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We apply the new orbifold duality transformations to discuss the special case of 

cyclic coset orbifolds in further detail. We focus in particular on the case of the in

teracting cyclic coset orbifolds, whose untwisted sectors are Z>.(permutation)-invariant 

9 / h coset constructions which are not>. copies of coset constructions. Because>. copies 

are not involved, the action of Z>.(permutation) in the interacting cyclic coset orbifolds 

can be quite intricate. The stress tensors and ground state conformal weights of all the 

sectors of a large class of these orbifolds are given explicitly and special emphasis is 

placed on the twisted h subalgebras which are generated by the twisted (0,0) operators 

of these Ol;bifolds. We also discuss the systematics of twisted (0,0) operators in general 

coset or bifolds . 
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1 Introduction 

In Ref. [1] a construction of the stress tensors. of all the sectors of all current-alge~raic 

orbifolds 
A(H) 
II (1.1) 

was given, where H is any finite group and A(H) is any H-invariant CFT2-
4 constructed 

on affine Lie algebra5- 7 . This technology employs new duality transformations among the 

sectors of each orbifold, and, in particular, the special case of cyclic permutation orbifolds 

(1.2) 

was worked out in full as an illustratio~. 

The untwisted sectors of the permutation orbifolds A(ZA) /ZA are described by the set 

of all ZA(permutation)-invariant CFT's A(ZA)' that is by all the ZA(permutation)-invariant 

affine-Virasor08,9,4 constructions LI~J on affine g, where 

A-1 I 9 = XI=og , ZA(permutation) C Aut(g). (1.3) 

Here ZA(permutation) acts by permuting the copies {gIl at level k of the affine algebra on 

simple g. In this case the twisted current algebras of the twisted sectors are orbifold affine 

algebras10,1l,1, and the duality transformations relatin,g the sectors of the orbifolds A(ZA) /ZA 

are discrete Fourier transforms. 

In this paper, we apply the results of Ref. [1] for A(ZA)jZA to study the set of cyclic 

coset orbifolds 

(1.4a) 

(l.4b) 

in further detail. These orbifolds, first delineated in Ref.· [1], are the special cases in A(ZA) /ZA 

for which the ZA{permutation)-invariant CFT A(ZA) is a coset construction7,12,13, In what 

follows, an algebra h(ZA) which satisfies (l.4b) is called a ZA-covariant subalgebraa of the 

ambient algebra g. 

Among the cyclic coset orbifolds, the cyclic coset copy orbifolds 

(~) = x;:5(gjf))I c (hCb-) 
ZA ZA. ZA 

(1.5) 

aSince the stress tensor Tg of 9 defines a Z.x(permutation)-invariant CFT, the property (l.4b) is a necessary 

and sufficient condition so that the stress tensors Th(Z,,) and Tg/h(Z,,) also define Z>.(permutation)-invariant 

CFT's. 
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are well-known examples whose stress tensors in th~ untwi~ted sectors are sums of A comm~t-
< l _ , < '. • 

ing copies. In these orbifolds, the action of Z.x(permutation) consists of cyclic permutations 

of the coset copies. The stress teilsors of all the twisted sectors of all cyc:liceppy. orbifolds 

~re given in Ref. [1]. The case of prime A was given earlier in Refs. [10,llra~d ~~~~ orbifolds 

have also been studied in R~fs. [14-18]. As a consequence, otiI' remarks will be minimalfbr 
these cases. 

We focus instead on a more intricate class of cyclic coset orbifolds called the interacting 
cyclic coset orbifolds10,11,1 because their stress tensors in the untwisted sectors are not sums 

of A commuting copies. As a consequence, the action of Z.x(permutation) in the interacting 

coset orbifolds is generally more involved than the action of Z.x(permutation) in the coset 

copy orbifolds. The simplest examples of inieracti~g cyclic coset orbifolds are the cases 

(D!;) 
Z.x 

(1.6) 

where 9diag is the diagonal subalgebra of g. The stress tensors and ground state conformal 

weights of these orbifolds are worked out in Ref. [1]. As conjectured in Ref. [10], some of the 
sectors of these orbifolds are Kac-Wakimoto coset constructions 19,20 •. 

Generalizing the simplest examples (1.6), we will construct here a large class {hC1], <PH 
of Z.x-covariant subalgebras 

{h(1], <p)} C {h(Z.x)} , h(l, {o}) = 9diag (1.7) 

where 1] and <P are defined below, and give all the stress tensors and ground state conformal 

weights of the corresponding interacting cyclic coset orbifolds 

(1.8) 

Special emphasis is placed on the twisted h subalgebras (corresponding to each untwisted 

subalgebra h(1], <p)) which are generated by the twisted (0,0) operators of these orbifolds. 

The systematics of twisted (0,0) operators in general coset orbifolds 

(gjh) ACH) 
II C JI' h C g, H C Aut(g), H C Aut(h) (1.9) 

is also discussed, and App. A gives the (0,0) operators of the twisted sectors of the cyclic 

coset copy orbifolds (1.5). The twisted (0,0) operators of coset orbifolds will be important 

in an action formulation of these theories, where one must learn to gauge these twisted 

subalgebras. 
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2 The U ntwisted ~Sectors 

2.1 Notation 
. " 

• '. , '<:' ~~. ••.• 't,: ".:.:'~ ~., .• ,; ;~ ~;t:ii > ':~, • ~~ ,~";..:"! .ti; "-~;"'<: ·f',\·~<,.. 

In what follows, we assume that 9 in (1.3) is simple. Our notl~.tion forthe currents 'of Uie 
ambient algebra 9 is 

a = 1, ... ,dimg, I = 0, ... , A - 1, A = 1, ... , rankg, a E il(g) 

(2.1a) 

(2.1b) 

where the index I labels the copies of 9 and the index a runs over a general basis of g. The 

algebra of affine 9 

[HA(I}(m), Hh(J) (n)] = OlJkmOABOm+n,Q (2.2a) 

[HA(l) (m), Ea(J) (n)] = oIJaAEa(I)(m + n) (2.2b) 

{ 

N(a, (3)Ea+{3,(I)(m + n) if (a + (3) E il(g) 

[Ea(I) (m), E{3(J) (n)] = OIJ oa. H(I)(m + n) + k m OnHn,O if(a + (3) =.0 (2.2c) 
otherwise 

A, B = 1, ... , rankg, a, (3 E il(g); I, J = 0, ... , A -"- 1, m; n EZ (2.2d) 

holds in the Cartan-Weyl basis of g. 

The action of the automorphism group ZA(permutation) on affine 9 is 

WIJ(hu) = O[+u,J mod A E ZA(permutation) C Aut(g) 

a = 0, ... , A - 1, p(a) E {1, ... , A}, 
p(a)a ' 
-,\-' E {a, ... ,'\ -1} 

where p(a) is the order of the element hu E ZA(permutation). 

2.2 The subalgebra h('fJ, iP) C g 

(2.3a) 

(2.3b) 

The subject of this subsection is the construction of a large class of ZA-covariant subalgebras 

{h(ZA)}' The members of this class are labeled as h(TJ,4», 

9 :> h(TJ, <p) E {h(ZA)}' A '71+ 
-E~ 
TJ 

(2.4) 

where TJ is any positive integer that divides '\, and <P is constructed for each choice of TJ as 

follows. On the simple roots {ai E il(g)} of g, choose an integer-valued function cP(ai) with 

values in the range 0 to * -1: 

,\ 
¢J(ai) E {O, ... , - - 1}, 

TJ 

3 
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Therefore at fixed >., TJ and 9 we will construct 

( ~ ~ (>.)rankg "" N >., TJi" g, --: r;"" 

Z>.-covariant subalgebras h(TJ, q». Next, we define a natural extension of </J(ai) , 

rankg rankg 

</J(a) =L ni(a)</J(ai) 
i=l 

when a = L ni(a)ai, 
i=l 

which is defined on all roots a E ~(g). 

