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ABSTRACT 

In theories with (sets of) two large extra dimensions and supersymmetry in the bulk, the 
presence of non-supersymmetric brane defects naturally induces a logarithmic potential 
for the volume of the transverse dimensions. Since the logarithm of the volume rather 
than the volume itself is the natural variable, parameters of 0(10) in the potential can 
generate an exponentially large size for the extra dimensions. This provides a true solution 
to the hierarchy problem, on the same footing as technicolor or dynamical supersymmetry 
breaking. The area moduli have a Compton wavelength of about a millimeter and mediate 
Yukawa interactions with gravitational strength. We present a simple explicit example 
of this idea which generates two exponentially large dimensions. In this model, the area 
modulus mass is in the millimeter range even for six dimensional Planck scales as high as 
100 TeV. 



1 Introduction 

It has recently been realized that the fundamental scales of gravitational and string physics 
caIJ. be far beneath rv 1018 GeV, in theories where the Standard Model fields live on a 
3-brane in large-volume extra dimensions [1]. Lowering these fundamental scales close to 
the weak scale provides a novel approach to the hierarchy problem, and implies that the 
structure of quantum gravity may be experimentally accessible in the near future. 

While this prospect is very exciting, two important theoretical issues need to be ad­
dressed for this scenario to be as compelling as the more "standard" picture with high 
fundamental scale, where the hierarchy is stabilized by SUSY dynamically broken at 
scales far beneath the string scale. First: what generates the large volume of the extra 
dimensions? And second: what about the successful picture of logarithmic gauge coupling 
unification in the supersymmetric standard model? The success is so striking that we do 
not wish to think it is an accident. 

One way of generating a large volume for the extra dimensions involves considering 
a highly curved bulk. Indeed Randall and Sundrum have proposed a scenario where the 
bulk volume can be exponentially larger than the proper size of a single extra dimension 
[2]. Goldberger and Wise then showed how such a dimension could be stabilized [3]. In 
the original proposal of [1], however, the bulk was taken to be very nearly flat. Previous 
attempts at stabilizing large dimensions in this framework involved the introduction of 
large integer numbers in the theory, such as large topological charges [4, 5] or large 
numbers of branes '[5]. In this paper, we instead demonstrate how to stabilize exponentially 
large dimensions in the framework of [1]. 

The set-up needed to accomplish this meshes nicely with recent discussions of how the 
success of logarithmic gauge coupling unification can be maintained with large dimensions 
and low string scale. In [6, 7, 8, 9, 10] it was argued that logarithmic gauge coupling unifi­
cation may be reproduced in theories with (sets of) two large dimensions. If various light 
fields propagate in effectively two transverse dimensions, then the logarithmic Green's 
functions for these fields can give rise to logarithmic variation of the parameters on our 
brane universe; in cases with sufficient supersymmetries, this logarithmic variation can 
exactly reproduce the logarithmic running of couplings seemingly far above the (now very 
low) string scale. This phenomena is another example of the bulk reproducing the physics 
of the desert, this time with quantitative precision. Of course, for the "infrared running" 
picture to work after SUSY breaking, we must assume that SUSY is not broken in the 
bulk but only directly on branes. This is the analogue of softly breaking SUSY at low 
energies in the usual desert picture. 

It is interesting that these same ingredients: sets of two transverse dimensions with 
SUSY in the bulk, only broken on branes, can also be used to address the issue of large 
radius stabilization. Indeed, in the SUSY limit, there is no bulk cosmological constant 
and there is no potential for the radii; they can be set at any size. The crucial point is 
that once SUSY is broken on branes with a characteristic scale A 4, locality guarantees 
that no bulk cosmological constant is induced, and therefore the effective potential for the 
radius moduli does not develop any positive power-law dependence on the volume of the 
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transverse dimensions. For two transverse dimensions, logarithmic variation of light bulk 
fields can then give rise to a logarithmic potential for the size, R, of the extra dimensions: 

(1) 

where M* is the fundamental scale of the theory. This can arise, for instance, from the 
infrared logarithmic variation of coupling constants on branes where SUSY is broken or 
from inter-brane forces [7, 10, 11]. Since 10g(R) rather R itself is the natural variable, 
if the potential has parameters of 0(10), a minimum can result at 10g(R) tv 10, thereby 
generating an exponentially large radius and providing a genuine solution to the hierarchy 
problem, on the same footing as technicolor or dynamical SUSY breaking. 

