient, by solving 

Un+1,* un 1 
pn+Yz - + [(UADV . v)u]n+1f2 = -(\7 . Tn + V . Tn+1,*) - '\!7rn-% 

~t 2 

where Tn+1,* = f-Ln+1 ((\7 + \7T)Un+1,* -2/3r5ijSn+1) and pn+1f2 = ~(pn+ pn+l). At this point, the 
intermediate velocity field Un+1,* does not satisfy the constraint. We apply an approximate 
projection to update the pressure and to project Un+l,* onto the constraint surface. In 
particular, we solve 

(10) 

for nodal values of ¢, where £P is a finite element approximation to V . ~ V with p evaluated 

at tn+%. In this step, D is a discrete second-order operator that approximates the divergence 
at nodes from cell-centered data, and G = - DT approximates a cell-centered gradient from 
nodal data. 

In the projection formulation ¢ satisfies Neumann boundary conditions at solid walls 
and inflow boundaries. At outflow boundaries, Dirichlet conditions are generated to suppress 
any tangential accelerations on the fluid leaving the domain. We compute nodal values for 
sn+l for the solution of (10) using a volume-weighted average of cell-centered values. Finally, 
we determine the new-time cell-centered velocity field from 

Un+l = Un+1,* - ~G¢ 
p 

and the new time-centered pressure from 

1fn +% = ¢. 

vVe note that this represents an improved version of the approximate projection algorithm 
over the approach used by Pember et al. [28] (see Almgren et al. [2]), This completes the 
description of the basic projection scheme. 
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3. Numerical integration of species and enthalpy equations 

In this section we describe the numerical integration procedure for the species and 
enthalpy equations. We base the approach on the assumption that the reactions are "stiff" 
relative to the time scales associated with the fluid dynamics, and that accurately tracking 
the chemical kinetics will require sub cycling in time with respect to a time step based on 
CFL considerations. In the algorithm presented here we use an alternate form of enthalpy 
equation that emphasizes deviation from unity Lewis number, 

aph + v. U ph = V· _A_Vh + LV· hm(pVm - _A_)VYm. 
at Cp,mix m Cp,mix 

(11) 

As an aside, the case of unity Lewis number corresponds to pVm = _A_. for all m so that 
Cp,mt:t: 

the second term on the right hand side of (11) vanishes. By substituting the definition of 
enthalpy (5) into the enthalpy equation, (3), and evaluating species derivatives using the 
species evolution equations, (2), we obtain the following evolution equation for temperature 

DT 
PCp,mix-

D 
= V· AVT + LPVm Vhm(T)· VYm + LWmhm(T). (12) 

t m m 

vVe use this equation for predicting a provisional temperature to evaluate fluid properties 
at the new time level prior to completing the predictor step for species and enthalpy. This 
equation is also used to predict the temperature at the cell edges in the Godunov step 
discussed below. In all other cases, the temperature is computed by inverting (5). 

Operator-split formulation 

We advance (2, 11) using a splitting scheme that computationally decouples the 
procedure into two independent operators, representing the chemistry and CFD components. 
We define the pointwise chemistry operator, H~, such that H~(Y~, Tn) --+ (y~+l, Tn+1) 
represents a discrete chemistry evolution of the reaction kinetics from tn to tn+1, using 

apYm . 
----w at - m 

PCp,mix ~~ = L wmhm (T) 
m 

under adiabatic, fixed-volume conditions. We note that although the kinetics integration 
modifies the temperature field, there are no net changes in enthalpy. The changes in 
temperature that result from the chemistry step are consistent with the change in mixture 
composition associated with the reactions and a constant enthalpy within the cell. 

In our implementation, we integrate the chemistry component, He, using time-implicit 
backward difference methods, as implemented in VODE[5], a general-purpose stiff ODE 
integration software package. VODE utilizes adaptivity in order of accuracy and sub cycled 



Numerical Simulation of Laminar Reacting Flows with Complex Chemistry 7 

time-step selection so that an absolute error tolerance of 10-16 in mass fractions is maintained 
throughout. Typically, the resulting scheme is between third and fifth order convergent in 
6.t. 

After pYm and T have been advanced from t n to tn +% by H C , we integrate the system 
(2,5,11) using a sequential predictor-corrector Crank-Nicolson scheme over an interval 6.t, 
setting wm = o. We represent this component of the solution algorithm by the operator, 
Htt-D

. We complete the time step for the species and energy equations by performing a 
second chemistry evolution, 1{~~/,J... This combined process defines a symmetric Strang-type 
splitting, 

H (yn hn) He HA-DHc (yn+1 hn+1) 
dt m' = dt/2 dt dt/2 --t m , 

which constitutes a second-order temporal discretization of the complete system. It is worth 
noting that Dirichlet conditions, such as those at inflow and coarse-fine boundaries, must 
be advanced by the first H C operation in order to provide consistent boundary data for 
H A -

D
. Once the evolution of the species and energy equations are complete, we can evaluate 

the modified constraint (8) using the state and transport/thermodynamic properties at 
(p, Ym , T, h)n+1 and an effective wm averaged over the time step. 

