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Abstract 

Statistical analysis of liquid seepage in partially saturated, 
heterogeneous fracture systems 

by 

Tai-Sheng Liou 

Doctor of Philosophy in Civil and Environmental Engineering 

University of California, Berkeley 

Professor Nicholas Sitar, Chair 

Field evidence suggests that water flow in unsaturated fracture systems may occur 

along fast preferential flow paths. However, conventional macroscale continuum 

approaches generally predict the downward migrati<;>n of water as a spatially uniform 

wetting front subjected to strong imbibition into the partially saturated rock matrix. One 

possible cause of this discrepancy may be the spatially random geometry of the fracture 

surfaces and, hence, the irregular fracture aperture. Therefore, a numerical model was 

developed in this study to investigate the effects of geometric features of natural rock 

fractures on liquid seepage and solute transport in 2-D planar fractures under isothermal, 

partially saturated conditions. 

The fractures were conceptualized as 2-D heterogeneous porous media that are 

characterized by their spatially correlated permeability fields. A statistical simulator, 

which uses a simulated annealing (SA) algorithm, was employed to generate synthetic 

permeability fields. Hypothesized geometric features that are expected to be relevant for 

seepage behavior, such as spatially correlated asperity contacts, were considered in the 



SA algorithm. Most importantly, a ne"" perturbation mechanism for SA was developed in 

order to consider specifically the spatial correlation near conditioning asperity contacts. 

Numerical simulations of fluid flow and solute transport were then performed in these 

synthetic fractures by the flow simulator TOUGH2, assuming that the effects of matrix 

permeability, gas phase pressure, capillary/permeability hysteresis, and molecular 

diffusion can be neglected. 

Results of flow simulation showed that liquid seepage' III partially saturated 
I 

fractures is characterized by localized preferential flow, along with bypassing, funneling, 

and localized ponding. Seepage pattern is dominated by the fraction of asperity contracts, 

and their shape, size, and spatial correlation. However, the correlation. structure of 

permeability field is less important than the spatial correlation of asperity contacts. A 

faster breakthrough was observed in fractures subjected to higher normal stress, 

accompanied with a nonlinearly decreasing. trend of the effective permeability. 

Interestingly, seepage dispersion is generally higher in fractures with intermediate 

fraction of asperity contacts; but it. is lower for small or large fractions of asperity 

contacts. However, it may become higher if the ponding becomes significant. Transport 

simulations indicate that tracers bypass dead-end pores and travel along flow paths that 

have less flow resistance. Accordingly, tracer breakthrough curves generally show more 

spreading than breakthrough curves for water. Further analyses suggest that the log-

normal travel time model generally fails to fit the breakthrough curves for water, but it is 

a good approximation for breakthrough curves for the tracer. 
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Chapter I. Introduction 

1.1 Motivation 

The conventional approach for field-scale analysis of liquid seepage in partially 

saturated fractured media usually employs macro scale continuum concepts (Peters and 

Klavetter, 1988). Macroscale volume averaging homogenizes hydrologic properties of the 

media, such as fracture and matrix permeabilities, and averages spatially variable inputs, 

such as infiltration rates, applied at the system boundary (Pruess et ai., 1999). 

Consequently, downward water migration in such media is generally modeled as a 

spatially uniform wetting front, which is subject to strong imbibition into the partially 

saturated rock matrix (Wang and Narasimhan, 1985, 1993). 

However, preferential flow of water and tracer has been observed in the field 

under saturated or unsaturated conditions. At Rainier Mesa, highly localized flow of 

water from fractures into drifts was found at depths of several hundred meters beneath the 

land surface (Thordarson, 1965). At the Stripa mine in Sweden, localized flow paths of 

water in fractured granite were identified from tracer experiments (Abelin et ai., 1987), 

and localized preferential flow was observed in saturated fractured granite (Long et aI., 

1992). Strongly spatially variable ~olute concentration and channeling effects were also 

shown at the Stripa mine (Neretnieks, 1993). At Fran Ridge near. Yucca Mountain, lateral 

migration and preferential flow structures were observed in the densely welded and 

fractured Topopah Spring tuff (Eaton et ai., 1996). Near the Radioactive Waste 

Management Complex at the Idaho National Engineering and Environmental Laboratory 
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(INEEL) , tracer experiments from the Large-Scale Infiltration Test (LSIT) revealed an 

irregular distribution of tracer flow, mostly along vertical paths and less so along lateral 

paths (Wood and Norrell, 1996). Localized preferential flow of water along nonhorizontal 

fractures has' also been observed in laboratory experiments (Nicholl etal.; 1994). 

Fast preferential flow paths have also been observed at the Yucca Mountain site 

intended' proposed as the Department of Energy (DOE) high-level nuclear waste 

repository. Geologic units at Yucca Mountain consist primarily of welded and non­

welded tuffs, with varying degrees of fracturing in different units. The proposed 

repository at the Exploratory Studies Facility (ESF) is at approximately 300 m depth. The 

ESF lies within the unsaturated zone because the water table at Yucca Mountain is 

approximately 600 m below the land surface. Fr,acture and fault permeabilities are 

generally high, on the order of 1 - 10 darcies and 10 - 100 darcies, respectively (Ahlers et 

al., 1996). In contrast, the matrix permeabilities are on the order of 1 - 10 microdarcies 

(Flint, 1997). The contrast of permeability in fractures and the rock matrix suggests that 

most of the flow must preferentially go through fractures and major faults. For example, 

field experiments using environmental isotopes found elevated levels of 36CI at several 

locations in the ESF (Fabryka-Martin et al., 1996). If the effect of imbibition into the 

partially saturated rock matrix were significant, the travel time of water from the land 

surface to the water table would require thousands of years and the corresponding water 

velocity was roughly estimated to be on the order of 50 mm/year (Pruess et al., 1999). 

However, field experiment data (Fabryka-Martin et aI., 1996) suggest that water seepage 

through Yucca Mountain occurs with velocities oil the order of 10 m/year or faster 
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(Pruess et at., 1999). In addition, calcite-coating data show that deposition is found 

mostly within fractures and not within the matrix. Hence, the diffusion of water into the 

rock matrix is very low. In summary, all evidence suggests that in semi-arid environments 

water is able to migrate downward rather rapidly along localized preferential flow paths 

through fracture networks in partially saturated rocks, without being imbibed into the 

rock matrix. 

1.2 Approach 

Unsaturated flow in naturally fractured rocks is generally a multi-phase, non-

isothermal flow that occurs in a. three-dimensional fracture network. A complicated 

model is generally needed to model the actual fluid flow and transport in natural 

fractures. However, the primary interest of this study is to understand the effect of 

geometric features of natural rock fractures on gravity-driven liquid seepage in fractures 

under isothermal, partially saturated conditions. Thus, the following assumptions have 

been made to simplify the modeling: 

a. hnpact of the gas phase on seepage is neglected by assuming that gas phase 

pressure is a constant. Namely, effects associated with the gas phase fluid, 

such as the dramatic change of hydraulic characteristics of porous media by 

trapped air (Faybishenko, 1995), are not considered in this study. For systems 

with small capillary numbers, it is reasonable to ignore gas phase pressure. By 

making this assumption, the total number of phases in the system is reduced 

by one and only the balance equation of the wetting phase fluid (e.g., water) 

needs to be conside~ed for two-phase problems. Consequently, the remaining 
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unknown variables will be either liquid phase saturation for one-somponent 

flow systems, or liquid saturation and mass fraction of the second component 

liquid for two-component flow systems. Although the gas phase is assumed to 

be stagnant, phase interference is still considered by specifying the relative 

permeability of the aqueous phase. 

b. Matrix permeability and the interaction between the fractures and the 

surrounding rock matrix is negligible. This assumption is based on the 

following considerations. First, field data show that matrix permeability for 

some rock types, e.g., welded tuff, is orders of magnitude smaller than fracture 

permeability. Second, the effect of matrix permeability on seepage evolves at a 

much longer time scale (months to years) than the effect of fracture 

permeability (usually hours). For solute transport, molecular diffusion may 

dominate the interaction betWeen fractures and the rock matrix, which is also a 

slow process. Thus, for shorter time scale simulations, the effect of the rock 

matrix can be neglected. 

c. Hysteresis effects of capillary pressure as well as permeability are neglected. 

Hysteresis of capillary pressure occurs when fractures are subject to repeated 

wetting and drying cycles. Permeability hysteresis occurs when fractures are 

undergoing repeated loading/unloading cycles. Since· most simulations in this 

study consider single wetting events without loading/uruoading cycles, 

hysteresis effects are not important. 
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In addition to the above assumptions, this study focuses on studying seepage 

behavior in planar two-dimensional fractures that are conceptualized as 2-D 

heterogeneous porous media. Approximation of 3-D fracture networks as 2-D 

heterogeneous porous media is only applicable to small fractures in hard rocks of low 

permeability, such as welded tuffs, graywacke, mudstones, granite, and some fractured 

basalts. It would not be applicable to larger fractures with 3-D void space, or to small 

fractures in rocks, with significant matrix permeability, such as non-welded tuffs and 

sandstones. Of course, 3-D flow effects cannot be adequately modeled in a 2-D 

framework. However, such conceptualization is believed to be sufficient for the purpose 

of fundamental understanding of. flow and transport in 3-D fracture networks. An 

immediate advantage of using such conceptualization is that the effective properties of 

porous media, such as relative penileability and capillary pressure, can be substituted for 

fractures. Indeed, the similarity between porous media and fractures in terms of relative 

permeability and capillary pressure has been verified experimentally (Persoff and Pruess, 

1995). 

Fluid flow in single fractures can be conveniently analyzed by a continuum 

approach. However, important flow mechanisms in partially-saturated fractured rock 

usually operate at microscales such that the macroscale volume-averaged parameters or 

system of equations may not capture all the significant mechanisms. For example, 

macroscale continuum approaches generally fail to predict preferential flow observed in 

partially saturated fractured media such as Yucca Mountain. Furthermore, predictions 

5 

.. 



based on macroscale continuum approaches may become totally meaningless if a great 

volume of the flow system is bypassed due to fracture heterogeneities. 

. The following approach is then proposed to overcome the conceptual difficulty of 

macroscale continuum approaches for modeling fluid flow and transport in variably 

saturated fractured media. First, 3-D fracture systems are approximated as 2-D planar 

fractures that are conceptualized as 2-D heterogeneous porous media. Volume-averaged 

parameters for porous media such as porosity, 'permeability and capillary pressure are all 

expected to show spatial variability. However, this study focuses on permeability 

heterogeneity in the fracture plane. Heterogeneous permeability fields generated with a 

statistical simulator at a high spatial resolution are used to characterize the porous media. 

, . 
Then, a volume-averaged Richards' equation is employed to model the flow behavior in 

the equivalent porous media. The difference between this approach and conventional 

continuum approaches is that fracture heterogeneity (permeability) is explicitly 

incorporated into the Richards' equation. Thus, it is expected to capture important 

seepage mechanisms that may be overlooked by continuum approaches, such as flow 

bypassing and channeling. 

1.3 Objectives 

Based on to the evidence of fast preferential flow at sites with thick unsaturated 

fractured zones, several researchers have proposed to conceptualize unsaturated flow in 

heterogeneous fractured media as a stochastic distribution of localized seeps (Gauthier et 

ai., 1992; Gauthier, 1994), i.e., the Weeps model. Although oversimplified, the Weeps 

model is important because it implies the relationship between the fast preferential flow 

6 



and geometric features of natural fractures. Accordingly, a mechanistic process model 

combined with statistically characterized fracture heterogeneity is used herein to evaluate 

flow and transport behavior of natural fractures. The appropriateness of the current . 

approach is judged on the basis of how relevant the assumptions of significant geometric 

properties of fractures are to field observations. However,our ability to directly obtain 

geometric characteristics of fracture void spaces from field· observations is very limited. 

Only input into and output from the flow system at the boundaries can be obtained from 

field observations, which can be linked only implicitly to the assumptions for synthetic 

rock fractures. Therefore, the objectives of this study are 

(1) to evaluate what geometric features of natural rock fractures determine 't;, 

gravit~-driven liquid seepage in partially s~turated conditions. 

(2) to provide building blocks for a theory of liquid seepage in partially saturated 

fracture systems, formulated in terms of statistical properties of ensemble of 

seeps. 

(3) to develop guidance for observing, sampling and testing in partially saturated 

fractures systems, in order to obtain meaningful field characterization. 
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Chapter II. Background - Fracture properties and fracture flow 

n.l Surface properties of natural fractures 

Natural fractures are characterized by their spatially varying aperture geometry 

and heterogeneous permeability. These properties are the result of the spatial variability 

and correlation of the rough surface of fractures. Accordingly, the general approach for 

characterizing natural fractures is to conceptualize them as two rough surfaces that 

contact each other at discrete points, and are spatially correlated with each other at 

different scales (Brown, 1995). 

The topography (roughness) of fracture surfaces determines not only the 

mechanical but the hydraulic/transport properties of fractures (Gl9ver et at., 1998a; 

Brown, 1987ab, 1989; Pyrak-Nolte et al., 1987; Brown and Scholz, 1985b; Kranz et al., 

1979). While the shape, size, and number of contaCt points between fracture surfaces 

control mechanical properties of rock, geometrical properties of fracture surfaces control 

fluid flow in fractured rocks. Thus, geometric properties of fracture surfaces as well as the 

resulting fracture permeability and aperture are important factors for understanding fluid 

flow and solute transport in unsaturated fractures. 

n.l.l Fracture permeability 

Fracture permeability can be theoretically defined by the parallel plate model 

(Witherspoon et al., 1980). This model has been traditionally used to study the steady 

state, single-phase, isothermal and saturated flow of incompressible fluids in single 
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fractures. In this model, naturally rough fracture surfaces are idealized as two smooth, 

parallel plates that are separated by a constant aperture (2b), see Figure 11.1. 

open natural fractures 
with varying apertures 

Idealized, parabolic 
velocity distribution 

//\ ! 
,,' ,I 

• . I 

/ </': I 
" " . 

smooth, parallel plates 
with a constant aperture 

Figure 11.1 Schematic representation of the parallel plate model. 

Analytic analyses such as Bear (1972) show that fracture permeability (k) has the 

following relationship to fracture aperture 

k = (2b)2 
12 

(2.1) 

Equivalently, fracture transmissivity' (T) is found to be proportional to the cube of the 

fracture aperture, i.e., T ::::;; (2bi. In addition, fluid flux per unit drop in head can be 

developed from Darcy's law, which may be written in a simplified form as 

(2.2) 

where Q is the volumetric flow rate across the fracture, M is the head drop, and Cq is a 

constant depending on flow geometry and fluid properties (Witherspoon et aI., 1980). 
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Equation (2.2) has been referred to as t~e "cubic law" in the literature. What is also 

predicted from the parallel plate model is that the flow field. within the fracture has a 

symmetric parabolic velocity distribution, see Figure 11.1. This well-developed velocity 

distribution has known to be contrary to field observations. Accordingly, the lack of 

consideration of the spatially varying roughness and the spatial correlation of aperture is 

the key to the failure of the parallel plate model to predict the real flow field in natural 

fractures (Wang and Narasimhan, 1988). 

Indeed, experimental as well as theoretical studies have shown that permeability 

of single, natural fractures is a complicated parameter depending on several factors. 

Kranz et al. (1979) found that the higher the surface roughness (the mean· asperity height) 

of jointed fractures, the slower the decline of permeability with increasing effective stress . . 

(the difference between the external confining pressure and the internal fluid pressure). In 

addition, they found that fracture permeability decreases nonlinearly with increasing 

effective stress and increasing sample size. This trend indicates that effective permeability 

approaches asymptotically to the lower limit at zero for fractures subjected to increasing 

normal stress. It also implies that residual flow may exist even if the apparent fracture 

aperture is essentially zero. The existence of residual flow in fractures at high normal 

stress is consistent with experiments previously reported by Iwai (1976) and Raven and 

Gale (1985). Walsh (1981) attributed the decrease of permeability with increasing normal 

stress to the decrease of aperture, increase of contact points, and increase of tortuosity of 

flow paths. In addition, fracture permeability measured in the laboratory exhibits a 

significant hysteresis effect during loading and unloading cycles (Raven and Gale, 1985; 
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Kranz et at., 1979). This is attributed to plastic defol!llation caused by crushing of 

asperities in jointed fractures, or irrecoverable damage in intact rocks (Kranz et at., 1979). 

Zimmerman et at. (1992) found that, regardless of the geometry of asperities, fracture 

permeability decreases nonlinearly with increasing fraction of contact area. Experimental 

data show that flow path tortuosity of natural fractures increases with normal stress 

(Pyrak-Nolte et at., 1987). While Walsh (1981) suggested that tortuosity is not an 

important parameter· in estimating the flow rate throug~ fractures, Tsang (1984) showed 

that neglecting tortuosity effects may result in one to two orders of inagnitude error in 

computing the flow rate. Moreover, fracture permeability also depends on contact area. 

In general, factors controlling fracture permeability include fracture aperture, '~ 

sample size, surface roughness, contact area, tortuosity, normal stress, stress history, scale 

of measurement and rock type. Permeability measured in the laboratory is generally 

several orders of magnitude smaller than that in. the field (Brace, 1980). Furthermore, 

permeability of jointed rock is much greater than that of intact rock (Kranz et at., 1979), 

I . 

implying that fluid flow is confined essentially to joints and fractures in the rock. 

11.1.2 Fracture aperture 

An important aspect of modeling flow and transport in natural fractures is the 

ability to describe their spatial variability of the aperture geometry. Although fracture 

aperture can be inferred from surface roughness, it is generally difficult to measure 

surface roughness in fractures in-situ, especially on a large scale. Another difficulty is 

posed by multiple definitions of fracture aperture and orders of magnitude differences 

between various definitions. The most commonly used definitions are "hydraulic 
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aperture" and "mechanical ~perture". The hydraulic aperture, 2b, is defined as the 

constant opening between the two smooth surfaces in the parallel plate model. Recall that 
". 

it is related to the intrinsic fracture permeability (k) by k = (2b)2/12. The mechanical 

aperture, d, is defined as the mean separation distance between two fracture surfaces that 

are held parallel to each other. It is not a constant but varies non-linearly with normal 

stress (Raven and Gale, 1985). In addition, the mechanical aperture depends on the details 

of fracture surface topography as well as the elastic" properties of fractures (Brown and 

Scholz, 1986). Another definition of aperture is the "volumetric aperture" (Abe lin et ai., 

1987), i.e., the fracture void volUJ;ne per unit fracture surface area. It is often orders of 

magnitude larger than the hydraulic aperture and the mechanical aperture (Abelin et ai., 

1987). In addition, hydraulic aperture may underestimate the mean residence time for the 

water (Abelin et ai., 1987). This implies that tracer breakthrough curves predicted from 

the hydraulic aperture may have earlier arrival of the peak concentration than that 

predicted from the volumetric aperture. 

Much experimental research has been done in the last decade to explore the void 

space geometry between fracture surfaces. Most experiments used fluid injection and 

image processing methods to study this property of natural fractures. Mercury 

porosimetry method is one of the methods used (Myer et ai., 1993). However, the wood's 
" . 

metal injection method is more popular than the mercury porosimetry method. The 

advartage of Wood's metal is that it can yield the actual metal casts of the voids for the 

same fracture in experiments at different stresses (Pyrak-Nolte et ai., 1987). For example, 

the micrographs in Figure 11.2 were obtained by Pyrak-Nolte et ai.(1987) by the Wood's 
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metal injection method to characterize the void geometry for a natural fracture in granite, 

which is subjected to increasing normal stress from 3 MPa, 33 Mpa, to 85 MPa. 

3 MPa 

... 

33 MPa 

.. 
i 
( 

... \. 

AP,roXimaj scale 

OAmm 

AP,roXimaj scale 

OAmm 

85 MPa 

AP,roximaj scale 

OAmm 

Figure II.2 Change of void geometry in natural Stripa granites with respect to normal 
stress, measured by Pyrak-Nolte et al. (1987) using the Wood's metal injection method. 
Asperity contacts (or inaccessible pore space) appear as black regions, while regions 
penetrated by Wood's metal are white. Note that these micrographs were take from 
different portions of the same sample. 

Figure II.2 shows that c,ontact areas generally increase nonlinearly with the normal 

stress (pyrak-Nolte et al., 1987). In addition, flow paths in the fracture plane becomes 
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more tortuous as the normal stress increases. Since contact areas and voids are spatially 

correlated, a contact point (or a void site) is likely to be surrounded by other points of 

contact (or other void sites) (Pyrak-Nolte et at., 1990). This spatial correlation structure 

could be numerically approximated by an exponential function (Coakley et ai., 1987). 

Based on direct measurement data, several researchers also found that roughness 

?f natural fracture surfaces can be described by a characteristic length scale (Brown and 

Scholz, 1986; Brown et at., 1986). The asperities are correlated below this scale and 

uncorrelated above. Hence, this correlation length scale is called the mismatch length 

scale, Ac. It may also be used as the cutoff wavelength for the scaling law of fracture 

aperture (Brown, 1995). Namely, fracture aperture is scale dependent only if the 

wavelength of roughness is smaller than At. 

TI.l.3 Surface roughness 

Surface roughness is a small-scale characteristic of natural fracture surfaces. It can 

be measured in the field as well as in the laboratory by a profilometer (Brown et at:, 1986; 

Brown and Scholz, 1985ab, 1986; Power et ai., 1987; Glover et ai., 1998b). After 

comparing the roughness of various natural rock surfaces, Brow~ and Scholz (1985a) 

concluded that fracture surfaces are fractal in nature. Thus, the surface profile of an 

individual fracture surface can be decomposed into a series of sinusoidal Fourier waves, 

each of them have a wavelength, amplitude, and phase. Surface roughness depends on 

sample size and the scale of observation (Brown and Scholz, 1985). For example, Brown 

(1995) showed that the scaling law for an individual fracture surface can be written as (j-
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Ap(a-l)I2, where 0' is the root-mean-square (rms) roughness (or the standard deviation of 

the height of a fracture surface), Ap is the wavelength of a sinusoidal Fourier wave~ and 

a is the slope of the. log-log plot of the power spectral density of roughness versus 

frequency. Surface roughness is an important in controlling laminar flow through natural 

fractures in theoretical, numerical as well as experimental studies (Walsh, 1981; 

Brown,1987a; Pyrak-Nolte .et aI., 1987, Pyrak-Nolte et al., 1988;' Brown, 1989; -
Zimmerman et aI., 1992). 

The void space geometry in fractured rocks may span multiple scales. It may .1£ 

range from a small scale (roughness), intermediate scale (asperity contacts,· fracture .~ 

intersections and terminations) to large scale (network connectivity). This property is due .; 

to the small-scale variability of an individual surface and the spatial correlation of the 

contacting fracture surfaces. It is then~xpected that fluid particles will take a tortuous 

flow path when moving through a real fracture. 

Brown (1995) suggested that only a few parameters are needed to exhaustively 

characterize natural fracture surfaces. These parameters are the rms roughness (0'), fractal 

dimension (Df ), and the mismatch length scale (Ae). Fractal dimension is also used to 

measure the scaling of fracture surfaces, i.e., 0' - Il~Df with a = 7 - 2Df (Brown, 1995, 

1987a). Recall that the mismatch length scale is also defined as the cutoff length-scale 

specifying the correlation/un-correlation of fracture surfaces. In reality, however, fracture 

surfaces may vary over a broad range of wavelengths (or inversely, frequencies). Thus, 

the unique cutoff mismatch length-scale employed in Brown's model does not seem to be 
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adequate for modeling reai fractures. This difficulty has been overcome by Glover et al. 

(1998) by taking into account the smoothly varying degree of mismatch in natural 

fractures. Of course, fractal models are not the only approach of characterizing natural 

fractures. Recent success of employing a statistical simulator other than fractal models for 

generating synthetic replica of fractured rocks has been· reported in the literature. For 

example, Pruess and Antenuz' (1995) used the turning band method (TBM) to generate 

synthetic fractures in terms of fracture permeability. 

11.2 Limitations and applicability of the cubic law . 

Numerous· experimental as well as theoretical studies have been done to 

investigate the applicability of the cubic law to natural fractures. In general, the cubic law 

appears to be applicable to fluid flow through loosely mated and open fractures, as well as 

to fractures with high correlation between .fracture surfaces (Nolte et al., 1989). 

Experimental works by Witherspoon et al. (1980) and Iwai (1976) indicated that the 

cubic law is generally valid independent of the rock type. In addition, numerical 

simulations by Brown (1987) showed that the actual flow rate asymptotically approaches 

that predicted by the cubic law as the ratio of fracture aperture to rms roughness 

Increases. 

However, the cubic law generally tends to overestimate the actual flow rate in 

natural fractures. Tsang and Witherspoon (1981) fopnd that the flow rate predicted by the 

cubic law has to be reduced if surface roughness is taken into account. Brown (1987) 

found that the actual flow rate is only 40% - 60% of that predicted by the cubic law if the 

ratio of fracture aperture to rms roughness is one; but is increased to 70% - 90% if this 
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ratio is between 2 to 4.24. Nolte et ai. (1989) established an empirical power law of flow 

rate to mechanical aperture based on flow experiments performed on Stripa granite. They 

found that the volumetric flow rate is proportional to aperture raised to a power greater 

than 3 and close to 8, suggesting that the cubic law may not adequately describe natural 

fractures. In addition, permeability predicted from the cubic law was found to be orders of 

magnitude higher than that measured from experiments (Kranz et al. ,1979; Raven and 

Gale, 1'985). 

In general, the cubic law is not applicable to rough fractures under high normal c \ 

stresses. As contact areas in fractures .increase with increasing normal' stress (Nolte et al." 

1989), the actual flow paths become more tortuous and channeled (Raven and Gale, 1985; 

Brown, 1987b; Glover et aI., 1998b; Pyrak-Nolte et ai., 1987). Thus; Pyrak-Nolteet ai.,,. 

(1988) found that the flow rate predicted by the cubic law for fractures at high normal .:. 

stress significantly differs from measured data. They suggested that this difference may be 

a consequence of the dominating influence of a critical neck (the point of smallest 

aperture along the path of highest aperture) on flow through the fracture. 

It is evident that natural fractures should be characterized by a spatially varying 

aperture distribution. From a numerical point of view, some researchers, e.g., Pruess and 

Tsang (1990), adopted the approach that fracture surfaces can be. locally approximated as 

two parallel plates separated with a constant aperture. In' addition, the cubic law is 

assumed to be locally valid within that pore space. However, several aspects need to be 

considered before adopting this approach. 
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Figure II.3 (a) Schematic diagram of natural fractures idealized as smooth and parallel 
plates, (b) Sketch of the capillary pressure as a function of the saturation of the wetting 
phase fluid, for both the parallel plate pore model and areal porous medium. 

Consider two pores idealized as parallel plates as shown schematically in Figure 

II.3(a). Assuming that the pores are initially filled with a wetting phase fluid. Also, . 

assuming that the system is connected to the right with the non-wetting phase, and to the 

left the wetting phase fluid. The drainage process can be initiated if the pressure 

difference between the wetting and non-wetting phase fluids is large enough to overcome 

the capillary pressure P c,r ( = 20'awlbr ). Thus, the initial drainage curve will follow line ab 

in Figure II.3(b). Subsequently; the system is drained from location 3 to location 2 in 

Figure II.3(a), corresponding to line bc in Figure II.3(b). Since the capillary pressure 

needed to drain the larger pore (P c,t = 2 O'awlbt ) is smaller than P c,r, the non-wetting phase 

fluid will completely penetrate the larger pore as soon as the interface arrives at location 2 

in Figure II.3(a). This is reflected by line cd in Figure II.3(b). After the wetting phase is 

completely drained from the larger pore, an equilibrium capillary pressure (P c,t) is 

reached, which is indicated by the dashed interface at the left-hand side of Figure II.3(a). 
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With the help of capillary pressure, the wetting phase fluid can be imbibed into the larger 

pore if the pressure of the wetting phase fluid is slightly increased. Hence, the initial 

imbibition process will follow line ef in Figure II.3(b), and the interface will advance 

from location (1) to location (2). Since the capillary pressure at the pore throat (location 

(2) in FigureII.3(a» is larger than Pc,l, the wetting phase fluid will be sucked into the 

smaller pore as soon as the interface reaches location (2) in Figure II.3(a). Thus, the entire 

imbibition process follows line efg in Figure II.3(b). 

In reality, however, the drainage/imbibition processes for a real porous medium, 

would follow the dashed curve in Figure II.3(b). Moreover, if the flow velocity is large,i,,-.,: 

flow dynamics may become dominant at the pore throat where significant change of' 

surface curvature occurs. Counter-current eddies as shown by the dashed arrows in Figure,,; 

II.3(a) may develop due to the large flow velocity and may result in over-estimation of ,,' 

flow rate calculated based on the parallel-plate model. Therefore, neglecting the small­

scale wall roughness of natural fractures may result in unrealistic approximation of the 

real flow field in fractures. This is especially true for field scale applications because 

idealizing field scale fractures as parallel plates certainly suffers from' the difficulty of 

capturing the small scale surface roughness. Overall, this overview shows that there is a 

need to develop fracture flow models which adequately arid realistically describe the 

,spatial variability of the fracture aperture. This is the approach pursued herein. 
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Chapter III. Statistic Modeling of Fractures with Spatially Varying 

Roughness 

111.1 Introduction 

Modeling of flow and transport in fractured rocks or porous media very often 

faces the problem of incomplete information about the heterogeneity of the media. Thus, 

stochastic simulation has become a common tool for characterizing and visualizing 

medium heterogeneity based on incomplete information. To reduce the uncertainty of 

predicting heterogeneity, it is favored to incorporate field data from a variety of sources 

into a simulator, e.g., borehole logs (Johnson and Dreiss, 1989), seismic data (Copty and 

Rubin; 1995), and tracer concentration data (Dagan et ai., 1997). Such simulations not 

only try to reduce the uncertainty of characterization but honor the sample data . 

. Unfortunately, no stochastic simulators can perfectly reproduce the reality of the field and 

most simulators cannot make use of all available information. Moreover, some simulators 

are restricted to Gaussian random fields only, e.g., the turning bands method (TBM) 

(Mantoglou and Wilson, 1982; Tompson et ai., 1989), COY AR (Williams and EI-Kadi, 

1986; Abdel-Salam and Chrysikopoulos, 1996), and spectral methods (Shinozuka and 

Jan, 1972). However, discrete or combinatorial optimization methods, sll;ch as simulated 

annealing (SA), have shown great promise in their applicability to various random fields 

and their ability to incorporate data from various sources into their models by formulating 

a suitable objective function (Datta-Gupta et ai., 1995; Deutsch and Joumel, 1994). In 

order to model fracture characteristics, the stochastic simulator needs to be able to. model 
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the following elements: (1) the presence of asperity contacts, (2) a gradual change . . 

towards larger apertures away from the asperities, (3) fracture wall roughness, and (4) 

spatial correlation structure of fracture aperture (Pruess and Antunez, 1995). Simulated 

annealing (SA) is chosen in this study as the numerical simulator to characterize fracture 

heterogeneity because it very well satisfies these objectives, as discussed next. 

111.2 Simulated annealing algorithm 

Simulated annealing (SA) is an algorithm originally developed for combinatorial 

optimization, i.e., optimizing a system with discrete variables. The heart of SA is an 
.~ 

analogy with a thermodynamic system i.e., the physical process of annealing materials~; 
. ~ ,. 

such as semiconductors and metals (Deutsch and Journel, 1994). It is effective for large-

scale 'systems with discrete variables (Kirkpatrick et aI., 1983). However, it can also be . 
< , ", ~ 

applied for optimizing a system with continuous variables (Press et aI., 1986). It has been ", 

successfully applied in a great variety of fields involving computer design (Kirkpatrick et 

aI., 1983), nonlinear geophysical inversion (Sen and Stoffa! 1991), and stochastic 

reservoir modeling (Deutsch and Journel, 1994). In hydrology, SA was first employed by' 

Dougherty and Marryott (1991) for finding an optimal groundwater management strategy. 

Several computer codes of SA are available in the literature. The computer code used in 

this study is updated from the subroutine SASIM in the software library GSLIB (Deutsch 

and Journel, 1992). 

To be able to "anneal" the numerical system in a way similar to annealing a 

thermodynamic system, a SA algorithm must contain the following four components: (1) 
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an initial state, (2) an objective function that is to be minimized, (3) perturbation 

mechanism, and (4) annealing schedule. (Deutsch and Cockerham, 1994), which will be 

explained in detail in the following sections. 

111.2.1 Initial field 

The initial field for SA can be a purely random field or a field that already shares 

'-

certain spatial features of the desired random field (Datta-Gupta et ai., 1995). For a purely 

random field~~~~ perturbations may be needed to reach the optimal state. However, the 

performance of the SA algorithm may be improve4 if the initial state already has some 

spatial features (Johnson et ai., 1989). 