This idea is appealing and general; relying only on sets of two transverse dimensions 
(for the logarithmic dependence) and supersymmetry in the bulk (to stably guarantee 
the absence of a bulk constant which would induce power-law corrections to the effective 
potential for the radii). It makes the existence of large extra dimensions seem plausible. 
However, the discussions in [7, 10, 11] have only pointed out this possibility on general 
grounds but have not presented concrete models realizing the idea. In this paper we 
remedy this situation by presenting an explicit example of a simple theory with two 'extra 
dimensions, which stabilizes exponentially large dimensions. The interaction of branes 
with massless bulk scalar fields induces a logarithmic potential for the area A of the 
transverse dimensions of the form 

4 
4 V 4 2 

V(A) = - j + 10g(AM;) + w 10g(AM*). (2) 

This potential is minimized for an area 

AM2 = ev2
/
w2 

* 
(3) 

and so only a ratio of v /w tv 6 is needed to generate an area to generate the rv (mm)2 
area needed to solve the hierarchy problem with M* tv TeV. There is a single fine-tuning 
among the parameters v, wand j, which are all of order M*, to set the 4D cosmological 
constant to zero. 

2 The Radion Signal 

Since the potential for the radii of the extra dimensions vary only logarithmically, one 
might worry that the mass of the radius modulus about the minimum of the potential 
will be too light. In fact, the mass turns out to be just in the millimeter range, and gives 
an observable deviation from Newton's law at sub-millimeter distances. 

Consider a 6 dimensional spacetime with metric of the form 

(4) 

where the geometry of 9 is taken to be fixed at high energy scales; for example by brane 
configurations, as illustrated in the next section. The low energy 4D effective field theory 
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involves the 4D graviton together with the radion field, R(x), which feels the potential of 
eq. (1). After a Weyl rescaling of the metric to obtain canonical kinetic terms, the radion 
is found to have a mass 

2 R
2
V"(R) A4 1"(1 R) (TeV2)2 -2 mR rv 2 rv -2- og rv -- rv mm . 
Mpl Mpl M pl 

(5) 

Hence, an interesting general consequence of such logarithmic potentials is that the mass 
. of the radion is naturally in the millimeter range for supersymmetry breaking and fun­

damental scales A rv M* rvTeV. This order of magnitude result is important for mm 
range gravity experiments, because the Weyl rescaling introduces a gravitational strength 
coupling of the radion to the Standard Model fields, S9 that radion exchange modifies the 
Newtonian potential to 

(6) 

For a radion which determines the size of an n dimensional bulk, the co~fficient of the 
exponential is 4nj(n + 4), so that an observation of a coefficient corresponding to n = 2 
would be a dramatic signal of our mechanism. 

It might be argued that, since M* is larger than 50-100 TeV for n = 2 from as­
trophysics and cosmology ([12, 13]), mR will be sufficiently large that the range of the 
radion-mediated force will be considerably less than than a mm, making an experimental 
discovery extremely difficult. This conclusion is incorrect, for several reasons: 

• The astrophysical and cosmological limits are derived from graviton emission· and 
hence constrain the gravitational scale, which may be somewhat larger than the 
fundamental scale, M*. 

• It is the scale of supersymmetry breaking on the branes, A, which determines mR, 
and this may be less than M*, reducing mR and making the range of the Yukawa 
potential larger. 

• The radion mass may be reduced from the order of magnitude estimate mR ~ 
A 2 j M Pl by powers of log R, depending on the function 1 which appears in the 
potential (1), as occurs in the theory described in the next section. 

• Finally, the cosmological and astrophysical limits on the fundamental scale are 
unimportant in the case that the bulk contains more than one 2D subspace, but 
as discussed in section 4, the radions still have masses rv mm -1. 