Using </J(a), we may now write the currents Jh(1/,~) of the subalgebra h(TJ, <p) 

in terms of the currents Ja(I) of the ambient algebra g, 

~-l . 
T/ 

Hf(z; 0) = L HA(1/;+R) (z), 
j=O 

o = { (TJ, <p) for E: 
- TJ for H!f 

H R±1/( . ) - HR( . ) A z,o - A z,o , 

>. '71+ -EILJ, R = 0, ... , TJ - 1, a E ~(g), 
TJ 

The periodicity relations in (2.9 c,d) are conventions. 

The currents Jh(1/,~) have the mode expansions 

(periodicity for 9) 

(periodicity for h(TJ,<P)) 

A. = 1, ... , rankg. 

Hf(z; 0) = L Hf(m; o)Z-m-l, E:(z; 0) = L E:(m; o)Z-m-l 

mE::£: mEZ 

and, using the algebra (2.2) of affine g, one finds the sub algebra h(TJ, <p) 

>. 
[H!f(m;o)'If~(n;o)] = oRS-rykmOABOm+n,o 

[Hf(m; 0), E~(n; 0)] = oRSaAE:(m + n; 0) 

4 

(2.6) 

(2.7) 

(2.8) 

(2.9a) 

(2.9b) 

(2.9c) 

(2.9d) 

(2.ge) 

(2.10) 

(2.l1a) 

(2.l1b) 



[E~(m;o),Eg(n;o)] (2.l1c) 

= 8RS a· HR(m + n; 0) +~km8m+n,o if (a + f3)= 0 
{ 

N(a, f3)E~+{J(m;tn; 0). if (a + f3) E .6.(g) 

. . .... 0" . '. . 1/ .. otherWise' . ;' 

A, B = 1, ... , rankg, a, f3E .6.(g), R, S = 0, ... ,7] - 1, m, n EZ. (2.l1d) 

This algebra consists of 7] commuting copies of affine 9 at level ~k, where the copies are 

labeled by the indices Rand S. 

The algebra (2.11) of h(7], <1» has no explicit </J(a) dependence, but the induced action of 

the ZA automorphism (2.3) on the currents Jh(1/,'fl), 

HR(m· 0) I = HR+u(m· 0) 
A' A" (2.12) 

is different for each h(7], <1» (see App. B). In (2.12), the symbollxj is the greatest integer 

less than or equal to x. A short calculation shows that E: I and H: I in (2.12) also satisfy 

the algebra (2.11), which means that Zx(permutation) is in Aut(h(7], <1>)). It follows that 

each h(7], <1» is a ZA-covariant subalgebra of g. 

As an example of these subalgebrash , consider the subalgebra h(l, {O}) for all 9 and A, 

where {O} means </J(ai) = 0, 'ilai. For this choice, one finds that 

A-I A-I 

Hf=O(z; 0) = L HA(I) (z), E~';O(z; 0) = L Eo(I)(z) (2.13a) 
[=0 [=0 

h(7] = 1; <1> = {O}) = gdiag (2.13b) 

so that the ZA-covariant subalgebra is the diagonal subalgebra of g. This is the h sUbalgebra 

of the simple case in (1.6). 

As another example consider the ambient algebra 

_ 2 [ 
9 - X [=0 9 , g[ ~ 9 = SU(2) (2.14) 

with simple root Q:. This has a ZA-covariant subalgebra h( 7] = 1, {</J( Q;) = I}) whose currents 

HR=O(z; 0) = H(o)(z) + H(I)(Z) + H(2) (z), 

E~O(z; 0) = E±o(o)(z) + e±2~i E±o(I)(Z) + e'F2~i E±o(2)(Z) 

(2.15a) 

(2.15b) 

generate an affine SU(2) at level 3k. Here H(I) and E±o(I)' I = 0,1,2 are the Cartan 

generator and root operators of SU(2)[. 

bThe trivial case h(A, <1» = 9 is not useful in the g/h coset constructions below. 
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2.3 Affine-Sugawara and coset constructions 

The affine-Sugawara construction7,12,21-23 on 9 is 
ab >..:..1 .., 

Tg = 2k
rJ 

Q L: : Ja(I)Jb([) : 
+ [=0 . 

Axdimg 
cg = -, 

x+h 
a, b = 1, ... , dimg 

(2.100) 

(2.16b) 

(2.16c) 

where x, h, 'lj; and Q are respectively the invariant level, dual Coxeter number, highest root 

and quadratic Casimir of g. In the text below, including the twisted sectors of the interacting 

coset orbifolds, these quantities always refer to 9 and affine g. 

The reader should bear in mind that, here and throughout this paper, :(.): means OPE 
normal ordering24,1l,1. 

The affine-Sugawara construction on the subalgebra h(rJ, <f?) is 
1 1/-1 rankg . 

Th(71,4» = 2~k + I)L:: H!(o)H!(o) : + L: : E:(o)E!:a(o) :) 
71 Q R=O A=1 aE~(g)' 

(2.17a) 

Axdimg (2.17b) 
Ch(1/,4» = ~x + h 

1/ 

because the algebra h( 'TI, <f?) is embedded at level * k in affine g. In what follows we will 

suppress the explicit A and Q summations above. 

Another form of this stress tensor is 
>'-1 

Th (71,4» = L [LJ-L : HA(J)HA(L) : +L~_L : Ea(J)E-a(L) :] (2.18a) 
J,L=O 

1 
LJ-L = 2~k + Q 8J- L,0 mod 1/, 

71 

in terms of the ambient currents Jg• 

1 2".i(J-L)q,(a) 

L~ L - >. e A 8J - L 0 mod 71 . (2.18b) 
- 21jk+Q ' 

The form in (2.18) shows that all the subalgebra 

constructions Th(1/,4» are Z.x(permutation)-invariant CFTs because the inverse inertia tensors 

L depend only on the combination J - L (see Ref. [1]). 
Finally we may use K_conjugation7,12,13,25,8 to obtain the coset constructions7,12,13 

(2.19a) 

Cg/h(71,4» = cg - ~h(1/,4» = Axdimg( x! h - ~x ~ h) (2.19b) 
1/ 

which describe the untwisted sectors of this class of interacting cyclic coset orbifolds. 
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3 Twisted Currents 

3.1 The ambient twisted algebra gp(a) 

In Ref. [1], a general prescriptlb~ is given to obtain the twisted ambient algebra of each 

sector U of any orbifold A(H)/ H. One begins with the action of the automorphismson the 

ambient currents Jg 

hu E H C Aut(g). (3.1) 

The matrix w(hu) defines an eigenvalue problem whose eigenvectors Ug(u) generate the 9 

eigencurrents 

(3.2) 

with diagonal response to the automorphism w(hu). The twisted 9 currents Jg(u), which are 

the ambient currents of each twisted sector u, 

(3.3) 

then satisfy the same OPE's as the eigencurrents. The diagonal monodromies of Jg(u) are 

controlled by the eigenvalues of w(hu). 

In the case l of the cyclic permutation orbifolds A(ZA)/ZA, the matrices w(hu) are given in 

Eq. (2.3), and one obtains the twisted 9 currents Jgp(,,) of sector (J, which satisfy the orbifold 

affine· algebra gp(u): 

~-l . 
- p(,,}. J 

gp(u) = X j=O gp(u) , u = 0, ... ,). - 1 

a, b = 1, ... , dimg, T, S = 0, ... , p(u) - 1, 
. A 

J, l = 0, ... , p( u) - 1. 