As mentioned in Chapter I, fracture permeability (k) is used to characterize 

heterogeneous fractures. For convenience, permeability is scaled by a constant reference 

permeability, kref• The scaled permeability is called the permeability modifier and is 

symbolized as t;, i.e., k = krefx t;. A reasonable value of the reference permeability for 

field-scale fractures,e.g., welded tuff, may be 10-9 m2 (1000 d). Asperity contacts, i.e., 

regions with zero permeability, are simply modeled as t; = o. 

All the initial states in this study are generated in the following two steps. First, 

the conditioning asperity contacts are generated by a pre-processor. All conditioning data 

are asperity contacts; however, not all asperity contacts are conditioning data, see section 

III.2.1.2. Two different pre-processors are used for generating the conditioning asperity 

contacts. The difference between these pre-processors is their ability to consider the 

spatially correlation of asperity contacts. Second, the un-conditioned grid blocks are filled 
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with data drawn from a known probability distribution. The probability distribution used 

in this study was assumed to be log-normal (see Eq(3.1)), but other distributions may also 

be possible. 

(3.1) 

Mean (mlnC) and standard deviation (SlnC) of the log-normal distribution, were chosen as 

1.0 and 1.5, respectively. Note that SA does not require that the random field be Gaussian 

(Dutta-Gupta et aL, 1995). In contrast, the initial field can be drawn from a variety of 
f, 

sources. For example, field sampled data (the conditioning data) plus random values 

drawn from a known distribution (the un-conditioned data) may be used. 

Asperity contacts with and without spatial correlation are considered in this study, 

which are referred to as spatially correlated and spatially random asperity contacts, 

respectively. Indicator simulation and Boolean simulation are the corresponding pre-

processors for generating these types of asperity contacts. Both pre-processors can be 

found in GSLffi (Deutsch and Joumel, 1992). 

111.2.1.1 Spatially correlated asperity contacts 

Since fracture surfaces are spatially correlated to each other, asperity contacts 

(regions where two fracture surfaces contact each other) are also expected to be spatially 

correlated. Accordingly, the micrographs shown in Figure 11.2 illustrate that asperity 

contacts (the black regions) are clustered with a specific spatial correlation. Recall that 

this spatial correlation can be approximated by ali. exponential function (Coakley et aI., 
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1987). Moreover, these micrographs imply that the void space in a fracture plane can be 

approximated by a binary process. Namely, the void space at a specific location in the 

fracture plane is either closed (asperity contact) or open (aperture). Hydrologic parameters 

in some porous media may also have this binary property, such as hydraulic conductivity 

in sand-shale or sand-clay formations in fractured rock (Rubin, 1995), or effective 

permeability in sand-shale formations (Desbarats, 1987, 1990). Statistically, a binary 

process can be described by an indicator function (Joumel, 1983). Therefore, indicator 

simulation (Deutsch and Joumel, 1992) used in geostatistics is employed herein to 

simulate spatially correlated asperity contacts in natural fractures. 

1I1.2.1.1(a) Indicator simulation 

Indicator simulation is a linear regression algorithm which sequentially updates 

the estimation of a spatially random variable with conditioning information collected 

from a suitable neighborhood (Deutsch and Joumel, 1992). The size of neighborhood will 

be discussed at the end of ill.2.l.1 (c). Indicator simulation is ideally suitable for 

simulating binary variables, for example, asperity contacts and void space in a fracture 

plane. 

A binary, spatially random variable Z(u), such as the aperture field in natural 

fractures, can be defined in terms of an indicator function I(u). Hereafter in this chapter, a 

bold capital letter refers to a spatially random variable, while a italic capital letter is its 

realization. The indicator function is a spatially random function (SRF) , and can be 

defined as 
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{
I , probability = p(u) for UE s . 

I(u) = . ,s == aspenty contacts 
0, probability = I-p(u) foru~ s 

(3.2) 

where u is the spatial coordinate. Likewise, we can define another indicator variable 

(I'(u» for the counterpart of the binary variable, e.g., void space in a fractilre plane. That 

IS, 

{

I, probability = 1- p(u) for UE s' 
I'(u) = ,s' == void space 

0, probability = p(u) for u~ s' 
(3.3) 

The expectation of an indicator variable can be derived as 

E[I(u)] = 1: p(u) + O· (1- p(u» = p(u) (3.4) 

i.e., the expected value of an indicator variable is its probability of occurrence. Similarly, 

the expected value of I'(u) is I-p(u). The variance of an .indicator variable is 

Similarly, variance of the counterpart indicator variable (I'(u» is also p(u)(1-p(u». The 

covariance of two indicator random variables separated by a distance h is 

Cov[I(u), I(u + h)]= E[I(u)· I(u + h)]- p(u)· p(u + h) 

= 1·1· Prob{l(u) = 1,I(u+h) = 1}+1·0· Prob{l(u) = 1, l(u+h) =O} 

+0 ·1· Prob{l(u) = 0, l(u+ h) = 1}+ 0·0· Prob{l(u) = 0, l(u + h) = O} (3.6) . l 

- p(u) . p(u + h) 

= Prob{l(u) = 1, l(u + h) ~ 1}- p(u)· p(u + h) 

An SRF is stationary if its cumulative distribution function (CDF) is invariant to 

spatial translation. Therefore, the mean and variance for a stationary SRF are constants, 
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and the covariance depends only on the magnitude of the separation distance (lhl or h). If 

the indicator random variable leu) is a stationary SRF, its mean, variance and covariance 

can be rewritten as 

E[I(u)]= p 

Var[l(u)]=p(1-p) 

Cov [I(u), I(u+ h)]= Prob{l(u) = I, l(u+ h) = I}- p2= C,(h) 

(3.7) 

The non-centered covariance of leu) and I(u+h), i.e., E[I(u)-l(u+h)], can then be rewritten 

as 

E[I(u). I(u + h)] = Prob{!(u) = I, l(u + h) = I} 

= Prob{l(u) = Ill(u+h) = I}. Prob{l(u+h) = I} (3.8) 

= Prob{l(u) = lIl(u + h) = I}- P , 

where Prob{l(u)=11 l(u+h)=I} is the conditional probability of the indicator random 

variable at u given that the indicator random variable at u+h is 1. Equation (3.8) is the 

basis for indicator simulation. A suitable regression algorithm, e.g., kriging, can be used 

to estimate and update the conditional probability of Eq(3.8). Information for the update 

processes is provided by the available data collected within the neighborhood of the node 

being estimated. 

III.2.1.1(b) Kriging 

Kriging is a linear regression algorithm which estimates an SRF at a particular 

position from the information collected in its neighborhood. It is also called the "best 

linear unbiased estimator" (BLUE) (Isaaks and Srivastava, 1989). The term "best" is used 
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because its variance of error is minimized; it is "linear" because its estimates are 

. weighted linear combinations of existing measurements; it is "unbiased" because its mean 

residual (mean error) is zero. Derivations in this section follow the line given in most 
C'> 

textbooks of geostatistics, such as·lsaaks and Srivastava (1989). 

Figure III. 1 Sketch of a kriging system with three reference nodes. 

For example, in Figure III. I , we want to estimate the variable (Z) at an unsampled 

location, Uo. In kriging, this estimate is written as a weighted linear combination of the 

measurements from Ul to U3, i.e., 

3 

Z~(uo) = f30 + Lf3;(U)Z(U;) (3.9) 

;=1 

where Z~(uo)is the estimate of Z at uo, ~o is a correction term reflecting the 

measurement bias, f3i are the weights, and Z(Ui) are t~e measurements at location Ui. The 

subscript K refers to different weighting methods, either simple kriging (SK) or ordinary 
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kriging (OK). The difference between simple kriging and ordinary kriging will,be the sum 

of the weights, see the end of this section. Generally, there will be an arbitrary number of 

measurements such that the upper limit of the summation in Eq(3.9)can be replaced by 

an arbitrary integer n. Then, a more general equation is 

n 

Z:(uo) = /30 + L/3;(U)Z(UJ (3.10) 

;=) 

which simply means that the estimation of Z at location Uo is a weighted linear 

combination of n measurements from U1, U2, ... , to Un, plus an arbitrary constant ~o. The 

estimation error (Y) of Eq(3.1 0) is defined as 

n 

y = Z(1\,) ~ ZK(1\,) = Z(1\,)-A -L /3;(u) Z(u) (3.11) 
;=) 

where Z(uo) is the true value of Z(u) at Uo. To ensure that kriging is an unbiased 

estimator, the expectation of Y must be zero. From Eq(3.11) it yields 

E[Y]=E[Z(Uo)-z"K(Uo)] = m(Uo)- f30 - t/3;(u)m(~) = 0 (3,12) 
;=) 

where m(u;) = E{Z(u)}is the location dependent mean values of Z at Ui. Therefore, the 

constant ~o in Eq(3.10) is 

n 

/30 =m(lIo)-L/3;(u)m(u) (3.13) 
;=) 

Substituting Eq(3.13) into Eq(3.1O) yields 
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n 

Z~(uo) = m (uo) + IJJ j(U) [Z(u) - m(u)] (3.14) 
j=1 

which is the estimation equation used in kriging. The estimation error, Y, can then be 

rewritten as 

n ~ 

y =Z(lIo)-Z~(lIo)=Z(lIo)-m(lIo)-L, J3; (u) [Z(u)-n(u) ]= L,a;(u)[Z(u)-n(u)] (3.15) 
;=1 ;=0 

where ao(u) = 1, and aj(u) =- ~ifor i = 1, ... , n. Then, the variance of Y canbe derived 

. " as 

n n 

Var[Y] = L L a;(u)a /u)Cij(up u) (3.16) 

;=0 j=O 

where Cij(Uj, Uj) is the covariance of random variables Z(uD and Z(Uj)' To minimize 

Var[Y],the following system of equations has to be satisfied 

The minimum of Var(Y) occurs when 

n 

LJ3/U)Cij(Up U) = C;o(upuo) ,i=I, .. ·,n (3.18) 

j=1 

which is called the normal system of equations. For a stationary SRF, the means, m(uj), 

can be written as a constant m. Stationarity is usually the basic assumption of simple 
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kriging. Therefore,. the estimation function, the normal system of equations, and the 

estimation variance of simple kriging are written as 

n 

L {3JK (u)Cij(u; -Uj) = C;o(u; -uo) , i = 1,···,n 

j=1 

where ao = 1, and aj = - {3/K for i = 1, ... , n. 

(3.20) 

(3.21) 

The difference in the bracket of the last term in Eq(3.19) is zero if the sum of 

kriging weights is one. This is one of the requirements for an ordinary kriging system. 

Thus, the estimation Z ~K (uo) can be simplified as a linear combination of the n 

measurements, without the need of knowing the constant mean value m. This constraint 

dm be solved by introducing a Lagrangian multiplier Il(u), i.e., 

n 

Z~K(UO) = L{3;OK (~)Z(uJ (3.22) 
;=1 

n 

L{3fK (u)Cij(u; - u j) - Il(u) = C;o(u; - uo) 

j=1 (3.23) n 

L{3fK
(u) = 1 ,i=l,···,n 

j=1 
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(3.24) 
n n n 

= LLaiajCij(Ui -uj)=coo - LfJ;OKCiO(Ui -uo)+TI(u) 
i=O j=O i=O 

where ao = 1, and ai = - fJiOK for i = 1, ... , n. 

III.2.1.1(c) Indicator kriging 

Considering the binary process of asperity contacts versus void space in a fracture 

plane, the appropriate indicator random variable can be defined as Eq(3.2). To simulate 

such binary process in space, it is equivalent to asking the following question: what is the 

conditional probability that the indicator variable at location U is 1 given that the indicator 

variable at location u+h is also 1. This is exactly the conditional probability given by 

Eq(3.8). Thus, indicator kriging is aimed at providing an unbiased estimate of the 

conditional probability, but not at estimating the indicator variable itself at location U 

(Deutsch and Journel, 1992). For convenience, the conditional probability estimated by 

indicator kriging is written as [i(u)( This conditional probability is equivalent to its 

conditional expectation because 

~(u)r == Prob{/(u) = 11/(u + h) = 1}== Prob{ I(u) = Ij(n)}* = E{I(u) I(n) r (3.25) 

where (n) represents the neighborhood of location u. The size of neighborhood grows as 

more data, either from measurements or recent estimations, become available. The value 

of [i(u)]* can be estimated either by simple kriging or ordinary kriging. From the 
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properties of indicator function, i.e., Eq(3.7), it is known that the mean of an indicator 

function is its probability of occurrence. Since this probability is assigned prior to 

indicator simulation, it is appealing to use simple kriging instead of ordinary kriging. 

Therefore, [i(u)( can be estimated by 

[i(U)1K =Prob{I(u)=ll(n)};K 

= ~?iSX(U)I(Ui)+[l- ~liiSX(U)]E{I(U)} 

= ~liiSX(U)I(Ui)+[l- ~1i,'K(U)lp 
The normal equations are 

n 

LfJr(U)CI(Ui-Uj)=CI(Ui-UO)' i=l,"',n 
j=l 

(3.26) 

(3.27) 

where l(uj) are realizations of indicator variable in the neighborhood (n), and CI (h) = 

Cov{I(u), I(u + h)} is the indic~tor covariance. Ifl(u) is stationary, CI(h) is equivalent to 

Indicator simulation starts from a random location, searches the neighborhood of 
, 

that location to find enough conditioning points for performing kriging, and then updates 

the conditional probability. this updated conditional probability is compared with a 

randomly drawn probability (p) to determine the value of the indicator variable at that 

location. If the random probability is smaller than or equal to p, the indicator variable is 

set to 1; otherwise it is set to O. Subsequently, another random path is taken and the above 

procedures are repeated. Note that the neighborhood (n) for subsequent updates consists 

of the original data and the previously simulated indicator values. Thus, even if the 
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indicator simulation starts initially from a null field (no conditioning data at all), it 

becomes a conditional simulation as long as the neighborhood contains information that 

was previously simulated. Defining the size of neighborhood for the indicator simulation 

is equivalent to specifying the search method. An efficient way of searching is not to 

search all the nodes on the grid but to search a limited number of nodes that are close 

enough to the node being estimated. The "closeness" is evaluated by the variogram 

distance (or lag, see section ill.2.2), i.e., a node is close to the estimation node if their 

relative distance is smaller than the variogram distance (Deutsch and Joumel, 1992). 

111.2.1.2 Spatially random asperity contacts 

Boolean simulation is a process that distributes geometric objects in space 

according to a desired probability law (Deutsch and Joumel, 1992). The Boolean -

algorithm in GSLIB randomly generates two-dimensional ellipses or circles with 

specified radii, orientations and aspect ratios. 

Boolean simulation starts from a random point in space Which is the centroid of a 

geometric object that is going to be formed. The geometric object, either isotropic (a 

circle) or anisotropic (an ellipse), is constructed by adding "mass" around the centroid 

until this object satisfies the randomly selected radius, orientation, and anisotropy ratio. 

- Subsequently, another random centroid is chosen and the above procedure is repeated 

until the specified total fraction of asperity contacts is reached. 

In order to generate asperity contacts and simulate the gradual change of aperture 

away from asperity contacts towards larger aperture between asperities, the original log-
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nonnal sample is shifted to the left by a constant ~c , i.e., " = max(' -, c ,0), such that 

additional asperity contacts are produced. Figure 1112 shows that if Sc is 0.63, additional 

15% asperity contacts are produced. These additional asperity contacts are un-conditioned 

data, which may be free to move while being perturbed in a SA system. 

0.4 

additional asperity contacts 

Figure III.2 A log-nonnal distribution· with mean (mln~) = 1.00 and standard deviation 
(sind = 1.50. The penneability cutoff, Se, in this plot is 0.63 such that additional 15% 
asperity contacts (the shaded area) are produced. 

111.2.2 Objective function 

An objective function, or energy function, is used to transfonn the SA system into 

an optimization model. It is a measure of the difference of some spatial features be~een 

the desired distribution and the realization. In this study, the objective function is defined 

as the nonnalized squared difference of the semi-variogram between the realization and 

an expected 9istribution, i.e., 

(3.28) 
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where 'Y~(hr) is the semi-variogram at separation distance hr of the permeability modifier 
I 

field (~), i.e., 

(3.29) 

'Yexpected(hr) is the expected semi-variogram of ~, Oinitial is the objective function of the 

initial field, and nlag is the total number of lags for "((hr). The lag hr has to be defined in 

such a way that the same data pair will not be calculated· twice. This definition is 
, 

illustrated in Figure Ill.3. The squared difference in Eq(3.28), i.e., fr' (h r ) - rexpected (h r )]2 , 

is normalized by Yexpected(hr) to give more weight to small values of 'Yexpected(hr). Note that 

the term within the outer bracket in Eq(3.28) is further weighted by a factor 1I0initiai. This' 
/ 

is for mathematical convenience such that the objection function (0) always starts from J. 

The semi-variogram in Eq(3.28) of the numerical system can be calculated using 

the following equation 

(3.30) 

where N(hr) are the total number of ~ pairs at lag hr, and A(hr) is' the sum of squared 

differences of N(hr) pairs of ~'s. Recall that, in Chapter I, the spatial correlation of the 

void space as well as asperity contacts can be approximated by.an exponential function. 
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Therefore, it is assumed that the ~ field has an exponential correlation function. 

Therefore, 'Yexpected(hr) in Eq(3.28) can be written as 

(3.31) 

where c, the nugget, is assumed to be zero in this study, s~ is the variance of the ~ field, 

A is the integral scale (correlation length) in the principal direction, g is the range 

parameter, and hr is the magnitude of the separation distance' hr. Definitions of A and g 

can be found in Appendix A. The physical meaning of range is that, at this separation 

distance, the value of semi-variogram is 95% of s~ . Or, equivalently, the value of the 

correlation function is 5% of s~ . Thus, the random field is practically un-correlated as 

long as the separation distance is greater than the range (see Appendix A for details). In 

addition, the range is three times the correlation length for exponential models. The 

nugget effect is caused by small-scale variabilityandlor sampling error (Isaaks and 

Srivastava, 1989), which is explained in Appendix B. 

Equation (3.31) is an isotropic semi-variogram. For anisotropic semi-variograms, 

Eq(3.31) can be modified as 

(3.32) 

where the subscripts 1 and 2 denote the longitudinal and transverse axes, and hi, h2 as 

well 
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(0, ) 

(0 2) 

(0, (2,0) (3,0) 

(1,-2) (2,-2) 

db 
~~Oalways 

Llx 
db db 
~i:-Owhen ~>O 

&: Llx 
db db 
~>Owhen~=O 

&: Llx 

db 
~ = horizontal offset, . 

Llx 
db 
~ = vertical offset 

&: 

Figure ill.3 Definition of lag offsets. Lag offsets are assigned such that semi-variogram 
for a given pair will not be calculated twice. Fourteen lags are illustrated in this plot. 
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as AI, A2 are the separation distance and correlation lengths on the longitudinal and 

transverse axes, respectively. Anisotropy such as in Eq(3.32) is called the "geometric 

anisotropy" (Isaaks and Srivastava, 1989). 

Calculating 'Y '(hr) in Eq(3.28) may be a time-consuming task if the grid size is 

large. To reduce the computational effort, Deutsch and Cockerham (1994) proposed an 

efficient method of updating 'Y'(hr). Since only one random pair is perturbed at a time, 

'Y'(hr) needs not to be recalculated at each perturbation but can be updated based on 

previous information. This is illustrated in Figure ID.4. Consider the random pair, ~(UI) 

and ~(U2). For a particular lag hr. the neighboring data points contributing to updating 

'y '(hr) are shown as solid circles; whereas data points contributing nothing to updating 

y'(hr) are marked with hollow circles. Therefore, 'Y '(hr) can be updated by the following 

equation 

2 

A(h[)+ I)-(((u\)-((uIi »2 +('(U2)-'(UIi »2] 
y' (h r ) = 2N~h[) i~\ • (3.33) 

+ L[- (((U2) -, (U2i »2 + (' (Ut> -, (U2i »2] 
i=\ 

where A(hr) is the sum of squared difference of ~ pairs from the previous perturbation. 

111.2.3 Perturbation mechanism 

Starting from the initial field, SA selects a random pair of data points before each 

perturbation. Each data point in this pair has to be un-conditioned data. The system is 

then perturbed by comparing the system energy before and after swapping the locations of 
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Figure rn.4 Update of simulated semi-variogram in a small grid where (Ul, U2) is the 
location of the random pair, and Uil and Uj2 are separated from Uj by lag vectors +hr and 
-hr, respectively. 
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the two data points. If the system en~rgy decreases after a perturbation, the two data 

points will exchange their locations. Otherwise, the system remains unchanged. This 

process is repeated until the system reaches the state with the minimum energy (Omin); or 

stopped when the number of perturbations is beyond an upper limit. Other perturbation 

mechanisms may also be used. For example, one possible mechanism is to randomly 

select a data point and replace its value by a new one drawn from a specific probability 

population (Datta-Gupta, et a/., 1995). 

The critical drawback of the above perturbation mechanisms is that the minimum 

energy Omin at convergence may be a local minimum but not global. This is because such 

perturbation mechanisms always favor the paths with decreasing energy, and the paths 

with increasing energy are unconditionally rejected. To correct this shortcoming, 

Metropolis et al. (1953) proposed an algorithm such that an unfavorable perturbation can 

also be accepted with a certain probability. By conditionally accepting an unfavorable 

. perturbation, the system is able to jump out of a local minimum. Then, the optimal system 

energy at convergence can be close to the global minimum (Press et a/., 1986). The 

perturbation mechanism of unconditionally accepting a favored perturbation but 

conditionally accepting an unfavorable perturbation has been referred to as the 

"Metropolis algorithm". 

From the theories of thermodynamics and statistical physics, the probability of 

changing the system energy from E\ to E2 can be described by the Boltzmann distribution 

(Metropolis et a/., 1953), i.e., 
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(3.34) 

where kB is the Boltzmann constant, and T is the temperature. The probability in Eq 

(3.34) is modified in SA to represent the probability of accepting an unfavorable 

perturbation. By letting kB = 1, .1E "'" .£\0 (change of objective function before and after a 

perturbation), and T = temperature parameter in SA, the acceptance probability in SA is 

approximated as 

[
-.£\0] 

Paccept "'" exp T (3.35) 

111.2.3.1 Modified Metropolis algorithm 

As mentioned earlier in Section 'ill. 1 , a realistic representation of natural fractures 

must model the gradual change from zero aperture at asperity contacts toward larger 

apertures between asperities. However, preliminary tests of the Metropolis algorithm 

showed that it may not be adequate to achieve that goal because it is not "sensitive 

enough" to simulating "simply connected" (in the topological sense) asperity contacts. 

Thus, a modified Metropolis algorithm was developed as a part of this study. 

The concept of "neighborhood" was introduced in order to modify the Metropolis 

. 
algorithm. The neighborhood of an asperity contact is defined as an un-conditioned grid 

block that the distance from the center of this grid block to the center of the asperity 

contact is smaller than or equal to I grid block units. For example, the 28 gray blocks 

shown in Fig. ill.5 are the neighborhood of the asperity contact located at (0,0) with 1= 3 .. 
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The purpose of introducing neighborhood to asperity contacts is to treat the regions near 

and far from asperity contacts separately, and to emphasize particular features of the 

region near asperity contacts. 

Figure ill.5 Schematic definition of the neighborhood illustrated for the asperity contact 

at (0,0) with I = 3. 

The Metropolis algorithm is then modified by taking into account the relative 

locations of the grid blocks in a random pair. If the objective function decreases after a 

perturbation, this random pair is accepted unconditionally. However, the locations of the 

random pairs become important if the objective function increases after a perturbation. If 

both of the grid blocks are in some neighborhoods, or none of them in any neighborhood, 

this pair is still evaluated probabilistically by Eq(3.35); otherwise, this pair is accepted 

only if the grid block located in a neighborhood has a larger value of l; than the grid block 

that is not in any neighborhood. In other words, it is favored to introduce grid blocks with 

small values of l; into neighborhoods of asperity contacts. Figure ill.6 illustrates the idea 

of the modified Metropolis algorithm. Also, see Appendix C for the source code of the 
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modified Metropolis algorithm. Note that the modified Metropolis algorithm reduces to 

the Metropolis algorithm if the size of neighborhood (I) is zero. 

_
conditioning 

asperity contacts 

II neighborhood 
(un-conditioned) 

r.:I_ _ r.:I 0 decreases, accept 
~ 0 increases, accept with p = exp(-aOIT) 

r.:I ~ ~ r.:I 0 decreases, use Metropolis algorithm 
~ -~ 0 increases, accept only if ~(Ul) < ~(U2) 

Figure ill.6 Concepts of the modified Metropolis algorithm. 

111.2.4 Annealing schedule 

While annealing a material, the temperature in the thermodynamic system is 

lowered gradually until the system reaches the state with the minimum thermal energy. To 

numerically simulate the thermodynamic processes of annealing, it is then necessary to 

define, in the numerical system, a controlling parameter which acts like the real 

temperature in the thermodynamic system. In the SA algorithm, the controlling parameter 

is also called "temperature". Thus, the annealing schedule is the specification of the 

timing and magnitude of the temperature reduction in the numerical system. 
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Since the temperature in a real thermodynamic system is lowered continuously, it 

reflects that all particles in the system experience the same temperature as they .cool 

down. ill SA systems, however, only one random pair is chosen at each perturbation. To 

model the simultaneous temperature reduction analogous to a thermodynamic system, the 

temperature parameter in SA systems has to be lowered piecewise but not continuously. 

Numerically, this can be done by lowering the temperature when either one of the 

following two conditions is satisfied: (1) the number of favored perturbations exceeds the 

upper limit, Kaccept; or (2) the total number of perturbations (either favored or rejected 

perturbation) after the previous perturbation at which the temperature is lowered exceeds 

the maximum allowable value, Kmax. If one of the above two conditions is satisfied, the 

temperature will be lowered by a factor 't ('t < 1). 

A suitable annealing schedule should be chosen such that To is' as large as 

possible, and 't is as small as possible. However, such annealing schedule is at the 

expense of large amount of computations, especially when the grid is finely discretized. 

Therefore, a compromise between good annealing results and a reasonable computational 

effort is necessary. Based on our experience, the following annealing sch~dule is 

satisfactory, Le., To = 1.0, 't = 0.9, ~ax = 50 nxyz, Kaccept = 5 nxyz, 11 = 3, amin = 10-7
, which 

are initial temperature, temperature reduction factor, maximum number of allowable 

perturbations between two consecutive reductions of temperature, maximum- number of 

accppted perturbations, the maximum allowable ratio of the number of perturbations to 

Kmax when the objective function continues to increase after each perturbation, and the 
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minimum objective function, respectively. The number nxyz is the total number of grid 

blocks. 

111.3 Effects of spatial discretization on characterization of random fields 

In general, spatial discretization of the numerical grid should be as fine as possible 

to capture the detailed spatial variability of the random field. However, fine discretization 

may often make burdensome the computation loads of numerical characterization and 

flow simulation. Moreover, preferential flow is commonly observed in unsaturated flow 

in fractured rocks. This suggests that some areas in the fracture will not even be contacted 

by the aqueous phase due to flow bypassing. Therefore, from the computational point of.." 

view, using a fine discretization may not be as cost-effective for characterization purposes 

as for flow modelings. Thus, a "reasonable" spatial discretization should be adopted. The 

value of this spatial discretization should be chosen such that basic elements of spatial 

variability of permeability are preserved, and the resulting flow simulation is physically 

meaningful as well as representative of field conditions. In this ~tudy, the size of the flow' 

domain is 20 m x 20 m x 1 cm. Considering computational capacity and efficiency, a 

suitable spatial discretization was then chosen as d = 0.2 m, i.e.; totally 10,000 grid 

blocks. For comparison purposes in this section, a finer discretization of d = 0.1 m is also 

considered. 

One of the factors controlling the dependence of the accuracy of the generated 

random field o~ spatial discretization (d) is the correlation length (X) of the random field. 

A dimensionless ratio of spatial discretization to correlation length, t!JA, is commonly 
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used to analyze the relationship between characterization accuracy ~d spatial 

discretization. A theoretical study by Li and Der IGureghian (1993) suggested that a 

simulated random field has negligible error with respect to its true random field if this 

ratio is smaller than 0.5, i.e., Nt... ::; 0.5. Detailed analyses of the relationship between the 

spatial discretization and the accuracy of characterization is not pursued in this study. 

Instead, a sensitivity analysis is performed in this section to examine the impact of spatial 

discretization on characterization accuracy. Another set of sensitivity analysis on the 

effect of spatial discretization on seepage patterns is latter investigated in Chapter V. 

Two realizations of conditioning asperity contacts that are spatially random and 

spatially correlated are shown in Figures ID.7(a) and ID.7(b), respectively. Radius (ro) and 

correlation length of asperity contacts (An) are both O.4m. Based on these asperity 

contacts, Figure ID.8 shows corresponding realizations of permeability fields with 

different spatial discretizations and correlation lengths (t...k) of permeability. Note that the 

same asperity contacts, whether spatially random or spatially correlated, are used both in 

a coarse grid (~ = 0.2 m) and a fine grid (~ = 0.1 m). Two correlation lengths of 

permeability are considered, t...k = 0.4 m and 0.8 m. Thus, the ratio Nt...k is 0.25 or 0.5, 

both satisfying the requirement of Nt...k ::; 0.5. Modified Metropolis algorithm was used 

for annealing each of the permeability fields in Figure III. 8. In addition, the correlation 

was given by an isotropic exponential semi-variogram, Eq(3.31). 

It is expected that certain spatial features of the permeability field may become 

apparent as the ratio Nt...k is decreased. For permeability fields with spatially random 
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Figure III.7 Two realizations of spatially random and spatially 
correlated asperity contacts in a grid discretized with t:, = O.2m. 
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Figure IlL 8 Permeability fields used for the sensitivity analysis. Each permeability field 
is annealed with the modified Metropolis algorithm in which realizations (a) to (c) are 
conditioned on spatially random asperity contacts (Figure III.7(a)) , and realizations (d) 
to (f) on spatially correlated asperity contacts (Figure IIL7(b)) . The correlation structure 
for each realization is an isotropic exponential semi-variogram with nugget = 0, sill = 
190 (for realizations (a) to (c)) or 110 (for realizations (d) to (f)), and correlation lengths 
(\) = O.4m or 0.8m. 
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asperity contacts, Figures ill.8(a) and ill.8(b) show that the clustering effect around 

asperity contacts becomes more obvious as the ratio !!JAk is decreased from 0.5 to 0.25. 

Accordingly, flow channeling is expected to be more prominent in Figure ill. 8 (b) than in 

Figure ill.8(a). Comparisons between Figures ill.8(d) and ill.8(e); however, demonstrate 

that the intrinsic variability of a random field with spatially correlated asperity contacts is 

nearly preserved as long as the ratio !!JAk is smaller than 0.5, though finer resolution of 

tortuosity is observed in a fine grid, Figure ill.8(e). 

As stated earlier, it is not practical to further refine the grid. Thus, the other way 

\ of looking at the impact of the ratio !!JAk on characterization (and/or flow simulation) is. 

to fix the spatial discretization at A = 0.2 m but increase the correlation length of 

permeability. Figures ill.8(c) and ill.8(t) demonstrate this change by increasing Ak from 

0.4 m to 0.8 m. For spatially correlated asperity contacts, Figures ill.8(d) and ill.8(t) show 

that heterogeneities in these two realizations with different ratios of !!JAkare qualitatively 

the same. However, permeability heterogeneity for random fields with spatially random 

asperity contacts varies with the ratio !!JAk, see Figures ill.8(a) and ill.8(c). 

Combining the above observations concludes that fracture heterogeneity is 

virtually insensitive to the ratio !!JAk for permeability fields with spatially correlated 

asperity contacts, as long as the ratio NAic'5;. 0.5. For permeability fields with spatially 

random asperity contacts, permeability heterogeneity is sensitive to the ratio !!JAk. As far 

as the accuracy of characterization is considered, a finer grid may be needed while 

considering permeability field with spatially random asperity contacts. 
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111.4 Examples of simulated random fields 

To demonstrate the effectiveness of the modified Metropolis algorithm, Figure. 

ill.9 shows four realizations of spatially random as well as spatially correlated 

conditioning asperity contacts, which are either isotropic or anisotropic. Corresponding 

initial fields are shown in Figure ill.lD. Note that the un-conditioned asperity contacts in 

Figure ill.lD were drawn from a log-normal distribution with mln~ = 1.0 and Sln~ = 1.5. 

Figures ill.lI(c) and (d) show two permeability fields annealed with the 

Metropolis and the modified Metropolis algorithms, respectively. The spatial structure is 

an anisotropic exponential serni-variogram with nugget = 0.0, sill = 120, and correlation 

lengths (Ak) = 1.6 m,and 0.2 m in the major and minor axes, respectively. Compared with 

permeability fields annealed with the Metropolis algorithm, permeability fields annealed 

with the modified Metropolis algorithm have a stronger tendency to draw un-conditioned 

asperity contacts and/or grid blocks with smaller values of ~ into the neighborhoods of 

asperity contacts. This tendency is independent of the spatially correlation of asperity 

contacts. In addition, the tendency may often be obtained at the expense of a larger 

number of perturbations, compare Figures ill. 1 I (a) and ill. I I (b). Thus, Figure ill. I 1 (d) 

shows a more significantcIustering effect around asperity contacts than Figure ill.lI(c). 