3 Explicit model 

In this section we present a specific effective theory that stabilizes two large extra di­
mensions, without relying on input parameters with particularly large (> 10) ratios. The 
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framework for our model is as follows. Supersymmetry in the bulk guarantees a vanishing 
bulk cosmological constant. Embedded in the 6D spacetime is a set of parallel three-branes 
that can be regarded as non-supersymmetric defects. Following closely the example of [4], 
the tensions of these three-branes themselves compactify the extra dimensions. We take 
the bulk bosonic degrees of freedom to be those of the supergravity multiplet, namely, the 
graviton gAB and the anti-self-dual 2-form AAB. The 2-form AAB does not couple to any 
of the three-branes and can be set to zero in our case. We can also have a set·of massless 
bulk scalars (Pi contained in hypermultiplets. The relevant part of the Bosonic action is 
then 

S = SBulk + SBrane 

where 

8 Bul. = J d"xd"yv' ~G ( ~ 2M' R + ~ (a,/>;)' + .. -) 

is the bulk action and 

. 8Bm." = J d"x ~ v'~gi (~ft + ~C.(.p.,cf>I.) + ... ) 

(7) 

(8) 

(9) 

is the action for the branes [14]. Here the!l are the brane tensions and £i are Lagrangians 
for fields 'l/Ji that may live on the branes, which can also depend on the value of bulk fields 
¢ evaluated on the brane ¢Ia. G is the 6d metric, gi is the induced metric on the i'th 
brane, and we have set the bulk cosmological constant to zero. 

Note that while SBulk must be accompanied by all the extra fermionic terms to have 
SUSY in the bulk, the brane actions do not have to linearly realize SUSY at all, although 
they may realize SUSY non-linearly. In particular, there need not be any trace of super­
partners on the brane where the Standard Model fields reside. The only reason we need 
SUSY in the bulk is to protect against the generation of a bulk cosmological constant 
A bu1k , which would make a contribution'" AbulkA to the potential for the area modulus 
and spoil our picture with logarithmic potentials. 

Our model has three 3-branes, two of which couple to scalars ¢ and ¢'. The dynamics 
, on the brane impose boundary conditions on the bulk scalar fields. In particular, imagine 
that the the brane defects create brane-Iocalized potentials for ¢, which want ¢ to take on 
the value v~ on one brane and vi on the other. This will lead to a repulsive contribution 
to the potential for the area. The same two branes will be taken to have equal and 
opposite magnetic charges for the scalar ¢', setting up a vortex-antivortex configuration 
for ¢' which will lead to an attractive potential. The balance between these contributions 
provides a specific realization of how competing dependences on log R can lead to an 
exponentially large radius without very large or small input parameters. 

We begin by reviewing how the brane tensions can compactify the two extra dimensions 
[14, 15]. Suppose we ignore for the time being the branes' couplings to bulk scalars, in 
which case the relevant terms in the action in the low-energy limit are 

S = - ! d4x ~ J-gdi4 
- 2M4 ! d4xd2yJ-GR. 

~ 

(10) 
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Figure 1:. The two transverse dimensions in· the presence of a three-branewith tension 
f4. The shaded region is excluded, and the two borders 6f the excluded region are to be 
identified. 

Figure 2: A compact space can be obtained given three branes ~hose corresponding deficit 
angles c5i add up to 47r. Identifications to be made are indicated by hash marks: Note 
that in contrast to the brane in Figure 1, branes 1· and 3 in this figure have te~sions larger 
than 47rM4. . 

For the case in which· only a single brane is present, ·the static solution to Einstein's 
equations is 

(11) 

where Qmn is the 2D Euclidean metric everywhere but at the position of the three-brane, 
where it has a conical singularity with deficit angle 

r 
c5 = 4M4. (12) 

As expected, this is in exact correspondence with the metric around point masses. in 
2+1 dimensional gravity [15]. As shown in Figure 1, the spatial dimensions transverse 
to the brane are represented by the Cartesian plane with a wedge of angle c5 removed. 
Adding a second brane removes a further portion of the Cartesian plane. In fact, if 

4 . 4· . 

4~4 + 4~4 > 27r, then the excluded region surrounds the allowed portion, as in Figure 
.. 2. In this case Einstein's equations have a static solution that features a compact space 
. with spherical topology, provided that a third brane of tension fi = 167r M4 - It - fi is 
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placed at the intersecting lines of exclusion. In general, a set of three-branes has a static 
solution with spherical topology if 

(13) 

that is, the deficit angles must add up to 47r. 
If a set of branes compactifies the space in this manner, then the 4D effective theory 

is given by including in the action of (10) the massless excitations about the classical 
metric. Thus we replace T/J1.11 --t gJ1.lI(x) and allow Qmn(Y) to fluctuate about 8mn in the 

.... bulk. The induced metric on a given brane will differ from gJ1.lI(xLby terms involving the 
fields associated with the brane separations, which we temporarily ignore. The curvature 
breaks up into two pieces R(4) and R(2), the Ricci scalars built out of9J1.II(x) and Qmn(Y), 
respectively. Then, using the Gauss-Bonnet Theorem for spherical topology, 

(14) 

along with the fact that R(4) has no Y dependence, we can integrate over the extra di­
mensions to obtain 

In this action it is explicit that adjusting the deficit angles to add up to 47r is equivalent 
to tuning the 4D cosmological constant to zero. 