(3.4a) 

(3.4e) 

(3.4f) 

Here j, l label copies g~(u) of an orbifold affine algebra on simple g, with twist classes labeled 

by T, s. The quantity p(u) is the order of each copy and also the order of the automorphism 

hu E ZA. The orbifold affine level of each g~(u) is 

k(u) = p(u)k (3.5) 
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where k is the level of the affine algebra (2.2). In ;'fhat follows, gp(u) is called, the ambient 

orbifold affine algebra of sector a. 

3.2 General twisted subalgebras 

A central problem which arises in general coset orbifolds 

(g/h) A(H} 
~c~, h Cg, H C Aut(g), H C Aut(h) (3.6) 

is to find the twisted h currents with diagonal monodromy. The analysis of Ref. [1] for the 

ambient algebra 9 can also be applied, mutatis mutandis, to the H-covariant subalgebra h, 

with attention to the embedding of affine h in affine 9 

(3.7) 

where M is the embedding matrix in the untwisted sector. 

The induced action of the automorphism group H on the currents Jh has the form 

(3.8) 

and the matrix O(a) defines an induced eigenvalue problem whose eigenvectors Uh(a) gen

erate the h eigencurrents 

(3.9) 

whose response to n(a) is diagonal. The twisted h currents Jh , 

(3.10) 

satisfy the OPE's of the h eigencurrents, with diagonal monodromies controlled by the 

eigenvalues of n(a). Moreover, with Eqs. (3.3), (3.9) and (3.10), we see that Jh is embedded 

in the ambient twisted algebra as 

(3.11) 

where j'V! (a) is the embedding matrix of sector a. 

The general twisted h currents Jh are further discussed in Subsec. 4.5, and Appendix A 

gives an application of this procedure to the simple case of the cyclic copy orbifolds. 
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3.3 The twisted subalgebra h('1}, cI>, a) c gp(u) 

For our class of interacting cyclic coset orbifolds 

(~) C (~)C A{Z:x):· ," 1:';;, 

z~ z~ Z~ 

the embedding matrix M of the subalgebra h(1], q,) is specified in Eq. (2.9a). In the discussion 

below, we will use the notation 

h(1], q" 0") C gp(u), h(1], <P, 0) = h(1], q,), gp(O)=l = 9 

(3.13a) 

(3. 13b) 

for the twisted h currents of sector 0", which generate the twisted subalgebras h(1], q" 0"). 

Starting from (2.9) and (2.12), we obtain the explicit form ofthe twisted currents Jh(f1'~'u), 

->'--1 
p(IT),. " .1_) .. 

A R (r) '" 211"JrN(IT)P A (~r) 
HA' (z;O;O") = L.....t e ,,/,. HA(p.j+R)(Z) 

j=O 

>. -1 
A R ( ) , P(L:IT

),. 211'ij(N(IT)r-tj>(a»P 27riit,(a) A (~t/>(a)+~r) 
E ' r (Z· o· 0") = e ,,/,. e >.,. E >., "(z) 

a " a(p.J+R) 
j=O 

A 
1-£ = 1-£(1],0") = gcd( 1], p( 0") ), 'T} E Z+ 

1-£(1],0") , 

A 'T} 
P('T}, 0")-(-)- = 1 mod -, 

p 0" 1-£ 1-£ 
P == P('T},O"), 

1 
P('T}, 0") E {I, ... , -/ } 

'T} 1-£ 

R, S = 0, ... ,1-£ - 1, 
'T} 

r, S = 0, ... , - - 1, 0" = 0, ... , A-I 
1-£ 

(3.14a) 

(3.14b) 

(3.14c) 

(3.14d) 

(3.14e) 

in terms of the currents Jgp(IT) of the ambient orbifold affine algebra (3.4), where z=gcd(x, y) 
is the largest integer such that x/z, y/z E Z. The result (3.14) summarizes the embedding 

matrix of sector 0". 

The OPE's of the twisted currents Jh(T/,<I>,u) follow from those of gp(u) in (3.4): 

A R (r) • S (s) >; 8 AB8r+s,0 mod !L 
H' (Z· o· O")H' (w· o· 0") = 8 ,. + O((z - W)O) 

A " B " RS ( )2 Z-W 
(3.15a) 

(3.15b) 
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EA R,(r)(Z' o' a)BS,(s)(w' o' a) 
a " f3 " 

=8RS 

N( f3)E- R,(r+s)( ) 
a, :~w WjOj/T + O((Z _ W)O} ", . 

u ",' , .. 
-;-6r + o,0 mod * a.hR ,(r+s)(1IIjOj/T) 0' (( _ )0) 

( ) 2 + " + z w z-w z-w 

O((z - w)O) 

R, S = 0, ... , jj - 1, TJ r, S = 0, ... , - - l. 
jj 

(3.15c) 

if (a + (3) E .6.(g) 

if {a + (3) = 0 

otherwise 

(3.15d) 

These OPE's are isomorphic to the OPE's of jj copies of order TJ/ jj orbifold affine algebra 

taken at orbifold affine level )"k/ jj, where the copies are labeled by the indices Rand S. The 

number of copies and the order can be read from (3.15d), and the order TJ/ jj also appears in 

the central terms of (3.15). As a check on these quantities, recall that 

(orbifold affine level) = (order)·(affine level) 

(~k) = (!!.). (~k) 
'jj jj TJ 

(3.16a) 

(3.16b) 

where (3.16a) is a general property of orbifold affine algebra and *k is the level of the 

untwisted algebra h(TJ, <p). 
The system (3.15) is distinguished however from an orbifold affine algebra by the mon

odromies 
A R (r) 2' -27ri-r 

A R (r) H' (ze 7r~. o· a) = e '1/'1> H' (z· o' a) A ' , A' , 

BR,(r) (ze27ri . o' a) = e -27ri( '1/~ + albia» BR,(r) (z· o' a) 
a , , a " 

(3.17a) 

(3.17b) 

of the twisted h currents Jh(T/,<P,/T), which also follow from (3.14). To see the consequences of 

this difference, we use the mode expansions 

HA R(r)( ) '""' _m_l __ r HA R(r)( r ) 
A' z;o;a = ~z '1/" A' m+-

mEZ ' TJ/jj 
(3.18a) 

A R ( ) '""' 1 r a</>(a) A () r a</J(a) Ea' r (z; 0; a) = ~ z-m- -1JTii--A-E~' r (m + ~/ + ).. ) 
mEZ TJ jj 

(3.18b) , 

which follow from the monodromies in Eq. (3.17). Then, (3.15) and (3.18) give the twisted 

subalgebra h('f/, <P, a) C gp(/T): 

A R,(r) r A S,(s) S )"k r 
[HA (m + -/-) , HB (n + -/-)] = 8AB8Rs -(m + -/-)8m +n+!:±! ° 

'f/ jj TJ jj . jj TJ jj '1/ ~ , 
(3.19a) 

[hR,(r)(m + ~), BS,(s)(n + ~ + a</J(a))] 
A TJ/jj a 'f//jj ).. 

(3.19b) 

10 



{ 

N(O! (3)ER.(r+s) (m+n+ r+s+ UI/>(a+.B») , 
, a+.B 'TIl I-' A 

=15 a·iIR.(r+s)(m+n+ r+S )+Ak(m+..!:....+O"I/>(a»)t5 ~ 
RS ",II-' I-' ",II-' A m+n+'l/I"O 

o ' 

if a+ {3 E ~(g) 

if a+{3 = 0 

otherwise 

R, S = 0, ... , J.£ - 1, TJ r, S = 0, ... , - - 1, (J = 0, ... , A - 1. (3.19d) 
J.£ 

As we will discuss in the following section, algebras of the form (3.19) are known in the 

literature. 