Moreover, these two realizations can be quantitatively compared by defining the average 

permeability in the neighborhood as follows 

I Nb 

kavg = -IkeXJ 
Nb ;=1 . 

(3.36) 
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where Nb is the total number of grid blocks that are located in the entire neighborhood of 

all asperity contacts. The average permeability is significantly reduced from 6.7 x 10.9 m2 

in Figures ill.ll(c) to 5.4 x 10-9 m2 in Figure ill.ll(d). Thus, this provides quantitative 

confirmation that the modified Metropolis algorithm is better suited to our problem than 

the Metropolis algorithm. 

Figures ill.ll(a) and ill.ll(b) show the change of objective function with respect 

to the number of perturbation, corresponding to permeability fields annealed with the 

Metropolis and modified Metropolis algorithm, respectively. The curve in Figure ill. II (a) 

shows a monotonic decreasing trend. However, the curve in Figure ill.ll(b) shows 

significant fluctuation before convergence. Even if the Metropolis algorithm considered 

the possibility of taking an unfavorable path while perturbing th~ random field, Figure 

ill.ll(a) suggests that it still tends to get trapped in a local minimum. The fluctuating 

curve in Figure ill.ll(b) implies that permeability fields annealed with the modified 

Metropolis algorithm is more likely to reach the global minimum energy. Although 

realizations in Figure ill.ll(c) and ill. Il(d) reveal distinctive clustering effects, the semi­

variogram at the end of SA, Figure ill.ll(e) and ill.ll(f), both fit the expected correlation 

structure. Figure ill. 12 shows permeability fields annealed with the modified Metropolis 

algorithm, corresponding to initial fields in Figure ill.1O. Corresponding plots of change 

of objective function and semi-variogram are shown in Figure ill. 13. Again these plots 

show that the modified Metropolis algorithm is able to produce significant clustering 

effect around conditioning asperity contacts as well as perturb the permeability field to 

the desired spatial correlation. 
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Figure III.9 Examples of spatially random (a and b) and spatially correlated (c and d) 
asperity contacts. The correlation function of asperity contacts for realizations (c) and 
(d) are two exponential semi-variograms with nugget = 0, sill = 0.1875, but different 
correlation scales (1."0) 
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Figure III. 1 0 Initial permeability fields corresponding to each of the conditoning 
asperity contacts shown in Figure III.9. A log-normal distribution with mean and 
standard deviation of Ins as 1.0 and 1.5, respectively, was used to generate the 
un-conditioned data. 
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Figure TIL 12 Annealed permeability fields corresponding to the initial fields shown in 
Figure TILl 0 Each permeability field was annealed with the modified Metropolis 
algorithm. The correlation structure was an isotropic exponential semi-variogram with 
nugget = 0, correlation length (f"k) = O.4m, and sill = 180.0 for realizations a and b, 
and 120.0 for realizations c and d. Spatial discretization (~) = 0.2m. 

55 



10° 

.§ 10-1 

g 10.2 

.2 10-3 

g: 10.4 

n 10-5 
w 
B10" 
o 10.7 

0 

10° 

.§ 10" 
g 10.2 

.2 10-3 

g: 10-4 

g 10.5 

BlO-6 

0
10

-7 

0 

10° 
§ 10-1 

n 10.2 
c 
.2 10.3 

.~ 10.4 

~ 10
5 

BlO-6 

o 10-7 

0 

10° 
§ 10-1 

n 10-2 
c 
.2 10-3 

g: 10.4 

g 10.5 

BlO·· 
o 10.7 

0 

1.75E+07 3.5E+07 5.25E+07 7E+07 

# of perturbations 

(a-I) permeability field (a) 

1.75 +07 3 .5E+07 5.25E+07 7 +07 

# of perturbations 

(b-I) permeability field (b) 

~I~~~~~~~ 
1.75 +07 3.5E+07 5.25E+07 7 +07 

# of perturbations 

(c-l) permeability field (c) 

250 

200 

~150 
£ 

;;:::100 

50 

250 

150 

100 

:2 
;;::: 

50 

• horizontal-y(h) 
.A vertical y(h) 

--- theoretical horizontal y(h) 

h (m) 

(a-2) permeability field (a) with sill=180.0 

• horizontal y(h) 
.A vertical y(h) 

--- theoretical horizontal y(h) 

h (m) 

(b-2) permeability field (b) with sill=195.0 

• horizontal y(h) 
.A vertical 

- -- theoretical horizontal y(h) 

00 2 3 4 
h (m) 

(c-2) permeability field (c) with sill=120.0 

150 

5 

r ···ll ........... . 
• horizontal y(h) 

50 .A vertical -y(h) 

100 

--- theoretical horizontal y(h) 

7E+07 

h (m) 

(d-I) permeability field (d) (d-2) permeability field (d) with sill=120.0 

Figure III. 13 Change of objective function during annealing, and simulated 
semi-variograms after annealing for permeability fields corresponding to 
those shown in Figure III. 12 

56 



Chapter IV. Flow simulation 

IV.t'Numerical simulator 

A general-purpose flow simulator, TOUGH2 (Pruess, 1991), is used in this study. 

TOUGH2 is a numerical simulation program for nonisothermal flow of multicomponent, 

multiphase fluids in porous and fractured media. The acronym "TOUGH" stands for 

"Transport Of Unsaturated Groundwater and Heat". TOUGH2 is"'able to simulate a 

variety of flow problems by substituting suitable fluid property modules' into the 

modularized architecture. Each flow module specifies the hydrological/thermal properties 
, 

of fluids under consideration, which is also referred to as "equation-of-state" or EOS 

module. Thus, TOUGH2 is applicable to a wide range of problems including geothermal 

reservoir engineering (O'Sullivan, et at., 1998), nuclear waste isolation (Senger, et at.,· . 

1998), environmental contamination (Webb, et at., 1998), unsaturated zone hydrology 

(Doughty, 1998), and mining engineering (Xu et at., 1998) 

IV.2 Governing equation 

The problem considered in this study is strictly a two-phase (water and air) flow 

under partially saturated, isothermal conditions in naturally fractured rocks. By making 

, proper assumptions and approximations (see Chapter 1.2) this problem reduces to a 

single-phase flow problem in equivalent 2-D heterogeneous porous media. Furthermore, 

fluid properties such as density as well as viscosity can be treated as constants under 

isothermal conditions. Based on these assumptions and approximations, the equation-of 
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state flow module reduces to that of solving the mass balance equation (the Richards' 

equation) of the aqueous phase in partially saturated porous media. 

In addition to the neglect of gas phase pressure, several assumptions are implied 

in Richards' equation (Philip, 1969). First, the continuum approach must be valid such 

that hydrologic parameters can be represented as values that are averaged over a 

representative elemental volume (REV), a volume that is "large" enough compared to an 

individual pore but is "small" relative to some macroscale. Second, Darcy's law must 

hold. That is, inertia effects must be negligible and fluid properties are Newtonian. Third, 

the flow is isothermal. Once thermal effects become significant, vapor diffusion may tum 

out to be an important mechanism. For non-isothermal systems, an additional balance 

equation of heat must be solved along with the liquid phase balance equation. Thus, the 

. Richard's equation can be written in a mUlti-phase form as follows 

(4.1) 

where <p is porosity, SI is liquid saturation, PI is liquid density, k is the absolute 

permeability, krl is the liquid phase relative permeability, III is liquid viscosity, PI is the 

liquid phase pressure, g is gravity, and z is the elevation. Liquid saturation (S/) is defined 

as 

(4.2) 

in which al is the volumetric moisture content of the liquid phase, i.e., 
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(4.3) 

where VI is the volume of the liquid phase and Vb is the bulk volume of the medum. 

Equation (4.1) is a volume-averaged equation though the scale at which these average 

values are taken is not explicitly recognized. It is, however, assumed that Eq (4.1) and its 

implied approximations, such as applicability of relative permeability and capillary 

pressure, are valid for the equivalent porous media on a scale of 0.1-1 m (Pruess, 1998). 

Recall that fractured media are similar to porous media in terms of relative 

permeability and capillary pressure (Persoff and Pruess, 1995). If hysteresis effects are 

neglected, relative permeability as well as capillary pressure can be expressed in terms of 

a single-valued function of liquid saturation only. Accordingly; customary formulas of 

relative permeability and capillary pressure for porous media, such as van Genuchten's 

equations, can be used in Eq (4.1), which are 

krl = Fs*{ 1-( \- ~']llw r r 
P"P = _( Pg )( [S,]l/w _\ ) 1-" (4.4) 

where Sir is the residual saturation of the liquid phase, and S* is a scaled saturation such 

that it is in the range [0, 1]. Parameters used in Eq (4.4) correspond to those for coarse 

sands, i.e., 0)= 0.457, Sir = 0.15 for krl and 0.0 for Peap, and Q = 50 m'l for reference 

permeability (kref) at 10'9 m2
• These two functions are illustrated in Figure IV.I. 
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Following the sign convention of Pcap in Eq (4.4), the liquid phase pressure in Eq (4.1) 

can then be written as PI = P gas + P cap, in which P gas is the constant gas phase pressure. 

100 

10-2 

10-4 

~-.:. 10-6 

10-8 

10-10 

0 

Sir = 0.15 
ro = 0.457 

0.2 0.4 0.6 0.8 1 
Liquid saturation (8,) 

Figure IV. 1 Relative permeability and capillary pressure from van Genuchten's formulas, 
with parameters chosen fot coarse sands. 

IV.3 Integral form of Richards' equation 

Richards' equation is conventionally written as a differential form such as Eq 

(4.1), in which a divergence operator is included. The shortcoming of using a differential 

form of balance equations is that the expression of the divergence operator changes with 

coordinate systems. However, the inherent physical quantity should be invariant to 

coordinate systems. Therefore, an integral form of Eq (4.1) is preferred, This is the basic 

idea of the integral finite difference scheme (Narasimhan and Witherspoon, 1976), which 

is used throughout TOUGH2. Integral finite difference avoids any reference to a global 
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system of coordinates, and offers the advantage of being applicable to regular or irregular 

discretization in one, two, or three dimensions (Pruess, 1991). 

Discretizing the flow domain into N elements, Eq (4.1) can be rewritten as the 

following integral form 

(4.5) 

where V n is the volume of element n in the discretized flow domain, M(i) is the mass of 

component i in V n; Fi) is the mass flux of component k across the element boundary r n + 

associated ~ith a normal vector n, and q(i) is the mass sink/source term of component i in 

element. n. Each temi in Eq (4.5) can be further decomposed as follows. M(i) is the 

accumulated mass of component i in all phases, i.e., 

p . 

M(i) = c!> L S pX~) Pp 

P=l 

(4.6) 

where p is the total number of phases, Sf3 is the saturation of phase /3, x<;) is the mass 

fraction of component k present in phase /3, and Pf3 is the fluid density of phase /3. Mass 

flux F(i) is the sum of fluxes of component i from all phases, i.e., 

(4.7) 
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where F 11 is the total mass flux of phase p, }lp is the viscosity of phase p, k is the intrinsic 

permeability, krp is the relative permeability of phase p, Pp is the pressure of phase p, and 

g is gravity. Note that F pis the multiphase version of Darcy's law. 

Each integral in Eq (4.5) can be approximated by a product of element volume 

(V n) and a volume-averaged variable. The volume integral of mass. M(i) can be 

approximated as 

fM{i)dV=V M(i) =V ~ "" S P X(i) 
o 0 n L'I'n n./3 0./3 .0./3 

Vn /3=1 

(4.8) . 

(i) . (i) (') where Mn , <l>n, Sn,p, pn.p, andXn./3 are volume-averaged values of M I , <1>, Sp, PP, 

andX~) within element n, respectively. Of cour.se, Eq (4.8) is valid only if the 

discretization is fine enough so that M~), <!>n, Sn.p,· pn.p, andX~.~ are uniformly 

distributed within element n. By the same token, the surface integral of interface mass 

flux Fi
) can be approximated as 

-(4.9) 

The term F~~ in Eq (4.9) is the averaged interfacial mass flux across the interface Anm 

between element n and all its contacting elements m. This mass flux vector is illustrated 

in Figure IV.2 as pointing from element m to element n. For simplicity, only one 

. 
contacting element is shown in Figure IV.2. In addition, the interfacial mass flux .F~~ is 

actually a summation of mass fluxes from various phases. Thus, F~~ is further 
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decomposed as the last summation in Eq (4.9). From Eq (4.7), F~~ can be further 

decomposed as 

p(i) = -~ X(i)k (krp J P (PP.n - Pp,m - p .g J 
nm L p nm fj L . fj,nm nm 

f3 =1 Il fj nin nm • 

(4.10) . 

k . 
where knm, ~, and p/3.nm are, respectively, the interfacial permeability, mobility, and 

Ilfj 

density associated with the interface Anm. The last integral in Eq (4.5) is simply 

approximated as Vnq~) in which q~)is the volume-averaged sink/source. 

Figure IV.2 Interfacial mass flux F~ across the interface Anm and associated parameters 
in elements n and m. 

Different weighting schemes are used in TOUGH2 for calculating interfacial 

parameters. Interfacial permeability is harmonically weighted depending on distances Ln 

and Lm, i.e., 
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(4,11) 

Interfacial density can be upstream weighted, Le., 

(4.12) 

where WMn =: 1 and WMm = 0 if the driving force is directed toward n; otherwise, WMn = 

o and WMm = 1. Or it can be uniformly weighted, Le., 

Porn = Porn = Pm if Ln = 0 (4.13) 

Porn = Pn if Lm = 0 

In order to obtain physically realistic results, interfacial mobility must be upstream 

weighted (Peaceman, 1977), i.e., 

(4.14) 

where WMn and WMm are defined above. 

In summary, the integral form of Richards' equation can be approximated as 

(i) 

dMn =_1_~ A F(i) + q(i) 

dt V L..J orn orn n 
n 

(4.15) 

m 
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Equation (4.15) is solved by the finite difference scheme. In order to obtain numerical 

stability, time is discretized fully implicitly (Peaceman, 1977). Therefore, Eq (4.15) is 

recast as 

M(i),j+1 _ M(i),j = !1t {~A F(i),j+1 + V q(i),j+l} 
n n v.L..J nmom nn 

n 
m 

(4.16) 

where j is the index of time stepping. The difference of the two terms to the left and to the 

right of the equal sign is referred to as : "residual". Therefore, solution of Eq (4.16) occurs 

when the residuals are zero. Eq (4.16) can then be rearranged as 

where R is the residual. For each volume element V n there are NEQ equations. For a flow 

system with N grid blocks, Eq (4.17) thus represents a system of NEQ x N coupled, non-

linear and algebraic equations. The vector e in Eq (4.17) contains NEQ x N independent 

primary variables which completely define the state of the flow system at time level tj+l. 

Expanding Eq (4.17) by its Taylor's series to the first order yields 

N5'~ a R (i)¥' R(i),j+l(e ) = R(i),j+l(e )+ n {e -e )=0 
n v+1 n v ae ~ u,v+1 u,v 

u=1 U v 

(4.18) 

where u is the iteration index. Eq (4.18) can be solved by the iterative Newton-Raphson 

method. Time step' in Eq (4.18) may be automatically adjusted, depending on the 

e.. 
condition of convergence during the iteration processes (Pruess, 1991), Usually, Eq 
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(4.18) is written in the following form 

NxNEQ (i),j+l 

- ~ dR n (e _ e )= R (i),j+l(e ) .L..J d e ~ u,o+1 u,o n 0 

u=1 U 0 

(4,19) . 

which is further simplified as 

J~e=R (420) 

where J is the Jacobian matrix of the flow system (the partial derivatives of Rn with 

respect to e i ) and R is the residual vector consisting of NEW x NEL residuals. Other 

features and flexibility of TOUGH2 code can be seen in detail in user's guides for 

TOUGH and TOUGH2 (Pruess, 1987, 1991). 

111.4 Verification of TOUGH2 - One-Dimensional Infiltration Model 

An example of one-dimensional infiltration into a semi-infinite porous medium 

was used to verify the TOUGH2 code. The movement of water in an one-dimensional, 

semi-infinite unsaturated soil column can be described by the following form of the 

Richards' equation (Philip, 1955) 

ae =~(D aeJ- aK 
at ax ax ax 

where K is hydraulic conductivity, and D is the diffusivity that is defined as 

D=K
dh 

de 
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where h is the hydraulic head, which is defined as the sum of pressure head (P/pg) and 

elevation head (z), i.e., 

P 
h=-.+z 

pg 
(4.23) 

The first term in (4.21) represents the capillary effect, and the second term gravity 

effect. Equation (4.21) can be further simplified by neglecting gravity effect. This 

assumption is valid either at earlier times of infiltration or for horizontal soil tubes. Thus 

Eq (4.21) can be reduced to 

ae =~(Dae) at ax ax (4.24) 

Assume that the soil column has an initial water content at en at x > O. In addition, water 

is infiltrated into the soil surface at x = 0 at a constant water content eo. These conditions 

can be written as 

e = en ' t = 0, x> 0 

e = eo ' x = 0, t ~ 0 

and are illustrated in Figure IV.3. 

o 
CD 

" CD 

o • fi' h j d 0 0 ed° semi-ill illite, omogeneous an ISOtrOPIC m !Um 
hydraulic conductivity == K 

water diffusivity == D 

~--------------.. X 

(4.25) 

• • • 

Figure IV.3 Schematic diagram of the one-dimensional infiltration problem. 
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Based on similarity transformation (or Boltzmann transformation), Philip (1955) 

developed an iterative analytical solution for Eq (4.24) subject to initial and boundary 

conditions Eq (4.25). He transformed Eq (4.24) into an ordinary differential equation by 

introducing a new variable, <p, that is a function of 8 only. The number of independent 

variables in Eq (4.24) is then reduced to one if <p is written as 

Thus, Eq (4.24) can be recast as 

_ <p d8 =~(D d8) 
2 d<p d<p d<p 

Multiplying both sides of Eq (4.27) by d<p gives d8 ' 

(4.26) 

(4.27) 

(4.28) 

Initial condition and boundary condition for Eq (4.28) can be deduced from Eq (4.25) as 

8 = 80 ' <P = 0 
8 ---7 en ' <p ---7 00 

(4.29) 

Eq (4.29) implies that 

(4.30) 

Integrating Eq (4.28) with respect to 8 then yields 
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which is subject to the condition 

f.9 <p dS = -2D dS 
9" 2 d<p 

(4.31) 

(4.32) 

Philip's method is to solve Eq (4.31) with the condition specified in Eq (4.32). Figure 

IV.4 illustrates an example of the relationship between <p and S. This 'relationship is 

obtained by assuming that relative permeability and capillary pressure of _soil are 

described by van Genuchten' s formulas, Eq (4.4), with parameters corresponding to 

coarse sands. Once the function <peS) is found, other relationship such as saturation 

profile or infiltration rate can be derived from that function. 

111.4.1 Test problem 

Consider a horizontal soil tube with semi-infinite extent, e.g., Figure IV.3. 

Assume that this soil has a porosity of 0.45 and intrinsic permeability of 1.2xlO-14 m2
. 

Initially, water saturation (Sl) in this soil tube is 44%. Then, w~ter is infiltrated into the 

soil tube at x = 0 until it is fully saturated, i.e., Sl = 1. Relative permeability (kr) and 

capillary pressure (P cap) for this soil are assumed by the following linear functions 

{ 

0, Sf <0.333 

kr = Sf -0.333 0.333 :s;s :s; 1 
0.667' f 

(4.33) 

1 

-9.7902x103 (Pa) , Sf:S; 0.333 

_ 3 1- Sf 
Peap - - 9.7902 x 10 -- (Pa) , 0.333 < Sf < 1 

0.667 
o , Sf 2: 1 

(4.34) 
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Figure IV.4 Functional form of q> versus 8 for a soil whose relative permeability and 
capillary pressure functions are described by van Genuchten's formulas. 

which are illustrated in Figure IV.5. From Eq (4.33), the hydraulic conductivity, K, can 

be written as the product of k and kr. where k is the absolute permeability. Then, Eq 

(4.22) can be rewritten as 

(4.35) 

where J.l is water viscosity (10-3 Pa·s). From Eqs(4.33) and (4.34), Eq (4.35) is 

2 {5.8683XIO-
7
(S/ -0.333) , 0.333<S/ < 1 

D(m/s)= _ -, 
o , S/ < 0.333 

(4.36) 

The analytical solution, i.e., ep(9) , is shown in Figure IV.6. Based on this 

relationship, the saturation profile at a particular time can be obtained by multiplying 

q>(8) by Ji. For example, Figure IV.7 shows three saturation profiles at t = 864 sec, 5184 

sec, and 9504 sec. Solutions obtained by TOUGH2 are marked by symbols, and 
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analytical solutions by lines. It is clear from Figure IV.7 that analytical solutions obtained 

by Philip's method are very close to numerical solutions by TOUGH2. 

1 ._ .. _ .. _ .. _._._ .. _._._._._.-

0.8 

0.6 

0.4 

0.2 

00 

., ., 

kr [ 

_._._._._. __ ._._. IP cap I (Pa) 

0.2 0.4 0.6 
Liquid saturation 

........... 

, 

0.8 

10000 

8000 -CU 
6000 a.. -..-

4000 
0. 
(U 
() 

a.. 
2000 

, ., ., 
'. 0 
1 

Figure IV.5 Linear relative permeability and absolute capillary pressure for the soil 
considered in the test problem. 
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1.2E-3 
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0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 
e 

Figure IV.6 Analytical solution obtained by Philip's method for the one-dimensional 
infiltration problem with 9n=0.198 and 90=0.45 . 
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Figure N.7 Comparison of analytical and numerical solutions for one-dimensional 
. infiltration into a horizontal soil tube. 
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Chapter V. Seepage simulations 

V.I Setup of numerical simulations and factors affecting seepage in fractures 

Fluid flow in a partially saturated fracture is examined in this chapter, considering 

different levels of normal stress, varying degrees of fracture heterogeneity, and various 

initial and boundary conditions. Transient as well as steady state flow is considered. 

The flow domain is idealized as in Figure V.1 in which the equivalent porous 

medium lies wjthin a vertically oriented fracture plane of 20 m x 20 m x 1cm. This 

domain is further discretized into a finite difference grid of 100 x 100 = 10,000 square 

blocks. Such discretization is fine enough to represent medium heterogeneity, and' is 

manageable with the available computers. Porosity heterogeneity is neglected. 

Accordingly, a spatially uniform porosity ($) of 0.35 is assumed. Water is injected into 

the top boundary with a constant rate (10-3 kgls) , which is done by introducing an 

additional single element (20 m x 0.2 m x 1 cm) at the ground surface (z = 0). This 

element not only receives the water supply but transfers fluid mass with underlying 

elements. Initial liquid saturation in fractures is assumed at the value of the residual 

liquid saturation, i.e., SIr = 0.15. Lateral boundaries have no-flow boundary conditions. In 

addition, a unit-gradient boundary is assumed, at the bottom boundary, i.e., the free 

drainage boundary condition. The above initial and boundary conditions are applied to 

most simulations if no other conditions are specified. 

Effects of the gas phase pressure, matrix permeability, porosity heterogeneity, and 

hysteresis of relative permeability and capillary pressure are neglected in this study. The 
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remaining factors affecting unsaturated seepage in fractures, therefore, are the 

heterogeneity and spatial correlation of permeability, as well as the initial and boundary 

conditions. For homogeneous porous media, capillary pressure is inversely proportional 

to a length scale that characterizes the pore structure of the media (Leverett, 1941), i.e., 

(5.1) 

where k and <I> are the permeability and porosity of the media. For heterogeneous media, 

however, both permeability and porosity may be spatially varying variables. Since the 

porosity is assumed to be homogeneous, capillary pressure for heterogeneous media is 

thus scaled as 

(5.2) 

In which kJ . and kz are the permeabilities of the equivalently homogeneous and 

heterogeneous media, which are kref and kref x ~, respectively. 

a single fracture in a 
3-D fracture network 

Constant Q 

2-D heterogeneous porous medium 
discretized into 100 x 100 grid blocks 

Figure V.I Idealization of the flow domain. 

74 

X· 



The effect ·of permeability on seepage depends not only on the aperture, which is 

a function of the magnitude of normal stress (see Figure ll.2), but also anisotropy of 

asperity contacts. The. latter is conceptually illustrated in Figure V.2, which shows 

laterally extensive asperity contacts perpendicular, parallel, or oblique to the downward 

flow direction. Asperity contacts are represented as ellipses in Figure V.2 for simplicity 

and convenience, though they may not necessarily have regular shapes. Figure V.2(a) 

shows that asperity contacts perpendicular to the flow direction may divert flow more 

dramatically than asperity contacts parallel to the flow direction, i.e., Figure V.2(b). More 

importantly, flow maybe funneled into localized regions if asperity contacts are arranged 

in the manner schematically similar to Figure V.2(c). Funneled flow in porous media has 

been indeed observed in the field (Kung, 1990ab). Thus, the ability of asperity contacts to 

divert flow depends on their correlation lengths, anisotropic ratio, and their orientation ... 

relative to the downward flow direction. 

(a) (b) (c) 

Figure V.2 Schematic representation of flow lines diverted by anisotropic asperity 
contacts which are represented as ellipses for simplicity. 

V.2 Impact of spatial discretization on liquid seepage 

Recall that a sensitivity analysis of characterization accuracy with respect to 

spatial discretization was carried out in Chapter ll. Results from that sensitivity analysis, 
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Figure 11.8, indicated that the spatial variability of permeability fields could be adequately 

captured as long as /!JAk < 0.5. That sensitivity analysis is further extended in this section 

for investigating the effect of spatial discretization on flow simulations. 

Simulated liquid saturations at breakthrough and steady state in synthetic fractures 

with simulated permeability fields shown in Figure IIL8 are represented in Figures V.3 

and V.4. The term "breakthrough" is simply defined as the condition when the first liquid 

reaches the depth of -19.9 m. The term "steady state" is herein defined as the point in 

simulation when the ratio of the total flux exiting the bottom boundary to the flux 

injecting to the top boundary exceeds 0.999. It should keep in mind that flow fields 

obtained by this convention are strictly pseudo steady-state flow fields. 

Consequently, fine spatial discretization does not appear to be necessary to model 

seepage through fractures with spatially correlated asperity contacts as long as /!JAk < 0.5. 

Figure V.3 shows that the discretization length (~) and correlation length (Ak) both 

influence the simulated seepage pattern in a fracture with uncorrelated asperity contacts. 

In contrast, the simulated seepage patterns in a fracture with spatially correlated asperity 

contacts are remarkably similar. The similarity is independent of the spatial discretization 

as illustrated in Figures V.4(a) and V.4(b) (or Figures V.4(d) and V.4(e» if the 

permeability fields have the same correlation lengths and the ratio /!JAk is smaller than 

0.5. This similarity is preserved in Figures V.4(c) and Figure V.4(t) even if the 

correlation length of permeability is increased. Thus, the seepage· pattern is strongly 

affected by the correlation- structure of asperity contacts but to a lesser extent the 

correlation structure of permeability, for /!JAk < 0.5. 
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Figure Y.3 Saturation at breakthrough (cases a to c) and steady state (cases d to f) in 
synthetic fractures shown in Figure III.8(a) to II.8(c), with isotropic, spatially random 
asperity contacts with different radii and grids with different values of L'i. 
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Figure VA Saturation at breakthrough (cases a to c) and steady state (cases d to f) in 
synthetic fractures shown in Figures III. 8( d) to III.8(f), with isotropic, spatially correlated 
asperity contacts with different correlation lengths and grids with different values of 11. 
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V.3 Seepage versus normal stress 

Experimental data (Pyrak-Nolte et al., 1987) has showed that contact areas in 

natural fractures increase with nonnal stress. However, the detailed mechanical properties 

of contact areas in fractures and their relationship with the nonnal stress are not interested 

here. Then, the relationship between liquid seepage and nonnal stress is simulated instead 

by changing the total fraction of asperity contacts. Four different fractions of asperity 

contacts are considered here, 15%, 25%, 35% and 40%. For each fraction of asperity 

contacts, twenty to thirty synthetic fractures were generated in order to obtain statistically 

homogeneous realizations of heterogeneous fractures. 

Spatially random and spatially correlated asperity contacts corresponding to the 

different stress levels are shown in Figure V.5. The corresponding realizations of 

permeability fields obtained by conditioning on the asperity data are shown in Figure V.6 

and V.7. The expected spatial correlation structure of the penneability fields is an 

isotropic exponential semi-variogram with nugget = 0.0, correlation length (/"k) = 0.4 m, 

and sill number ranging from 90.0 to 190.0 in different realizations. Spatial discretization 

(~) is 0.2 m, i.e, the ratio ~ / Ak = 0.5. 

Computed saturation at the time of breakthrough and steady state obtained using 

the different penneability fields is plotted in Figures V.8 to V.ll. Flow simulations in 

fractures with spatially random asperity contacts and low nonnal stress exhibit numerous 

interconnected flow paths. As the nonnal stress increases, significant preferential flow 

occurs whether the asperity contacts are spatially random or spatially correlated. The 

preferential flow is accompanied by significant flow bypassing and ponding. The asperity 
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Figure V.5 Spatially random (case a) and spatially correlated asperity contacts (cases b to e), 
used as the conditioning data for heterogeneous fractures. Radius (ro) and correlation length 
(A.o) for asperity contacts are both 0.4 m. The correlation structure for cases b to d is an iso­
tropic exponential semi-variogram with nugget = 0.0 and sill = 0.1875. 
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Figure V.6 Synthetic fractures conditioned on spatially random asperity contacts as 
shown in Figure V.5(a). The expected correlation structure is an isotropic semi­
variogram with nugget = 0.0, sill = 190.0 and correlation length (Ak)= ~Am. Spatial 
discretization (~) = 0.2m.· 
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Figure V.7 Synthetic fractures conditioned on spatially correlated asperity contacts as 
shown in Figures V.5 (b) to y'5(e). The expected correlation structure is an isotropic 
semi-variogram with nugget = 0.0, and correlation length (Ak ) = O.4m. Sill numbers are 
120.0, 115.0, 100.0, and 90.0 for realizations (a), (b), (c) and (d), respectively. Spatial 
discretization (.6.) = 0.2m. 
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Figure V. 8 Saturation at the time of breakthrough at the depth of -19.9 m, in 
fractures with spatially random asperity contacts. Initial water saturation is 
at the value of 0.15. 
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Figure V.9 Steady state saturation in fractures with spatially random 
asperity contacts. Initial water saturation is at the value of 0.15. 
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Figure V.10 Saturation at the time of breakthrough at the depth of -19.9 m, in fractures 
with spatially correlated asperity contacts. Initial water saturation is at the value of 0.15. 
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Figure V.ll Steady state saturation in fractures with spatially correlated 
asperity contacts. Initial water saturation is at the value of 0.15. 
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contacts divert the water into spatially localized fingers that may further proceed 

downward, merge with other fingers, or be terminated/ponded on laterally extensive sub-

horizontal asperity contacts. 
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." o 
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Figure V.12 Arithmetic means of effective permeabilities in synthetic fractures with 
spatially random and spatially correlated asperity contacts. 

Horizontal and vertical effective permeabilities for each of the synthetic fractures 

were calculated for each fraction of asperity contacts. To calculate effective permeability, 

single phase flow simulations were performed to steady state and the permeability was 

calculated based on Darcy's law (see Appendix D for details). The results are plotted in 

Figure V.12 and a monotonically decreasing trend with normal stress as would be 

expected. 

The vertical advance of the fastest finger with respect to. time is plotted in Figure 

V.13 for flow simulations with spatially correlated <:tsperity contacts. The slopes of these 

curves tend to increase with increasing normal. stress, suggesting faster breakthrough in 

fractures subject to increasing normal stresses. The occurrence of faster breakthrough in 

fractures results from the increasing degree of preferential flow as normal stress 

increases, along with the increased Darcy's velocity as the flow funnels into localized 
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fingers. The trend of shorter breakthrough time is further verified by histograms of 

breakthrough time shown in Figure V.14. The vertical advance curves for fractures 

subject to low normal stress tend to be linear because the effects of bypassing and 

ponding are weak. However, the curves become irregular as flow bypassing and ponding 

become significant at high normal stress. 
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Figure V.13 Vertical advance curves obtained from flow simulations with spatially 
correlated fracture asperities. 
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Figure V.14 Histograms of time to breakthrough in fractures subject to increasing normal 
stress. c 
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An alternative boundary conditibnis to consider localized injection. Figure V.IS 

shows the transient and steady state flow fields in fractures with spatially correlated 

asperity contacts, subject to localized injection. Water is injected at the center of the top 

boundary. Theinjection zone has a lateral extent of l.Om,. No flux is allowed to across 

the top boundary outside the injection zone. The constant injectionrateis 1O-3 kgls, and 

initial conditions and other boundary conditions are the same as before. Seepage patterns 

similar to those for distributed injection cases are observed in these simulations, such as 

fingering, ponding, bypassing, and lateral spreading. However, the preferential flow paths 

for localized injection cases are obviously different from those for the distributed 

injection cases. In addition, the location of the first breakthrough for the localized 

injection case mayor may not be the same as the distributed injection case. These flow 

phenomena were also observed by Pruess (1998) in his simulations using synthetic 

fractures with spatially random asperity contacts. Furthermore, he observed that seepage 

patterns in natural fractures strongly depends on fracture permeability, capillary effects, 

and applied flow rate. Thus, it is expected that these observations also apply to the 

simulation results in the present study. 