Advection-Diffusion step 

There are several possible approaches to solving the species diffusion and enthalpy 
equations within the Godunov advection-diffusion framework. One approach is to compute 
advective derivatives and then compute the diffusive transport for all of the equations 
simultaneously using a non-linear iterative scheme. There are a variety of other approaches 
that iterate the system with varying degrees of coupling. The scheme used here is based 
on a sequential approach in which the equations are solved individually in a specified order, 
updating properties as appropriate. This scheme, which follows that of Pember et al. [28], 
is, essentially, a non-linear Gauss-Seidel iteration scheme for the complete system. The basic 
approach is to solve the equations with lagged fluid properties to determine predicted values 
of the solution at the new time level. These predicted values can then be used to recompute 
values of the fluid properties required for evaluating the solution at the new time level to 
second-order accuracy. 

For the advection-diffusion step we begin with data obtained by advancing the chemistry 
with H£'/2. We refer to this data with a superscript n in the remainder of the section. As 
with the velocity equation discussed before, we first compute edge-centered states for pYm 

and T at tn+% = t + 6.t/2 using a second-order Godunov procedure. Time-centered edge 
values of pYm and T are used to compute tn +% values for p and ph using L:m pYm = p and 
(5). Because neither reactions or species diffusions transport mass, we can now update p 
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using the discrete form of the continuity equation 

pn+l = pn _ b.t V . (~UADV py~+%) . 

8 

Given pn+l and fluid properties (,\ Cp,mix, hm)n computed after the chemistry step, we 
predict a preliminary new-time temperature, jn+l,*, using a Crank-Nicolson discretization 
of the temperature equation 

P
n+1hcn . (jn+l,* - Tn + (UADV . VT)n+Y2) 

p,m'x b.t 

= ~ (VAnVTn + VAnvjn+l,*) + LPVr:"Vhm(Tn). VY~ (13) 
m 

where pn+% = 1/2(pn+l + pn). Next, we approximate the mixture-averaged diffusivities at tn+l 
using Y~ and the provisional predicted temperature, jn+l,'. We denote these diffusivities 
as V n+1,. = V n+1,.(yn jn+l,*) and use them to predict a preliminary y'n+l,. from m m m' , m 

Pn+l yn+l,. - pl': n+Y: 1 
m b.t m + (V. UADV PYm) 2 = '2 V . (pn+1Dr:,,+1'·vY~+l" - r~) . (14) 

Here, r~ represents the species diffusion fluxes at tn. Ideally, these diffusion fluxes would 
be defined by r~ = _pnv:;;" VY~. However, the mixture-averaged formulation for Vm does 
not preserve mass balance, i.e. numerically, I:m r~ i- O. We want to modify these diffusive 
fluxes, r~, to sum discretely to zero. Here, we consider two approaches for making this 
modification. For both algorithms we want to avoid the selection of a single "dominant" 
species for the entire problem whose diffusive flux is defined by the requirement that the 
diffusive fluxes sum to zero. 

The first approach we consider is to identify the locally dominant species and adjust 
its diffusive flux. When I:m f'm on an edge is non-zero, the diffusion fluxes on that edge 
are transporting net mass across that edge. Based on the sign of I:m f'm, we identify, for 
each face, the corresponding cell-center that is receiving excess mass. For concreteness, we 
consider the case in which I:m f'm > 0 at edge-i + 1/2, j, k. In this case, the diffusion fluxes 
are transporting net mass from cell-i, j, k to cell-i + I, j, k. We then modify r m for the 
species, m, in cell-i + l,j, k with the largest mass fraction in that cell so that the diffusive 
fluxes sum to zero. For cases in which there is a dominant species this approach reduces 
to the traditional treatment such as that found in the PREMIX code [15]. This is a robust 
and effective approach; however, it is not free-stream preserving for the chemical species. 
In particular, the differential equations have the property that a chemical species with an 
initially constant mass fraction that does not participate in any chemical reactions should 
remain constant. The approach outlined above, as well as traditional treatments, do not 
satisfy this property; they will introduce an erroneous variation in species concentrations. 

We propose a second approach to modifying diffusive fluxes, r~, so that they are free
stream preserving. In this approach, we modify r~ using a re-distribution idea originally 
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introduced by Chern and Colella[6] to correct conservation errors in a volume-of-fluid 
shock tracking algorithm. In particular, given the preliminary species diffusion fluxes, 
r m = -pVm \7Ym , we identify "excess" flux and redistribute the excess in a mass-weighted 
manner so that the adjusted species diffusion fluxes, r m, satisfy l:m r m = 0 on each cell 
edge. 