3.4 Doubly-twisted current algebras 

To identify the twisted h su balge bras (3.19), we first introduce the fundamental weights {Ai} 

of 9 
a~ A- . a- - t5 ___ t 

t J - tJ 2 ' i, j = 1, ... , rankg (3.20) 

and the vector d, 

dA = _ 2TJ(J ~ ¢J(ai)Af 
- J.£A L.....J a~ , A. = 1, ... , rankg 

i=l t 

(3.21a) 

¢J(a) = _J.£A d . a . 
TJ(J 

(3.21b) 

Then, using (3.21b) we can rewrite the induced action (2.12) 

(3.22) 

of Z>.(permutation) on the subalgebra. The twisted subalgebra h(TJ,~, (J) can also be rewrit

ten in this notation as 

A R.(r) r A S.(s) S _ Ak r 
[HA (m + -/-) , HB (n + -/-)] - t5ABt5RS-(m + -1-)t5m+n+!tl 0 

TJ J.£ TJ J.£ J.£ TJ J.£ rt / I' • 

(3.23a) 

(3.23b) 
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if a+ {3 E ~(g) 

'if a+/Jh-tj 

(3.23c) 

... :" .. ;-~.~.;>.:-:. " ":(,,:.;0. 
otherwise 

R, S = 0, ... , Jl - 1, 
_ Tt 

T, S - 0, ... , - - 1, u = 0, ... , .x - 1. (3.23d) 
Jl 

This form of h{Tt, <P, u) is recognized as Jl = Jl{Tt, u) commuting copies of a doubly-twisted 
current algebra 11. 

The doubly-twisted current algebras correspond to affine algebras which have been simul

taneously twisted both by outer automorphisms Z>. (permutations) and inner automorphisms 

(d =1= 0) of g. Equivalently, doubly-twisted current algebras are inner-automorphically twisted 

orbifold affine algebras. The doubly.:.twisted algebras have an order (in this case Ttl Jl) and 

a level (in this case .xk/ Jl), which are the order and level of the orbifold affine algebra10,1l,1 

before the inner-automorphic twist. 

The origin of these algebras in this problem can be understood from Eq. (3.22), which 

shows that the induced automorphism n on Jh is a combination of the permutation au

tomorphism (R -+ R + u) and an inner automorphism (the phases). In turn, the inner 

automorphisms can be traced to the form (2.9a) of the root operators of the untwisted 

subalgebra h(Tt, <p) 
~-l 
~ 

E~(z, 0) = L Ea (11i+R) (z)" 
j=O 

Ea (11i+Rt == e 21fi
i
:d.", E a (1/i+R) = f,(Ttj + R)Ea(11j+R)f,(Ttj + R)-l 

f,(Ttj + R) = e27l"ij~d.H(~i+R)(0) 
where Ea (11i+R>" is inner-automorphically equivalent to EO:(1Ji+R)' 

(3.24a) 

(3.24b) 

(3.24c) 

In special cases, the doubly-twisted subalgebras reduce to singly-twisted subalgebras: 

When the inner-automorphic vector d vanishes 

d = 0 ~ <P = {O} (3.25) 

then the subalgebras h(Tt, 0, u) are orbifold affine algebras (see also Subsec. 5.1). When d =1= 0, 

Tt = 1 (and hence Jl = 1) the twisted subalgebras are inner-automorphically twisted26
-

29 

affine Lie algebras on simple 9 (see also Subsec. 5.4). When d =1= 0 and 

.x-
-( -) E Z, puTt 

(3.26) 
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the twisted subalgebras consist of'f/ copies of inner-automorphi~ally twisted a:ffin~"~ (see also 

Subsec. 5.5). 

We emphasize that the doubly-twisted algebras (3.23) aresuba:lgebras of orbifoldatfine 
"< • '< '.; .; , ~ 

algebra. The explicit form ;of the embedding 

pi;),. -1 nf_\" () / 

if:,(r)(m + 'f/~ ,) = f; e 21rij~iJtr)P if~X~)(m + p :(~;'f/) (3. 27a) . 

EAR,(r)( r-d.a) 
a m+ / 'f/ J-L 

(3.27b) 

_X __ l 
p(tr),. nf_)" n(_'_ p(:)p. r + p(~)q "'("') 
""' 27rij (N(trY-4>(a»P 27rij4>(a) A (7r+~.p(a». 'f " 'f' u; 

= L...t e '1 ,. e x/,. Ea(p.j+R) (m + . . ) 
j=O 

~r+~4>(a) 
p(a) 

p(a.) 

(3.27c) 

follows from the discussion above. It has been further observed in Ref. [10] that outer

automorphically twisted affine Lie algebras30 also occur as sub algebras of orbifold affine 

algebras. So the orbifold affine algebras contain (as subalgebras) examples of all standard 

twisted current algebras. 

It may also be possible to find interacting cyclic coset orbifolds whose twisted h subalge

bras are "triply-twisted" current algebras, which are twi~ted as well by outer automorphisms 

of simple g. 

4 Stress tensors of the twisted sectors 

4.1 Systematics 

The ZA-invariant eFT's A(ZA) are described by the stress tensors 

L ab - L ba - Lab 
K - -K - K±A' K = 0, ... ,A-1 

(4.1a) 

(4.1b) 

where Lj~J is any solution of the Virasoro master equation8,9,4 (VME) with cyclic permuta

tion symmetry. The explicit form of this consistent subansatz of the VME is given in Ref. [1]. 

Then, the duality transformations of Ref. [1] give the stress tensor for each twisted sector 

13 



a of all cyclic permutation orbifolds A(Z>..)/Z>.. in terIIlB of the twisted currents !~(J) of the 

ambient orbifold affine.alg~bra gp(u) in, Eq. (3.4): 
-' ~:·;"r/ .. 

p(u)-l ~-l 

1'u(z) = L L .c~(j)b(l)(a): j~(J)(z)j!~)(z) :, &.~ 1, ... , '\~1 .... (4.2a) 

r=O j,I=O 

(j) ( ) 
1 P(EU )-1 2".iN(u)r8 . 

.ca b I (a) = __ e- p(u) Lab>. .. 
r p(a) 8=0 . i:>(u)s+J-1 

(4.2b) 

The relation in (4.2b) is the duality transformation from the inverse inertia tensor L of the 

untwisted sector to the inverse inertia tensor .c of the twisted sector a. The integers N{a) 

and the ground state conformal weights Ao(a) 

( 4.3a) 
m 

Ao(a) 
p("u) -1 p(u)-l 

~ p(a).kTJab Y' .c~(j)b(j)(a) r(p(a) - r) 
~ L..t 2p2(a) 

(4.3b) 
j=O r=O 

a = 1, ... , A-I 

ate given in Ref. [1]. The central ~harge c( a) = c of the twisted sectors is the same as the 

central charge of the untwisted sector. 

The stress tensors, central charges and ground state conformal weights of our interacting 

coset orbifolds 

(4.4) 

are easily obtained from Eq. (4.3b) and the duality transformations (4.2b). The form of 

these results 

a = 1, ... , A-I 

1'gp(u) = (1'* )u, rh(T/,~,u) = (1'h(i~<'I!) )u, 1'iJp(u)/h(T/'~'u) = (1'g/hi~'<'I!~)u 
~ \ d' (' 1 1) 
Cgp(u)/h(T/,~,u) = Cg/h(T/,~) = AX Img + h- - >.. h-

X -X+ T/ 

(Ao)gp(u)/h(T/'~'U) = (AO)gP(cT) - (AO)h(T/'~'u) 

14 
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(4.5b) 

(4.5c) 

(4.5d) 



follows from the linearity of the duality transformations and the liI1ear,ity of K-conjugation, 

and shows that these coset orbifolds can be understood in terms" of ~thecOIhponent orbifolds 

9 171>. and h( "I, if!) 171>.. Here the various stress tensors of the twisted sectors are obtain~d by 
the duality transformations 

(4.6) 

of each component of Tg/h(f/,tJ» in (2.19a). In the following subsections, we will consider these 

component orbifolds separately . 