A vertical advance curve records the downward migration of the fastest finger. 

Thus, an abrupt change in the slope· of the curve indiGates the emergence of a faster finger 

or acceleration/retardation of seepage. Usually, the change of slope is ascribed to ponding 

on asperities. For example, the curVe in Figure V.16(a) exhibits an arrest in the fluid 
. . 

advance before breakthrough. The corresponding flow simulation in Figure V.16(b) 

shows that this is indeed because ofponding at· about -15m. In addition, the slope of the 

advance curve after pondingmay increase or decrease. For example, Figure V.16(b) 
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Figure V.15 Transient and steady state saturation with localized 
injection in fractures with spatially correlated asperity contacts. 
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Figure V.16 Vertical advance curves and corresponding saturation in synthetic fractures 
with spatially correlated asperity contacts. Figure IV.16(a) and V.16(c) feature the effects 
of ponding and flow funneling, respectively_ 
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- - -

shows that finger on the -left of the ponded zone breaks through the bottom boundary. 

This -- finger has lower seepage velocity and the curve in Figure V .16( a) shows a flatter 

slope jilstbefore breakthrough; In contrast, the curve in Figure V.16(c) shows that 

seepage starts with a smaller velocity, becomes arrested by ponding for approximately 8 

hrs, and then proceeds faster toward the bottom boundary. The ponding is clearly visible 

in Figure V.16(d). 

Breakthrough curves (BTCs) corresponding to flow simulations in Figure V.11 

are presented in Figures V.13(b). For better representation, tails of BTCs after 10 days 

are truncated because they are essentially asymptotes approaching to flux ratio at 1.0. 

Chesnut (1992, 1994) suggested that travel time breakthrough curves of 

groundwater through unsaturated media can be approximated by a log-normal model. He 

proposed that the cumulative distribution function for groundwater travel time may be 

written as 

(5.3) 

Here, pet:::: to)is the fraction of fluid flowing between inflow and outflow boundaries for-

which travel time is less than or equal to to, <t> is the mean travel time, at is the standard 

deviation of the natural logarithmbf travel time, and <I> is the cumulative distribution 

function of a normal distribution, i.e., 

<I>(x) = ..)1 -_.IXexp(~ u2 /2)du =~erfc(~xlJ2) 
2n - 2 

- ~~ -

(5.4) 
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in which erfcO is the complementary error function. An important feature of the log-

normal model given in Eq(5.3) is that a significant fraction of flow has travel times much 

shorter than the mean travel time. This effect becomes obvious for strongly 

heterogeneous media (larger O"t), as shown in Figure V.17(a). Note that the horizontal axis 

of Figure V.17(a) is the travel time normalized by the mean travel time, <t>, that is fixed 

at 1.0. 
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Figure V.17 (a) Theoretical log-normal travel time model for different values of the 
heterogeneity parameter, O"t (Chesnut, 1992). The mean travel time, <t>, is fixed at 1.0 for 
all curves, which is also the normalizing factor for the horizontal axis; (b) Simulated 
BTCs for flow simulations in fractures with spatially correlated asperity contacts. Note 
that the horizontal axis is the travel time normalized by the mean travel time <t>. 
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The log-normal model is fitted to each of curves shown in Figure V.17(b), which 

are the BTCs for flow simulations in fractures with spatially correlated asperity contacts. 

The fitting begins by interpolating the sample BTC data and then tiling numerical 

derivative of the interpolated BTC. These numerical derivatives then serve as the 

approximated probability distribution of the BTC data, from which the mean and 

variance of travel time can be estimated. Subsequently, analytical pdf and CDF can he 

obtained based on these two parameters. The fitted results in Figure V.18 show that the 

log-normal model does not adequately fit the individual travel time data. The reason for 

this poor fit is that water transport is strongly affected by the spatial distribution of 

permeability and the associated effects such as ponding, bypassing, and change of 

seepage velocity. Thus, the log-normal model is too simple to accurately capture those 

complicated flow effects . 
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Figure V.18 Results of fitting the log-normal travel time model to each of the BTCs 
shown in Figure V .17 (b). 
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Figure V.19 Saturation at breakthrough and steady state in fractures subject to high normal 
stress, i.e., the total fractions of asperity contacts is 40%. These results illustrate the effect of 
seepage retardation (cases a and b) and acceleration (cases c and d) due to ponding. 
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Breakthrough curves in fractures subject to low normal stress tend to be smooth 

and monotonically increasing curves. This is because the effect of asperity contacts is not 

significant and liquid gradually comes out the entire bottom boundary in a spatially 

uniform manner. For fractures subject to high normal stress, however, BTCs behave like 

a step function because only a number of fingers can break through the bottom boundary. 

In addition, seepage velocity within these localized fingers is generally faster, resulting in 

the fast increase of a BTC. Moreover, such BTCs may intermittently exhibit horizontal 

segments, which are generally the result of impedance by ponding. For example, the 

effect of seepage impedance and acceleration can be demonstrated · respectively from 

realizations in Figures V.19(b) and V.19(d); and the solid and dashed BTCs in Figure 

V.20, respectively. BTCs in fractures subject to intermediate normal stress behave 

intermediately between the two extremes, and their shapes depend on the heterogeneity 

of fractures, see the dash-dotted BTC in Figure Y.20 . 
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Figure V.20 BTCs showing the effects of seepage impedance (the solid curve) and 
seepage acceleration (the dashed curve), corresponding to flow realizations in Figures 
V.19(b) and V.19(d), respectively. The dash-dotted BTC shows the interchanging effects 
of seepage impedance and acceleration. 

The mechanisms of seepage acceleration and impedance as a result of ponding in 

fractures subject to high normal stress are not independent but compete with each other. 
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.. . 

A vertical line shown ina BTC simply means that seepage after breakthrough is 

. dominated by the gravity effect. Competition betweeIl gravity and ponding will not start 

until other fingers also reach the bottom boundary. If the gravity effect still dominates, 

discharge at the bottom boundary would keep growing and the BTC would remain to be 

vertical. If, however, seepage is impeded by ponding, discharge would keep steady for a 

certain time during which the BTC would sl10w a horizontal segment. Not until the 

gravity effectbecomessignificarit again wouldtheBTC show an abrupt increase in slope; 

For example, see the ETC in Figure V21(a) and the corresponding distribution of 

saturation. In general, the competition between gravity and ponding is usually 

intermittent; for example, the dash-dotted BTC in Figure V.20. 

The quantitative relationship between the degree of ponding and the total fraction 

ofasperitycorttacts deserves further investigation. The degree ofponding is defined as 

follows. First, ponding regions are defined as the wetted region, in either transient or 

steady state flow fields, in which water saturation is one. Here the term "wetted region" is 

defined as the total volume in which water saturation is greater. than the residual water 

saturation. Numerically, the cutoff saturations for ponded arid wetted regions are chosen 

as 0.999 and 0.151, respectively. The degree of ponding can then be defined as the 

volumetric ratio of the ponded regions to the wetted region. Various factors may affect 

the total volume of ponded regions in heterogeneous fractures, including the total fraction 

of asperity contacts, correlation length of asperity contacts and permeability, and the 

correlation directionsofasperitycoritacts and permeability. The parameter of the total 
. . . '". .' . . 

fraction of asperity contacts is considered in this section because only synthetic fractures 
. . . 

with isotropic. asperitycorttacts and permeability are considered . 
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Figure V.21 Breakthrough curve and saturation at steady state in a 
synthetic fracture subject to high normal stress. The competition 
between gravity and ponding effects can be seen from the BTC. 
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Figure V.22 illustrates the degree of ponding in synthetic fractures with spatially 

random or spatially correlated asperity contacts, for transient as well as steady state flow 

fields. The plots in Figure V.22 suggests that the degree of ponding generally increases 

with the total fraction of asperity contacts, irrespective of the spatial correlation of 

asperity contacts and the status of the flow field. 

v. 4 Seepage dispersion and its dependence on asperity contacts 

Most BTCs in this study exhibit a non-uniformly increasing trend with respect to 

time. In this study, seepage dispersion is the term for describing the spreading behavior of 

liquid seepage in heterogeneous fractures. It can be quantitatively measured by a 

coefficient (Ds) which is the ratio of (t90 - tlO) to t50, i.e., Ds = (t90-tlO)/t50. The parameters 

t90, t50 and tlO are the travel times at which the flux ratios are 90%, 50% and 10% of the 

steady state flux (Neretnieks, et at., 1982), respectively. 

Histograms of tlO, t50, and t90 are plotted in Figures V.23 and V.24 for synthetic 

fractures with spatially random or spatially correlated asperity contacts, respectively. 

Each histogram is fitted by a normal and a log-normal distributions. In general, the log­

normal distribution usually fits the travel time data better than the normal distribution. 

The trend for tlO behaves as the breakthrough time, i.e., tlO generally decreases with 

increasing normal stress. Similarly, t50 also decreases with increasing normal stress. The 

travel time t90 ~pproximately follows the trend of steady state time, i.e., t90 tends to be 

smaller for low and high normal stresses but larger for intermediate normal stress. 
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Figure V.22 The degree of ponding in isotropic fractures with isotropic, 
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Figure V.24 Histograms of tlO. tso. and t90 for fractures with spatially correlated asperity 
contacts. 
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Figure V.25 shows the histograms of the coefficient of seepage dispersion (Ds) for 

fractures with spatially random and spatially correlated asperity contacts. Note that the 

horizontal axes of histograms with 40% asperity contacts begin from -1. This is for 

representation purpose only because the fitted log-normal distribution is highly right-

skewed toward zero. Statistics for fitted normal and log-normal distributions are listed in 

Table V.I, along with the goodness of fit data (p-value) obtained by the chi-square test. 

The quantitative evidence that the log-normal distribution fits the sample data better than 

the normal distribution is reflected by the larger p-value for the log-normal distribution 

(Table V.I). Thus, each histogram shown in Figure V.25 is fitted by a log-normal 

distribution. 

Table V.I. Statistics of normal and log-normal distributions fitted to the sample data of 
Ds in fractures with spatially random and spatially correlated asperity contacts . 

Normal distribution . Log-normal distribution 

Fraction of 
Ds SD. SD.%s p-value In(Ds) 

sln(D.> 
p-value 

asperity contacts sln(q) Iln(Ds)1 

Fractures with spatially random asperity contacts 

15% 0.530 0.143 0.269 0.217 -0.667 0.257 0.385 0.535 
25% 0.866 0.174 0.201 0.389 -0.164 0.211 1.287 0.500 

35% 0.903 0.533 0.591 0.289 -0.243 0.565 2.325 0.822 

40% 1.114 1.400 1.256 0.0000 -0.539 1.461 2.712 0.624 

Fractures with spatially correlated asperity contacts 

15% 0.795 0.324 0.408 0.522 -0.308 0.413 1.339 0.937 
25% 0.915 0.355 0.387 0.381 -0.168 0.424 2.533 0.715 
35% 1.059 0.660 0.623 0.039 -0.077 0.502 6.544 0.627 
40% 0.781 0.812 1.039 0.0015 -0.958 1.660 1.733 0.245 

Figure V.25 exhibits. a qualitative dependence of Ds on normal stress. That is, 

partIally saturated flow tends to be more dispersive in fractures subject to intermediate 

normal stress and less dispersive in fractures subject to either low or high normal stress. 
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Figure V.25 Histograms of Ds for fractures with spatially random (cases 1 - 4) and 
spatially correlated (cases 5 - 8) asperity contacts. 
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This is because most fingers in fractures subject to low normal stress are not si~nificantly 

affected by asperities. Thus, most realizations may have similar breakthrough behavior 

and the dispersion is generally weak. Similarly, only a limited number of fingers in 

fractures subject to high stress can break through and the dispersion is weak again. 

However, many fingers can be formed in fractures subject to intermediate normal stress. 

Some of them are fast and some of them are slow. Thus, greater value of the coefficient 

of seepage dispersion is generally expected in·such fractures. 

The seepage dispersion may be quantitatively verified by the mean value of the 

natural logarithm of Ds, In(Ds). Results in Table V.1 indicate that In(Ds) is smaller in 

fractures subject to low and high normal stress, but larger in fractures subject to 

intermediate normal stress. However, the arithmetic mean of Ds, i.e., D., in fractures 

with spatially random asperity contacts and subject to high normal stress (D. = 1.114) is 

larger than the value for fractures subject to intermediate normal stress (D. = 0.866 or 

0.903). This is because an outlier with a large value of Ds (7.169) shows up in the sample 

data of Ds, see the histogram in Figure V.2S(4) and the corresponding flo~ simulation 

and the solid BTC in Figures V.16(c) andY.17, respectively. The presence of an outlier 

thus increases the standard deviation of a fitted distribution, see the columns labeled SD . s 

and Sln(D ) in Table V.l. lithe outlier were absent, however, the standard deviation would 
s 

generally follow the same trend as In(Ds), i.e., the standard deviation of Ds would be 

larger for fractures at intermediate normal stress, but smaller for fractures at low and high 

normal stresses. 
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Two opposite effects of ponding on seepage dispersion may, occur in fractures 

subject to high normal stress: (1) Ponding retards seepage as would be expected. Seepage 

is slowed down by ponding because liquid must fill the dead-end pores above asperities 

as a result of the constant recharge 'at the surface. This process can take a long time to 

complete if the total volume of dead-end pores is large. For example, flow simulations in 

Figures Y.19( a) and V . 19(b) illustrate this effect. Figure V .19( a) shows two fingers at the 

time of breakthrough, one to the left arrives at the bottom boundary while the other to the 

right reaches a depth of - 10 m. The left finger continuously evolves after breakthrough; 

. meanwhile, the right finger proceeds downward, hits asperities and develops significant 

ponding, see Figure V.19(b). The gradual development of the right finger is'shown on the 

solid BTC in Figure V.20 by a long horizontal segment, reSUlting in greater value of , 

seepage dispersion, Ds = 7.169; (2) On the other hand, ponding can gather distributed 

seepage and funnel it into narrow paths with large fluxes and velocities. The effect of 

accelerated breakthrough induced by ponding can be seen on a BTC by a vertical line. 

Thus, weak seepage dispersion would be observed under such conditions. An example of 

accelerated seepage by ponding can be seen by the dashed BTC in-Figure V.20 for which 

there is nearly no dispersion at all, i.e., Ds = 0.008. The corresponding distribution of 

saturation for accelerated seepage is shown in Figures V.19(c) and V.19(d). These 

simulation results show that all other possible flow paths are blocked by asperities and 

fluid is only allowed to go through one finger that finally reaches the bottom boundary. 
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V.5 Influence of anisotropy of asperity contacts 

The purpose of these analyses is to examine the effect of anisotropy of asperity 

contacts on flow patterns. Anisotropic asperity contacts, whether spatiall y random or 

spatially correlated, are considered in isotropic permeability fields. Three principal 

correlation lengths for spatially correlated asperity contacts (or principal radii for 

spatially random asperity contacts), O.4m, 0.8m, and 1.6m, are taken into account, along 

with the same minor correlation length (or minor radius) of 0.2m. Four principal 

directions, North, North-East (450 to North), East (900 to North), and South-East (1350 to 

North), are investigated. Initial and boundary conditions are the same as those in section 

V.1. The total fraction of asperity contacts for these synthetic fractures is fixed at 25%. 

Simulated permeability fields are shown in Figures V.26 and V.27 , and corresponding 

saturation at breakthrough and steady state are shown in Figures V.28 to V.31. 

For notational convenience, the term "ani sotropy ratio" in this section refers to the 

ratio of the principal correlation length (or radius) of anisotropic, spatially correlated 

(random) asperity contacts to the minor correlation length (radius) of asperity contacts. 

That is , three anisotropy ratios, 2.0, 4.0, and 8.0, are considered. 

Results of flow simulation show that the principal direction of anisotropic asperity 

contacts detennines the direction to which the flow is diverted. The larger the anisotropy 

ratio, the stronger the diversion effect. In addition , the total number of fingers reaching 

the bottom boundary at steady state generally decreases with increasing anisotropy ratio. 

This is especially true in fractures with spatially correlated asperity contacts that are not 

principally cOlTelated in the vertical (North) direction. Moreover, the diversion effect 
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seems to be more significant in fractures with spatially correlated asperity contacts than 

in fractures with spatially random asperity contacts. Also, ponding effect generally 

increases as the anisotropy ratio increases. 

The effect of ponding on seepage breakthrough is indicated in flow simulations 

illustrated in Figures V.30(4), V.30(8), and V.30(l2). Although the vertical effective 

permeability in the South-East direction increases as the anisotropy ratio increases from 

2.0 to 4.0, the distribution of saturation in Figure V.30(8) shows a slower breakthrough 

than that in Figure V.30(4). This is affected by the delaying effect of ponding, which is 

shown in Figure V.30(8) at the upper right and lower right corners. As the anisotropy 

ratio of asperity contacts increases from 4.0 to 8.0, Figures V.30(8) and V.30(l2) show 

that more ponding is developed. In addition, calculations show that the effective 

permeability decreases significantly as the anisotropy ratio increases from 4.0 to 8.0. 

Thus, the delaying effect of ponding associated with the decreasing vertical effective 

permeability leads to the much slower breakthrough in Figure V.30(l2). 

The degree of ponding as a function of anisotropy ratio is shown in Figure V.32. 

Generally, degree of ponding increases as the anisotropy ratio increases. In addition, 

degree of ponding in fractures with vertically correlated asperity contacts is generally the 

weakest, which becomes obvious as the anisotropy ratio increases. However, degree of 

ponding in fractures with non-vertically correlated asperity contacts has different levels 

of significance, depending on the type of asperity contacts, the principal direction, and 

the anisotropy ratio of asperity contacts. For example, Figures V.32(a) and V.32(b) show 

that the degree of ponding for horizontally correlated asperity contacts is always the 
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greatest. However, degree of ponding strength in fractures with spatially correlated 

asperity contacts generally varies with the heterogeneity of permeability. Furthermore, 

there may be a dramatic increase in the degree of ponding in fractures with spatially 

correlated asperity contacts that are not vertically correlated. For example, Figure V.32(c) 

and V.32(d) shows that this occurs when asperity contacts are principally correlated in 

the South-East direction. 
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Figure V.33 Coefficient of seepage dispersion (D,) in fractures with anisotropic asperity 
contacts that are spatial I y random or spatially correlated. 

Seepage dispersion depends on the heterogeneity of fractures as well as ponding. 

The term "heterogeneity" herein means the overall effect of tortuosity, flow diversion, 

and the ability of generating new fingers after breakthrough. The later varies in different 

synthetic fractures but generally decreases as the anisotropy ratio increases. The general 

decreasing trend of seepage dispersion with increasing anisotropy ratio is observed in 

Figure V.33 . However, the curve in Figure V.33(b) shows that seepage dispersion in the 

North-East direction increases as the anisotropy ratio changes from 4.0 to 8.0. This 
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increase is clearly due to the ponding as shown in Figures Y.31(6) and V.31(10). In 

addition, Figure V.33(b) shows that the seepage dispersion in the horizontal direction 

significantly increases with the anisotropy ratio, which is the result of increasing 

diversion effect as illustrated in Figures V.31(3), V.31(7) and V.31(1l). Similar increase 

of seepage dispersion with respect to anisotropy ratio also presents in Figure V.33(a) for 

the curve associated with the vertical correlation direction. 

V. 6 Influence of anisotropy of permeability 

Anisotropy of the spatial distribution of asperity contacts logically leads to the 

consideration of anisotropy of permeability. It is then expected that the realized 

permeability field may have similar effects as the anisotropy of asperity contacts as far as 

flow bypassing and fingering are concerned. 

To evaluate the effect of anisotropy of permeability, permeability fields in this 

section were obtained by conditioning on the same conditioning asperity contacts that 

were used for cases(l), (4), (9) and (12) in Figures V.26 and V.27. These anisotropic 

asperity contacts are principally correlated in the North or South-East directions, with 

principal correlation length (or principal radius) of 0.4 m or 1.6 m. Thus, anisotropic 

permeability with two principal correlation lengths (0.4 m and 1.6 m) and two principal 

directions (North and South-East) are investigated. Correlation length in the minor 

directions is half of its principal correlation length. Again, the total fraction of asperity 

contacts is fixed at 25%. Figures V.34 and V.35 are the realized permeability fields 

conditioned on spatially random and spatially correlated asperity contacts, respectively. 
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Corresponding flow simulations are shown in Figures V.36 to V.39, and the strength of 

ponding for these flow simulations is shown in Figure VAO. 

Simulation results in Figure V.38 (or Figure V.39) closely resemble the 

simulation results (1), (4), (9) and (12) in Figure V.30 (or Figure V.31). Recall that the 

former and the later simulation scenarios were carried out in synthetic fractures 

conditioned on the same spatially correlated asperity contacts but different correlation 

structures of permeability. This similarity thus suggests that liquid seepage in natural 

fractures may be less sensitive to the spatial correlation of permeability and tends to 

depend more strongly on the spatial distribution of asperity contacts. It also suggests that 

tortuosity of flow paths may be insensitive to the anisotropy of permeability as long as 

conditioning asperity contacts are the same. However, the difference between the two 

flow scenarios can be identified in terms of degree of ponding as illustrated in Figure 

V.40. It shows that the two flow scenarios are obviously different from each other if the 

asperity contacts are not vertically correlated, see Figures V.40(e) to VAO(h). 

Breakthrough and steady state flow fields shown in Figures V.36 and V.37 are 

also similar to corresponding simulation results, i.e., cases 1,4,9, and 12 in Figures V.28 

and V.29. The minor difference between these simulation results is because some of the 

spatially random asperity contacts in these fractures are not conditioning data. That is, the 

overall spatial distribution of asperity contacts is not the same between the two flow 

scenarios. The difference becomes significant only for cases with larger anisotropy ratios. 

For example, the ponding strength in Figure VAO(b) and V.40(d) explicitly show the 

difference between the two simulation scenarios. 
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Figure V.34 Anisotropic permeability fields conditioned on spatially random asperity 
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Figure V.35 Anisotropic penneability fields conditioned on spatially correlated asperity 
contacts. The principal correlation lengths of asperity contacts are O.4m or 1.6m, and 
principal directions in N-S or NW-SE. The anisotropic semi-variogram of penneability 
has nugget = 0, sill = 120, and principal correlation length as O.4m or 1.6m. The minor 
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with isotropic permeability and the other with anisotropic permeability. Synthetic 
fractures for both flow scenarios are conditioned on the same anisotropic asperity 
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Chapter VI. Tracer simulations 

VI. 1 Tracer transport 

As stated earlier, field evidence suggests that, in semi-arid environments, water is 

able to migrate downward rather rapidly along preferential paths. At Yucca Mountain, 

Nevada, for example, fracture networks in unsaturated rocks may provide such fast 

preferential flow paths. This observation thus raises concerns that, once a storage canister 

starts leaking, radionuclides may transport with groundwater and reach the downstream 

biosphere at an unexpectedly short time scale. Detailed analyses of solute transport need 

to consider coupled flow and transpOlt equations, which are beyond the scope of the 

present study. To simplify tbe problem, however, tracer transport without taking into 

account the effect of molecular diffusion is considered in this section. 

"Tracers" are defined herein as dilute compounds that are completely non-reactive 

and dissolved in water without significantly changing its physical properties, e.g., density 

and viscosity, of water. An example would be a small amount of brine will mixed with 

water. By this convention, tracers can be treated as a second component of water. 

For multi-phase simulations, liquid saturation is defined as the ratio of pore 

volume occupied by the liquid phase to the total pore volume, i.e., 

(6.1) 

where VI is the pore volume occupied by liquid phase, PV stands for the total pore 

volume, <j> is porosity, and Vb is the bulk volume of rock. Primary variables for two-
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component simulations are defined as liquid saturation (SI) (or liquid pressure (PI) ) and 

mass fraction of the second component of liquid phase(X2) (Pruess, 1991). Mass fractions 

for two-component flow systems are defined as 

i=1 i= l 

If the i-th component of liquid saturation is defined as 

VI' S .=-·' 
I., PV 

then the mass fraction and liquid saturation have the following relationship 

SI' =X SI ., , 

See Figure VLI for illustration of two-water systems. 

Air, V=(l-SI)~Vb 

Waler 1, V=X\SI 4> Vb Water 2 = Tracer, V="X,. $ ( Ijl Vb 
(1"1 component 01 waler) (~component of water) 

(mass fraction X,) (mass fraction X2) 

Figure VI. I Schematic partition of the pore space for two-water systems. 

For i= 2, i.e., the second component of water; or tracer, Eq(6.4) yields 

SI,2 = X , SI 
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That is, the quantity SI.2 is in fact the pore volume occupied by tracer per unit void 

volume of rock. From Eq(6.S), the volumetric fraction of tracer to the total pore volume 

is the mass fraction of tracer, SI.2. Strictly speaking, SI,2 is not liquid saturation but a 

"pore-space-weighted saturation". For notational convenience, however, SI.2 will be 

named "tracer saturation" in the remainder of the text. 

Initial conditions for tracer transport may be a steady state or a transient flow field 

of water. First, let us consider the steady state flow field such as Figure V.19(d). This 

flow field is interesting because (1) it is the result of water simulation in a synthetic 

fracture at high normal stress, (2) it has the least seepage dispersion, and (3) it has several 

regions that are fully saturated with water. These fully saturated regions have different 

effects on seepage for transient and steady state flow fields. For example, the effects of 

seepage retardation and seepage acceleration by ponding are illustrated by the horizontal 

segment in Figure VI.2 and the dashed BTC in Figure V.20, respectively. Moreover, 

some of the saturated regions may become "dead-end pores" to water. Note that dead-end 

pores usually occur above laterally extensive asperity contacts or at fracture terminations, 

e.g., the upper left corner of Figure V.19(d) and to the right at depths from - 3 m to - 8 

m. 

Figure VI.3 shows four snapshots of tracer transport at different times. These 

simulations were obtained by injecting tracer (at the constant rate of 10-3 kg/s uniformly 

distributed over the entire top boundary) into the steady state flow field of Figure V.19(d) 

and simulating under the same boundary conditions as specified in section V.l. These 
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simulations were terminated at the times when the flux ratios of tracer reached 0.1, 0.5, 

0.9, and 0.987, respectively. The flux ratio for tracer simulations is defined as 

(6.6) 

where Q10P and QbOl are the total liquid flux at the top and bottom boundary, respectively. 

Q 2,bot is the total tracer flux at the bottom boundary and is defined as the numerator in 

Eq(6.6) . The subscript j in Eq(6.6) stands for all grid blocks that directly contact the 

bottom boundary, and X2J is the mass fraction of tracer in grid block). 
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Figure VI.2 Vertical advance curve for the realization shown in Figure V.19(d). 

Simulation results in Figure VI.3 show that tracer not only travels along flow 

paths that have been developed by water but bypasses dead-end pores. Obviously, tracer 

flow paths have higher relative permeability (or, equivalently, lower flow resistance) due 

to higher total liquid saturation. The bypassing of tracer away from ponded regions is 

because of the assumption of non-reacti ve tracers and the neglect of molecular diffusion. 
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Figure VI.3 Snapshots of tracer transport with the steady state flow field shown in 
Figure V. 19(d) as the initial condition. 
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Neglecting molecular diffusion thus limits the time scale for which the realistic solute 

transport can occur. The limiting time scale can be estimated by the diffusive length scale 

y = ..J2Dt, where D is a typical aqueous phase diffusivity of order 10-10 m2/s. For 

example, the time scale for tracers to diffuse into the ponded region in Figure VL3(d) 

from depths - 11 m to - 10 m would approximately take 160 years. Since the simulation 

time for Figure VL3(d) is only 4.56 days, which is far below the limiting time scale, 

tracers do not invade those dead-end pores by diffusion. Thus, the invasion of tracer into 

the ponded region above the depth at -12 m is due to other mixing mechanisms. In this 

study, the only mixing mechanism occurring between water and tracer is caused by the 

finite spatial resolution in the computational grids , with a dispersivity on the order of 

6z/2 = 0.1 m (Pruess, 1991). The quantitative measurement of the mixing is then 

represented by mass fractions. 

Breakthrough curves of water and tracer are shown in Figure VI.4. As discussed 

earlier in section V.3 the BTC for liquid seep in Figure VI.19(d) is delayed by ponding, 

and it behaves likes a step function. However, the tracer BTC is smoother than the water 

BTC. Moreover, the tracer BTC is more dispersive than the water BTC and shows the 

effects of dispersion. 

Figure VI.5 shows the results of fitting the log-normal travel time model to each 

of the BTCs in Figure VI.4. The sample BTC as obtained from flow simulations is 

plotted as solid dots in Figure VI.5. Recall that analytical pdf and CDF are obtained by 

calculating the sample mean and sample variance from the sample B,(C d.<)ta, see section 

V.3, which are plotted as solid and dashed-dotted lines respectively in Figure VI.5. As 
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expected, the log-normal model does not fit the water BTC very well, see Figure VI.5(a). 

Figure VI.5(b) shows that the log-normal model fits the tracer BTC very well, especially 

for the analytical CDF. In addition, the probability distribution for tracer travel time tends 

to be a positively skewed distribution. This property of tracer BTC suggests that the time 

scale for the total breakthrough is longer for tracer transport than for water transport. 

Figure VIA BTCs of water and tracer transport shown in Figures V.19(d) and V1.3(d). 

The next example investigates the effect of initial condition on tracer transport. 

Instead of starting from a steady state flow field of water, this numerical experiment uses 

a transient flow field as the initial condition. Figure VI.6(a) shows the initial condition for 

this experiment. This flow field was obtained by injecting water uniformly over the entire 

top boundary into a synthetic fracture with spatially correlated asperity contacts. The 

constant injection rate of water was 10-3 kg/s, and the total fraction of asperity contacts 

was 40%. In addition, this transient flow field was terminated at the time at which the 

flux ratio is approximately 0.5. For comparison, its corresponding steady state flow field 

is shown in Figure VI.6(b). 
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Figure VI.6 Initial conditions for tracer simulations: Ca) the transient flow field of water, 
which is approximately terminated at flux ratio = 0.5, and Cb) its corresponding steady 
state flow field . 
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Figure VI.7 shows four snapshots of tracer transport, using the transient water 

flow field shown in Figure VI.6(a) as the initial condition. Again, tracer was injected 

uniformly over the entire top boundary at a constant rate of lO'3 kg/s, starting at the time 

when the water simulation is terminated, To save computation time, this tracer simulation 

was terminated when the flux ratio is approximately 0.95. Similar transport behavior as 

present in Figure VU is also observed in Figure VI.7. Moreover, Figure V1.8(a) shows 

that the tracer BTC can be reasonably fitted by the log-normal model, though the tail of 

the analytical CDF deviates from the sample BTC. The deviation at the tail may be 

because the tracer transport has not reached the steady state yet. For comparison, Figure 

VI.8(b) shows the BTC obtained by injecting tracer to the steady state flow field of 

Figure VI.6(b). The resulting flow fields of tracer are not shown here because they are 

very close to those flow fields in Figure VI.7. Because the former tracer simulation was 

terminated at a higher flux ratio (at 0.97), the BTC in Figure VI.8(b) shows that it can be 

better fitted by the log-normal model. For the water BTC, however, Figure VI.9 shows 

that the log-normal distribution is not a good model for predicting water travel time. 

VI. 2 Episodic infiltration 

The study of episodic infiltration is motivated by field observations that in-situ 

surface infiltration into fractures may experience temporal variability to a large extent 

(Bodvarsson and Bandurraga, 1996). Under such conditions, fractures are undergoing 

repeated wetting and drying cycles. Therefore, hysteresis effects may become significant 

for episodic infiltration events. However, detailed analysis of hysteresis effects is beyond 

the scope of the present study. Instead, this section focuses on episodic infiltration events, 
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which are either events with repeated wetting and drying cycles or events with temporally 

intensified infiltration. The purpose of these analyses is to study the change of seepage 

patterns with respect to the change of infiltration rate applied at the boundary . 
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Figure VI.9 Water BTC corresponding to flow field in Figure VI.6(b). 