As before, when l:m f m on an edge is non-zero, the diffusion fluxes on that edge are 
transporting net mass across that edge. Based on the sign of Lm f m, we identify for each 
face the corresponding cell-center that is receiving excess mass. To modify the fluxes so that 
they sum to zero, we want to reduce the fluxes that contribute to that net mass flux while 
leaving the fluxes of the opposite sign alone. 

We again consider the case in which l:m f m > 0 at edge-i + 1/2, j, k so that the diffusion 
fluxes are transporting net mass from cell-i, j, k to cell-i + 1, j, k. We group the fluxes based 
on whether their contribution to the update is positive or negative. We denote the respective 

groups by ft and fl. Then we have 

Lft+ Lfl >0 
k 

We want to determine reduction factors Cik for the positive fluxes so that 

LCikft + Lfl = o. (15) 
k I 

with 0 < Cik < 1. However, reducing the flux ft will also reduce the amount of species k 
in cell-i + 1, j, k. We want balance the flux reduction amongst the different species, with 
a greater reduction for species that have a larger mass density. Thus, we want the flux 
reduction for species k to be proportional to the mass fraction of that species that is present; 

i.e., 

(16) 

for some fJ where Yk corresponds to the mass fraction in the cell-i + 1, j, k. The equations 
(15) and (16) define a linear system for the CKk and fJ. It is easy to show that for resulting 
Cik are between zero and one. Thus, if we define rt = CKkft and r l = fl then l:m r m = o. 

After the solution of the species diffusion equation (14) the initial new-time fluxes, 
f~+l,* == _pn+1V~+l'*\7y~+1,* also do not sum to zero. We again apply the redistribution 

procedure to modify these fluxes to obtain r~+l,* that sum to zero. These corrected fluxes 
are then used to compute the predicted species mass fractions yn+l,* using 

Pn+1yn+1,* pnyn n+Y: 1 
m - m + (\7. UADV Py.) 2 = --\7. (rn+1,* + rn). 
~t m 2 m m 

We now evaluate the fluid properties (>.., Cp,mix, hm )n+1,* with the predicted species mass 
fractions y~+1,* and preliminary predicted temperature rn+1,*, and use them to compute 
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(17) 

Finally, we update the predicted new-time temperature, Tn+l,* using (5). This completes 
the predictor step of the advection-diffusion algorithm. 

Prior to the corrector step of the algorithm, the provisional new-time values of 
(Ym, h, T)n+1,* are used to recompute new-time fluid properties, (A, hm' 'Om, Cp,mix)n+1. We 
then recompute (Ym, h )n+l. y~+1 is obtained by solving 

Pn+1yn+1 pnyn +Y: 1 
m - m + (\7 . UADVpy')n 2 = -\7. (pn+l'On+1\7yn+l _ rn) 
~t m 2 m m m 

(18) 

for the provisional y~+1. As before, the species -diffusion fluxes computed from the solution 
of (18) do not sum to zero. We apply our flux redistribution scheme to obtain the adjusted 
species fluxes, r~+1 and then update y~+1 using 

pn+1y~+1 - pny~ + (\7. UADVpy. )n+Y2 = -~\7. (rn+l + rn). 
~t m 2 m m 

The final new-time enthalpy is then given by 

'-------,-------'---- = (\7. UADV phf+ 2 + - \7. ---n::t:l\7hn+1 + \7. -n--\7hn Pn+lhn+1 _ pnhn . Y: 1 [An+l An] 

~t 2 Cp,mix Cp,mix 
(19) 

_ ~ ~\7. [hn+l (rn+l + A
n
+

1 

\7yn+1) + hn (rn + ~\7ynm)] 
2 L.;. m m n+l m m m n . 

m Cp,mix Cp,mix 

The final new-time temperature, T n+1 is computed by once again inverting (5), with hn+1 
and y~+1. 

Before discussing the incorporation of this methodology in an adaptive mesh refinement 

algorithm, we note some of the properties of the algorithm. First, we emphasize that the 
temperature equation is used only in an auxiliary capacity in the algorithm. The energy 
is evolved using the numerically conservative discretized enthalpy equation, (17) and (19). 
Second, since we explicitly ensure that Em r m == 0 and guarantee that E Ym == 1, the sum 
of discrete species equations yields a conservative discretization of the continuity equation. 
As noted earlier, although the scheme rigorously satisfies conservation of mass and enthalpy, 

the evolution does not strictly maintain the equation of state at ambient pressure. The 
degree to which the equation of state is not satisfied will be illustrated in the results section. 
Since the low Mach number asymptotics .used to derive the governing equation show that 
the thermodynamic pressure only satisfies (4) to 0 (M2), relaxing the imposition of (4) is a 
reasonable way of dealing with the overdetermined system. 
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Our scheme also satisfies certain free-stream preservation properties. First, the method 
is designed so that for non-reacting isothermal flows the temperature. remains constant 
independent of the velocity field and species distribution. The key issue in enforcing this 
property is the construction of the advective enthalpy flux at cell edges. As noted above, the 