• Similarly, one finds for general coset orbifolds (g I h) I H that 

(4.7) 

so the general case can be understood in terms of the component orbifolds gl H and hi H. 

4.2 The WZW cyclic orbifolds g/Z>. 

For each WZW cyclic orbifold 9 171>., the set of stress tensors in the twisted sectorsl 

.\ 1 

l
ab p(u)-l ~-

~ _ ~ _ "I ~ ~ . ~(r) ~(-r)" 
(Tg/71Ju - Tgp(tT) - p(a) 2k + Q ~ ~ . Ja(j)Jb(j) "' a = 1, """'). - 1 (4.8a) 

~ AX dimg 
Cgp(O") = Cg = X + It ' 

1::.. Axdimg 1 
( o)gp(tT) = 24(x + It) (1 - p2{a)) (4.8b) 

is a list of a-dependent orbifold affine-Sugawara constructionslO,ll,l. 

4.3 The orbifolds h("" <p)/Z>. 

Substitution of the inverse inertia tensor (2.18b) into the duality transformations (4.2b) 

yields (see App. B) the stress tensors of the twisted sectors of the orbifolds h(T/, if!)/71>.: 

(4.9a) 

(4.9b) 

(4.9c) 
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(4.9d) 

A ~. 2 
(b..O)h(f/,il>;u)'= ')" - [dlmg(p(a) - 1) 

24p(a)2(;;x + h). . 

t". 

P(cr)"_1 

-3 t csc2 (
rR77N (a))(rankg + L cos( 27rR114>(a)))] 

R=1 p( a) J1. aea(g) p( a) J1. 
(4.ge) 

A 
j, 1 = 0, ... , pea) - 1. a E b..(g), A = 1, ... , rankg, (4.9f) . 

We note that -the ground state conformal weights in (4.ge) depend in general on the inner

automorphic parameters 4>( a) rv d . a. 
When the order A of a cyclic permutation orbifold is prime, every twisted sector a has 

order pea) = A and so j = 1 = O. Moreover J1. = 1 so R = S = O. As a result many of the 

expressions above simplify, and one obtains in particular 

fI:=o,(r) (m + AT /77) = fI~~r) (m + AT /11) 
A A 

(4.10a) 

A a4>(a) + ~T A a4>(a) + ~T 
ER=O,(r) ( 1/ ) = E(ut!>(a)+).r!1/) ( 1/ ) 

a m+ A a m+ A (4.10b) 

(4.10c) 

A, B = 1, ... , rankg, a, (3 E b..(g), A '71+ -EIL.I 
11 

T, S = 0, ... ,11 - 1, . (4.lOd) 

from (3.14) and (4.9). When <P = {O}, these twisted h currents generate the subalgebras 

g1/ C 9). of orbifold affine algebra identified in Ref. [11]. 

4.4 The orbifold affine-Sugawara constructions of h( f/, q» I'll).. 

The stress tensors (4.9) of the twisted sectors of the orbifolds h(11, <p)/Z). take the simpler 

form 

JL-l *-1 

t ( ) = J1. """". (fIR,(r) (o)fIR,(-r) (0) + ER,(r) (o)ER,(-r) (0)) : 
h 1/,il>,0" 2Ak + 11Q ~ ~ . A A . a -a 

R=O r=O , 

(4. 11 a) 

a = 1, ... , A-I (4.11b) 
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when written in terms of the twisted h currents Jh(~,~,(f). This form shows that the stress 

tensors Th('1'~'u) are nothing but the appropriate orbifold affine-Sugawara constructions lO on 
the twisted subalgebras ,h('T], <1>, (7). 

To understand this, recall that h('T], <1» is embedded in affinegatlevel,*k,and the OPE 

forme (3.15) of h('T], <1>, (7) has orbifold affine order 'T]/ J.L. Then the prefactor in (4.11) can be 

computed via the map 

(level 6f affine g) 
,\ 

k -+-k 
'T] 

(level of affine h('T], <1») (4.12a) 

(order of 9p(u)) (order of h('T], <1>, (7)) (4.12b) 

(prefactor of Tgp{(7») (prefactor of Th(1J'~,u)) 

(4.12c) 

from the prefactor of the orbifold affine-Sugawara construction Tgp (<7) in (4.8). 

4.5 Twisted (0,0) operators of the interacting coset orbifolds 

The untwisted currents Jh of a general coset construction g/h are (0,0) operators of Tg/h' 

and this situation applies in the untwisted sector of the general coset orbifold 

(g/h) A(H) 
liCIf' h C g, H C Aut(g), H C Aut(h). (4.13) 

Then, the duality algorithm of Ref. [1] tells us that the twisted h currents Jh of a general 

coset orbifold (see Subsec. 3.2) are also twisted (0,0) operators 

in the twisted sectors of the general coset orbifold. In what follows, we verify this explicitly 

for our class of interacting cyclic coset orbifolds. 

By explicit computation24,11 with the form (4.11) and the OPE's (3.15), we find that 

t. (Z)JR,(T)(W· o· (7) 
gp(<7) a " Th(1J,'P,CT)(Z)J:-,(T)(W; 0; (7) (4.i5a) 

( 1 + ~ )J:-,(r)(w; 0; (7) + O((z _ w)O) 
(z-wF z-w 

C Although h(TJ,~, 0') in (3.19) is not an orbifold affine algebra, it is the OPE form of an algebra that 

determines l the Virasoro constructions. 
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[Lh(f/,q;,u) (m), H!,(r~(n +1]~ J-L)] (4.l5b) 

- -(1t"+ 11~J1.)Hf'(r)(m +. n + 11;,) 

[L (m) ER,(r)(n + ..!.....- + a</>(a))] 
gp(CT) , a 11/ J-L A [Lh(., ... )( m), E:-<') (n ~'1; P. + U<pl") ))(h5c) 

-en + _T_ + a</>(a))ER,(r)(m + n +..!.....- + a</>(a)). 
11/ J-L A a 11/ J-L ), 

As expected, the currents of the h(11, <P, a) subalgebra are "twisted (1,0) operators" of Tgp(CT) 

and Th(f/,q;,u), and hence twisted (0,0) operators 

(4.l6a) 

[ ( ) ~R,(r)( T)] [ ~R(r) .. T a</>(a))]_ 
Lgp(CT)/h(f/,q;,u) m ,HA n+ 1]/J-L = L gp(u)/h('1/,q;,IT)(m),Ea' (n+ 11/J-L +-),- -0 

(4.l6b) 

in each sector of the interacting cyclic coset orbifolds. 

In an action formulation of coset orbifolds, one must learn to gauge these twisted h 

subalgebras. The twisted (0,0) operators of the cyclic coset copy orbifolds are discussed in 

App. A. 