To develop our specific model we consider the case of three three-branes on a space 
of spherical topology. Then the "shape" of the extra dimensions is fixed by the branes' 
deficit angles, or equivalently, by their tensions. However, the size of the extra dimensions, 

(16) 

is completely undetermined. Moreover, the scalar associated with fluctuations of A, the 
radion; is massless and mediates phenomenologically unacceptable long-range forces. To 
stabilize the volume of the extra dimensions and give the radion a mass, we couple bulk 
scalar fields to two of the branes, which, for simplicity, we assume have equal tensions f. 
The scalar profiles will generate a potential VrP(A) that is minimized for a certain value A 
of the volume of the compactified space. Adding the scalar action to (15) yields a total 
potential 

(17) 

The effective cosmological constant, 

(18) 
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Figure 3: The boundary conditions on 4>. Identifications to be made are indicated by 
hash marks. 

can then be made to vanish by a single fine tuning of fundamental parameters. The 
back-reaction on the spatial geometry that is induced by the scalars is discussed below. 

We work with two massless bulk scalars, 4> and 4>', which induce repulsive and attractive 
forces, respectively. In treating the scalar fields, we will for simplicity ignore their back­
reaction on the metric and assume that they propagate in the flat background with ~onical 
singularities set up by the branes. It is easy to see that the effect of back-reaction can be 
made parametrically small if the scalar energy scales are somewhat smaller than M*, and 
none of our conclusions are affected. 

Suppose that on branes 1 and 3 of Figure 3, 4> is forced to take on unequal values 
v~ and v~, respectively. This can for instance be enforced if the non-SUSY brane defects 
generate a potential for 4> on the branes, analogous to what was considered in [3]. Because 
4> is massless in the bulk, we are free to perform a constant field redefinition and take 
v~ = -v~ - v2• We account for the brane thicknesses by enforcing these values for 4> to 
hold along arcs of finite radius r* rv l/M*, and not just at individual points. The field 
configuration in the bulk is then given QY solving Laplace's equation with these boundary 
conditions. 

Keeping in mind the identifications to be made between the various edges of the space 
in Figure 3, the symmetry of the problem tells us that the field configuration is found by 
solving the problem depicted in Figure 4, and then reflecting that solution appropriately. 
For simplicity we consider instead a slightly different problem which, unlike that shown 
in Figure 4, is trivially solved. As indicated in Figure 5, we take the boundary at which 
4> = 0 holds to be an arc of radius R, rather than a straight line, so that the solution in 
this region is immediately found to be 

4> = v2 log (R/r) 
log (R/r*) ' 

(19) 

where r measures the distance from the (missing) left vertex of the pie slice. The total 
energy of this configuration is 

. f lR (\14»2 v
4 

4 dO r. drr-2- = 0o log (R/r*) ' (20) 
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~I.) 
.~ 

.. -

.... --
............ ~ ... z_... <I> = 0 

.' .::::::~~~~~"::::~~ .y-.~::.Q .. --....... . 
<I> = V 2 :::==~~~::~~~ ...... ----~-----.. --.. -----------­

V • ~=O 

Figure 4: A boundary-value problem that determines ¢>. Here eJ.. refers to the unit vector 
normal to the relevant boundary, and lines of 'V¢> are shown dashed. The solution for the 
full space of Figure 3. is given by first evenly reflecting across the bottom horizontal line, 
and then performing an odd reflection (i.e., ¢> -+ -¢» across the vertical line where ¢> = o. 

Figure 5: The simplified boundary-value problem for ¢>. 
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Figure 6: The configuration of ¢/. Each brane carries a topological charge, which generates 
an attractive potential. 

where (}o = 211" - 4-£4' Thus, <p sets up a 1/ log R repulsive potential. It is not difficult to 
prove using simple variational arguments that the same conclusion is reached when one 
solves the "real" problem involving the triangle rather than the pie slice. 