Godunov edge states are constructed for temperature and species densities, then enthalpy 
flux is constructed from these values. The algorithm is also free-stream preserving for 
species mass fractions for the second, redistribution-based procedure for adjusting diffusive 
fluxes. In this case, if a mass fraction is initially constant and does not participate in any 

chemical reactions the algorithm will preserve that constant regardless of the velocity field 
or chemical reactions among the other species. Specifically, the flux redistribution scheme 
does not modify diffusion fluxes that were initially zero, so there is no mechanism to generate 
structure in the profile ofthat species. Note that this treatment departs from more traditional 
procedures employed to overcome the issue of discrete mass conservation, such as defining 
a designated "excess" species, or a "conservation diffusion velocity" [8], neither of which can 
be applied without potentially generating spurious signals in constant fields. 

4. Local adaptive mesh refinement 

In this section we present an overview of the adaptive projection algorithm. The 
framework is the same as that developed in Almgren et al.[l]' extended to low Mach number 
combustion by Pember et al.[28J. As in the discussion of the single-grid time advance, we 
will focus primarily on modifications to the base algorithm that are required to incorporate 
differential diffusion and complex chemistry. We refer the reader to the above papers for 
more details of the basic algorithm. 

Our implementation of AMR is based on a sequence of nested grids with successively 
finer spacing in both time and space. In this approach, fine grids are formed by evenly 
dividing coarse cells by a refinement ratio, r, in each direction. Increasingly finer grids 
are recursively embedded in coarse grids until features of the solution are adequately 
resolved. An error estimation procedure based on user-specified criteria evaluates where 
additional refinement is needed and grid generation procedures dynamically create or remove 
rectangular fine grid patches as resolution requirements change. 

The adaptive integration algorithm advances grids at different levels using time steps 
appropriate to that level, based on CFL considerations. The multi-level procedure can most 

easily be thought of as a recursive algorithm in which, to advance level £, 0 :::; £ :::; £max, the 
following steps are taken: 

• Advance level £ in time as if it is the only level. If £ > 0, obtain boundary data using 
time-interpolated data from the grids at £ - 1, as well as physical boundary conditions, 
where appropriate. 
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• If £ < £max 

- Advance level (£ + 1) for r time steps, LltHl = ~Llt£, using level-£ data and the 
physical boundary conditions. 

- Synchronize the data between levels £ and £ + 1, and interpolate corrections to finer 
levels [£ + 2, ... ,£max]. 

The adaptive algorithm, as outlined above, performs operations to advance the grids 
at each level independent of other levels in the hierarchy (except for boundary conditions) 
and then computes a correction to synchronize the levels. Loosely speaking, the objective 
in this synchronization step is to compute the modifications to the coarse grid that reflect 
the change in the coarse grid solution due to the presence of the fine grid. More specifically, 
when solving on a fine grid, we supply Dirichlet boundary conditions from the coarse grid. 
This leads to a mismatch in the associated fluxes at the coarse-fine interface that is corrected 
by the synchronization. 

For the adaptive projection methodology presented here there are three basic steps in 
the synchronization. First, the values obtained for U, pYm and ph are averaged from the fine 
grid onto the underlying coarse grid: We view the resulting data as defining a preliminary 
composite grid solution that is consistent between levels. We will denote this preliminary 
solution with a p superscript in the remainder of the section. To complete the synchronization 
we need to correct inconsistencies arising from the use of Dirichlet boundary conditions 
at coarse-fine boundaries. First, we compute increments to pYm and ph that correct the 
flux mismatches at coarse-fine interfaces. Finally, we correct the velocity field to satisfy a 
divergence constraint over the composite grid system. 

There are two components that contribute to flux mismatch. First, U ADV , the edge
based advection velocity satisfies the constraint on the coarse level and the fine level 
separately. However, since we only satisfy the Dirichlet matching condition for ¢MAC in 
(9), the value of U ADV computed on the coarse level does not match the average value on 
the fine grid. We define the mismatch in advection velocities by 

1 r-l 
8UADV,£ = _UADV,£,n+Y2 + r2 L L UADV,Hl,n+k+% 

k=O edges 

along the coarse-fine boundary. We then solve the elliptic equation 

and compute 

DMAC~GMAC8i = DMAC8UADV,£ 
p 

UADV,£,corr = _~GMAC8e£ 
p 

which is the correction needed for U ADV to satisfy the constraint and matching conditions on 
the composite (£, £+1) grid hierarchy. This correction field is used to compute a modification 
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to the advective fluxes for species and enthalpy that reflects an advection velocity field that 
satisfies the constraint on the composite grid. 