Two types of episodic infiltration events are illustrated in Figure VI.lO. The first 

type, Figure VI.IO(a), considers a periodic infiltration event. The intervals of wetting and 

drying periods are Lltl and Llt2, respectively. For the following example, the values of Lltl 

and Llt2 are assumed to be 1 and 10 days, respectively. The infiltration rate for this 

example is still assumed to be 10-3 kg/so Note that water 1 is the supplying fluid during 

the first wetting cycle, but it is changed to water 2 in subsequent wetting cycles. The 

purpose of switching the supplying fluid is to examine the effect of antecedent saturation 

history on seepage. The second type considers a transient infiltration event with a 

temporary intensified supply rate. This is illustrated in Figure VI.! O(b) as the solid line. 

The interval Llt is the breakthrough time for constant supply rate of Qo. The arbitrary 

integer n is the ratio of the intensified rate to the constant rate. Three ratios are 

considered, i.e., 2, 5, and 10. Note that the total amount of liquid injected into the fracture 
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Figure VI. 10 Schematic of episodic infiltration events. 

is the same, which is Qo x ilt. In both scenarios, fluid is injected uniformly over the entire 

top boundary at a constant rate of 10-3 kg/so The initial saturation at non-asperities is 

assumed at the value of residual water saturation. 

Figure VI. 11 shows the snapshots of the total water saturation at the end of each 

wetting and drying cycles for the first episodic infiltration event. For comparison, the 

realizations of water seepage at breakthrough and steady state for the corresponding 

single wetting event are shown at the top of the figure. For both wetting and drying 

cycles, water travels along the flow paths that are depicted in the steady state flow field 

of water. However, the speed of downward migration during a drying cycle is slower than 

the speed during a wetting cycle. This change of speed is shown in Figure VI.l2 for the 

first wetting and drying cycles_ The average speed of downward migration is reduced 

from 0.47 mlhr for the first wetting cycle to 0.31 mIhr for the first drying cycle. The 

reduction of speed is because of the lower relative permeability at the smaller liquid 

saturation during a drying cycle. The change of capillary pressure is shown in Figure 

VI.l3(a) to VI.l3(c). 
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Figure VI.12 Vertical advance curves of the first wetting and drying cycles, and the 
single wetting event. 

For subsequent wetting cycles, water only travels within flow paths that have 

been developed by previous drying cycle. This is because those flow paths have higher 

relative permeability than dry flow paths. New flow paths can only be developed during 

drying cycles. The reason is that, from capillary theory, water (the wetting phase) tends to 

remain in smaller pores during drying cycles. Since dry flow paths have smaller relative 

permeability to water than wet flow paths, their effective pore space is smaller than that 

for wet flow paths. Change of relative permeability in consecutive wetting and drying 

cycles can be seen in Figure VI.13(d) to VI.13(f) . It is obvious that the relative 

permeability in a drying cycle is smaller that that in wetting cycles. 

Because the governing Richards' equation does not consider hysteresis effects, 

liquid seepage in Figure Vr.ll starts to repeat itself approximately after the third wetting-

drying cycle. However, the flow fields near the lower boundary after the second drying 

cycle are somewhat different from each other because the wetting front is still sensitive to 

the surface infiltration. Simulation continues after the fifth drying cycle by constantly 
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injecting water 2 into the fracture, and then stops when the flux ratio of water 2 is 0.933. 

The resulting flow field of total water is shown at the top left in Figure VI.14. This flow 

field is, as it should be, very close to the steady state flow field of water of the single 

wetting event because hysteresis effects are neglected. The top right plot in Figure V1.l4 

shows the water 2 saturation after the fifth drying cycle. For completeness, flow fields of 

water 2 after the first drying cycle are shown in the rest of Figure V1.l4. 

Figure Vl.lS shows the periodic change of saturation at the top surface for the 

five wetting and drying cycles. For the first wetting-drying cycle, Figures V1.l5(b) show 

that saturation at the top surface increases rapidly to a constant value during a wetting 

cycle and then decreases gradually to a lower value during a drying cycle. Because the 

capillary hysteresis is neglected, it is expected that the absolute capillary pressure at the 

top surface also experiences similar variations. That is, the flow simulation switches to a 

constant head boundary condition during a short interval , even though the simulation 

starts from a constant injection boundary condition. It is expected, therefore, that flow 

simulations using a constant head boundary would be close to the present simulations. 

Because drying duration was only 10 days in previous simulations, significant 

changes of capillary pressure or other dynamic processes may not be evident. For 

example, Figure V1.l6 shows that the transient change of accumulated mass at the bottom 

boundary behaves as an increasing function with time. If the drying duration was long 

enough, it would be expected to see this curve to be stabilized before the end of each 

drying cycle. On the other hand, the exiting flux of water 2 at the bottom boundary tends 

to stabilize at the end of each drying cycle, see Figure VI.l? 
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Now, let us consider the second type of episodic infiltration. The constant supply 

rate (Qo) and the time to breakthrough (~t) are 10-3 kg/s and 43.56 hIS, respectively, for 

this numerical experiment. Three ratios of the flow rate (2, 5, and 10) are considered. 

Therefore, the new injection rates are 2xl0-3 kg/s, 5xlO-3 kg/s, and IxlO-2 kg/s, and the 

new intervals of injections are 21.78 hrs, 8.712 hI'S, and 4.356 hI'S. 
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Figure VLI B shows realizations of saturation at breakthrough for events with a 

unifo rmly distributed supply rate and intensified rates. All realizations are practically the 

same, only with a minor difference due to free drainage after surface infiltration is turned 

off. However, Figure VI.l9 shows that the vertical seepage for all episodic infiltration 

events evolve at a faster speed than the event with a uniformly distributed supply rate. If 

the average seepage velocity is defined as the ratio of the depth of the plume tip to travel 

time, Table VI.l (see column 4) shows that the initial average velocity increases with 

increasing surface infiltration. As surface infiltration increases, however, the ratio of 

average velocity for episodic infiltration to the average velocity for constant infiltration 

becomes smaller than the ratio of supply rate, see column 6 of Table VL l. On the other 

hand, the ratio of ponding duration is approximately the inverse of the ratio of supply 

rate. Furthermore, liquid seepage after ponding proceeds at a faster speed than seepage 

before ponding, see the last column of Table VLI and Figure VLI B. 

These simulation results suggest that liquid seepage fo r episodic infiltration 

follows some patterns if the total mass injected into fracture is conserved. These patterns 

can be roughly divided into three stages: before ponding, during ponding and after 

ponding. The ponding refers to the regions which significantly delay the seepage. For 

example, the ponding refers to the regions above the depth at - 13 m in Figure VI.lB. It is 

obvious that these patterns are different from each other. 

The first pattern applies to the time interval before the seepage develops 

significant ponding. It says that the initial average seepage velocity increases with 

increasing surface infiltration. This increasing trend is because the flow resistance 
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Table VI. 1 Results of episodic injection 

Q (kg/s) T (hr) Tr (hr) 
lx1O-3 43.56 24.93 
2x1O-3 22.76 13.23 
5x1O-3 10.31 5.69 
lx1O-2 6.12 3.00 
Q = surface infiltration rate 
T = breakthrough time 

Vr(mIhr) Ro Rv 
0.52 1 1.00 
0.98 2 1.89 
2.27 5 4.37 
4.30 10- 8.27 

TI!(hr) VI!(mIhr) 
15.17 3.17 
7.51 5.19 
3.11 8.81 
1.68 8.39 

Tr = first arrival time to the depth of - 13.0 m, the depth where ponding occurs 
Vr = initial average seepage velocity, i.e., 13.0ffr 
RQ= ratio of surface infiltration, i.e., Q/1 x 10-3

. 

Rv = ratio of the initial average seepage velocity for the episodic infiltration to the 
average velocity for the event with a uniformly distributed rate 

Tp = time needed to completely saturate the ponded regions at -13.0 m 
V p = average seepage velocity after ponding 

decreases with increasing supply rate. The decrease of flow resistance with respect to 

injection rate is interpreted by the increasing relative permeability and decreasing 

absolute capillary pressure at the top surface, see Figure VI.20 (b) and V1.20( c). This 

initial seepage velocity remains approximately constant until water descends to a depth at 

about -13 m at which significant ponding is occuring. However, the increase of the initial 

seepage velocity is not at the same pace as the increase of supply rate. This may be 
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Figure VI.20 Saturation, relative permeability and capillary pressure at the top surface 
for constant and sporadic infiltrations. 
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because seepage needs longer time to develop new flow paths as the supply rate 

.-
increases. Thus, the ratio of seepage velocity for episodic infiltration to the velocity for 

the event with uniformly distributed supply rate is smaller than the ratio of supply rate. 

Note that each of the curves in Figure VI.20 for episodic infiltration drops off 

because of the termination of surface infiltration. In contrast, the tails of curves for 

constant infiltration remain horizontal. In addition, all the curves in Figure .v1.20 exhibit 

a stepwise increasing behavior. This is because liquid has to fill in dead-end pores before 

developing new flow paths. Thus, there are two obvious jumps in each of these curves. 

Each jump corresponds to each dead-end pore shown in Figure VI. 18. 

The second-stage pattern suggests that the time needed to completely saturate the 

ponded regions at - 13 m inversely follows the pattern of supply rate. This is simply 

because of mass balance. That is, the larger the supply rate, the shorter the duration to fill 

the pore space. 

The third-stage pattern suggests that seepage after ponding has an average 

velocity that is even faster than the initial seepage velocity. However, there seems t? be 

no explicit correspondence to the pattern of supply rate. But, results in Table VI.3 suggest 

that average seepage velocity after ponding becomes closer to each other as the supply 

rate increases. 

In summary, these patterns observed in Figure VI.19 suggest that ponding 

duration inversely correspond to the pattern of surface infiltration. However, average 

seepage velocity follows different patterns before and after ponding. Combining these 
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patterns implies that ponding may have less impact if the surface infiltration becomes 

stronger. For an infiltration event with a high supply rate, liquid seepage may follow a 

single average seepage velocity even if significant ponding appears. On the other hand, if 

the surface infiltration become weaker, time lag due to ponding may have significant 

impact on liquid seepage as well as BTC behavior. 

VI.3 Limitations of space and time averaging 

It is known that the macroscale approach, instead of representing the spatial 

heterogeneity of fractures with a detailed resolution, averages the heterogeneity of 

fractures as well \ as the inputs to the system boundary. In this section, a numerical 

experiment is conducted to point out the limitations of such an approach. 

Consider, for example, the synthetic fractu.re in Figure V.6(d). This fracture has 

spatially random asperity contacts with a total volumetric fraction of 40%. To simulate 

the macroscale averaging approach, the heterogeneities are replaced with spatially 

averaged porosity and effective permeability. The same initial and boundary conditions 

as those specified in section V.l are used for the simulation. The resulting values of 

parameters for this flow simulation are listed in Table V1.2. The computed saturation at 

breakthrough is spatially uniform with a v~ue of 0.58. In addition, the vertical advance 

curve for transient flow field is perfectly linear. However, the time to breakthrough 

obtained by the macroscale approach is longer than that obtained using detailed 

resolution of fracture heterogeneity. After the first breakthrough, however, the liquid seep 

corresponding to the macroscale approach takes. a shorter time to reach the steady state. 

Overall, the macroscale averaging approach is not able to simulate the occurrence of fast 
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preferential flow paths as observed in the fields. More importantly, the macroscale 

approach cannot predict the complicated seepage patterns, such as fingering, bypassing 

and ponding, that are expected to be seen in the fields. 

Table VI.2 Comparisons between the macroscale approach and the current approach 

Simulation method <II keff•h or k (m2
) keff•v or k (m2

) 
Breakthrough Steady state 

time (brs) time (days) 

Macroscale approach 0.21 0.055 x 10-9 0.060 X 10-9 98.64 4.78 

Current approach 0.35 1.0 x 10-9 
X C 1.0 X 10-9 X C 34.85 18.80 

The water and tracer BTCs for the simulation using the macroscale approach are 

shown in Figure VI.21. Tracer simulation is continued from the steady state flow field 

obtained by the macroscale approach. The same boundary conditions as those used for 

the water simulation are· employed for the tracer simulation. Again, the resulting tracer 

flow field is trivial because it is also a spatially uniform saturation field. Figure VI.21 

shows that the log-normal model can be fitted to both water and tracer BTCs. Note that 

the crt for water BTC is very small (crt = 0.0063). Thus, the water BTC can be practically 

approximated by a step function, and its pdf can be represented by a spike at the mean 

travel time «1> = 4.22 days). However, tracer BTC is more dispersed than water BTC (crt 

= 0.45). 
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Figure VI.21 Water and tracer BTCs for simulations using the 
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Chapter VII. Discussion and conclusions 

Field evidence suggests that in semi-arid environments water is able to migrate 

downward rather. rapidly along preferential paths. For example, at Yucca Mountain, 

Nevada, environmental tracers have been shown to migrate several hundred meters deep 

within decades. However, the time scale of tracer transport predicted by numerical 

models using conventional volume-averaging approaches is on the order of thousands of 

years. In order to address this discrepancy, a numerical model based on fundamental 

processes and mechanisms has been proposed in this study. 

Attempts at modeling flow and transport in unsaturated fractured rock based on a 

mechanistic process model must start from a specification of void space geometry in 

fractures. Unfortunately, the multiple length scales of fracture surfaces generally 

complicates the specification of void space geometry. On the other hand, our ability to 

directly obtain geometric characteristics of fracture void spaces from field observations is 

limited. Only inputs into and outputs from the flow system boundaries can be observed in 

the field, which are all subject to significant temporal as well as spatial variability. In this 

study, void spaces in fractures are characterized based on hypothesized geometric 

features, such as spatially correlated asperity contacts. These spatial characteristics are 

expected to be most relevant for seepage behavior. The appropriateness of these 

geometric features is then judged by whether they are able to reproduce flow and 

transport behavior that would be observed in the field. 

Fluid flow and solute transport in natural fractures generally occur in 3-D fracture 

networks. In this study, however, fracture networks were approximated as 2-D 
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heterogeneous porous media in a vertical fracture plane. In addition, the effect of matrix 

permeability was neglected. This assumption is reasonable for short-term flow. and 

transport behavior, but may not be viable when considering long-term flow patterns. 

Thus, the present study is applicable to "small" fractures in hard rocks of low 

perine ability, such as welded tuffs, graywacke, mudstones, granite, and some fractured 

basalts. It would not be applicable to larger fractures with 3-D void space, or to small 

fractures in rocks with significant matrix permeability (e.g., non-welded tuffs or 

sandstones). 

Several approximations and assumptions were made in this study. Effects of 

entrapped air w~re neglected. Hysteresis effects in capillary pressure and relative 

permeability were also neglected. Furthermore, permeability heterogeneity was assumed 

to be the dominating influence on seepage. Porosity heterogeneity was not considered. 

For solute transport, molecular diffusion was neglected. The last assumption suggests that 

the ·only mixing mechanism is due to the finite spatial discretization. In addition, 

neglecting molecular diffusion limits the· time scale for which the realistic solute transport 

can occur. 

Among the various spatial features of fracture void spaces, the spatial correlation 

around asperity contacts is focused in this study. This is motivated by preliminary 

analyses that conventional semi-variograms are not very sensitive to the topology of 

asperity contacts in fractures. The reason for this insensitivity may be because the 

detailed heterogeneity of a random field is averaged out by the semi-variogram. Thus, a 

modified Metropolis algorithm is proposed as a new perturbation mechanism for 
') 
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simulated annealing (SA). This modified algorithm is able to emphasize the 

neighborhoods of conditioning asperity contacts, while formulating the objective function 

by employing the conventional semi-variogram. Simulated permeability fields obtained 

by the modified Metropolis algorithm thus show much stronger clustering of asperity 

contacts. 

It was found from sensitivity analyses that ~he ratio of NAk < 0.5 is preferred for 

better representation of spatially correlated permeability fields. However, seepage 

patterns were not as sensitive as characterization accuracy to this ratio. Indeed, seepage 

patterns are virtually insensitive to the ratio NA~ as iong as"its is smaller than 0.5. This is 

especially true for flow simulations in permeability fields with spatially correlated 

asperity contacts. This insensitivity is explained by the significant bypassing effect of 

flow due to asperity contacts that are laterally correlated to a large extent. 

Seepage in unsaturated fractures with either localized or distributed injection is 

characterized by localized preferential flow, along with bypassing, funneling, and 

localized ponding. Generally, flow and transport behavior is dominated by the fraction of 

asperity contacts, and their shape, size, distribution and spatial correlation. However,' the 

detailed distribution of permeability in the open space of fracture is less important than 

the spatial correlation of asperity contacts. For increasing fraction of asperity contacts, 

there is more flow bypassing and ponding, but fewer fingers. For a fixed fraction of 

asperity contacts, however, flow bypassing, fingering and average vertical seepage 

velocity depend on the correlation length and the principal correlation direction of 

asperity contacts. If asperity contacts are horizontally correlated, flow bypassing, 
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fingering, and average vertical seepage velocity generally increase with increasing 

horizontal correlation length of asperity contacts. For non-horizontally or non-vertically 

correlated asperity contacts, flow bypassing and average vertical seepage velocity 

increase as the anisotropy ratio of asperity contacts increases; but flow fingering 

decreases with increasing anisotropy ratio. 

Seepage dispersion is generally higher for fractures with intermediate fraction of 

asperity contacts; but it is lower for small or large fractions of asperity contacts. The 

reason for this behavior is that many fingers can be formed in fractures with small 

fraction of asperity contacts. These fingers are not significantly affected by asperity 

contacts, and they all have similar breakthrough behavior. Thus, seepage dispersion is 

weak. With a large fraction of asperity contacts, only a limited number of fingers 

(sometimes only one) can break through; thus, seepage dispersion is generally weak. 

However, a few fingers (both fast and slow) are formed in fractures with intermediate 

fraction of asperity contacts. Thus, seepage dispersion is generally stronger. 

Ponding occurs in regions that lack permeability in the vertical direction. It is then 

expected that ponding would slow down the downward advancement of seepage. As a 

result, seepage dispersion may become larger because of ponding, even for fractures with 

large fraction of asperity contacts. However, if ponding is significant, it may gather 

distributed seepage and focus flow into more localized pathways. Accordingly, seepage 

may be accelerated because the funneled flow has a higher seepage velocity. Under such 

circumstances, seepage dispersion may be greatly reduced, and the resulting water BTC 

behaves like~ a step function. 
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The strength of ponding depends on the fraction of asperity contacts and their 

correlation structure, i.e., their correlation lengths, anisotropy ratio, and the principal 

direction. In synthetic fractures with isotropic permeability and asperity contacts, the 

strength of ponding increases with increasing fraction of asperity contacts. Yet, the 

relationship between the strength of ponding and the anisotropic structure of permeability 

and asperity contacts is still not clear. 

Simulation results found that BTCs for solute transport tends to be more 

dispersive than water BTCs. This is because water has to fill dead-end pores along its 

flow paths while migrating downward. However, tracers bypass these dead-end pores and . 

travel along flow paths that have less flow resistance. Therefore, tracer transport is more 

uniform than water transport. More importantly, it was found that the log-normal travel 

time model does not fit water BTCs very well. In contrast, BTCs of solute transport either 

under transient or steady state flow field of water can be fitted very well by the log­

normal model. The positively skewed log-normal distribution implies that tracer transport 

may evolve over a longer time scale than water transport. 

The general features of flow patterns, as well as the different scaling laws with 

respect to infiltration events with different rates of surface injection have several 

implications for field experiments. First, the in-situ sampling techniques need to consider 

the effect of preferential flow and flow bypassing. Installing sampling devices in a 

spatially uniform manner may not be cost-effective because flow may only break through 

certain locations at the exiting boundary. Second, accelerated or delayed seepage due to 

ponding needs to be considered when designing the sampling intervals, especially for 
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automatic sampling equipment. Third, field experiments should be carefully designed to 

cohsider the temporal and spatial variability of the input to fractures. Results of our 

simulation suggest that initial seepage velocity increases with the infiltration rate. In 

addition, the effect of ponding also changes with the supply rate. Therefore, seepage 

patterns are also subject to change with the surface infiltration. For waste isolation 

problems, it may be necessary to locate the fast preferential flow paths to prevent the 

infiltrating water from contacting the storage canister. From the aspect of waste 

management, it may be needed to consider the transport pathways of solute once a 

. storage canister is exposed to water. 

In the future; studies of flow and solute transport in natural fractures should focus 

on employing more realistic assumptions. The numerical model should be expanded to 

consider 3-D effects. In addition, flow and solute transport in unsaturated fractures is at 

least a two-phase process, effects of the gas phase should not be neglected. For example, 

Richards' equation implicitly assumes that the non-wetting phase fluid (air/gas) does not 

interfere with the movement of the wetting phase. In reality, however, air may be trapped 

within dead-end pores or be accumulated ahead of a critical pore neck. Therefore, it may 

block the movement of the wetting phase. Its pressure may be increased to a critical 

point, e.g., the bubbling pressure, such that it may be released 'by bubbling or be pushed 

through the pore neck. Thus, phase interference and phase change are essential 

mechanisms for two-phase problems. The appearance of pore necks then raises the 

concern of the spatial variability of porosity. Porosity heterogeneity may have long-term 

effects on seepage as well as . solute transport. Furthermore, the effect of. matrix 

permeability should be included when considering long-term seepage effects. As a result, 
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molecular diffusion should also be considered because it is the dominating mechanism of 

mass transfer between the rock matrix and fractures. Furthermore, field observations 

indicate that surface infiltration and percolation are both subject to temporal variability. 

Seepage is therefore expected to experience hysteresis effects. Therefore, hysteresis 

effects of capillary and relative permeability should also be included. 
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Appendix A. Derivation of a semi-variogram model and 
its corresponding correlation function 
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(A) Definitions 

v + sample data pair 

+ 
u=v + 

+ + + 
+ + 

Figure AI. Scatterplot of random variables U and V. 

Dependence of two random variablesU and V can be visualized from their 
scatterplot as shown in Figure Al (Isaaks and Srivastava, 1989), in which sample data of 
U and V measured at the same location are plotted against each other on the same 
diagram. Note that the solid line at 45° features the perfectly correlated pair, i.e., U = V. 
The spatial correlation of the two random variables is usually quantitatively measured by 
their covariance function, Cov[U, V] 

Cov[U, V]= E[(U -muXV -my )]= E[U· V]-mumv (A-I) 

where mu and mv are means of U and V, respectively. Covariance is used to measure the 
similarity between two random variables. However, the variability of two random 
variables is usually measured by their moment of inertia about the 45° line on their 
scatterplot. This quantity is called "semi-variogram" in the literature of geostatistics, 
which is written as 

(A-2) 

where N is the total number of random pairs (Uj , Vj ), and dj is distance on a scatterplot 
from a random pair (Uj , Vj ) to the line on which U = V. Semi-variogram and covariance 
have the following relationship 

2yuv =: -LU/ -m~ + -LV/ -m~ - -LUYi - 2mumv +(mu -mv) [ IN ] [I N ]" [2 N ] 

N i=1 N i=1 N i=1 (A-3) 

= s~ +s~ -2Cov[U, V]+ &11.u ~mv) 

where Su and Sv are standard deviations of U and V, respectively. The above definitions 
of covariance and semi-variogram can be applied to two random variables measured at 
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the same location, e.g., Vi and Vi in Figure A.l; or the same attribute measured at 
different locations. The latter is usually used in the literature of geostatistics'to measure 
the spatial variability of a spatially random function (SRF). 

For a SRF Z(u), its spatial variability is quantitatively measured by calculating 
the mean squared difference between a pair (Z(u), Z(u+h», where h is the separation 
distance between Z(u) and Z(u+h). Based on Eq(A-2), the semi-variogram of Z(u) is 

N(h) 

2rz(h) =_1_~ [Z(uJ -Z(ui + h)]2 == E{[Z(u)-Z(u+ h)]2} (A-4) 
. N(h)LJ . 

i=1 

If Z is a stationary SRF, i.e., the statistics of Z are independent of location, Eq(A-4) can 
be simplified as 

2rz(h) = E{[Z(u)-Z(u + h)Y}= 2Var[Z(u)]-2Cov[Z(u),Z(u+h)] (A-5) 

or 

(A-6) 

where Cz(O) is the variance of Z, and Cz(h) is the covariance of Z with separation 
distance h. Hereafter, the subscript in "(z(h) or Cz(h) will be omitted for sImplicity if it is 
clear that what SRF is being dealt with. 

(B) Mathematical models of y(h) and C(h) 

A function that can be used as a covariance function must be positive definite 
such that a ,function that is a weighted linear combination of n SRF's has a non-negative 
variance. From this property, other properties of C(h) can be inferred, which are (a) 
C(O)= Var(Z(u» ~ 0, (b) C(h) = C(-h), and (c) IC(h)1 ~ C(O). (Joumel and Huijbregts, 
1978). 

In the literature of geostatistics, there are several models of semi-variograni that 
,have shown to be positive definite. One of the most commonly used models is the 
exponential model which is defined as 

(A-7) 

its corresponding covariance function is defined as 

C(h) ~ si eXPl- ~h 1 (A-8) 

where h = Ihl is the magnitude of the separation distance, ~ is the range parameter; and 
si is the sill (or the variance of the underlying random variable Z). Note that Eqs (A-7) 
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is an isotropic model, thus, y (h) = y (h). The "range" is defined as the distance at which 
the semi-variogram reaches 95% of the sill. That is, at h = ~, equation (A-7) reduces to 

r(h) = si[l-exp(-3)]=O.95si (A-9) 

For any semi-variogram model, the integral scale A, (or correlation length) of Z is 
defined as (Dagan, 1989) 

A =~ f~ C(h) dh 
s Jo z 

Therefore, for an exponential semi-variogram, A can be derived as 

A =_1 f~ S2 . exp(- 3h Jdh = i 
si Jo x ~ 3 

(A-lO) 

(A-II) 

That is, for an exponential semi-variogram, the correlation length is one third of the 
range. See Figure A.2 for illustration. 

y(h) or C(h) 

Sill, s~ 
\ 

\ I::, 0.95 s~ 
\ 
\ 

\~s: ::,: 
i -""-"" .. 9 (h) 
! -..:...---! : ---+---"---

~--~A--------~~~=~3A~-= h 

Figure A.2.111ustration of an exponential semi-variogiam and its 
corresponding correlation function. 

From Eq(A-ll), Eq(A-7) can be recast as 

For an anisotropic exponential semi-variogram, Eq(A-12) can be rewritten as 
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(A-12) 



(A-13) 

where Ax and Az are the correlation lengths in the x and z directions, respectively; and hx 
and hz are the separation distances in the x and z directions, respectively. Note that this 
kind of anisotropy is called "geometric anisotropy" in the literature of geostatistics 
(Isaak.s and Srivastava, 1989). 
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Appendix B. Nugget effect of a semi-variogram model 
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Theoretically, semi-variogram model at zero separation distance (h = 0) should 
have a zero value, i.e., y(O) = 0, regardless of what type of model it may be. This property 
comes from that fact that the spatial correlation of Z to itself at h = 0, should be its' 

univariate variance si. When fitting a semi-variogram model to sample data, however, it 

may happen that the intercept extrapolated from the sample data to the vertical axis at the 
origin is a finite value but not zero. Likewise, the covariance function at large separation 
distance may approach asymptotically a finite value, not zero. This non-zero semi­
variogram value at zero separation distance is called the "nugget effect" in the literature 
of geostatistics. 

Nugget effect can be attributed to sampling error as well as small-scale variability 
(or microvariability) (Kitanidis, 1997). Usually, these two effects occur simultaneously in 
the field. Sampling error may be removed by following cautious sampling procedures, or 
using equipment with better precision, while taking field measurements. However, it is 
generally difficult to map the detailed variability of a spatially heterogeneous field by 
using finite sampling intervals. Thus, it is worthy to understand these effects and find an 
analytic way to describe them. 

(A) Nugget effect due to sampling error 

Denote the spatial random function by Z. At a particular location u, let the true 
value of Z be zo(u), and the measured value be Z(u). Due to sampling error, zo(u) and 
Z(u) may not be the same. Thus, we may write Z(u) as the sum ofzo(u), sampling error 
(f) and a random fluctuation term (X(u», i.e., 

Z(u) = zo(u) + f + X(u) (B-1) 

where zo(u) is a constant and f is a constant random variable. Assume that E has mean 

and variance as ~E and s;, respectively; and X(u) is a random fluctuation term with mean 

and variance as 0 and s~, respectively. Furthermore, assume that X(u) and X(u+~u) are 

correlated to each other with a general correlation function 1I'xx(u), and f and ~ are 
independent to each other. Then, statistics of Z(u) can be derived as the followings 

E[Z(u)]= zo(u) + mE 

Var[Z(u)] = s; + s~ 

Cov[Z(u), Z(u + ~u)] = s; + 11' xx (u)s~ = C(~u) == C(h) 

(B-2) 

Assuming positive correlation of X, i.e., o:=:; 1I'xx(u) :=:; 1, then s; :=:; C(h):=:; s;+s~ . 
The correlation function C(h) is shown schematically in Figure B.l. It is obvious from 
Figure B.l that the covariance function does not go to zero as h increases but go 

asymptotically to a constant s;. Statistically speaking, the contribution of s; to the 

correlation function C(h) is called "bias" (Rice, 1995). In other words nugget effect may 
be resulted from a biased measurement. 
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reflects the fact that the sampling interval is too large to capture the spatial variability 
within the distance smaller than the sampling interval. The corresponding covariance 
function shows that C(h) at h = 0 is the summation of si and s~ (the nugget). As soon as 

h becomes larger than 0, C(h) suddenly drops to si. As h becomes even larger, C(h) 
decreases asymptotically to zero, suggesting as it should be because Z's become 
uncorrelated to each other at large separation distances. 

y(h) 
X sample dala 

nugget 

y(h) 

extrapolated sample data 
possible semi·variogram considering 
small scale variability 

~-----------------h '--------------------11 

(a) sample data (b) fitted semi·variogram 

Figure B.2 Illustration of nugget effect due to small scale variability (from de Marsily, 
1986). 