5 Examples 

The components for g/Z>. in (4.8) and h(11, <p)/Z>. in (4.9) and (4.11) are now easily assembled 

into the stress tensors and ground state conformal weights of the twisted sectors 

a=l, ... ,)'-l (5.1a) 

~ . \ d. (1 1) 
cgp(u)/h(1],q;,u) = Cg/h('1/,q;) = AX Img -h- - >. h-

X + 71X + 
(5.1b) 

(~o)gp(,,)/h('1/,q;,u) = (~o)gP(U) - (~O)h(f/,q;,u) (5.1c) 

of these interacting coset orbifolds. The examples below use the orbifold affine-Sugawara 

form (4.11) for Th('1/,q;,IT) in terms of the twisted h currents, while the alternate form of 

Th(f/,q;,IT} in (4.9) is used in Appendix C to write the coset stress tensors entirely in terms of 

the inverse inertia tensors Land .c and the ambient algebras 9 and gp(u). 
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For the first three examples, we return to the general basis 

Jg = {Ja(l)}, Jh .. - {JhR,(r)(o'';')} .(5.2) 
h(T/jcJl,u) - a' v . 

of the ambient algebras and their subalgebras. Moreover, we will suppress the sector Iabel 
a of the twiSted h currents. 

5.1 All g, A and 11 for <P = {O} 

These are the interacting coset orbifolds 

(h(7J~{0}) ) 
z" 

(5.3) 

where k is the level of gI. In these cases the untwisted subalgebra h(7J, {O}) is generated by 

a = 1, ... ,dimg, R = 0, ... , 17 - 1, 0'=0 (5.4) 

so that h( 17, {O}) is composed of 17 copies" labeled by R, of affine 9 at level *k. The twisted 

subalgebra h(7J, {O}, a =1= 0) is generated by the twiste~ h currents 

P(;)j.l ~1 
j~,(r) = L (5.5a) 

j=O 

[JR,(r)(m + ~), J,s,(s)(n + _8_)] 
a 7J/J.L b 7J/J.L 

(5.5b) 

_ J:RS{'f cJhR,(r+s) ( r + s) )"k ( r) J< } 
- u 1, ab c m+n+ -/- + - m+ -/- 7JabUm+n+~O 

17 p, P, 17 P, ~/I" 

0'= 1, ... ,A-l, R, S = 0, .. ~, p, - 1, 17 r, 8 = 0, ... , - - 1 
P, 

(5.5c) 

where p, = p,{7J, a) is defined in (3.14). This is the algebra of p, copies of an order 17/ J.L orbifold 

affine algebra with each copy at level >'k / p,. 

The stress tensors, central charges and ground state conformal weights of these interacting 

cyclic coset orbifolds are 
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t -t {} u*O - 9p (<T)/h(TJ, 0 ,0") 

>. 1 
ab p(u)-1 p(aj-

.,., '" '" : j(r~ j5-.r) : 
2p(a)k + p(a)Q f:o~. a(J) b(J) , 

all ;-1 ~-1 
_ .,.,. '" '" : jR,(r) jR,(-r) : 
2~k + !1.Q L..J L..J a b 
~ ~ r=O R=O 

c( a) = c = >.xdimg( ~ - A 1 _) 
x + h Tjx + h 

(5.6b) 

(5.6c) 

Ao(a) = [ p(a)2 - 1_ _ .,.,2 - 112_ ] >.xdimg . (5.6d) 
p(a)2(x + h) .,.,2(*X + h) 24 

For the sectors with p( a) = >., the stress tensors of these orbifolds were given in Retll1] 

where they were called 1'0>./0". 

5.2 All 9 and A for 'fJ = 1 and <P = {O} 

To illustrate our formalism, we include a discussion of the special case.,., = 1 of the previous 

example 
A-1g1 

(X~:k k) 

ZA 
(5.7) 

which was also discussed in Ref. [1]. The h currents of these orbifolds are 

A-I 

h(l, {O}) = 9diag = 9Ak : J R=O - '" J. - Jdiag 
. a - L..J a( J) = a , a=O (5.8a) 

J=O 

A 1 PW-
h(l, {O}, a) : jR=O,(r=O) _ '" j(O) 

a - L..J a(j)' a = 1, ... , >. - 1. (5.8b) 
j=O 

The untwisted h currents J~o generate the diagonal subalgebra 9Ak of the ambient algebra 
9 and the twisted h currents j!=O,(r=o) generate the diagonal sub algebra of the integral affine 

subalgebralO of the ambient orbifold affine algebra 9p(u)' 

The stress tensors, central charges and ground state conformal weights of these orbifolds 

are 
ab A-I 

t T. .,., '" J. J. 1 JR=O JR=O (5 9 ) 
u=O = g/h(I,{O}) = 2k + Q L..J: a(J) b(J): - 2>'k + Q: a b: • a 

J=O 
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>. 1 
ab p(q)-l P'(a)-

. Tf ,~ ~ . jeT) j(-r) . 
2p(a)k + p((j)Q ~ ~ '. aU) bU) . 

ab 
Tf . J~R=O,(r=O)J~R=O,(r=O) . 

2Ak + Q' a b • 
(5.9b) 

c(a) = C = Axdimg( ~ _ 1 _) 
. x+h Ax+h 

(5.9c) 

~ Axdimg 1 
Ao(a) = 24(x + it) (1 - p2(a))' a = 1, ... , A - 1. (5.9d) 

In this case the conformal weights are those of Tgp(u) in (4.8) because the integral affine 

subalgebra {j(O)} acts10,1l,1 on 10)q as an ordinary affine algebra. 

In the twisted sector a = 1, we have 

p(a = 1) = A, j(r) = j(r) 
a - a(O)' 

jR=O,(r=O) = j(O) 
a a (5.10) 

so the stress tensor simplifies to 

(5.11) 

These are the Kac-Wakimoto coset constructions, given in Ref. [19] and further studied in 

Ref. [20J. 

5.3 All 9 for A = 4, 'fJ = 2 and ~ = {O} 

Another special case of (5.3) is 
(9k xgk X9k X9k) 

g2k x 92k 

Z4 
(5.12) 

These orbifolds have A = 4 sectors labeled by a = 0, 1,2 and 3 with p(O) -:- 1, pel) = p(3) = 4 

and p(2) = 2. The ambient algebra of the untwisted sector a = 0 is 9 = X~=ogl, and the 

generators of the untwisted h subalgebra 

h(2, {O}, a = 0) = h(2, {O}) C 9 (5.13) 

are the combinations 

J R=O J. J. a = a(O) -t- a(2) , J R=l J. J. a = a(l) + a(3)· (5.14) 

.These generate the h subalgebra g2k x g2k in (5.12). 
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The sectors a -:- 1 and a = 3 both have order p(a) = 4 and f.1. = 1, and N(a = 1) = 

1, N(a = 3) = 3. The ambient orbifold affine algebra in these sectors is gA:::4 on simple g, 

and, the twisted' h slibalgebras are isomorphic , 
, .' ~.~ ,.,;:::: , 

h(2, {O}, a = 1) = h(2, {O}, a = 3) C 9A:::4 

}R=:O,(r:::O) = }(O) 
a a , J~R=:O,(r:::1) = J~(2) 

a . a . 

The explicit form of this twisted h subalgebra is 

[J!=O,(r)(m + ~), }:;==o,(s)(n + ~)] 

"f cJ~R=:O (r+s) ( r + s) k(' r) ~ =~ ab a' m+n+-2- +2 m+"2 7JabUm+n+~,O 

(5~15b) 

(5.16) 
. ~ . . . 

where rand s can be 0 or 1. This is the orbifold affine subalgebra called 9,,:::2 C gA:::4 in 

Ref. (11]. 
Finally, the sector a= 2 has order p(a = 2) = f.1. = 2 andN(a = 2) = 1. The ambient 

orbifold affine algebra is g2 = gg X g~ (see (3.4e)), and the twisted h subalgebra 

h(2, {O},O" = 2) C g2 = gg X g~ (5:17) 

is generated by 
jR=:O,(r:::O) _ }(O) }R:::1,(r=0) _ }(O) 

a - a(O)' a' - a(l)" (5.18) 

This is the integral affine subalgebra10 of g2' 

The stress tensors, central charges and ground state conformal weights of these orbifolds 

are 

ab 3 ab . 