The second part of the mismatch arises because the advective and diffusive fluxes on 
the coarse grid were computed without explicitly accounting for the fine grid, while on the 
fine grid the fluxes were computed using coarse-grid Dirichlet boundary data. We define the 
flux discrepancies 

of = D..t'- (_Fl,n+ Y2 + ~ ~ '" F£+l,n+k+%) ph ph r2 ~ ~ ph 
k=O edges 

and 

of = D..t'- (-Fl,n+% + ~ ~ '" F£+l,n+k+%) pYm pY,n r2 ~ ~ pYm 
k=O edges 

where F is the total (advective+diffusive) flux through a given interface prior to these 
synchronization operations. Since mass is conserved, corrections to density, opsync, on the 

coarse grid associated with mismatched advection fluxes may be computed explicitly 

opsync = _DMAC (~UADV,COTT PYm) n+% + ~ oFPYm. 

The post-sync new-time value of density, pn+l = pn+1,p + opsync. Given the corrected density 

pn+l we can decompose the corrections for Ym and h into 

o (pymr ync = y~+1,popsync + pn+1 oy sync 

and 

Computing oy;.,ync and ohsync requires solution of a linear system, since the flux mismatch 
contains implicit diffusion fluxes from the Crank-Nicolson discretization in 1-ltt-D

. The 
provisional correction oy;.,ync on the coarse level-f grids is obtained by solving 

(pn+l _ ~tv pn+1V~+1V) oy::?nc = _DMAC (UADV,COTT PYmf+% + oFpYm . (20) 

However, as in the single-level algorithm, the species correction fluxes must sum to zero to 
preserve mass conservation. We compute the adjusted species correction flux, opync from 
orsync = _pn+lvn+1Voysync so that'" orsync = 0 using one of the procedures discussed m - m m L.Jm m 

above. This adjusted flux is used to compute the correction, oy;.,ync needed to update Ym and 
to form the forcing term due to non-unity Lewis number effects in the correction equation 
for ph: 

(
pn+l _ D..2tV pn+1 ~:1 v) ohsync = _DMAC (UADV,COTT ph) n+% + oFph 

cp,m%", 

+V . L hm(Tn+1,P) (:::1 Voy~ync + or::;nc) . 
m Cp,m%", 

(21) 
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The corrections, oy;:"ync, and ohsync are added to the coarse field at level-f, and interpolated 
to all finer levels. Finally, a new temperature field is computed using (5) on all affected 
levels. 

A similar process is also used to generate a correction to the velocity field. However, the 
velocity flux correction must be projected to obtain the component satisfying the constraint 
that updates U and the component that updates 'if. At this point there are two additional 
corrections needed for the composite velocity field: 

• A correction arising because the projection at level f + 1 used Dirichlet data from level 
f, leading to a mismatch in normal derivative at coarse-fine boundaries 

• The temperature and species adjustment in the first part of the synchronization leads 
to an increment in the computed S field. 

Since the projection is linear, both of these corrections as well as the projection of the velocity 
flux correction can be combined into a single, multi-level node-based synchronization solve 
performed at the end of a coarse-grid time step. 

5. Numerical results 

In this section we present computational results from two different combustion regimes 
to validate the numerical method presented above. In the first example, we model a premixed 
hydrogen flame, using the results to illustrate the convergence properties of the single-grid 
algorithm and to demonstrate that the adaptive algorithm effectively computes the same 
solution as a uniform fine grid. In the second example, we illustrate the behavior of the 
method on a steady and an unsteady methane diffusion flame. 

Premixed Flame 

As an initial test of the methodology we apply our algorithm without refinement to 

the evolution of a one-dimensional premixed hydrogen flame. The chemistry mechanism 
(consisting of 9 species and 27 reactions), and associated thermodynamic and transport 
databases were generated for this case by stripping the carbon chemistry from the GRI-Mech-
1.2 [11] distribution. The solution is initialized with a refined steady solution computed using 
the PREMIX code from the CHEMKIN-III library [15]. The inlet stream (mole fractions 
X(H2: O2 : N2) = (0.1909: 0.0910 : 0.7181)) enters at 79.675 cm S-1 and 298K. The initial 
profile exhibits a peak X H

2
0

2 
= 5.83 X 10-5 centered at 0.57 cm in a 1.6 cm domain, and is 

evolved for 80J-Ls on uniform grids of 64, 128 and 512 cells. The time step used in each case 
was 6.t = 4,2 and 0.5J-Ls, respectively. 