One way to overcome the small-scale variability is to reduce the sampling 
interval. However, doing so may not be practical due to the extra number of sampling 
points. Thus, the other convenient alternative is to manipulate the definition of y(h) and 
introduce a discontinuity at the origin such as Eqs(B-3) and (B-4). 

y(h) 

--------~~------- h 

(a) 

C(h) 

L-----..::r:~=~-- h 

(b) 

Figure B.3 Exponential semi-variogram and its corresponding correlation function with 
nugget effect due to small-scale variability. 
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Appendix C Source code of the modified Metropolis algorithm 
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(1) Flowchart 

2 

Randomly select two un­
conditioned grid pOints u1 and u2 

. Calculate the objective function, 00ld' with original locations of u1 and u2 
Calculate a new objective function, anew' by swapping u1 and u2 

stop 

T new = 't TOld 

iend = 0 
n accepl = 0 

n 1ry = 0 

Yes 

No 

LlO = anew - 00ld 

No 

Yes 

180 

Both or none of u1 and 
u2 in a neighborhood 

Swap l;;(u1) and l;;(u2 ) 

naccepl = n accepl + 1 

Tnew= 't TOld 

iend = iend + 1 

naccepl = 0 
n 1ry = 0 
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(2) Source code 

==========================--==== 
C INCLUDE FILE 'METRO.INC' 

C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
C % 
C Copyright (C) 1992 Stanford Center for Reservoir Forecasting. All rights reserved 

. C Distributed with: C. V. Deutsch and A.G. 10umel. 
C "GSLlB: Geostatistical Software Library and User's Guide," Oxford University Press, New York, 1992. 
C 

% 
% 
% 
% 

C The programs in GSLIB are distributed in the hope that they will be useful, but WITHOUT ANY WARRANTY. No author or % 
C distributor accepts responsibility to anyone for the consequences of using them or for whether they serve any particular purpose % 
C or work at all, unless he says so in writing. Everyone is granted permission to copy, modify and redistribute the programs in % 
C GSLlB, but only under the condition that this notice and the above copyright notice remain intact. % 
C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
c 
c The following Parameters control static dimensioning within sasim3d: 
c 
c MAXX maximum nodes in X 
c MAXY maximum nodes in Y 
c MAXZ maximum nodes in Z 
c MAXCUT maximum number of cutoffs/data to define CDF 
c MAXLAG maximum number of lags in variogram calculillion 
c MAXNST maximum number of structures for variogram model 
c 
c Author: C.V. Deutsch Date: February 1990 
c-------------------------------------~--------------------------------------------------------------------------------------------------------------------------

implicit real*8(a-h,o-z) 

parameter (MAXX = 100, MAXY = 100, MAXZ = I, 
+ MAXCUT =5, MAXLAG = 500, MAXOBJ = 2, 
+ MAXNST = 4, EPSLON=I.Od-20,VERSION=1.200) 

c 
c Array declaration: 
c 

real*8 cut(MAXCUn,cdf(MAXCUn,var(MAXX,MAXY,MAXZ),sas(6) 
real*8 vamew(MAXLAG,MAXOB1).varmod(MAXLAG), ' 
+ varact(MAXLAG,MAXOB1),sclfac(MAXLAG), 
+ vardiv(MAXLAG,MAXOB1),ltpar,utpar,renorm 
integer seed,part,report,ixl(MAXLAG),iyl(MAXLAG),izl(MAXLAG), 
+ it(MAXNST).utail,ltail 
logical twopar,only2d,cond(MAXX,MAXY,MAXZ).comp 
real*8 cc(MAXNSn,aa(MAXNSn,angI (MAXNSn.ang2(MAXNSn, 
+ ang3(MAXNSn,anisI (MAXNSn,anis2(MAXNSn, 
+ gammanew(maxlag,2),gammah(maxlag,2),gammav(maxlag,2), 
+ divnew(maxlag,maxobj) 
real*8 gamunwt(maxlag) 

c 
c***********************~************************************/ 

c 1120/97 : The following lines are added by Tai-Sheng Liou 
c 

real*8 ymean.ystd 
integer itrans.nbhd(maxx,maxy).defubhd 
character datafl*40,outfl*40,dbgfl*40,condfl*40,lagfl*40, 
+ horvarfl*40. vervarfl*40, varfl*40.imageinfl *40, 
+ imageoutfl*40 

c************************************************************\ 
c Common blocks: 
c 

common Igrid3d1 xsiz,ysiz,zsiz,xmn,ymn,zmn,nx,ny,nz 
common Igenral/ seed,nsim, var.sas,part,lIag,limagein,limageout, 
+ 10ut,lvar,idbg,report,ldbg 

common linimodl cut,cdf,ltpar,utpar,ltail,utail,zmin. 
+ zmax.igauss,isill.ncdf 
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common Ivariogf sclfac,vamew,varact,vardiv, 

+ varrnod,di vnew ,renorm,nlag, 
+ neighbor,ixl,iyl,izl 
commonlvariogll gamunwt 
common Icova3d1 cO,cmax.cc,aa,ang I ,ang2,ang3,anisl ,anis2,nst,it 
common Ilogics! twopar,only2d,cond ' 
common Icompwt! wtcomp,oinit,pmsum,pmnew,gamdf,comp,nwt 

c 
C**************************************************************1 
c 1120/97 : The following common blocks are added by Tai-Sheng Liou 
c 

common Ilognorml ymean,ystd,pcut,itrans 
common Iweight! wfedge,wfcond,scale,iedge,icond 
common lanisop/lhvar,lvvar,noisop 
common ldatapt! noncond 
common Icutoffl xcutO,aspcut,xcut,ptarget,cutsave,paspsave 
common Ifname! datafl,outfl,dbgfl,condfl,horvarfl,vervarfl, 
+ varfl,lagfl,imageinfl,imageoutfl,intervar,nswap 
common 19amma! gammanew,gammah,gammav 
common Ineighborl nbhd 
commonlannealingfm~tro,defnbhd,imod,ifield 

C**************************************************************\ 

C MAIN PROGRAM 'SASIM' (the calling program for SA) 
===============================--== 

subroutine sasim 
c----------------------------------------------------------------------------------------------------------------------------------------------------------------

C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
C % 
C Copyright (C) 1992 Stanford Center for Reservoir Forecasting. All rights reserved. % 
C Distributed with: C.V. Deutsch and A.G.loumel % 
C "GSLlB: Geostatistical Software Library and User's Guide," Oxford University Press, New York, 1992 % 
C % 
C The programs in GSLIB are distributed in the hope that they will be useful, but WITHOUT ANY WARRANTY. No author or % 
C distributor accepts responsibility to anyone for the consequences of using them or for whether they serve any particular purpose % 
C or work at all, unless he says so in writing. Everyone is granted permission to copy, modify and redistribute the programs in % 
C GSLlB, but only under the condition that this notice and the above copyright notice remain intact. % 
C % 
C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
c-----------------------------------------------------------------------
c 3-D Simulation by Annealing 
c-----------------------------------------------------------------------
c 
c Conditionally Simulate a Complete 3-D Field with Simulated Anealing. 
c , 
c The objective function is the squared difference between the desired variogram and the actual variogram for as many lags as 
c specified. The objective function may be in two parts - one part includes the conditioning data and the other includes pairs of 
c simulated data only. 

c INPUT/OUTPUT Parameters: 
c 
c Name of a data file of conditioning data (GEOEAS format) 
c - column numbers for x, y, z, and variable 
c - trimming limits (used to flag missing values) 
c - flag specifying whether a standard Normal deviate is to be simulated (set to I) 
c Name of a data file for non-parametric distribution 
c column numbers for variable and weight 
c - data limits (used for tail extrapolation) 
c - option and parameter for the lower tail 
c - option and parameter for the upper tail 
c An output file (may be overwritten) 
c - A output file for variograms (may be overwritten) 
c - The debugging level (integer code - larger means more) 
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c - A file for the debugging output 
c Whether or not to use an automatic annealing schedule (O=auto) 
c . annealing schedule 
c - Whether a one part or a two part objective function is used 
c Random Number Seed 
c - The number of simulations 
c - X grid definition (number, minimum, size): nX,xmn,xsiz 
c - Y grid definition (number, minimum, size): ny,ymn,ysiz 
c Z grid definition (number, minimum, size): nZ,zmn,zsiz 
c - The maximum number of lags to be considered 
c Variogram Definition: number of structures(nst), nugget, and whether or not to renormalize sill to the variance(O=auto) 
c the next "nst*2" lines require: 
c First line: 
c a) an integer code for variogram (I =sph,2=exp,3=gaus,4=pow) 
c b) "a" parameter (range except for power model) 
c b) "c" parameter (contribution except for power model). 
c Second line: 
c a) azimuth principal direction (measured clockwise from V). 
c b) dip of principal direction (measured negative down from X). 
c c) a third rotation of the two minor directions about the principal direction. This angle acts counterclocwise 
c when looking in the principal direction. . 
c Two anisotropy factors are required to coniplete the definition 
c of the geometric anisotropy of each nested structure: 
c d) radius in minor direction at 90 degrees from the principal direction divided by the principal radius. 
c e) radius in minor direction at 90 degrees vertical from the principal direction divided by the principal radius. 
c 
c The output file will be a GEOEAS file containing the simulated values The file is ordered by x,y,z, and then simulation (i.e., x cycles 
c fastest, then y, then z, then simulation number). 
c 
c Original: C.V. Deutsch 
c 
c Definitions of some variables 
c 

Date: April 1990 

c varact(il,io) 
c vamew(il,io) 
c 

- sum of squared difference between the weighted variogram and the model variogram . 

c var_unwt(il,io) 
c 
c varw I (iI,io) 
c 
c vardiv(il,io) 
c divnew(il,io) 
c div_unwt(il,io) 

- same as 'varact' but used in the subroutine 'OBJECT.· If perturbation accepted, set varact=vamew; otherwise,reset 
varact to the previous value at the next perturbation 

- sum of squared difference between the un-weighted variogram and the model variogram. This variogram value is 
used to test the convergence 

- same as var_unwt but used in the subroutine 'OBJECT If perturbation accepted, set vacunwt=varwl; otherwise, 
reset vacunwt to the previous value at the next perturbation 

- number of pairs at il-th lag for weighted variogram 
- same as vardiv but used in 'OBJECT. It will be restored to the previous value if a perturbation is rejected. 
- number of pairs at il-th lag for unweighted variogram 

c----------------------------------------------------------------------------------------------------------------------------------------------------------------

C**************************************************************1 
c 
c Updated by Tai-Sheng Liou, 4122/1997 
c 
include 'metro.inc' 

c 

logical accept,first, vgmout(6) 
real*8 actsv(30,2),divsv(30,2) 

c Read the data (Initialize) and find the starting objective function: 
c 

open(SO,file='obj,dat',status='unknown') 
first=.true. 
do i=I,6 

vgmout(i)=.false. 
end do 
do 10 i=l,nx 
do 10 j=1 ,ny 

nbhd(i,j)=O 
10 continue 

c 
c 6/28/97 : Find the neighborhood of aspersity contacts 
c nbhd= I, neighborhood is defined as a square 
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c nbhd=2, neighborhood is defined such that the distance between a grid block and an asperity contact is smaller than the size of 
c neighborhood 
c 
c 

open(777,file='neighbor.dat',status='unknown') 
size=real(neighbor) 
do 12 i=I,nx 
do 12j=I,ny 
do 12 k=I,nz 

if (cond(ij,k» then 
do ii=-neighbor,neighbor 

do jj=-neighbor,neighbor 
ix=i+ii 
iy=j+jj 
iz=k 
if (defnbhd.eq.2) then 

dx=real(ii) 
dy=real(jj) 
dist=sqrt(dx*dx+dy*dy) 

end if 
if (ix.ge.l.and.ix.le.nx:and.iy.ge.l.and.iy.le.ny.and. 

+ iz.ge.l.and.iz.le.nz) then 
if (defnbhd.eq.l) then 
if(.not. cond(ix,iy,iz).and.nbhd(ix,iy).eq.O)then 

nbhd(ix,iy)= I 
xasp=xrnn+real(ix-I )*xsiz 
yasp=ymn+real(iy-I )*ysiz 
write(777,778) xasp,yasp,O,wfcond 

end if 
elseif(defnbhd.eq.2) then 

if(.not. cond(ix,iy,iz).and.nbhd(ix,iy).eq.O. 
+ and.dist.le.size) then 

nbhd(ix,iy)= I 
xasp=xrnn+real(ix-I )*xsiz 
yasp=yrnn+real(iy-I )*ysiz 
write(777,778) xasp,yasp,O,wfcond 

end if . 
end if 

end if 
end do 

end do 
end if 

12 continue 
778 format(2(f6.I,1 x),i4,2x,f5.1) 

c\ose(777) . 
C**************************************************************\ 
c 
c 1128/97 : Write header to lagfl if the filename of lagfl is not 'nodata.dat' 
c 
c if (first.and.lagfl( I : 10).ne.'nooata.dat') then 
c write(lIag,9990) 
c end if 

c 

call initob(obj,first) 
first=.false. 

c Initial Conditions: 
c 

c 

nswap =0 
iend =0 
temp = sas(l) 
accept = .false. 
if(only2d) then 

kl = I 
k2= I 

endif 

c Loop until convergence or the stopping number: 
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c 
I naccept = 0 

ntry = 0 
write(ldbg.*)· Obj. Fun. # of swap' 
if(idbg.gt.2) then 

write(*.777) obj 
write(*.996) temp.nswap 
write(ldbg.996) temp.nswap 
write(ldbg.997) obj.nswap 
write(50.*) nswap.obj 

996 fonnatC New Temperature: ·.eI2.5: Total swaps: ·.iI2) 
997 fonnatCO ·.eI4.7.Ix..iI2) 
777 fonnatC Objective function: ·.eI4.7) 

endif 
c 
c Keep attempting to swap values until some limit is exceeded: 
c 
2 ntry = ntry + I 

nswap = nswap + I 
if(idbg.gt.2) then 

if«int(nswap/report)*report).eq.nswap) then 
write(*.998) obj.nswap 
write(ldbg.999) obj.nswap 
write(50.*) nswap.obj 

endif 
998 fonnatC Objective Function: ·.eI4.7: Total swaps: ·.iI2) 
999 fonnatO ·.eI4.7.Ix..iI2) 

endif 
c 
c Find a random pair such that none of the data is a conditioning point 
c 
3 i I = irlt(getrand(seed)*nx)+ I 

j I = int(getrand(seed)*ny)+ 1 
if(.not.only2d) 

+k I = int(getrand(seed)*nz)+ I 
if(cond(il.jl.kl» go to 3 

4 i2 = int(getrand(seed)*nx)+ I 
j2 = int(getrand(seed)*ny)+ 1 
if(.not.only2d) 

c 

+k2 = int(getrand(seed)*nz)+ I 
if(cond(i2.j2.k2» go to 4 
if(i2.eq.i l.and.j2.eq.j l.and.k2.eq.kl) go to 4 

c Calculate Objective Function: 
c 

call object(i l.j l.k l.i2j2.k2.accept.objtry) 
c 
c Accept the swap if the objective has gone down and with a certain probability if the objective has gone up: 
c 

accept = .false. 
if(objtry.gt.obj) then 

unif = dmax I (EPSLON.getrand(seed» 
if(metro.eq.l) then 

if(imod.eq.l) then 

C**************************************************************1 
C 
c-----------------------------------------------------------------------'-----
c MODI: 
c both PI and P2 in nbhd : standard Metropolis 
c none of PI and P2 in nbhd. : standard Metropolis 
c PI in nbhd but not P2 : standard Metropolis and P2<PI 
c---------------------------------------,--------------------------------------

if(nbhd(i l.j I ).eq.l.and.nbhd(i2.j2).eq.l) then 
if(objtry.lt.(obj-temp*dlog(unif)) accept = .true. 

elseif(nbhd(i I.j I ).ne.l.and.nbhd(i2.j2).ne.I ) then 
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if(objtry.lt.(obj-temp*dlog(unif)) accept = .true. 
elsei'f(nbhd(i I.j I ).eq.l.and.nbhd(i2.j2).ne.l) then" 

if(objtry.lt.(obj-temp*dlog(unif).and. 
+ var(i2.j2.k2).lt:var(i I.j I.kl»accept=.true. 

else 
if(objtry.lt.{obj-temp*dlog(unif).and. 

+ var(i I.j I.k 1 ).It. var(i2.j2.k2»accept=. true. 
end if 

elseif(imod.eq.2) then 
c-----------------------------------------------------------------------------
c MOD2: 
c both PI and P2 in nbhd : reject 
c none of PI and P2 in nbhd. : standard Metropolis 
c PI in nbhd but P2 not : standard Metropolis and P2<PI 
c ------------------------------------------------------------------------- -----

if(nbh4(i I j I ).eq.l.and.nbhd(i2.j2).eq.I ) then 
accept=. false. 

elseif(nbhd(i I j I ).ne.l.and.nbhd(i2.j2).ne.l) then 
if(objtry.lt.(obj-temp*dlog(unif)) accept = .true. 

elseif(nbhd(i I j I ).eq.l.and.nbhd(i2.j2).ne.I ) then 
if(objtry.lt:(obj-temp*dlog(unif).and. 

+ var(i2.j2.k2).lt. var(i I,j I ,kl »accept=.true. 
else 

if(objtry.lt.(obj-temp*dlog(unif).and. 
+ var(i I,j I,k l).lt. var(i2j2,k2»accept=.true. 

end if 
elseif (imod.eq.3) then 

c------------------------------------------------------------------
c MOD3: 
c both PI and P2 in nbhd : standard Metropolis 
c none of PI and P2 in nbhd. : standard Metropolis 
c PI in nbhd but P2 not : P2<PI 
c -----------------------------------------"-----------------------

if(nbhd(i I j I ).eq.l.imd.nbhd(i2,j2).eq.I ) then 
if(objtry.lt.{obj-temp*dlog(unif)) accept = .true. 

elseif(nbhd(i I j I ).ne.l.and.nbhd(i2,j2).ne.l) then 
if(objtry.lt.{obj-temp*dlog(unif)) accept = .true. 

elseif(nbhd(i l,j I ).eq.l.and.nbhd(i2,j2).ne.l) then 
if(var(i2,j2,k2).It. var(i I,j I ,kl »accept=.true. 

else 
if(var(i I j I,k I ).It. var(i2,j2,k2»accept=.true. 

end if 
elseif(imod.eq.4) then 

c------------------------------------------------------------------
c MOD4: 
c both PI and P2 in nbhd : reject 
c none of PI and P2 in nbhd. : standard Metropoli~ 
c PI in nbhd but P2 not : P2<PI 
c ------------------------------------------------------------------

if(nbhd(i I,j 1).eq.l.and.nbhd(i2,j2).eq.l) then 
accept = . false. 

elseif(nbhd(i I,j I ).ne.l.and.nbhd(i2,j2).ne.l) then 
if(objtry.lt.(obj-temp*dlog(unif)) accept = .true. 

elseif(nbhd(i I,j I ).eq.l.and.nbhd(i2,j2).ne.l) then 
if(var(i2j2,k2).lt. var(i I,j I ,kl »accept=.true. 

else 
if(var(i I ,j I ,kl ).It. var(i2,j2,k2»accept=.true. 

end if 
end if 

else 
c---------------------------------------------------------------------------
c Standard Metropolis considering the acceptance probability 
c--:------------------------------------------------------------------------

if(objtry.lt.(obj-temp*dlog(unif)) accept = .true. 
end if 

else 
accept = .true. 

endif 
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c 

if(ifield.eq.l) then 
if(nswap.eq.le4)vgmout(l )=.true. 
if(nswap.eq.1 e5)vgmout(2)=.true. 
if(nswap.eq.1 e6)vgmout(3)=.true. 
if(nswap.eq.1 e7)vgmout(4)=.true. 
if(nswap.eq.2.e7)vgmout(S)=.true. 
if(nswap.eq.3.e7)vgmout(6)=.true. 

end if 

c If we are keeping it then update the variogram arrays: 
c 

if(accept) then 
nl=le4 
if (ifield.eq.l) then 
do kk=I,6 

if(kk.le.4)n2=nl *10 
if(kk.ge.5)n2=n 1 + 1 e7 
if(vgmout(kk»then 

if(nswap.ge.n l.and.nswap.lt.n2) then 
vgmout(kk)=.true. 
no=l230+kk 
nol=1250+kk 
if(kk.eq.1 )open(no,file='gamma4.dat' ,status='unknown') 
if(kk.eq.2)open(no,file='gamma5.dat',status='unknown') 
if(kk.eq.3)open(no,fiIe='gamma6.dat',status='unknown') 
if(kk.eq.4)open(no,file='gamma7.dat',status='unknown') 
if(kk.eq.5)open(no,file='gamma71.dat',status='unknown') 
if(kk.eq.6)open(no,file='gamma72.dat',status='unknown') 
if(kk.eq.1 )open(no I ,file='reaI4.dat' ,status='unknown') 
if(kk.eq.2)open(no I ,file='reaI5 .dat' ,status='unknown') 
i f(kk.eq.3 )open( no I , fi le='reaI6.dat' ,status='unknown ') 
if(kk.eq.4)open(no I ,file='reaI7 .dat' ,status='unknown') 
if(kk.eq.5)open(no I ,file='rea17l.dat',status='unknown') 
i f(kk.eq .6)open(no I , file='real72.dat' ,status='unknown') 

end if 
end if 
if(kk.le.3)nl=nl *10 
if(kk.geA)nl=nl +le7 

end do 
end if 
do 5 ilag=1 ,nlag 
do 5 iobj=1 ,part 

varact(ilag,iobj) = vamew(ilag,iobj) 
vardiv(ilag,iobj) = divnew(ilag,iobj) 
actsv(ilag,iobj) = vamew(i1ag,iobj) 
divsv(ilag,iobj) = divnew(i1ag,iobj) 

5 continue 
naccept = naccept + I 
obj = objtry . 
vartemp = var(i I,j I.k I) 
var(iljl.kl) = var(i2,j2,k2) 
var(i2.j2.k2) = vartemp 
if(ifield.eq.l) then 
do kk=I,6 . 

no=1230+kk 
nol=1250+kk 
if (vgmout(kk» then 

do 11 j=l.nlag 
do 11 k=l.part 

varact(j,k) = O.OdO 
vardiv(j,k) = O.OdO 

II continue 
C**************************************************************\ 
c 
c Calculate the Experimental Variogram: 
c 

do 31 ix=l.nx 
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do 31 iy=I,ny 
do 31 iz=I,nz 

vI = var(ix,iy,iz) 
do 41 il=l.nlag 

iix = ix + ixl(il) 
jjy = iy + iyl(il) 
kkz = iz + izl(il) 
if(iix.ge.l.and.iix.le.nx.and. 

+ jjy.ge.l.and.jjy.le.ny.and. 
+ kkz.ge.l.and.kkz.le.nz) then 

v2 = var(iix,jjy,kkz) 
io= I 
varact(iI,io) = varact(il,io)+ 

+ (vl-v2)*(vl-v2) 
vardiv(il,io) = vardiv(il,io)+2.dO 

endif 
41 continue 
31 continue 

write(no,*)' nswap = ',nswap 
write(no,500) 
do il= I,nlag 

dx = dble(ixl(il) * xsiz 
dy = dble(iyl(il) * ysiz 
dz = dble(izl(il» * zsiz 
dx = sqrt(dx*dx+dy*dy+dz*dz) 
write(no, 105) il,dx, varmod(il), 

+ varact(il,1 )/vardiv(il,l ),actsv(il,1 )/divsv(il,l) 
end do 
do 13 iz=I,nz 
do 13 iy=I,ny 
do 13 ix=I,nx 

xx=xmn+xsiz*dble(ix-I) 
yy=ymn+ysiz*dble(iy-l) 
zz=zmn+zsiz*dble(iz-I) 
if(cond(ix,iy,iz» then 

if (var(ix,iy,iz).eq.xcutO) 
+ var(ix,iy,iz)=O.OdO 

write(nol,701) xx,yy,zz,var(ix,iy,iz) 
else . 

write(no 1,702) xx,yy,zz, var(ix,iy,iz) 
endif 

13 continue 
701 format(3(f8.2,2x),fl2.4: c') 
702 format(3(f8.2,2x),fl2.4) 
105 format(i4,fl0.4,6fl8.8) 

c 

v grnou t(kk)=. false. 
close(no) 
close(nol) 
end if 

end do 
end if 
end if 

c'Converged to a Solution? 

C*************************************************************************************/ 
c 
c 1121197: The following lines are added to show the users why the program is terminated, Tai-Sheng Liou 
c 

. c Test the convergence based on the un-weighted variogram: vacunwt 
c 

if(obj.le.sas(6).or.iend.ge.sas(5» then 
write(50, *) nswap,obj . 
if (intervar.gt.nswap) write(* ,*) 

+ 'intervar = ',intervar,' > ',nswap 
if (obj.le.sas(6» then. 

write(*,600) nswap,obj,sas(6) 
write(ldbg,600) nswap,obj,sas(6) 
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end if 
if (iend.ge.sas(5» then 

write(*,*) 'Have tried ',iend, 
$ sas(3): iterations -Program terminated' 

write(ldbg, *) 'Have tried ',iend, 
$ sas(3): iterations -Program terminated' 

end if 
if (part.eq.\) then 

if(.not.first) write(lvar,500) 
if (noisop.eq.1 .and .. not.first) then 

write(lhvar,500) 
write(lvvar,500) 

end if 
else 

if (.not.first) write(lvar,51O) 
if (noisop.eq.1 .and .. not.first) then 

write(lhvar.510) 
write(lvvar,510) 

end if 
end if 

C**************************************!***********************************.**********\ 
c 
c Calculate the experimental semi-variogram of the final image as a final check of the simulation 
c 

first=.false. 
call initob(obj,first) 
rms=O.OdO 
do il=!,nlag 

dx = dble(ixl(il) * xsiz 
dy = dble(iyi(il) * ysiz 
dz = dbie(izl(i1» * zsiz 
dx = sqrt(dx*dx+dy*dy+dz*dz) 
write(lvar,102) ii,dx,varmod(il), 

+ gamrnanew(ii,1 ),gammanew(ii,2),gamunwt(il) 
if (noisop.eq.!) then 

if (noisop.eq.!) then 
if(iyi(il).eq.O) write(lhvar,i 02) il,dx, 

$ varmod(i1),gammah(ii,1 ),gamrnah(ii,2) 
if(ixl(ii).eq.O) write(lvvar,i 02) ii,dx, 

$ varmod(i1),gammav(i1,! ),gamrnav(il,2) 
end if 

end if 
rms=rms+(varmod(il)-gamunwt(il)**2.dO 

end do 
rms=dsqrt(rms) 
write(lvar, *) 
write(lvar,505) rms 

505 format(,RMS of semi-va rio gram = ',f9.4) 
return 

endif 
c 
c Tried too !Dany at this "temperature"? 
c 

c 

if(ntry.gt.sas(3» then 
iend = iend + ! 
temp = sas(2) * temp 
go to i 

endif 

c Accepted enough at this "temperature"? 
c 

c 

if(naccept.gt.sas(4» then 
temp = sas(2) * temp 
iend=O 
go to ! 

endif 

c Go back for another attempted swap: 
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c 
102 fonnat(i4,f10.4,6fl2.4) 
SOO fonnat(3x;i',4x, 'h' ,9x;r(model), ,4x;r(actual)' ,ISx;r(final),) 
SIO format(3x;i',4x,'h',9x;r(model)',4x;r(simu.)',17x,'r(cond.)') 
600 formatC At ',i12,' -th iter., obj = ',eI2.S; <',eI2.S) 
9990 fonnatC lag',2x,' t2 w2 ',' VI-',6x,'VI',7x,'tl wi', 

+ 'VI+',4x;t4 w4',Sx;V2-',6x,'V2',7x,'t3 w3', 
+ 2x,'V2+',7x,'r(h)',lOx,'r_exp(h,1 ),,6x, 
+ 'r3xp(h,2),) 
go to 2 
end 

c 
e-----------------------------------------------------------------------------------------------------------
c Little function to shorten the calling arguments each time a random number is needed 
e-----------------------------------------------------------------------------------------------------------

e 

real*8 function getrand(seed) 
implicit real*8(a-h,o-z) 
real*8 randnu(l) 
integer seed 
call rand(seed,I,randnu) 
getrand = randnu( I) . 
return 
end 

subroutine initob(obj,first) 
c----------------------------------------------------------------------------------------------------------------------------------------------------------------
e Routines to Compute Objective Function 
c ****************~********************* 

c 
c The objective function is the squared difference from the model variogram and the experimental variogram. 
C The user specifies the lag separation distances and the number of lags that contribute to the objective function. 
c 
c I. Initial Objective Function - Compute Both the Experimental and the Model Variograms. Compute the objective function as the 
c squared differe'nce between the actual and the model variograms: 
c 2. The second routine updates the variogram when a swap is being considered. 
c 
c Author: C.V. Deutsch Date: April 1990 
c----,--------------.-----------------------------------------------------------------------------------~---------------------------------------------------------

e 

include 'metro.inc' 
logical first,image 

c Initialize the varigoram arrays: 
c 

c 

do I j= I,nlag 
if(.not. first) gamunwt(j)=O.dO 
do I k= I ,part 

varact(j,k) = O.OdO 
vardiv(j,k) = O.OdO 

continue 

c Calculate the Experimental Variogram: 
c 

c 

do 3 ix=I,nx 
do 3 iy=I,ny 
do 3 iz=I,nz 

c Consider the first value in the pair and all directions and lags: 
c 

e 

vi = var(ix,iy,iz) 
do 4 il=I,nlag 

ii =ix+ ixl(il) 
jj = iy + iy'l(il) 
kk = iz + i'zl(il) 
if(ii.ge.l.and.ii.le.nx.and. 

+ j},ge.l.and.jj .le. ny .and. 
+ kk.ge.l.and.kk.le.nz) then 
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c Found a pair that should go in calculation. Possibly keep the pairs involving a conditioning data separately: 
c 

v2 = var(iijj.kk) 
io= I 
varact(il,io) = varact(il,io)+ 

+ (v l-v2)*(v l-v2) 
vardiv(il,io) = vardiv(il,io)+2.dO 

endif 
4 continue 
3 continue 

c 
c Reture if obj=-I, i.e., obj=-I for checking the experimental variogram at certain iterations 
c 

if(obj.eq.-I.dO) return 
c 
c write out the experimental varigoram: 
c 

obj = O.OdO 
do 5 il=I,nlag 

if (first) then 
dx = dble(ixl(il» * xsiz 
dy = dble(iyl(il» * ysiz 
dz = dble(izl(il» * zsiz 
dx = sqrt(dx*dx+dy*dy+dz*dz) 
demon=varmod(il) 
sclfac(il) = I.OdO/(drnax I (l.d-4,demon*demon» 

end if 
c . 
c Compute the objective function while we're at it: 
c 

if(vardiv(i1,I).Ie.O.OdO) then 
write(*,*) 'ERROR: lag ',il 
write(*, *) 'there are no pairs!!' 
stop 

endif 
if(part.eq.l) then 

act = varact(il,1 )/vardiv(i1,I) 
obj = obj + (varmod(il)-act) 

+ * (varmod(il)-act) 
+ * sclfac(il) 

if(.not. first) gamunwt(il)=act 
else . 

actl = varact(il,l)/vardiv(il,l) 
obj = obj + (varmod(il)-actl) 

+ * (varmod( i I)-actl ) 
+ * sclfac(il) 

if(vardiv(il,io).gt.0.5dO) then 
act2 = varact(il,2)/vardiv(il,2) 
obj = obj + (varmod(i1)-act2) 

+ * (varmod(il)-act2) 
+ * sclfac(il) 

endif 
endif 

5 continue 

c 
c Normalize the scale factors so that the initial objective function is 1.0: 
c 

if(first) then 
inquire(fiIe=imageinfl,exist=image) 
if(image) then 

renorm= l.dO 
else 

renorm = 1.0dO lobj 
end if 
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d09 il=l,nlag 
sclfac(il) = sclfac(il) * renonn 

9 continue 
obj = 1.0<10 

endif 
if(first) then 

open(8888,file='initvar.dat',status='unknown') 
do il= I,nlag 

dx=ixl(il)*xsiz 
dy=iyl(il)*ysiz 
dz=izl(i1)*zsiz 
h=sqrt(dx*dx+dy*dy+dz*dz) 
if(io.eq.1 )!write(8888, *) h, vannod(il), 

+ varact(i1,1 )/vardiv(il,I ) 
if(io.eq.2) write(8888, *) h,varmod(il), 

+ varact(il,1 )/vardiv(i1,I), varact(i1,2)/vardiv(il,2) 
end do 
close(8888) 

end if 

102 fonnat(i4,f1 0.4,3f12.4) 
500 formate i h r(model) r(actual)'} 
510 fonnate i h r(model) r(simu.) r(cond.}'} 
c 
c Return with the current objective function: 
c 

return 
end 

c------------------------------------c---------------------------------------------------------------------------------------------------------------------------
c 
c Considering a swap: Update the Experimental Variogram and then compute the objective function as the squared difference between 
c the actual and the model variogram. 
c 
c Author: C.V. Deutsch . Date: April 1990 
c----------------------------------------,-----------------------------------------------------------------------------------------------------------------------

c 

subroutine object(i I,j l,kl,i2;j2,k2,accept,objnew) 
include 'metro.inc' 
logical accept 

c Ensure that the experimental variogram array values are current. If the last swap was accepted then we don't have to update the new 
c array, otherwise we have to reset back to the correct variogramarray: 
c 

if (nswap.le.50.and.lagfI( I: 10).ne.'nodata.dat') 
+ write(lIag, *) nswap,' -th perturbation' 
if (nswap.le.50.and.lagfI( I: 10).ne.'nodata.dat') 
+ write(lIag, *) 
if(.not.accept) then 

do 10 il=I,nlag 
do \0 io= I ,part 

vamew(i1,io) = varact(il,io) 
divnew(il,io) = vardiv(il,io) 

10 continue 

c 

endif 
vi = var(il,jl,kl) 
v2 = var(i2,j2,k2) 

c MAIN LOOP to consider the change to all lags and directions: 
c 

do 20 i1=I,nlag 

c---------------------------------------------------------------------
c Update the variogram near the first point (positive lag): 
c--------------------------------------------------------------------

ii = il + ixl(il) 
jj = j I + iyl(il) 
kk = kl + izl(il) 
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if(ii.ge.l.and.ii.le.nx.and. 
+ ij.ge~ I.and.ij.le.ny.and. 
+ kk.ge.l.and.kk.le.nz) then 

if(ii.ne.i2.or.ij.ne.j2.or.kk.ne.k2) then 
vO = var(ii.ij.kk) 
io=l 
if (twopar) then 
if(nbhd(i I.j I ).eq.l.and.cond(ii.ij.kk»io=2 
if(cond(i I.j I.k I ).and.nbhd(ii.ii).eq.1 )i0=2 
if(nbhd(i I.j I ).eq.l.and.nbhd(ii.jj).eq.1 )i0=2 

end if 
vamew(il.io) = vamew(il.io) 

+ -(vl-vO)*(vl-vO)+(v2-vO)*(v2-vO) 
end if 

'end if 

c------------------------------------------------------------------------
c Update the variogram near the first point (negative lag): 
c------------------------------------------------------------------------

ii = il - ixl(il) 
ij = j I - iyl(il) 
kk = kl - izl(il) 
if(ii.ge.l.and.iLle.nx.and. 