T.~ T. 7J ~ J T 7J (JR=:O TR=O JR=:1 TR=I) 
0-=0= g/h(2,{O}) = 2k+Q ~: a(l)Jb(I): - 4k+Q: a Jb + a Jb : 

1=0 

(5.19a) 

ab 
7J " (}(O) ]<0) + }(1) 1(-1) + }(2) ]<-2) + }(3) j(-3») . (5.19b) 

8k + 4Q" a b a b a b a b • 

ab 
7J : (}R=:o,(r=o) jR=:O,(r:::O) + jR=:O,(r=l) jR=o,(r=1») : 

8k+2Q a b a b 

~ ~ 

To-:::2 = T g2 / h(2,{0},2) 

22 



" 1, 1 
c(O") = c = 4xdimg(--_ - _) 

"x+h 2x+h 

~ ( ') . [5 1 "1 "~. (: c')"" ,:x,dimg ~o 0" = 1, 3 = xdlmg - - ":.., ~o 0" = 2..:..:. «~, ..;" '.' 
32(x+h) 8(2x+h) 8(x+h) 

5.4 9 =SU(2) for A = 3, 'fJ = 1 and {¢>(a) = I} 

This interacting coset orbifold 
( 

SU(2)k XSU(2)k XSU(2)k) 
SU(2hk' 

Z3 

(5.19d) 

(5.20) 

has three sectors labeled by 0" = 0, 1 and 2 with p(O) = 1 and p(1) = p(2) = 3. We need the 

. integers N(O" = 1) = 1, N(O" = 2) = 2, and for each of these sectors J.L = 1 because TJ = L 

As noted below Eq. (2.15), the untwisted currents of h(TJ -1, {</>(a) = 1}) 

E:J:.0 = E±a(O) + e± 2;; E±a(l) + e'f 2;; E±a(2) 

generate SU(2hk' at level 3k. 

The twisted currents of h( 11 = 1, { </>( a) = 1}, 0" = 1) are 

fIR=O,(r=O) = fI(O), tR=O,(r=O) _ t(±l) 
±a, - ±a 

[fIR=O,(r=O) (m), fIR=O,(r=O) (n)] = 3kmc5m+n,o 

[fIR=o,(r=o)(m), t!~O,(r=O)(n ± ~)] = ±at~O,(r=o)(m + n ±~) 

(5.21a) 

(5.21b) 

(5.22a) 

(5.22b) 

(5.22c) 

[t~~O,(r=O)(m ± ~), t;:o,(r=o)(n =t= ~)] = ±afIR=O,(r=o)(m + n) + 3k(m ± ~)c5m+n,o (5.22d) 

and the twisted currents of h(11 = 1, {</>(a) = 1},0" = 2) are 

fIR=O,(r=O) = fI(O), tR=O,(r=O) _ jj;(Ofl) 
±a - ±a 

[fIR=o,(r=o) (m), fIR=O,(r=O) (n)] = 3kmc5m+n,o 

[fIR=O,(r=O) (m), jj;~O,(r=O)(n =t= ~)] = ±at~O,(r=O)(m + n ±~) 

(5.23a) 

(5.23b) 

(5.23c) 

[jj;~o,(r=o)(m + ~), t;:o,(r=o)(n ± ~)] = ±afIR=o,(r=o)(m + n) + 3k(m + ~)c5m+n,o. (5.23d) 

The twisted h subalgebras of sectors' 0" = 1 and 2 are inner-automorphically twisted affine 

Lie algebras on simple g, as are all the twisted h subalgebras with d i= 0 and TJ = 1. 
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This gives theJollowing stress tensors, ~entral charges and ground sta~e conformal weights 

in each sector a: 

2 . ' 

Tu=o = Tg/h(l,{l}) - 2k: 2a2 2: : (H(I)H{t) + Eo:(I)E'-':o:(l) + E:.-o:([)Eo:([»): 
[=0 

1 . (HR=O HR=O ER=O ER=O ER=O ER=O) . 
6k + 2a2 . + 0: -0: + -0: 0< • 

(5.24a) 

2 . 

1 ~ : (iI(r) iI(-r) + E(r) E(-r) + E(r) E(-r») . 
6k + 6a2 ~ 0< -0< -0: 0< • 

r=O 

(5.24b) 

1 : (iIR=o,(r=o) iIR=O,(r=O) +ER=O,(r=O) ER=O,(r=O) + ER=o,(r=O) ER=o,(r=O») : 
6k + 2a2 0< -0: -0: 0: 

2 
1 ~ : (iI(r) iI(-r) + E(r) E(-r) + E(r) E(-r») . 

6k + 6a2 ~ 0< -0: -0: 0: . 
r=O 

(5.24c) 

1 : (iIR=o,(r=o) iIR=O,(r::'O) + ER=O,(r=O) ER=O,(r=O) + ER=O,(r=O) ER=o,(r=o») : 
6k + 2a2 0: -0: -0< 0: 

c(a) = c = 9x(_1_ - 3 1 ) 
x+2 x+2 

A A X ' 3 3 
~o(a = 1) = ~o(a = 2) = -[-- - ]. 

9 x + 2 3x + 2 

5.5 9 =SU(2) for A = 4, TJ = 2 and {c/>(a) = I} 

Finally, we discuss an example with a doubly-twisted h subalgebra 

( 
SU(2)k XSU(2)k XSU(2)k XSU(2)k) 

SU(2b'xSU(2hk' . 

In this case, the untwisted currents Jh(f/,iP) 

H R=O H H = (0) + (2), 

E R=O E E 
±o: = ±0:(0) - ±0:(2) , E R=l E E ±o< = ±o:(l) - ±0:(3) 

(5.24d) 

(5:24e) 

(5.25) 

(5.26a) 

(5.26b) 

generate the algebra SU (2hk' x SU (2hk', which consists of two commuting copies (labeled by 

R=1,2) of an affine SU(2) at level 2k. Note the sign differences in (5.26b) relative to those 
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'~ Of 

of the example in <S~bsec. 5.3. The form of the stress'tensor of the untwisted sector 
.,' 

Tu=o = Tglh(2,{1}) 

3 

2k: 2a2 <~:A!!(!!E(I) + Ea(I)E-a(I) + E-a(I)Ea([») : 
[=0 

1 1 

- 4k + 2a2 L : (HRH
R + E!E~O! + E~O!E!) : 

R=O 
(5.27) 

is not affected by these signs . 

. \Ve focus on the twisted sector a = 1 with ambient algebra 9p(u=1)=4 and N(a = 1) = 
jJ, = P = 1. The twisted currents of h(TJ = 2, {</>(a) = I}, a = 1) are 

fI R=O,(r=O) _ HA (0) - , fIR=O,(r=l) = fI(2) 

ER=O,(r=O) _ f};U) 
±O!. - ±O!' 

These satisfy the doubly-twisted suba.lgebra 

[fIR=o,(r)(m +~) fIR=O,(s)(n + ~)] = 4k(m + ~)& r+s 
2 ' 2 2 m+n+-2 ,0 

[j};R=o,(r) ( + r ± ~) ER=o,(s)( + s =F ~)J 
±a m 2' =Fa n 2 

, (5.28a) 

(5.28b) 

(5.29a) 

(5.29b) 

(5.29c) 

A (' r+s r±l = ±aHR=o, r+s) (m + n + --) + 4k(m + __ 2 )& ~ 
2 2 m+n+ 2 ,0 

with order 2 and level 4k. The stress tensor, central charge and ground state conformal 

weight of this twisted sector are 

3 
1 ~ . (iI(r) iI(-r) + j};(r) E(-r) + j};(r) j};(-r») . 