In Table 1 we give rates of convergence in L1, L2, and VXJ, computed by comparing errors 

over the 64- and 128-point resolutions to the (steady) PREMIX solution used to initialize the 
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Table 1. Convergence rates, RN, for LN norm of error, measured as deviation from the 
PREMIX steady solution. Rates for the local dominant species method appear in the left 
side of the table; rates for the redistribution method appear on the right side. 

Dominant Species Redistribution 

Quantity Rl R2 Roo Rl R2 Roo 

T 2.12 1.98 1.57 1.98 1.90 1.50 
V 2.42 2.42 2.42 2.14 2.15 2.16 
H 2.49 2.32 2.06 1.62 1.48 1.39 
p 2.13 1.86 1.34 1.80 1.66 1.16 
YH2 2.00 1.98 1.76 1.64 1.98 2.22 
YH 3.04 2.76 2.43 2.92 2.67 2.37 
Yo 2.53 2.47 2.25 2.46 2.41 2.13 
Y02 1.98 2.08 1.87 1.99 2.15 1.98 
YOH 2.83 2.78 2.09 2.87 2.89 2.07 
YH20 1.98 2.04 1.69 1A5 1.58 1.38 
YH02 1.35 1.08 0.68 lAO 1.11 0.71 
YH202 1.64 1.67 1.36 1.68 1.71 1.39 
YN2 1.97 1.73 1:33 OAO 0.47 0.65 

problem. Results are presented for both approaches to adjusting diffusive fluxes, as described 
above. For the first flux adjustment approach, based on a locally dominant species, each 
quantity is converging with second-order accuracy in £1, with the exception of trace species 
in the flame zone. For the redistribution-based flux adjustment algorithm, apparent accuracy 
degradation is more evident, most notably the behavior of YN 2' This reflects the difference 
in treatment of the two flux adjustment approaches. Although YN

2 
should remain constant 

for this problem, N2 is the dominant species throughout the domain and absorbs the entire 
corrective flux in the PREMIX algorithm as well as in our first approach. 

We also present, in Table 2, convergence data for each approach compared to a high
resolution solution computed on a 512-point grid. The convergence rate in max norm is 
1.35 or higher with the exception of H02 which forms a narrow spike in the solution. We 
also observe that both approaches to correcting the diffusive fluxes from the mixture model 
seem to be effective with neither approach emerging as a clear preference. A more detailed 

examination of these approaches will appear in a future work. 
As a more interesting test of the methodology, we use the same premixed hydrogen 

flame as the initial condition for a two-dimensional vortex flame interaction. The problem 
specification is similar to problems considered by Najm et al. (see [26], for example). 
Specifically we extend the laminar flame solution to two space dimensions and superimpose 
the velocity field induced by a countersign vortex pair (see Figure 1). The vortices have 
Gaussian cores with centers 0.2 cm apart and generate a maximum rotational velocity of 
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Table 2. Convergence rates, R N , for LN norm of error, measured as deviation from a 
fine-grid solution. Rates for the local dominant species method appear in the left side of 
the table; rates for the redistribution method appear on the right side. 

Dominant Species Redistribution 

Quantity Rl R2 Roo Rl R2 Roo 

T 2.25 2.02 1.58 2.24 2.01 1.56 
V 2.18 2.18 2.19 2.13 2.13 2.14 
H 2.47 2.39 2.10 2.29 2.21 2.09 
p 2.21 1.85 1.40 2.16 1.85 1.35 
YHZ 2.31 2.23 1.89 2.51 2.28 1.93 
YH 2.62 2.57 2.48 2.61 2.56 2.44 
Yo 2.59 2.54 2.22 2.59 2.54 2.18 
Y02 2.26 2.25 2.02 2.27 2.25 2.04 
YOH 2.83 2.80 2.18 2.85 2.83 2.20 
YH20 2.12 2.12 1.75 1.99 2.05 1.76 

YH02 1.43 1.15 0.74 1.45 1.16 0.76 

YH202 1.74 1.74 1.38 1.76 1.75 1.40 
YN2 2.83 2.44 1:88 2.45 2.20 1.95 

14.6 m S-l. The vortex pair induces a self-propagation velocity of 3.1 m S-l. We exploit 
symmetry and only compute on the left half of the domain which is 0.4 cm wide and 1.6 cm 
high. 

First, we solve the problem on a uniform grid with mesh spacing of 128 x 512. We 
then repeat the problem with adaptive refinement on a 32 x 128 base grid with two levels 
of refinement by a factor of two each. We trigger the finest grid on the flame zone using 
H2 0 2 as a marker for the flame. We also refine regions of high vorticity with one factor of 
two refinement. In Figure 2 we show the enthalpy, temperature and X H

2
0

2 
at 53.6Jts. For 

each figure we show the adaptive solution on the left and the (reflected) uniform solution 
on the right. The results are in excellent agreement suggesting that the adaptive algorithm 
is producing essentially the same result as a uniform fine grid. Figure 3 presents a similar 
comparison of uniform and adaptive solutions at 85.3Jts. Again the results are in good 
agreement. At the later time we do note that the top of the flame above the vortex is 
slightly lower in the adaptive case. This shows that the resolution of the vortex, which is 
represented on a coarser grid, does not quite match the fine grid solution. 