Now suppose that the same two branes that couple to <p carry topological charge under 
a derivatively coupled field <p'. That is, under any closed loop containing a brane we have 

/ dl· "V <p' = n()ow2, (21) 

where w is a fixed parameter with unit mass dimension and n is an integer. Non-zero 
charge n =I- 0 is only possible if we make the identification 

<p r.J <p + Oow2
. (22) 

In order to be able to solve Laplace's equation on a compact space, the branes must carry 
equal and opposite charges, which we take to correspond to n = ±l. The configuration 
for <p' is then found by solving Laplace's equation with "V <p' = ± ~: ell on the branes (the 
gradient runs clockwise ori one brane and counterclockwise on the other). This sets up the 
the vortex-antivortex field configuration for <p' shown in Figure 6. For simplicity, in order 
to calculate the energy in this configuration we once again work on a pie slice (Figure 7) 
rather than a triangle, and it is easily proved that this modification does not affect the 
essential scaling of the energy with the area. With this simplification the solution is 

<p' = w2
(} + C, (23) 

where () is the angular coordinate and C is an undetermined, irrelevant constant. The 
energy of the configuration is then found to be 

4/ d(} l.R drr ("Vt')2 = (}ow4Iog(R/r*). (24) 
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. ~ 

V2~=O \ . 
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Figure 7: The simplified boundary-value problem for </>' . Here el.. and ell are the unit 
vectors normal and parallel, respectively, to the relevant boundary. 

so we have found an attractive potential that will balance the repulsive contribution of 
(20). l,From (20) and (24), we see that the full potential is 

4 -
V 4 ( ) ~4 4 VCR) = ()olog(R/r*) +()ow log Rlr* + ~fi -167rM , 

~ 

(25) 

which is minimized when 
(26) 

Even a mild ratio v I w rv 6 yields an exponentially large radius R rv 1Q16r *. The effective 
cosmological constant, 

(27) 

can be made to vanish by a single tuning of v, W, and the brane tensions. 
Note that we can now see explicitly that the presence of the non-supersymmetric brane 

defects can not generate a bulk cosmological constant. The presence of the branes leads 
to logarithmic variation for the bulk fields, which does indeed break SUSY and generate a 
potential for the area modulus. However, since any constant field configuration preserves 
SUSY, the SUSY breaking in the bulk must be proportional to the gradient of the bulk 
scalar fields, which drops as 1/r with distance r away from the branes. Therefore, it is 
impossible to induce a cosmological constant, since this would amount to an constant 
amount of SUSY breaking throughout the bulk. In fact, a very simple power-counting 
argument shows that all corrections to the energy are logarithmic functions of the area. 

Given a specific form for the logarithmic potential (25), we can work out the mass of 
the area modulus, which is 

R2V"(R) v4 

m~ rv 2 rv 3 • 
Mpl M~llog (Rlr*) 

(28) 

Interestingly, mR is suppressed by (log(Rlr *) )3/2 compared to the naive estimate M; I M pl . 
Hence even for v rv M* as large as 100 TeV, the range of the radion-mediated Yukawa 
potential is 0.1 mm - accessible to planned experiments. 
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4 Four and Six Extra Dimensions 

Since the logarithmic form of the propagator occurs only in two dimensions, one may 
worry that the ideas in this paper are only applicable to the case of two large dimensions. 
This is the case most severely constrained by astrophysical and cosmological constraints 
[1, 12, 13], which demand the 6D Planck scale M* > 50 TeV, seemingly too large to 
truly solve the hierarchy problem. One possibility is that the true Planck scale of the ten 
dimensional theory could be rv O(Te V), and the 6D Planck scale of rv 50 Te V could arise 
if the remaining four dimensions are a reasonable factor 0(10) bigger th~n a (TeV)-I. 
But we don't have to resort to this option. As pointed out in [7, 10], the presence of two­
dimensional subspaces where massless fields can live is sufficient to generate logarithms. 
Take the case of four extra dimensions. Imagine one set of parallel 5-branes filling out the 
12345 directions, and another set filling out the 12367 directions. They will intersect on 
3-dimensional spaces where 3-branes can live. These 3-branes can act as sources for fields 
living on each of the 5-branes, which effectively propagate in two sets of orthogonal 2D 
subspaces. Once again, bulk SUSY can guarantee a vanishing "cosmological constant" 
for each of the 2D subspaces. The SUSY breaking at the intersections can set up loga­
rithmically varying field configurations on the 5-branes that leads to a potential of the 
form V(logAI, logA2) for the areas AI, A2 of the 2D subspaces. Minimizing the potential, 
each radius can be exponentially large, and the ratio of the radii will also be exponential, 
but the value of Mpl will require the largest radius to be very much smaller than a mm. 
It would be interesting to build an explicit model along these lines. 