+ ij.ge.Land.ij.le.riy.and. 
+ kk.ge.Land.kk.le.nz) then 

if(iLne.i2.or.ij.ne.j2.or.kk.ne.k2) then 
vO = var(ii.ij.kk) 
io=l 
if (twopar) then 
if(nbhd(i I.j l).eq.l.and.cond(ii.ij.kk))io=2 
if(cond(i I.j I.k I ).and.nbhd(ii.ii).eq.1 )io=2 
if(nbhd(i I.j I ).eq.l.and.nbhd(ii.ii).eq.l )io=2 

end if 
vamew(il.io) = vamew(il.io) 

+ -(vl-vO)*(vl-vO) + (v2-vO)*(v2-vO) 
end if 

end if 

c---------------------------------------------------------------------------
c Update the variogram near the second point (positive lag): 
c---------------------------------------------------------------------------

ii = i2 + ixl(il) 
ij = j2 + iyl(il) 
kk = k2 + izl(il) 
if(iLge.l.and.ii.le.nx.and. 

+ ij.ge.Land.ij.le.ny.and. 
+ kk.ge.Land.kk.le.nz) then 

if(ii.ne.i Lor.ij.ne.j Lor.kk.ne.kl) then 
vO: var(ii.ij.kk) 
io=l 
if (twopar) then 
if(nbhd(i I.j I ).eq.l.and.cond(ii.ij.kk»io=2 
if(cond(i I.j I.k I ).and.nbhd(ii.jj).eq.l )io=2 
if(nbhd(i I.j I ).eq.I.and.nbhd(ii.jj).eq.I )io=2 

end if 
vamew(il.io) = vamew(il.io) 

+ -(v2-vO)*(v2-vO) + (vl-vO)*(vl-vO) 
end if 

end if 

c ---------------------------------------------------------------------------
c Update the variogram near the second point (negative lag): 
c ------------------------ -- ------- ------------------------------------------

ii = i2 - ixl(il) 
ij = j2 - iyl(iJ) 
kk = k2 - izl(il) 
if(ii.ge.l.and.ii.le.nx.and. 

+ jj.ge.l.and.ij.le.ny.and. 
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+ kk.ge.l.and.kk.le.nz) then 
if(ii.ne.i I.or.jj.ne.j I.or.kk.ne.k I) then 

vO = var(ii,jj,kk) 
io=l 
if (twopar) then 

if(nbhd(il ,jl ).eq.l.and.cond(ii,jj,kk»i0=2 
if(cond(i I ,j I ,kl ).and.nbhd(iijj).eq.1 )i0=2 
if(nbhd(i Ij I ).eq.l.and.nbhd(ii,jj).eq.1 )i0=2 

end if 
varnew(il,io) = varnew(il,io) 

+ -(v2-vO)*(v2-vO) + (vl-vO)*(vl-vO) 
end if 

end if 

20 continue 
c 
c Compute the objective function and return: 
c 

objnew = O.OdO 
do 30 il=l,nlag 
do 30 io=l,part 

act = varnew(il,io)/divnew(il,io) 
objnew = objnew + (varmod(iJ)-act) 

+ * (varmod(il)-act) 
+ * sc1fac(iJ) 

gammanew(il,io)=act 
if (noisop.eq.l) then 

if (iyl(iJ).eq.O) gammah(il,io)=act 
if (ixl(il).eq.O) gammav(il,io)=act 

end if 
30 continue 

if(nswap.le.50.and.lagf1( I: IO).ne.'nodata.dat') 
+ write(lIag, *) , Obj = ',objnew 
if (nswap.eq.intervar) then 

open(999,fiIe='varmid.dat',status='unknown') 
do il=l,nlag 

dx = dble(ixl(il» * xsiz 
dy = dble(iyl(il» * ysiz 
dz = dble(izl(il» * zsiz 
dx = sqrt(dx*dx+dy*dy+dz*dz) 
write(999, 199)il,dx, varmod(il) 

end do 
c1ose(999) 

end if 
199 format(i2,f10.4,2x,3f12.4) 
9901 format(2x,i2, I x,2(2(f4.1 ,2x),2(t7 .4,2x),2(f4.1 ,2x),t7.4), 

+ 3(f12.4,2x» 
return 
end 

c-----------------------------------"------------------------------------------------------------------------------------------------------------------------
real*8 function cova3(xl ,yl ,zl ,x2,y2,z2,nst,cO,it,cmax,cc,aa, 

c 
c 
c 
c 

+ ang l,ang2,ang3 ,anis I ,anis2,first) 

Covariance Between Two Points (3-D Version) 
******************************************* 

c This function returns the covariance associated with a variogram model that is specified by a nugget effect and possibly four 
c different nested varigoram structures. The anisotropy definition can be different for each of the nested structures (spherical, 
c exponential, gaussian, or power). 
c 
c INPUT VARIABLES: 
c 
c xl,yl,zl 
c x2,y2,z2 
c nst 
c cO 

Coordinates of first point 
Coordinates of second point 
Number of nested structures (max. 4). 
Nugget constant (isotropic). 
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c cmax 
c 

Maximum variogram value needed for kriging when using power model. A unique value of cmax is used for all 
nested structures which use the power model. therefore, cmax should be chosen large enough to account for the 

argest single structure which uses the power model. c 
c cc(nst} 
c aa(nst} 
c it(nst} 
c 

Multiplicative factor of each nested structure. slope for linear model. 
Parameter "a" of each nested structure. 
Type of each nested structure: 

I. spherical model of range a; 
c 2. exponential model of parameter a; i.e. practical range is 3a 
c 3. gaussian model of parameter a; i.e. practical range is a*sqrt(3) 
c 4. power model of power a (a must be gt. 0 and It. 2). if linear model, a= I ,c=slope. 
c angl(nst} 
c ang2(nst} 
c ang3(nst} 
c 

Azimuth angle for the principal direction of continuity (measured clockwise in degrees from Y) 
Dip angle for the principal direction of continuity (measured in negative degrees down) 
Third rotation angle to rotate the two minor directions around the principal direction. A positive angle acts 
clockwise while looking in the principal direction. 

c anisl(nst} 
c anis2(nst} 
c 

Anisotropy (radius in minor direction at 90 degrees from angl divided by the principal radius in direction angl) 
Anisotropy (radius in minor direction at 90 degrees vertical from "angl" divided by the principal radius in direction 
"angl") 

c first 
c 

A logical variable. which is set to true if the direction specifications have changed - causes the rotation matrices to be 
recomputed. 

c 
c OUTPUT VARIABLES: returns "cova3" the covariance obtained from the variogram model. 
c 
c 
c NO EXTERNAL REFERENCES: 
c----------------------------------------------------------------------------------------------------------------------------------------------------------------

implicit real*8(a-h,o-z) 
parameter(DTOR=3.14 I 59265dO/i 80.dO,EPSLON= I.Od-20) 
real*8 aa(*),cc(*),ang I (*),ang2(*),ang3(*),anis I (*),anis2(*), 

c 

+ maxcov 
integer it(*) 
logical first 
save maxcov 

c The first time around, re-initialize the cosine matrix for the variogram structures: 
c 

c 

if(first} then 
maxcov = cO 
do I is= I ,nst 

if(it(is).eq.4) then 
rnaxcov = rnaxcov + crnax 

else 
maxcov = rnaxcov + cc(is) 

endif 
continue 

endif 

c Check for very small distance: 
c 

c 

hsqd = sqdist(x I ,y I ,zl ,x2,y2,z2,angl(l ),ang2(1 ),ang3(l), 
+ anisl(l ),anis2(l)) 
if(hsqd.It.EPSLON) then 

cova3 = maxcov 
return 

endif 

c Non-zero distance, loop over all the structures: 
c 

c 

cova3 = O.OdO 
do 2 is= I ,nst 

c Compute the appropriate structural distance: 
c 

if(is.ne.l) hsqd = sqdist(xl ,yl,zl ,x2,y2,z2,angl (is), 
+ ang2(is),ang3(is),anis I (is),anis2(is» 

h = sqrt(hsqd) 
if(it(is).eq.l) then 

c 
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c Spherical model: 
c 

c 

hr = h/aa(is) 
if(hr.ge.I.OdO) go to 2 
cova3 = cova3 + cc(is)*(I.-hr*(1.5dO-.5dO*hr*hr)) 

else if(it(is).eq.2) then 

c Exponential model: 
c 

c 

cova3 = cova3 +cc(is)*dexp(-h/aa(is)) 
else if(it(is).eq. 3) then 

'c Gaussian model: 
c 

c 

hh=-(h*h)/(aa(is)*aa(is» 
cova3 = cova3 +cc(is)*dexp(hb) 

else 

c Power model: 
c 

covl = cmax - cc(is)*(h**aa(is» 
cova3 = cova3 + cov I 

endif 
2 continue 

return 
end 

c 
c-----------------------,-----------------------------------------------------------------------------------------------------------------------------------------
c 

real*8 function sqdist(x I ,yl ,zl ,x2,y2,z2,angl,ang2,ang3,anis I, 
+ anis2) 

c 
c 
c 

Anisotropic Distance Calculation 
******************************** 

c This routine calculates the anisotropic distance between two points given the coordinates of each point and a definition of the 
c anisotropy., The components of the vector in the rotated coordinates are calculated and then the squared anisotropic distance is 
c calculated. 
c 
c 
c INPUT VARIABLES: 
c 
cxl,yl,zl 
c x2,y2,z2 
c angl 
c ang2 
c ang3 
c 
c anisl 
c anis2 
c 
c 

Coordinates of first point 
Coordinates of second point 
Azimuth angle for the principal direction of continuity (measured clockwise in degrees from Y) 
Dip angle for the principal direction of continuity (measured in negative degrees down) 

Third rotation angle to rotate the two minor directions around the principal direction. A positive angle acts clockwise 
while looking in the principal direction. 
Anisotropy (radius in minor direction at 90 degrees from angl divided by the principal radius in direction angl) 
Anisotropy (radius in minor direction at 90 degrees vertical from "angl" divided by the principal radius in direction 
"angl") , 

c OUTPUT VARIABLES: 
c 
c sqdist The squared distance accounting for the anisotropy and the rotation of coordinates (if any). 
c 
c 'PROGRAM NOTES: 
c 
c I. The program converts the input (angl,dip,plg) to three angles which make more mathematical sense: 
c 
c 
c 
c 

alpha 
beta 
theta 

angle between ~he major axis of anisotropy and the E-W axis. Note: Counter clockwise is positive. 
angle between major axis and the horizontal plane. (The dip of the ellipsoid measured positive down) 
angle of rotation of minor axis about the major axis of the ellipsoid. . 

C 
c NO EXTERNAL REFERENCES 
c 
c 
c Author: C. Deutsch Date: July 1989 
c------------------------------------------------------------------------------.----------------------------------------------,----------------------c-----------
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c 

implicit real*8(a-h,o-z) 
parameter(DEG2RAD=3. 141 59265dO/i 80.dO) 
real*8 rmatrx(3,3) 
save rmatrx,ang I o,ang20,ang30,anis lo,anis20 

c Compute rotation matrix only if required: 
c 

if(ang I.ile.ang lo.or.ang2.ne.ang20.or.ang3.ne.ang30.or. 
+ anisLne.anis I o.or.anis2.ne.anis2o) then 

anglo =angl 
ang20 = ang2 
ang30 = ang3 
anislo = anisl 
anis20 = anis2 
if(angl.ge.O.dO.and.angl.iL270.dO) then 

alpha = (90.0dO - angl) * DEG2RAD 
else 

alpha = (450.OdO - angl) * DEG2RAD 
endif 
beta = -LOdO * ang2 * DEG2RAD 
theta = ang3 * DEG2RAD 
cosa = cos(alpha) 
cosb = cos(beta) 
cost = cos( theta) 
sina = sin(alpha) 
sinb = sin(beta) 
sint = sin(theta) 
rmatrx(l,I) = (cosb * cosa) 
rmatrx(l,2) = (cosb * sinal 
rmatrx(l,3) = (-sinb) 
rmatrx(2,1) = (LOdO/anisl)*(-cost*sina + sint*sinb*cosa) 
rmatrx(2,2) = (LOdO/anisl)*(cost*cosa + sint*sinb*sina) 

• rmatrx(2,3) = (LOdO/anisl)*( sint * cosb) 
rmatrx(3,1) = (LOdO/anis2)*(sint*sina + cost*sinb*cosa) 
rmatrx(3,2) = (LOdO/anis2)*(-sint*cosa + cost*sinb*sina) 
rmatrx(3,3) = (I.0dO/anis2)*(cost * cosb) 

endif 
c 
c Compute component distance vectors and the squared distance: 
c 

dx = xl - x2 
dy=yl-y2 
dz=zl-z2 
sqdist = O.OdO 
do I i=I,3 

temp = rmatrx(i,I)*dx + rmatrx(i,2)*dy + rmatrx(i,3)*dz 
sqdist = sqdist + temp*temp 

continue 
return 
end 

c-----------------------------------------------------------------------
c Order of magnitude of a number 
c Argument 
c x - input number 
corder - order of magnitude of x 
c-----------------------------------------------------_________ c _______ _ 

integer function order(x) 
real*8 x,div 

n=O 
if(x.eq.O.dO) then 

order=O 
return 

end if 
67 if(x.gLI.dO) div=xI( IO.dO**n) 

if(x.lt.I.dO) div=x* IO.dO**n 
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if(div.lt.1 O.dO.and.div .ge.l.dO) then 
goto 68 

else 
n=n+1 
got067 

end if 
68 if(x.gt.l.dO)order=n 

if(x.lt.l.dO)order=-n 
return 
end 

============================= 
C SUBROUTINE 'SASIMM' (the SA algorithm) 

program sasimm 
C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
C % 
C Copyright (C) 1992 Stanford Center for Reservoir Forecasting. All rights reserved. 
CDistributed with: C.V. Deutsch and A.G. 10umel. 
C "GSLlB: Geostatistical Software Library and User's Guide," Oxford University Press, New York, 1992. 
C 

% 
% 
% 
% 

C The programs in GSLIB are distributed in.the hope that they will be useful, but WITHOUT ANY WARRANTY. No author or % 
C distributor accepts responsibility to anyone for the consequences of using them or for whether they serve any particular purpose % 
C or work at all, unless he says so in writing. Everyone is granted pennission to copy, modify and redistribute the programs in % 
C GSLlB, but only under the condition that this notice and the above copyright notice remain intact. % 
C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
c------------------------------------------.---------------------------------------------------------------------------------------------------------------"------
c 
c 
c 

Conditional Simulation of a 3-D Rectangular Grid 
************************************************ 

c 
c This is a template driver program for GSLlB's "sasim" subroutine. 3-D realizations with a given autocovariance model and 
C conditional to input data are created. The conditional simulation is achieved by modifying an initially uncorrelated image .. 
c 
c The program is executed with no command line arguments. The user will be prompted for the name of a parameter file. The 
C parameter file is described in the documentation (see the example sasim.par) and should contain the following information: 
c 
c - Name of a data file of conditioning tlata (GEOEAS format) 
c - column numbers for x, y, z, and variable 
c - Minimum acceptable value (used to flag missing values) 
c - If a standard Normal deviate is to be simulated set to I 
c Name of a data file for non-parametric distribution 
c - column numbers for variable and weight 
c - option and parameter for the lower tail 
c - option and parameter for the upper tail 
c - An output file (may be overwritten) 
c - A output file for variograms (may be overwritten) 
c - The debugging level (integer code - larger means more) 
c - A file for the debugging output 
c - Whether or not to use an automatic annealing schedule (O=auto) 
c '- annealing schedule 
c Whether a one part or a two part objective function is used 
c Ranaom Number Seed 
c - The number of simulations 
c X grid definition (number, minimum, size): nX,xmn,xsiz 
c Y grid definition (number, minimum, size): ny,ymn,ysiz 
c - Z grid definition (number, minimum, size): nZ,zmn,zsiz 
c - The maximum number of lags to be considered 
c - Search Anisotropy 
c - Variogram Definition: number of structures(nst), nugget, and whether or not to renormalize sill to the variance(O=auto) 
c - the next "nst*2" lines require: 
c First line: 
c a) an integer code for variogram (l=sph,2=exp,3=gaus,4=pow) 
c b) "a" parameter (range except for power model) 
c b) "c" parameter (contribution except for power model). 
c Second line:. 
c a) azimuth principal direction (measured clockwise from Y). 
c b) dip of principal direction (measured negative down from X). 
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I 

e c) a third rotation of the two minor directions about the principal direction. This angle acts counterclocwise 
c when looking in the principal direction. 
c Two anisotropy factors are required to complete the definition of the geometric anisotropy of each nested structure: 
c d) radius in minor direction at 90 degrees from the principal direction divided by the principal radius. 
c e) radius in minor direction at 90 degrees vertical from the principal direction divided by the principal radius. 
c 
e The output file will be a GEOEAS file containing the simulated values The file is ordered by x,y,z, and then simulation (i.e., x cycles 
e fastest, then y, then z, then simulation number). 
c 
c Original: C.V. Deutsch Date: August 1990 
c 
c 1120/97 : Updated by Tai-Sheng Liou in the subroutines 
e READPARM - Read mean and variance of In(k) and ITRANS 
c INITMOD - Change the calling arguments of GINV 
C GINV - Transform N(O, I) to LN(m,s) depending the flag ITRANS. The purpose of this change is to generate a parametric 
c realization of log-normally distributed variate which is then combined with the conditioning data in file 'condfl' 
e----------------------------------------------------------------------------------------------------------------------------------------------------------------

C 

include 'metro.inc' 
character* 1 chr I L,chr I R,chr2L,ehr2R 

open(500,file='adasp.dat',status='unknown') 
open(550,file='imgasp.dat',status='unknown') 
open(600,file='aspnbhd.dat',status='unknown') 

e call timer(itimeO) 
C 
c Read the Parameter File and the Data: 

call readparm 
c 
C Establish the number of lags to keep 

call getlag 
C 
c Loop over all the simulations: 
C 

do I isim=l,nsim 
e 
c Initialize an image and the statistics: 
c 

call initmod 
write(*, *) 
write(ldbg, *) 
write(*,20) ymean,ystd,pcut,paspsave,ptarget, 

+ cutsave,xcut,aspcut,xcutO 
write(ldbg,20) ymean,ystd,pcut,paspsave,ptarget, 

+ eutsave,xcut,aspeut,xcutO 
20 format(/' Ensemble staistics :'1 

+ ' Mean of Ink = ',£6.21 
+ ' S.t.d. of Ink = ',£6.21 
+ ' Initial cutoff probability = ',f6.41 
+ ' Iterated cutoff probability= ',£6.41 
+ 'Target cutoff probability = ',f5.31 
+ ' Initial cutoff PM value = ',f7.41 
+ ' Iterated cutoff PM value = ',f7.41 
+ ' Asperity contact = ',£6.21 
+ ' Minimum PM value = ',£6.211) 

write(ldbg, *) 

e 
c Call sasim for the simulation: 
c 

call sasim 
c 
c Write the Simulated results, close the output files, and stop: 
c 

write(lout, *) 'Permeability field from simulated annealing' 
write(lout, *) 4 
write(lout,999) 'X', 'X' ,nx, 'X' ,xmn,'X',xsiz 
write(lout,999) 'Y','Y',ny,'Y',ymn,'Y'.ysiz 
write(lout,999) 'Z','Z',nz,'Z',zmn:Z',zsiz 
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999 fonnat(A I: location N',A I :=',i4,1 x,2(1 x:D' ,A 1:=',[6.2)) 

c 

write(lout,*) 'Permeability field' 
do 2 iz=I,nz 
do 2 iy=I,ny 
do 2 ix=I,nx 

xx=xmn+xsiz*dble(ix-I) 
yy=ymn+ysiz*dble(iy-I) 
zz=zmn+zsiz*dble(iz-I) 
if(cond(ix,iy,iz)) then 

if (var(ix,iy,iz).eq.xcutO) var(ix,iy,iz)=O.OdO 
write(lout,lOl) xx,yy,zz,var(ix,iy,iz) 

else 
write(lout, 102) xx,yy,zz, var(ix,iy,iz) 

endif 

c 7/16/97 : Write additional asperity contacts and z'<=S.O to addasp.dat 
c 

C 
c 

if(var(ix,iy,iz).eq.O.OdO) then 
if(.not.cond(ix,iy,iz))write(SOO,I 02) xx,yy,zz,O.O 

end if 
if (var(ix,iy,iz).gt.O.OdO.and. 

+ var(i1l:,iy,iz).Ie.S.OdO) 
+ write(SOO,I 02) xx,yy,zz, var(ix,iy,iz) 

c 10/8/97 : Write penneability modifier, excluding the conditioning asperity contact data, in the neighborhood 
c 

if (nbhd(ix,iy).gt.O) 
+ write(600,102) xx,yy,zz,var(ix,iy,iz) 

2 continue 
101 fonnat(3(fS.2,2x),f12.4: c') 
102 format(3(fS.2,2x),f12.4) 

c 
c Calculate the average penneability for two kinds of neighborhoOd 
c 
c First, assign nbhd(i,j)=1 for defnbhd=1 only and nbhd(i,j)=2 for defnbhd=1 and defnbhd=2 
c 

size=real(neighbor) 
do 12 i=I,nx 
do 12j=I,ny 
do 12 k=I,nz 

+ 

+ 

if (cond(ij,k)) then 
do ii=-neighbor,neighbor 

do jj=-neighbor,neighbor 
ix=i+ii 
iy=j+jj 
iz=k 
dx=real(ii) 
dy=real(jj) 
dist=sqrt(dx*dx+dy*dy) 
if (ix.ge.l.and.ix.le.nx.and.iy.ge.l.and.iy.le.ny.and. 

iz.ge.l.and.iz.le.nz) then 
if(.not. cond(ix,iy,iz).and.nbhd(ix,iy).eq.O) 
nbhd(ix,iy)= I 

if(nbhd(ix,iy).eq.l.and.dist.ie.size) nbhd(ix,iy)=2 
end if 
end do 

end do 
end if 

12 continue 
c 
c Second, calCulate avg. PM for two kinds of neighborhood 
c 

if (neighbor.ne.O) then 
zsuml=O.O 
zsurn2=O.O 
nozl=O 

I 
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noz2=O 
do 3 ix=l,nx 
do 3 iy=l,ny 
d03 iz=l,nz 

if (nbhd(ix,iy).eq.2) then 
zsum2=zsum2+var(ix,iy,iz) 
noz2=noz2+1 
zsuml =zsuml +var(ix,iy,iz) 
nozl=nozl+1 

end if 
if (nbhd(ix,iy).eq.l) then 

zsuml =zsuml +var(ix,iy,iz) 
nozl=nozl+1 

end if 
3 continue 

if (defnbhd.eq.l) then 
chr2L='C 
chr2R='), 

else 
chrlL='C 
chrIR='), 

end if 
write(ldbg, *) 
write(ldbg,*)' NBHD = ',defnbhd 
write(ldbg,SO)chrlL,nozl ,zsum I ,zsumIIdble(nozI ),chrl R, 

+ chr2L,noz2,zsum2,zsum2ldble(noz2),chr2R 
SO format(l, 

+2x,AI,'First nbhd: Nbl= ',is,' Suml= ',f9.4,' Avg= ',fS.S,AII 
+2x,AI,'Second nbhd: Nb2= ',is,' Sum2= ',f9.4,' Avg= ',fS.S,AI) 

end if 
c 
c End loop over all simulations: 
c 
I continue 

c call timer(itimel) 
itime=itimel-itimeO 
time=real(itime)/IOO.O 
ihr=int(time/3600.0) 
imin=int«time-real(ihr)*3600.0)/60.0) 
sec=time-real(ihr)*3600.0-real(imin)*60.0 
write(ldbg,S) ihr,imin,sec 
write(*,S) ihr,imin,sec 

S format(ll x,'Elapsed time = ',i2,' hours ,',i3,' mins, ',[S.2, 
+ 'secs') 

c1ose(lout) 
c1ose(lvar) 
c1ose(ldbg) 
write(*, *) 'Finished SASIM: simulated results in ',outfl 
write(*, *) , variogram output in ',varfl 
write(*, *) , debugging output in ',dbgfl 
write(*,*) 
stop 
end 

subroutine readparm 
c----------------------------------------------------------------------------------------------------------------------------------------------------------------
c 
c Initialization and Read Parameters 
c ********************************** 
c 
c The input parameters are read from a file name provided from standard input (a default name will be tried if none is keyed in by the 
C user). 
c 
c The complete 3-D field is then filled in with values drawn at random from either a standard normal distribution or some distribution 
c specified in a non-parametric way (i.e., a series of values and associated weights) with possibly a parametric option to treat values 
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c in the tails of the distribution. 
c 
c Conditioning data is then read in (if available) and assigned to the nearest node if within the grid network. 
c 
c Error checking is performed and the statistics of both the initialrealization and conditioning data are written to the debugging file. 
c 
c 
c 
c Original: C.V. Deutsch Date: July 1990 
c····················································--........ -.... -................ -.---.. --............... -.. -... -........ --.-.. ---.-... --------.. -.......... . 

c 

include 'metro.inc' 
parameter(MV=20) 
real*8 val(MV) 
logical testfl,image 
character str*40,titie*80 

c Unit numbers: 
c 

c 

lin = I 
lout = 2 
Idbg = 3 
Ivar = 4 
Ihvar= 5 
Ivvar = 6 
Ilag =7 
limagein= 8 
limageout=9 

c Open the input file 'sasim.par' 
c 

open(lin,file='sasim.par',status='OLD') 
c 
c Fmd Start of Parameters: 
c 
I read(lin,'(a4)"end=97) str(l :4) 

if(str(1 :4).ne.'STAR') go to I 
c 
c Read Input Parameters: 
c 

read(lin,'(a40)',err=97) imageinfl 
if (imageinfl(1: 10).ne.'nodata.dat') 
+ write(*, *) 'Initial image file : ',imageinfl 
read(lin,'(a40)"err=97) imageoutfl 
write(*, *) 'Output image fiie . : ',imageoutfl 
read(lin,'(a40)"err=97) condfl 
write(*, *) 'Conditioning data file: ',condfl 
read(lin, *,err=97) ixloc,iylOc,izloc,ivrl 
read(lin, * ,err=97) tmin,trnax 
read(lin,*,err=97) igauss 
read(lin,'(a40)',err=97) datafl 
read(lin, * ,err=97) ivr,iwt 
read(lin,* ,err=97) zmin,zmax 
read (lin, * ,err=97) Itail,ltpar 
read(lin, * ,err=97) utail,utpar 
read(lin,'(a40)"err=97) outfl 
write(*, *) 'Output file: ',outfl 
read(lin,'(a40)',err=97) varfl 
write(*, *) 'Overall variogram output file: ',varfl 
read(lin:(a40)"err=97) horvarfl 
write(*, *) 'Horizontal variogram output file: ',horvarfl 
read(lin,'(a40)"err=97) vervarfl 
write(*,*) 'Vertical variogram output file: ',vervarfl 
read(lin, * ,err=97) idbg,report,intervar 
read(lin,'(a40)"err=97) dbgfl 
write(*, *) 'Debug file: ',dbgfl 
open(ldbg,file=dbgfl,status='UNKNOWN') 
write(ldbg, *) 'Conditioning data file: ',condfl 
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read(lin:(a40)"err=97) lagfl 
write(*,*) 'Lag file: ',Iagfl 
write(*. *)'************************** *******************' 
read(lin, * ,err=97) isas 
write(* ,III) isas 
write(ldbg, I I I ) isas 

III format(/' Annealing schedule: ',i'll, 

c 

+ ' (O:user, I :default, 2:fast, 3:very fast) ') 
read(lin,*,err=97) (sas(i),i=I,6) 
read(lin, * ,err=97) part 
read(lin, * ,err=97) seed 
read(lin, * ,err=97) nsim 
read(lin, * ,err=97) nX,xmn,xsiz 
read(lin, *,err=97) ny,ymn,ysiz 
read(lin, * ,err=97) nZ,zmn,zsiz 
read(lin, * ,err=97) nlag,neighbor 

c 1/23/97 : Select the annealing schedule 
c 0 - User supplied 
c I - Default 
c 2 - Fast 
c 3 - Very fast 
c Tai-Sheng Liou (Deutsch and Cockerham, 1994) 
c 

sas(3)=sas(3)*dble(nx*ny*nz) 
sas(4)=sas(4)*dble(nx*ny*nz) 
if(isas.eq.l) then 

sas(l) = I.OdO 
sas(2) = 0.1 dO 
sas(3) = 100.dO*dble(nx*ny*nz) 
sas(4) = lO.dO*dble(nx*ny*nz) 
sas(5) = 3.dO 
sas(6) = 0.001 dO 

elseif(isas.eq.2) then 
sas(l) = I.OdO 
sas(2) = 0.05dO 
sas(3) = 50.dO*dble(nx*ny*nz) 
sas(4) = 5.dO*dble(nx*ny*nz) 
sas(5) = 3.dO 
sas(6) = O.OOldO 

elseif(isas.eq.3) then 
sas(l) = 0.5dO 
sas(2) = O.OldO 
sas(3) = lO.dO*dble(nx*ny*nz) 
sas(4) = 2.dO*dble(nx*ny*nz) 
sas(5) = 3.dO 
sas(6) = O.OOldO 

endif 
write(* ,112) (sas(i),i=I,6),part 
write(ldbg, I 12) (sas(i),i=I,6),part 

112 formatC User set schedule: 'I 
+ 'TO =',[5.1/ 
+ 'T factor = ',[5.1/ 
+ 'Kmax = ',e7.1/ 
+ 'Kaccept = ',e7.1/ 
+ 'S =',[5.1/ 
+ 'Omin = ',e7.1,1 
+ ' Part = ',i2) 
write(* , *)'***************** *** ** *,*:*********************' 
read(lin, * ,err=97) nst,cO,isill 
sill = cO 
write(* ,100) isill,nst,cO 
if(nst.le.O) then 

write(*,9997) nst 
9997 format(, nst must be at least I, it has been set to ',i4.1, 

+ ' The c or a values can be set to zero') 
stop 

endif 
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c 
c 1125/97 : noisop=O for isotropic variogram: noisop= I for-anisotropic variograms 
c 

noisop=O 
do 3 i=I,nst 

read(lin, * ,err=97) it(i),aa(i),cc(i) 
sill = silt + cc(i) 
read(lin," ,err=97) angl (i),ang2(i),ang3(i),anis I (i),anis2(i) 
if (anis I(i).ne. I .or.anis2(i).ne. I) noisop= I 
write(ldbg, *) 
write(ldbg, *) 'Semi-variogram model :' 
If (it(i).eq.l) write(ldbg, *) 'Spherical model' 
if (it(i).eq.2) write(ldbg, *) 'Exponential model' 
if (it(i).eq.3) write(ldbg, *) 'Gaussian model' 
if (it(i).eq.4) write(ldbg,*) 'Power model' 
if (noisop.eq.O) write(ldbg,*) 'isotropic model with' 
if (noisop.eq. I) write(ldbg, *) 'anisoptropic model with' 
write(ldbg,20) sitt,aa(i) 
if (noisop.eq.l) then 

write(ldbg,21) angl (i),ang2(i),ang3(i),anis I (i),anis2(i) 
end if 

3' continue 
20 format('Sill = ',f8.21'Longitudinal correlaiton length = ',f8.2) 
21 format(,anisotropic anglel = ',f8.21 

+ 'anisotropic angle2 = ',f8.21 
+ 'anisotropic angle3 = ',f8.21 
+ 'anisotropic ratio I = ',f8.21 
+ 'anisotropic rati02 = ',f8.2) 

c 
c 1121197: The following lines are added by Tai-Sheng Liou 
c iedge=(O)I-(not)correct edge-effect with weighting factof=wfedge 
c icond=(O) I-(not)correct discontinuity-effect with weighting factor=wfcond 
c itrans=(O)I-(not)transform N(O,I) to LN(xmean,xstd) [y=lnx] 
c itrans=2 - transform N(O,I) to LN(xmean,xstd) but do not shift the LOGNORMAL data 
c noiter - maximum number of iteration for calculating the sample statistics in order to have statistics as close to ensemble statistics 
c as possible 
c 

read(lin,*) iedge,wfedge 
read(lin, *) icond, wfcond 
write(*, *)'*********************************************' 
write(*,*) 

c write(*,*) 'Weighting factors :' 
c if (iedge.eq.O) write(*, *)'Edge effect not weighted' 
c if (iedge.eq.l) write(* ,21) wfedge 
c if (iedge.eq.O) write(ldbg,*)'Edge effect not weighted' 
c if (iedge.eq.l) write(ldbg,21) wfedge 
c21 format(, Edge factor = ',[6.2) 
c If (icond.eq.O) write(*, *) 'Discontinuity effect not weighted' 
c if (icond.eq.l) write(*,22) wfcond 
c 'if (icond.eq.O) write(ldbg, *) 'Discontinuity effect not weighted' 
c if (icond.eq.l) write(ldbg,22) wfcond 
c22 format(, Discontinuity factor = ',[6.2) 

write(* ,23) nlag,neighbor 
write(ldbg,23) nlag,neighbor 

23 format(, Total # of lags = ',i41 
+ '# of neighborhood = ',i4) 
write(* ,*)'***** ****** *** *** *** *** ******** *** ****** *** **' 
read(lin, *) ymean,ystd,itrans 
read(lin, *) pcut,aspcut,xcut,ptarget 

c 
c Read which annealing algorithm should be used: 
c 0 - standard Metropolis algorithm, 1- modified Metropolis algorithm 
c 

read(lin, *) metro 
write(ldbg, *) 
if (metro.eq.O) then 

write(*!) 'Using standard Metropolis algorithm' 
write(ldbg,*) 'Using standard Metropolis algorithm' 
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c 

elseif(metro.eq.l) then 
write(*,*) 'Using modified Metropolis algorithm' 
write(ldbg,*) 'Using modified Metropolis algorithm' 

else 
write(*, *) Type of SA algorithm is not specified' 
stop 

end if 
read(lin, *) defnbhd 
write(ldbg, *) 
if (defnbhd.eq.l) then 

, write(*,*) The neighborhood is defined as a square' 
write(ldbg, *) The neighborhood is defined as a square' 

elseif (defnbhd.eq.2) then 
write(*,*) The neighborhood is a square plus four ears' 
write(ldbg, *) The neighborhood is a square plus four ears' 

else 
if(metro.eq.l) then 

write(*, *) 'Neighborhood is not defined' 
stop 

end if 
end if 
write(ldbg, *) 
read(lin, *) imod 
if(imod.lt l,or.imod,gt4) then 