Diffusion flame 

As a second example, we apply our methodology to a laminar diffusion flame modelled by 
Mohammed et al. [24]. In their work, an axisymmetric diffusion flame is modelled using a 26-
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Figure 1. Schematic of the premixed hydrogen flame/vortex problem. The shaded line 
represents the position of the flame. Cold unburnt fuel enters the bottom of the domain and 
products exit the top boundary. The swirl lines represent vortical flow due to the counter 
rotating vortex pair. The modelled domain is 0.4 x 1.6 cm; symmetry is imposed along the 
sides to avoid modelling the dotted region. 

species, 83-reaction methane mechanism presented by Smooke et al. [33]. We incorporate the 
databases provided with CHEMKIIN-III [16] for evaluating thermodynamic and transport 
properties. The problem geometry is specified in Figure 4. Following the work of Mohammed 
et al., we consider both a steady flame and a transient flame where the transient behavior 
is induced by a 20Hz perturbation in the fuel inflow velocity. In particular, the fuel (CH4 , 

diluted with 35% N2 by volume) is injected with the velocity profile 

V=70(1- ~;)[l+fsin(wt)] ems-I. (22) 

where f and ware the amplitude and frequency of perturbation, respectively. Coflow air is 
injected at 35 em S-1 through the annular region between Rl +6 and R2 . The region between 
R2 and R3 , and the vertical sides of the chamber are bounded by a wall at 298K, and the 
top is open to atmospheric pressure. Note the outer wall radius and domain height in our 
specification are smaller those in [24]. We found that the details of the flame were insensitive 
to either of these parameters. The entire computational domain is filled initially with room 
temperature air, except for a small hot spot spanning the fuel and air inlets to ignite the 
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Figure 2. Enthalpy, Temperature, and XH
2
0

2 
contours at t = 53.6fts. In the AMR results 

(left), regions covered by fine grid (Dox = 31.25ftm) are unshaded, while less refined areas 
(Dox = 62.5, 125ftm) are shaded progressively darker. The single-grid results have been 
reflected about x = O.4cm to ease comparison. 

Figure 3. Enthalpy, Temperature, and X H20 2 contours at t = 85.3fts. In the AMR 
results (left), regions of fine grid (Dox = 31.25ftm) are unshaded, while less refined areas 
(Dox = 62.5, 125ftm) are shaded progressively darker. The single-grid results have been 
reflected about x = O.4cm to ease comparison. 
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H 

Figure 4. Schematic of the diffusion flame setup. Here, Rl = 2 mm, D = 0.38 mm, R2 = 2.5 
cm, R3 = 5.12 cm, and H = 10.24 cm. 

flame. We then allow the flow to evolve numerically on a coarse grid (6.x = 0.08 cm) to 
a stable flame pattern. Interestingly, we found that very small time steps were required 
during the early transient. Attempting to use larger time steps based on CFL considerations 
on these coarse grids led to problems with the flame blowing out. We conjecture that this 
behavior is related to an interplay between chemistry and diffusion that is not adequately 
represented with large time steps in the present operator-split framework. 

For the steady case (E = 0 in (22)), we computed the solution with a base grid of 32 x 64, 
plus two levels of additional refinement. The first level refines the base grid by a factor of two 
based on temperature in order to capture the gross features of the flame. The finest level is a 
factor of four finer for an effective resolution of 256 x 512, and localizes grids around regions 
of high CH concentration. We studied the behavior of our solution with further refinement 
by performing two .additional computations beginning with the steady three-level solution, 
and adding additional localized grid based on XCH, refined by a factor of two or four, for 
effective resolutions of 0.01 cm. and 0.005 cm, respectively. Each of these runs were then 
time-advanced until their solutions again relaxed to steady state. 