8k + 8a2 L....J . O! -O! -a O! • 

r=O 

(5.30a) 

1 

1 ~ : (fIR=o,(r) iIR=O,(r) + ER=O,(r) ER=O,(r) +ER=o,(T) j};R=O,(r») : 
8k + 4a2 L....J O! -a -O! O! 

r=O . 

c(a = 1) = c = 12x(_I_ _ 1 ) 
X + 2 2x + 2 

A • X 15 2 
6.o(a = 1) = S(4(x + 2) - X + 1)' 

25 

(5.30b) 

(5.30c) 



Note that Lio(o- = 1) in (5.30c) is not the same as boo(o- = 1) in (5.1ge) for 9 =SU(2). The 
• ." a 

two situations differ only in. that the inner-automorphic vector d =1= 0 for the present example. 

The sector 0- =3cbntainsanotlierdeubly-:twisteQ.,'h subalgebra'similar to (5.28) and 

the twisted h subalgebra of sector 0- = 2 cop-sists of. two commuting copies of an inner-
, .. 

automorphically twisted affine SU(2) at level 2k. 
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Appendix A. (0,0) operators in cyclic coset copy orbifolds 

In this appendix, we find the twisted (0,0) operators (which are the twisted h currents) in 
the simpler case of the cyclic coset copy orbifolds14,15,10,16,1l,1,17,18 

(A. 1) 

The stress tensors in the untwisted sectors of these orbifolds are sums of ). commuting copies 

of the coset construction g/f), f) c g. The Lie algebras involved here are 

,\-1 I 
g = Xl=og , h '\-1111 

=X1=0'} , (A.2) 

and the ambient affine algebra is still given by (2.2). The embedding of the untwisted h 

currents J A(l) in the untwisted g currents Ja(l) is 

JA(I)(Z) = M.4
a 

Ja(l) (z) 

A = 1, ... , dimf), a = 1, ... , dimg, 1= 0, ... ,). - 1 

(A.3a) 

(A.3b) 

where M l is the embedding matrix of f) C g. 

In this case, the induced action n of Z,\(permutation) onthe untwisted h currents 

0- = 0, ... , ). - 1 (A A) 

is the same as the action win Eq. (2.3) on the g currents. This follows because the embedding 

matrix M Aa does not mix values of the index I. Then the duality transformations of Ref. [1] 

tell us that the twisted h currents jt~) are the same linear combinationsd of the currents of 

dThat is, M(u) = M in the language of Subsec. 3.2. 
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> 

the ambient orbifold affine algebra gp(u) 

J~(r) ('z) - M· aJ~(r) (z) . A(j)' .. '. ~ , A a(j)" , 

.~~ ~l . . . .... 
f., . - p(.,.) f.,J C 
'Jp(u) - xj=o 'Jp(u) gped)' 

'(A.5a) 

fi (A.5h) 

Here each ~!(u) is a copy of an order p(a), level p(a)k orbifold affine algebra on simple ~. 
For these orbifolds, the stress tensor of sector a is1 

.\ 

l
ab p(u)-lp(<T)-l 

~ _ T} ~ ~ • ~(r) ~(-r) . 
Tgp(<T) (Z) - p(a) 2k + Qg ~ f:o' . Ja(j)(z)Jb(j) (z) . (A.6b) 

l
AB p(u)-l ~-l 

~ _ T} ~ ~ . ~(r) ~(-r) . 
T~p(<T) (z) - p(q) 2k+ Q~ ~ .~ . JA(j)(z)J B(j) (Z) . (A.6c) 

where the untwisted sector is recovered when a = ° and hence p(a = 0) = 1. The coset 

central charge and the ground state conformal weight of each sector a are1 

~ _ _ A dimg rdim~ 
Cgp(u)/~p(u) - Cg/h - Xg( + h - + h ), 

Xg 9 rXg ~ 

~ Cg/h 1 
~o(a) = -(1--) 

24 p(a)2 
(A.7) 

where r is the index of embedding of ~ in g. The twisted h currents jt~) in (A.5a) are 

twisted (1,0) operators of both stress tensors Tgp(u) and T~p(u)' and so they are twisted (0,0) 

operators in each sector of each cyclic coset copy orbifold. 

Appendix B. Induced action of ZA(permutation) 

To obtain the induced action (2.12) of the Z>. automorphisms on the untwisted h currents 

Jh(T/,if», start with Eq. (2.9a) and follow the steps: 

R+a 
R+a = T}l--J + S, 

T} 
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S E {O, ... ,T} - I} 

(B.la) 

(B.lb) 

(B.lc) 



, , LR + u
J J -+ J - ---'

'T} 
(B.1d) 

(B.1e) 

The induced action on the Cartan generators in (2.12) follows similarly without the phases. 

The reader may find the identities. 

O~s+j-I,O mod T/ = OJ-I,O mod l-I0s+(i=.!)PO mod !I. 
PI'" I" 

(B.2a) 

p-l . i=.! 

L 
-~ p 2,nNr( I" )P . 

e P 0s+(i=.!)PO mod !I. = -I-Oro mod -L-e P 
1'" I" 'Tl J.L' TIll" 

8=0 ./ 

(B.2b) 

useful in obtaining Eq. (4.9), 

Appendix C. Ambient-algebraic form of the stress tensors 

We collect here the stress tensors T and t of the "dass of interacting cyclic coset orbifolds 

A-l , 

T. - "" La(J)b(L) , J T .. , 
g/h(T/,<P) - L.J ., a(J)..Jb(L)', 

J,L=O 

>. 
p(q)-l P«7)-l 

Tgp(tT)/h(T/,<P,q) = L L .c~(j)b(l)(u): j~(J)ji~) :, 
r=O j,I=O 

a, b = 1, ... , dimg 

U=o (C.1a) 

U = 1, ... , A - 1 (C;lb) 

(C.1c) 

discussed in the text. Here Land .c are the inverse inertia tensors related by the duality 

transformations l in Eq. (4.2b), and Ja(!) , j~;) are the currents of the ambient algebras 9 and 

gp(q) respectively. 

Combip.ing Eqs. (2.16) and (2.18), one finds 

A-I 

Tg/h(T/,<P) = L : (LA(J)B(L) HA(J)HB(L) + Lo.(J){J(L) Eo.(J)E{J(L») : (C.2a) 
J,L=O 

(C.2b) 
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" JL 
Lo(J)(3(L) = c5 (c5. _ c5J- L,o mod" e 2";(J-

A
L)4>(a») 

- 0+(3,0 2k + Q 2~k + Q 

" A,B = 1, ... , rankg, .~, (l€. ~(g) 
. . . 

for the untwisted sectots.'Similarly, combining'(4.8)and (4.9), onE(finds 

'I 
[,A(j)B(I)( ) = c5AB(! c5

J 
_ c5j - l,o mod J.1. c5 21TiXI) 

r a - p2k+Q 2)"k+T7QJ1, r,Omod~e 

'f 
[,o(j)(3(l)(a)=c5 (! c5

J 
_c5j - l,omOdJ.1./Ic5 e27fiX2) 

r - 0+(3,0 P 2k + Q 2)"k + T7Q r- Nr,t/>(o) mod ~ 

X2 = (j-l)t/>(o)[+_L]+i=!.NPr 
" pp. pp. 

. I 
Xl = 2ffNPr, 

(C.2c) 

(Q::2d) 

(C.3a) 

(C.3b) 

(C.3c) 

(C. 3d) 

for the twisted sectors. Here we have suppressed the a and T7 dependence of p '. p(a), 

N = N(a), J1, = J1,(T7, a) and P = P(T7, a). 
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