Even without an explicit model, however, we can see that the scale of the radion 
masses is unchanged. The logarithmic potential still gives mRi ~ A2 IMpl ~ mm-I, for 
A ~ 1 TeV. After Weyl rescaling, each radion couples with gravitational strength to the 
Standard Model and should show up in the sub-millimeter measurements of gravity. 

5 Other ideas 

There is an alternative way in which theories with two transverse dimensions can gener­
ate effectively exponentially large radii. The logarithmic variation of bulk fields can force 
the theory into a strong-coupling region exponentially far away from some branes, and 
interesting physics can happen there. This is the bulk analog of the dimensional trans­
mutation of non-Abelian gauge theories, which generate scales exponentially far beneath 
the fundamental scale and trigger interesting physics, such as e.g. dynamical supersym­
metry breaking [10]. It is tempting to speculate that such strong-coupling behavior might 
effectively compactify the transverse two dimensions. Recently, Cohen and Kaplan have 
found an explicit example realizing this idea [16]. They consider a massless scalar field 
with non-trivial winding in two transverse dimensions: a global cosmic string. Since the 
total energy of the string diverges logarithmically with distance away from the core of the 
vortex, we expect gravity to become strongly coupled at exponentially large distances. 
Indeed, Cohen and Kaplan find that the metric develops a singularity at a finite proper 
distance from the vortex core, but argue that the singularity is mild enough to be ren-
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dered harmless. What they are left with is a non-compact transverse space, with gravity 
trapped to an exponentially large area 

(29) 

where frr is the decay constant of the string. A ratio of M*/ frr tV 2.5 is all that is needed 
to solve the hierarchy problem in this case. This model is a natural implementation of the 
ideas of [1], to solve the hierarchy problem with large dimensions, together with the idea of 
trapping gravity in non-compact extra dimensions as in [17]. Unlike [2], however, the bulk 
geometry is not highly curved everywhere, but only near the singularity. Thus, gravity 
has essentially been trapped to a flat "box" of area A in the transverse dimensions, and 
the phenomenology of this scenario is essentially the same as that of [1]. An attractive 
aspect of this scenario is that, unlike both our proposal in this paper and those of [2, 3], 
no modulus needs to be stabilized in order to solve the hierarchy problem. This also 
points to a phenomenological difference between our proposal and that of [16]. While 
both schemes generate an exponentially large area for two transverse dimensions, there is 
no light radion mode in [16] whereas we have a light radion with rvmm-1 mass. 

6 Conclusions 

In this paper, we have shown how to stabilize exponentially large compact dimensions, 
providing a true solution to the hierarchy problem along the lines of [1] which is on the 
same footing as technicolor and dynamical SUSY breaking. Of course, there are many 
mysteries other than the hierarchy problem, and the conventional picture of beyond the 
Standard Model physics given by SUSY and the great desert had a number of successes. 
So why do we bother pursuing alternatives? Are we to think that the old successes are 
just an accident? 

A remarkable feature of theories with large extra dimensions is that the phenomena 
that used to be understood inside the energy desert can also be interpreted as arising 
from the space in the extra dimensions. Certainly all the qualitative successes of the old 
desert, such as explaining neutrino masses and proton stability, can be exactly reproduced 
with the help of the bulk [1, 19, 20, 18], in such a way that e.g. the success of the see-saw 
mechanism in explaining the scale of neutrino masses is not an accident. As we have 
mentioned, there is even hope that the one quantitative triumph of the supersymmetric 
desert, logarithmic gauge coupling unification, can be exactly reproduced so that the old 
success is again not accidental. We find it encouraging that it is precisely the same sorts 
of models-with two dimensional subspaces, SUSY in the bulk broken only on branes­
which allows us to generate exponentially large dimensions. Hopefully, in the next decade 
experiment will tell us whether any of these ideas are relevant to describing the real world. 
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