Raster images of temperature and XCH are shown in Figures 5 and 6, respectively. 
For temperature, we show results only for the most refined solution, as the three cases are 
virtually indistinguishable. The computed results have been mirrored across r = 0 for ease 
of comparison with the experimental data presented in [24]. For these steady results we 
compute a flame lift-off height of 0.27 cm for the base case and 0.23 cm for the two finer 
cases. (Following Mohammed et al. we define the flame lift-off height as the lowest z location 
where the flame reaches 1000K.) Mohammed et al. report an experimental lift-off height of 
between 0.16 and 0.22 cm but they obtain a computational lift-off height of 0.66 cm. We 
also compute a maximum centerline temperature of 2029K (compared with 2025K reported 
by Mohammed et al. without radiative losses) occurring at 3.08 cm on the base computation 
and 3.17 cm for the two finer cases. These data give a predicted flame length of 2.81 cm for 
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Figure 5. Refined temperature field (in K) for the steady diffusion flame, reflected about 
the origin. The subregion shown spans ±1.12 x 7.52 cm. Grids bounded by white, cyan and 
green boxes have ~x = 0.005,0.02 and 0.08 cm, respectively. 

the base case and 2.94 cm for the refined cases. 
One feature of our methodology is that we conserve both enthalpy and species mass 

density. In doing so our computed solution does not maintain thermodynamic pressure 
exactly at ambient conditions. In Figure 7 we show the thermodynamic pressure computed 
from the species densities and enthalpy obtained from the numerical solution. For this 
problem the ambient pressure is constant at 101325 Pa. The figure shows the computed 
results in a small 0.4 cm square region near the inlet and the flame tip. The results show 
that the deviation from ambient pressure converges to zero as the mesh is refined, and does 
not build up over long-time integrations. 

For the final example we model the transient version of the Mohammed et al. [24] 
diffusion flame, obtained by oscillating the fuel inlet flow rate. In Equation 22, we set 
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1.90e-06 

1.43e-06 

Figure 6. XCH for the steady diffusion flame, reflected about the origin. The subregion 
shown spans ±0.8 x 3.2 cm. The finest grids are clustered around the peak XCH values, 
and have mesh spacings ~x = 0.02,0.01 and 0.005 cm, in the figures from left to right, 
respecti vely. 

Figure 7. Computed thermodynamic pressure in Pa at the flame tip. Maximum error 
values with respect to atmospheric pressure, from left to right are 6075, 2107 and 556 Pa, 
for respective grid spacings, ~x = 0.02,0.01,0.005 cm. 

w = 20Hz and consider cases with E =0.25 and 0.50. We perform simulations at the same 
effective resolution as the coarse case in the steady simulations above (ie. 6x = 0.02 em). 
In Figures 8 and 9 we show a time sequence of temperature and CH mole fraction through 
one period of oscillation of the flame for the weaker perturbation. In Figures 10 and 11 we 
show the comparable results for the stronger perturbation. For the weaker perturbation we 
see excellent agreement in the shape of the CH profiles with the experimentally observed 
profiles from Mohammed et al. ; however, the overall extent of the variation is less than 
the experimentally observed values. The evolution for the larger perturbation is more 
violent than the experimental observations suggesting that the level of perturbation in the 
experiment is between 0.25 and 0.50. The experimental perturbation is not reported in [24]. 
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Figure 8. Temperature (in K) for E = 0.25, at 0.01, 0.02, 0.03, 0.04, and 0.05 s, reflected 
about the origin. The region shown spans ±1.12 x 7.52 cm. 
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Figure 9. XCH for E = 0.25, at 0.01, 0.02, 0.03, 0.04, and 0.05 s, reflected about the origin. 
The region shown spans ±0.88 x 4.88 cm. 
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Figure 10. Temperature (in K) for E = 0.50, at 0.01, 0.02, 0.03, 0.04, and 0.05 s, reflected 
about the origin. The region shown spans ±1.12 x 7.52 cm. 
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Figure 11. XCH for E = 0.50, at 0.01, 0.02, 0.03, 0.04, and 0.05 s, reflected about the 
origin. The region shown spans ±0.88 x 4.88 cm. 
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6. Summary and conclusion 

In this paper we have presented a new adaptive algorithm for solving the equations 
governing low Mach number combustion with complex kinetics. The overall approach 
is based on a projection formulation and uses a discrete form of the low Mach number 
equations that conserve both species and enthalpy. The extension to adaptive refinement 
uses sub cycling in time with a synchronization step whenever coarse and fine grids reach 
the same time that enforces the conservation and free-stream preservation properties of the 
single grid algorithm. 

We have demonstrated that the method converges at or near second-order for velocity, 
temperature and species and that the adaptive algorithm is able to compute essentially the 
same solution as a uniform fine grid for premixed combustion. We have also demonstrated 
convergence of the method for a diffusion flame and have correctly predicted the flame lift 
off height for a co-flowing methane/air diffusion flame. 

The adaptive algorithm here is implemented using the parallel BOXLIB framework 
developed by Rendleman et al. [31, 9] so that the code can run effectively on modern parallel 
architectures. A more detailed discussion of parallelization issues for the methodology 
presented here will be given in future work. We are also pursuing a number of algorithm 
enhancements and extensions such as models for radiation and a more complete model for 
transport. Finally, we are exploring a range of applications of this methodology to the study 
of fundamental issues in methane and hydrogen combustion. 
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