,write(*, *) 'Choose the type of Modified Metropolis', 
+ 'algorithm, i.e., imod=1 or 4' 

stop 
end if 
write(*,*) 'Using MOD',imod 
write(ldbg.*) 'Using MOD',imod 
read(lin, *) ifield 
if(ifield.lt.O.or.ifield.gt I) then 

write(*,*),Enter 0 (No) or I (Yes) to print out evolving files' 
end if 
if(ifieId.eq.O) then 

write(*, *) 'Do not generate internal files of PM fields' 
write(ldbg, *) 'Do not generate internal files of PM fields' 

else 
write(*,*) 'Generate internal files of PM fields' 
write(ldbg,*) 'Generate internal files of PM fields' 

end if 

c1ose(lin) 
100 format{/: Reset sill: ',i2/, 

+ number of structures = ',i3,!, 
+ nugget effect = ',f8.4) 

101 format( , type of structure ',i3,' = ',i3/, 
+ aa parameter = ',fI2A,!, 
+ cc parameter = ',fI2.4) 

102 format(' angl, ang2, ang3 = ',3f6.2/, 
+ anisl, anis2 = ',2fI2.4) 

c 
c Reset the annealing schedule if automatic timing is being used: 
c 

c 

if(part.eq.l) then 
twopar = .false. 

else 
twopar = .true. 

endif 
if(nz.le. I .0r.izloc.le.0) then 

only2d = .true. 
else 

only2d = .false. 
endif 

c Perform some quiCk error checking: 
c 

if(nx.gtMAXX)stop 'nx is too big. modify .inc file' 
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c 

if(ny.gt.MAXY) stop 'ny is too big - modify .inc file' 
if(nz.gt.MAXZ) stop 'nz is too big - modify .inc file' 
if(nlag.gt.MAXLAG) stop 'nlag is too big - modify .inc file' 
if(nst.gt.MAXNSn stop 'nst is too big - modify .inc file' 

c Open the debugging and output files: 
c 

c 

open( lvar, fi le=varfl,status='unknown ') 
open(lhvar,file=horvarfl,status='UNKNOWN') 
open(lvvar,file=vervarfl,status='unknown') 
open(lout,file=outfI,status='UNKNOWN') 

if(lagfl( I: 10).ne.'nodata.dat') 
+ open(lIag,fiIe=lagfl,status='unknown') 
if (imageinfl(1: 10).ne.'nodata.dat') 

+ open(limagein,file=imageinfl,status='unknown') 
if (imageoutfl( I: 1O).ne.'nodata.dat') 

+ open(limageout,file=imageoutfl,status='unknown') 

c If possible read in the cdf ("cut" and "cdf' arrays) to use as the distribution to initialize the realization: 
c 

title = 'SASIM SIMULATIONS: 
+ 
if(igauss.eq .0) then 

inquire(file=datafl,exist=testfl) 
if(.nol.lestfl) then 

'/I 

write(*, *) 'ERROR file ',datafl: does not exist!' 
write(*, *)' you need a univariate distribution' 
write(*,*)' unless you want a Gaussian distribution' 
stop 

'endif 
ncdf= O.OdO 
ccdf=O.OdO 
open(lin,file=datafl,status='OLD') 
read(lin:(a60)',err=98) title(21 :80) 
read(lin, *,err=98) nvari. 
d04i=I,nvari 

4 read(lin, * ,err=98) 
S read(lin. * ,end=6.err=98) (val(j),j= I.nvari) 

if(val(ivr).It.tmin.or.val(ivr).ge.tmax) go to S 
ncdf = ncdf + I 
if(ncdf.gt.MAXCUT) then 

write(*,*)' ERROR: exceeded storage for cdf,ncdf 
stop 

endif 
cut(ncdf) = val(ivr) 
if(iwt.\e.O) then 

cdf(ncdf) = \.OdO 
else 

cdf(ncdf) = val(iwt) 
endif 
ccdf = ccdf + cdf(ncdf) 
gotoS 

6 c1ose(lin) 
c 
c Tum the (possibly weighted) distribution into a cdf that can be used to initialize all the grid nodes: 
c 

call sortem( I ,ncdf,cut, l,cdf,c,d.eJ,g.h) 
oldcp = O.OdO 
cp =O.OdO 
ccdf = 1.0dO I ccdf 
do 7 i=I,ncdf 

cp = cp + cdf(i) * ccdf 
cdf(i) =(cp + oldcp) * O.5dO 
oldcp =cp 

7 continue 
endif 

c 
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c Tum all conditioning flags to false: 
c 

do 8 ix=l,nx 
d08)y=l,ny 
do 8 iz=l,nz 

cond(ix,iy,iz) = .false. 
8 continue 

c 
c Check to see if a file of conditioning data exists, if it does then read in the data: 
c 

inquire(file=condfl,exist=testfl) 
if(testfl) then 

open (lin, fi le=condfl,status='O LO') 
read(lin,'(a60)',err=99) title(21 :80) 
read(lin,*,err=99) nvari 
nd=O 
av = O.OdO 
ss = O.OdO 
do 9 i= I ,nvari 

9 read(lin,'(a40)' ,err=99) str 
c 
c Read all the data until the end of the file: 

'c 
. 10 read(lin, *,end=ll,err=99) (val(j),j=l,nvari) 

if(val(ivrl).Ie.tmin.or. val(ivrl).gttmax) go to 10 
nd = nd + I 
av = av + val(ivrl) 
ss = ss + val(ivrl)*val(ivrl) 
ix=minO(rnaxO((int((val(ixloc )-xrnn)/xsiz+O.sdO)+ 1),1 ),nx) 
iy=minO(rnaxO((int((val(iyloc )-yrnn)/ysiz+O.s)+ I ), I ),ny) 
iz=minO(rnaxO((int((val(izloc )-zrnn)/zsiz+O.s)+ I ), I ),nz) 
if(only2d) iz = I 

II 
c 

var(ix,iy,iz) = val(ivrl) 
cond(ix,iy,iz) = .true. 
go to 10 
c1ose(lin) 

c Compute the averages and variances as an error check for the user: 
c 

c 

av = av 1 amaxl(dble(nd),l.O) 
ss =(ss 1 arnaxl(dble(nd),I.O» - av * av 
write(ldbg,*) 'Data for SASIM: Variable number ',ivrl 
write(ldbg, *)' Number of acceptable data = ',nd 
write(ldbg,*)' Equal Weighted Average = ',av 
write(ldbg, *)' Equal Weighted Variance = ',ss 

endif 

c 1127/97 : Calcuate the number of data points that is ~'ot conditioning data (noncond) 
c 

noncond=nx*ny*nz-nd 
c 
c Write a header on the output file and return: 
c 1/23/97 : Comment out by Tai-Sheng Liou 

c 
c write(lout,lOs) title 
c 105 forrnat(a80,l,'I',1,'simulated value') 

return 
c 
c Error in an Input File Somewhere: 
c 

97 stop 'ERROR in parameter file" 
98 stop 'ERROR in distribution file!' 
99 stop 'ERROR in data file" 

end 
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subroutine initmod 
c-----------------------------------------------------------------------------------------------------------------------------------,----------------------------
c 
c 
c 
c 

Initialization of Grid 
********************** 

c----------------------------------------------------------------------------------------------------------------------------------------------------------------

c 

include 'metro.inc' 
real*8 randnu(l) 
logical image 

c Initialize all nodes to some ralldom quantile: 
c 

call rand(seed, I ,randnu) 
seed = 0 

d06ix=l,nx 
d06 iy=l,ny 
d06iz=l,nz 

if(.not.cond(ix,iy,iz» var(ix,iy,iz)=O.dO 
6 continue 

c 
c 214/97 : Read the initial image file or automatically genreate the initial image by either non-parametric distribution or Gaussian 
c distribution, Tai-Sheng Liou 
c 

inquire(fiIe=imageinfl,exist=image) 
if (image) then 

read(limagein, *) 
read(limagein,*) nheader 
do i= I ,nheader 

read(limagein, *) 
end do 
do 10 iz=l,nz 
do 10 iy=l,ny 
do 10 ix= I ,nx 

read(limagein,*) dummy,dummy,dummy,var(ix,iy,iz) 
10 continue 

write(*, 15) imageinfl 
15 format(' Using ',a 15,' as initial image') 

write(*, *) 
else 

c 
c 1127/97: Draw a Monte Carlo Realization from either a Gaussian distribution (igauss.ne.O) or a non-parametric distribution 
c (igauss.eq.O), Tai-Sheng Liou 
c 

c 

if (igauss.eq.O) then 
do I i=I,nx 
do I j=l,ny 
do I z=1 ,nz 

c Only initialize if not a conditioning datum: 
c 

c 

if(cond(i,j,k» go to I 
call rand(seed, I ,randnu) 
call beyond(ncdf,cut,cdf,zmin,zmax,ltail, 

+ Itpar,utail,utpar, var(i ,j,k),randnu( I ),ierr) 
continue 

elseif (igauss.eq.l) then 
call gridxyz(seed) 

else 
call etapdf(seed) 

end if 
end if 
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c Renonnalize the variogram parameters to the variance of the realization if requested: 
c 

if(isill.eq.l) then 
c 
c Get current sill of variogram: 
c 

sill = cO 
do 2 i=I,nst 

·2 sill = sill + cc(i) 
c 
c Get variance of realization: 
c 

av =O.OdO 
ss = O.OdO 
do 3 i=I,nx 
d03j=I,ny 
do 3 k=I,nz 

av = av + var(i,j,k) 
ss = ss + var(i,j,k)*var(i,j,k) 

3 continue 
av = av I dble(nx*ny*nz) 
ss = ss I dble(nx*ny*nz) - av*av 

c 
c Now, scale the variogram parameters: 
c 

4 
c 

fac = sslsill 
cO =cO*fac 
do 4 i=I,nst 
cc(i) = cc(i) * fac 

c Also, scale the varrnod array: 
c 

do 5 i=I,nlag 
5 varmod(i) = varmod(i) * fac 

cndif 
c 
c Finished getting initial image: 
c 

return 
end 

subroutine rand(seed,n, vector) 
c------------------------------------------------------------------------------~-----------------------------------.---------------------------------------------

c 
c This random number generator generates random numbers in ]0,1 [ Note that if the seed value is zero on the first call, a default value 
c of 1369 will be used in a linear congruential generator to generate 55 odd integers for the array 'itabO'. These values are preserved 
c by a common statement, so that they may be used in subsequent calls by setting the seed to zeroJf the value of 'seed' is greater than 
c zero in a call to the subroutine, then the array 'itab' will be initialized and a new seed value will be returned by the subroutine. Best 
c results are obtained by making the initial call with a seed of your choice and then setting the seed to '0' for all subsequent calls. 
c 
c-----------------------------------------------c-----_. _______________________________ c ____________________ ------------------------------------------------------

c 

implicit real*8(a-h,o-z) 
real*8 vector(*)· 
common lunusuaVitab(55),n l,n2,nseed 
integer m I ,seed 

c Test to see if 55 odd integers must be generated. 
c 

if«seed.gt.O).or.(nseed.It.I» then 
nseed = seed 
if(seed.le.O) nseed = 7931 
dolOi=I,55 

m I =mod(nseed*9069,32768) 
if(mod(m-I,2).eq.0) ml = ml-I 
itab(i)=ml 
nseed = rn I 
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JO continue 

c 

nl =0 
n2=24 

endif 

c generate "n" random components for the vector "VECTOR" 
c 

do 30 i=I,n 
itab(SS-n I} = mod(itab(SS-n2}*itab(SS-n 1 },32768} 
vector(i} = abs(float(itab(SS-n I »/float(32768» 
nl = mod(nl+I,S5} 
n2 = mod(n2+I,55} 

30 continue 
if(seed.gt.O} seed=nseed 
return 
end 

subroutine locate(xx,n,is,ie,x,j} 
c----------------------------------------------------------------------------------------------------------------------------------------------------------------
c 
c Given an array "xx" of length "n", and given a value "x", this routine returns a value 'J" such that "x" is between xx(j} and xx(j+I}. 
C xx must be mOliotonic, either increasing or decreasing. j=O or j=n is returned to indicate that x is out of range. 
c 
c Modified to set the start and end points by "is" and "ie" 
c 
c Bisection Concept From "Numerical Recipes", Press et. a!. 1986 pp 90. 
c------------------------------------------------.--------------~------------------------------------------------------------------------------------------------

c 

implicit real*8(a-h,o-z} 
real*8 xx(n} 

c Initialize lower and upper methods: 
c 

c 

jl = is 
ju = ie 

c If we are not done then compute a midpoint: 
c 

JO if(ju-jl.gt.l} then 
jm = (ju+jl}/2 

c 
c Replace the lower or upper limit with the midpoint: 
c 

c 

if«xx(n}.gt.xx( I ».eqv .(x.gt.xx(jm))) then 
jl=jm 

else 
ju =jm 

endif 
go to JO 

endif 

c Return with the array index: 
c 

j =jl 
return 
end 

subroutine sortem(ib,ie,a,iperm,b,c,d,e,f,g,h) 
c----------------------------------------------------------------------------------------------------------------------------------------------------------------
c 
c 
c 
c 

Quickersort Subroutine 
********************** 

c This is a subroutine for sorting a real array in ascending order. This is a Fortran translation of algorithm 271, quickersort, by R.S. 
c Scowen in collected algorithms of the ACM. The method used is that of continually splitting the array into parts such that all 
c elements of one part are less than all elements of the other, with a third part in the middle consisting of one element. An element 
c with value t is chosen arbitrarily (here we choose the middle element). i andj give the lower and upper limits of the segment being 
c split. After the split a value q will have been found such that a(q}=t and a(I}<=t<=a(m} for all k=l<q<m<=j. The program then 
c performs operations on the two segments (i,q-I) and (q+1 ,j) as follows The smaller segment is split and the position of the larger 

210 



c segment is stored in the It and ut arrays. If the segment to be split contains two or fewer elements, it is sorted and another segment is 
c obtained from the It and ut arrays. When no more segments remain, the array is completely sorted. 
c 
c 
c INPUT PARAMETERS: 
c 
c ib,ie 
c a 
c iperm 
c 
c 
c 
c 
c 
c 
c 
c 
c 

start and end index of the array to be sorteda 
array, a portion of which has to be sorted. ° no other array is permuted. 
I array b is permuted according to array a 
2 arrays b,c are permuted. 
3 arrays b,c,d are permuted. 
4 arrays b,c,d,e are permuted. 
5 arrays b,c,d,eJ are permuted. 
6 arrays b,c,d,eJ,g are permuted. 
7 arrays b,c,d,eJ,g,h are permuted. 

>7 no other array is permuted. 

c b,c,d,eJ,g,h arrays to be permuted according to array a. 
c 
c OUTPUT PARAMETERS: 
c 
c a = the array, a portion of which has been sorted. 
c 
c b,c,d,eJ,g,h =arrays permuted according to array a (see iperm) 
c 
c NO EXTERNAL ROUTINES REQUIRED: 
c 
c---------------------------------------,-----------------------------------------------------------------------------------------------------------------------
implicit real*S(a-h,o-z) 

real*S a(*),b(*),c(*),d(*),e(*),f(*),g(*),h(*) 
c 
c The dimensions for It and ut have to be at least log (base 2) n 
c 

integer It(64),ut(64),i,j,k,m,p,q 
c 
c Initialize: 
c 

c 

'=ie 
m = I 
i =ib 
iring = iperm+ I 
if (iperm.gt.7) iring= I 

c If this segment has more than two elements we split it 
c 
10 if(j-i-I) 100,90,15 

c 
c P is the position of an arbitrary element in the segment we choose the middle element. Under certain circumstances it may be 
c advantageous to choose p at random. 
c 
15 p = (j+i)12 

ta = alp) 
a(p) = ali) 
go to (21, 19,IS,17,16,161, 162,163),iring 

163 th = hlp) 
h(p) = h(i) 

162 tg = g(p) 
g(p) = g(i) 

161 tf = f(p) 
f(p) = f(i) 

16 te =e(p) 
e(p) = eli) 

17 td =d(p) 
d(p) = d(i) 

IS tc = c(p) 
c(p) = c(i) 

19 tb = b(p) 
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b(p)=b(i) 
21 continue 

c 
c Start at the beginning of the segment. search for k such that a(k»t 
c 

q =j 
k =i 

20 k=k+1 

c 

if(k.gt.q) go to 60 
if(a(k).Ie.ta) go to 20 

c Such an element has now been found now search for a q such that a(q)1 starting at the end of the segment. 
c 
30 continue 

if(a(q).It.ta) go to 40 
q =q-I 

c 

if(q.gt.k) go to 30 
go to 50 

c a(q) has now been found. we interchange a(q) and a(k) 
c 
40 xa = a(k) 

a(k) = a(q) 
a(q) = xa 
go to (45,44,43,42,4IAIIAI2,413),iring 

413 xh = h(k) . 
h(k) = h(q) 
h(q) = xh 

412 xg = g(k) 
g(k) = g(q) 
g(q) = xg 

411 xf = f(k) 
f(k) = f(q) 
f(q) = xf 

41 xe = e(k) 
e(k) = e(q) 
e(q) = xe 

42 xd = d(k) 
d(k) = d(q) 
d(q) = xd 

43 xc = c(k) 
c(k) = c(q) 
c(q) = xc 

44 xb = b(k) 
b(k) = b(q) 
b(q) = xb 

45 continue 
c 
c Update q and search for another pair to interchange: 
c 

q =q-I 
go to 20 

50 q=k-I 
60 continue 
c· 
c The upwards search has now met the downwards search: 
c 

a(i)=a(q) 
a(q)=ta 
go to (65,64,63,62,61 ,611,612,613),iring 

613 h(i)=h(q) 
h(q) = th 

612 g(i)=g(q), 
g(q) = tg 

611 f(i) = f(q) 
f(q) = If 

61 e(i)=e(q) 
e(q) = te 
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62 d(i) = d(q) 
d(q) = td 

63 c(i) = c(q) 
c(q) = tc 

64 b(i) = b(q) 
b(q) = tb 

65 continue 
c 
c The segment is now divided in three parts: (i,q-I),(q),(q+ I j) store the position of the largest segment in It and ut 
c 

if C2*q.le.i+j) go to 70 
It(m) = i 
ut(m)=q-I. 
i =q+1 
go to 80 

70 It(m) = q+1 
ut(m) = j 
j = q-I 

c 
cUpdate m and split the new smaller segment 
c 
80 m=m+1 

go to 10 
c 
c We arrive here if the segment has two elements we test to see if the segment is properly ordered if not, we perform an interchange 
c 
90 continue 

if (a(i).Ie.a(j» go to 100 
xa=a(i) 
a(i)~a(j) 

a(j)=xa 
go to (95,94,93,92,91 ,911,912,913),iring 

913 xh = h(i) 
h(i) = h(j) 
h(j) = xh 

912 xg = g(i) 
g(i) = g(j) 
g(j) = xg 

911 xf = f(i) 

c 

f(i) = f(j) 
f(j) = xf 

91 xe = e(i) 
e(i) = e(j) 
e(j) = xe 

92 xd =d(i) 
d(i) =d(j) 
d(j) = xd 

93 xc = c(i) 
c(i) = c(j) 
c(j) = xc 

94 xb = b(i) 
b(i)= b(j) 
b(j) = xb 

95 continue 

c If It and ut contain more segments to be sorted repeat process: 
c 
100 m=m-I 

if (m.le.O) go to 110 
i=lt(m) 
j =ut(m) 
go to 10 

110 continue 
return 
end 
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subroutine beyond(ncut,cut.cdf,zmin,zmax,ltail,ltpar,utail,utpar, 
+ zval,cdfval,ierr) 

c----------------------------------------------------------------------------------------------------------------------------------------------------------------
c 
c 
c 
c 

Go Beyond a Discrete CDF 
************************ 

c This subroutine is a general purpose subroutine to interpolate within and extrapolate beyond discrete points on a conditional CDF. If 
c the Z value "zval" is specified then the corresponding CDF value "cdfval" will be computed, if the CDF value "cdfval" is specified 
c the corresponding Z value "zval" will be computed. 
c 
c 
c 
c INPUT/OUTPUT VARIABLES: 
c 
c ncut 
c cutO 
c cdfO 
c 

number of cutoffs defining the global CDF 
real array of the ncut cutoffs 
real array of the global cdf values 

c zmin,zmax minimum and maximum allowable data values 
c ltail option to handle values in lower tail 
c Itpar parameter required for option Itail 
c utail option to handle values in upper tail 
c utpar parameter required for option utail 
c 
c zval 
c cdfval 
c 
c ierr 
c 
c 
c 
c 
c 

interesting cutoff (if -I then it is calculated) 
interesting CDF (if - I then it is calculated) 

error flag: 0 - no problem 
1 - both zval or cdfval can not be 

defined or undefined 
2 - invalid parameters 

c Original: C. V. Deutsch October 1991 
c-----------------------------------------------------_____ . _________ c ______________________________________ ----------"-------------------------------------------

c 

implicit real*8(a-h,o-z) 
parameter(EPSLON= I.Od-20,VNEST=-I.OdO) 
dimension cui(ncut),cdf(ncut) 
real*8 utpar,ltpar,lambda 
integer ltail,utail 

c Figure out what part of distribution: ipart = 0 - lower tail 
c ipart= I - middle 
c ' ipart = 2 - upper tail 

c 

ipart = 1 
if(cdfval.le.cdf(l» ipart = 0 
if(cdfval.ge.cdf(ncut» ipart = 2 

c ARE WE IN THE LOWER TAIL? 
c 

c 

if(ipart.eq.O) then 
if(ltail.eq.l) then 

c Straight Linear Interpolation: 
c 

c 

powr = I.OdO 
zval = powint(O.OdO,cdf( 1 ),zmin,cut( I ),cdfval,powr) 

else if(ltail.eq.2) then 

c Power Model interpolation to lower limit "zmin"? 
c 

c 

cpow = I .OdO / Itpar 
zval = powint(O.OdO,cdf( I ),zmin,cut( 1 ),cdfval,cpow) 

else 

c Error situation - unacceptable option: 
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c 

c 

ierr = 2 
return 

endif 
endif 

c FINISHED THE LOWER TAIL, ARE WE IN THE MIDDLE? 
c 

if(ipart.eq.l) then 
c 
c Linear interpolation between the rescaled global cdf? 
c 

c 

call locate(cdf,ncut, I ,ncut,cdfval,ilow) 
ihigh = ilow + I 
powr = I.OdO 
zval = powint(cdf(i1ow),cdf(ihigh),cut(ilow),cut(ihigh), 

+ cdfval,powr) . 
endif 

c FINISHED THE MIDDLE, ARE WE IN THE UPPER TAIL? 
c 

if(ipart.eq.2) then 
if(utail.eq.l) then 

powr= I.OdO 
zval = powint(cdf(ncut),l.dO,cut(ncut),zmax,cdfval,powr) 

else if(utail.eq.2) then 
c 
c Power interpolation to upper limit "utpat"? 
c 

cpow =' I.OdO I utpar 
zval = powint(cdf(ncut),I.dO,cut(ncut),zmax,cdfval,cpow) 

c 
c Fit a Hyperbolic Distribution? 
c 

else if(utail.eq.4) then 
c 
c Figure out "lambda" and required info: 
c 

c 

lambda = (cut(ncut)**utpar)*(1.OdO-cdf(ncut)) 
zval = (lambdal(I.OdO-cdfval))**{I.0dO/utpar) 

else 

c Error situation - unacceptable option: 
c 

c 

ierr = 2 
return 

endif 
·endif 
if(zval.gLzrnax) tval = zmax 

c All finished - return: 
c 

return 
end 

real*8 function powint(xlow,xhigh,ylow,yhigh,xval,pow) 
c-------------------.---------------------------------------------------------------------------------------------------------------------------------------------
c 
c Power interpolate the value of y between (xlow,ylow) and (xhigh,yhigh) for a value of x and a power pow. 
c 
c----------------------------------------------------------------------------------------------.---------------------------------------~--------------------------

implicit real*8(a-h,o-z) 
parameter(EPSLON= 1.Od-20) 
powint = ylow + (yhigh-ylow)* 

+ «(xval-xlow)/arnaxl(EPSLON,(xhigh-xlow»)**pow) 
return 
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end 

real*8 function ginv(p,ymean,ystd,itrans) 
c----------------------------------------------------------------------------------------------------------------------------------------------------------------
c 
c Computes the inverse of the standard normal cumulative distribution function with a numerical approximation from: Abramovitz, 
c M. and Stegun, I., 1972, handbook of mathematical functions, 10th printing, National Bureau of Standards, p. 933. 
c 
c----------------------------------------------------------------------------------------------------------------------------------------------------------------
c 
c Coefficients of approximation: 
c 

c 

implicit real*8(a-h,o-z) 
data c0I2.5 155 17dO/,c 1/.802853dO/,c21.010328dOI 
data d 1I1.432788dO/,d2l.189269dO/,d3/.00 1308dOl 

c Values for + and - infinity: 
c 

data gnegl-5.0dO/,gposl5.0dOI 
c 
c Check for probability = 0 or I 
c 

c 

if(p.le.O.OdO) then 
ginv =gneg 

else if(p.ge.I.OdO) then 
ginv =gpos 

c Approximate the function: 
c 

c 

else 
pp=p 
if(pp.ge.O.5dO) pp = \.OdO - pp 
t = dsqrt(dlog(l.dO/(pp*pp))) 
t2 = t*t 
t3 = t2*t 
ginv = t - (cO+c1 *t+c2*t2)/(1 +dl *t+d2*t2+d3*t3) 
if(p.eq.pp) ginv=-ginv' 

endif 
if (itrans.ge.l) then 

ginv=dexp(ystd*ginv+ymean) 
end if 

c Return with ginv: 
c 

return 
end 

subroutine getJag 
c----------------------------------------------------------------------------------------------------------------------------------------------------------------
c Establish the number and location of the lags to consider 
c ********************************************************* 
c 
c 
c 
c Author: C.V. Deutsch Date: April 1992 
c---------------------------------------------------------------------------------------------------------------------------------------------------------------

include 'metro.inc' 
real*8' maxcov 

c real*8 dist(max1ag) 
logical covaf 

c 
c Compute maximum covariance: 
c 

covaf = .true. 
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maxcov = cova3(0.OdO,0.OdO,0.0d0,0.0d0,0.OdO,0.OdO,nst,cO,it, 
+ cmax,cc,aa,angl ,ang2,ang3,anis I ,anis2,covaf) 
covaf = .false. 

c 
c Initialize the variogram and lag arrays: 
c 

do I i=l,nlag 
varmod(i) = I.Od+20 

c dist(i) = 1.0dlO 
ixl(i) = 0 
iyl(i) =0 
izl(i) =0 

continue 
c 
c Calculate the Experimental Variogram: 
c 

na =0 
nxl = n)(/2 
nyl = ny/2 
nzl = nzl2 
do 20 ix=O,nxl 
do 20 iy=-nyl,nyl 
do 20 iz=-nzl,nzl 

if(ix.eq.O.and-iy.eq.O.and-iz.eq.O) go to 2 
if(ix.eq.O.and-iy.le.O.and-iz.le.O) go to 2 
dx = dble(ix) * xsiz 
dy = dble(iy) * ysiz 
dz = dble(iz) * zsiz 

c dxyz=sqdist(O.dO,O.dO,O.dO,dx,dy,dz,ang I ,ang2, 
c +ang3 ,anis I ,anis2) 

vario = maxcov - cova3(0.OdO,0.0d0,0.OdO,dx,dy,dz,nst,cO,it, 
+ cmax,cc,aa,ang I ,ang2,ang3 ,anis I , 
+ anis2,covaf) 

if(na.eq.nlag.and. vario.gt. varmod(na» go to 2 
c if(na.eq.rilag.and.dxyz.gt.dist(na» goto 2 
c 
c Consider this sample (it will be added in the correct location): 
c 

if(na.lt.nlag) na = na + I 
c dono=l,na 
c if (vario.eq.varmod(no» goto 20 
c if (dxyz.eq.dist(no»goto 20 
c end do 

ixl(na) =ix 
iyl(na) = iy 
izl(na) = iz 
varmod(na) = varia 

c dist(na)=dxyz 
if(na.eq.l) go to 2 

c 
c Sort samples found thus far in increasing order of distance: 
c 

nl =na-I 
do 3 ii=l,nl 

k=ii 
if(vario.lt. varmod(ii» then 

c if(dxyz.lt.dist(ii» then 
jk= 0 
do 4.ij=k,nl 

j =nl-jk 
jk = jk+1 
jl =j+1 
varmodG I) = varmodO) 

c distG l)=distO) 
ixl(j I) = ixl(j) 
iyl(jl) = iylO) 
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izl(j I ) = izl(j) 
4 continue 

varmod(k) = vario 
c dist(k)=dxyz 

ixl(k) = ix 
iyl(k) = iy 
izl(k) = iz 
got02 

endif 
3 continue 

c 
c 1122197 : The following debugging information are added by Tai-Sheng Liou to see how lags are chosen 
c 

2 if (na.eq.nlag.and. vario.gt. varmod(na»goto 20 
c 2 if (na.eq.nlag.and.dxyz.gt.dist(na» goto 20 

20 continue 
c minus=1 

c do i=I,nlag 
c iyl(i)=iyl(i)*( -I )**minus 
c minus=minus+1 
c dx=ixl(i)*xsiz 
c dy=iyl(i)*ysiz 
c dz=izl(i)*zsiz 
c varmod(i)=maxcov-cova3(0.OdO,O.OdO,O.OdO,dx,dy,dz,nst,cO,it, 
c + cmax,cc,aa,angl,ang2,ang3:anisl, 
c + anis2,covaf) 
c end do 

c 
c Debugging information: 
c 

write(ldbg, 100) nlag 
100 format(fClosest ',i3,' lags: Lag number variogram offsets') 

do 10 i=I,nlag 
write(ldbg,l 01) i, varmod(i),ixl(i),iyl(i),izl(i) 

c 
c 1/22197 : The following line is added by Tai-Sheng Liou 

l 

c write(7788,101) i,varmod(i),ixl(i),iyl(i),izl(i) 
c 
101 fomiat(i2,lx,fI2.4,3i3) 
10 continue 

c 
c Return with the closest lags: 
c 

return 
end 

. subroutine gridxyz(iseed) 
c----------------------------------------------------------------------------------------------------------------------------------------------------------------
c 
c This subroutine generate a sample that honors the input mean and variance of the variable on the non-conditioning points. The 
c probability distribution of the variable is assumed to be log-normal. 
c 
c Input: 
c ymean : Mean of In(x) [y=ln(x)] 
c ystd: S.T.D. of In(x) 
c iseed : Initial seed number 
c 
c Output: 
c var(nx,ny,nz) : Image of the random field in the grid 
c 
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c Remark: 
c noncond = # of data points that are not conditioning data 
c 
c------------------.----------------------------------------------------------------------------------~-----------------------------------------------------------

c 

include 'metro.inc' 
real*8 xtry(maxx,maxy,maxz),xsave(50),pasp(50) 
logical image 

c Generate the initial image in the grid 
c (The conditioning data is not changed) 
c 

c 

p=getrand(iseed) 
iseed=O 
nxyz=nx*ny*nz 

c 2110/97 : Define xcut,i.e., the cutoff value of z 
c (I) itrans= I : z'=max(z-xcut,xcutO) 
c (2) itrans=2 : z'=max(z,xcutO) 
c xcutO=minimum PM (or Ks) value 
c 
c i.e. if itrans= I and XCUl.ne.O, use input value as cutoff PM value 
.c ifitrans=1 and xcut=O, xcut=LN-I(pcut,ymean,ystd) 
c if itrans=2, the cutoff PM value(xcut) is defaulted as 0.0 
c 

c 
c-----Reset cutoff PM (or Ks) value (xcul) to zero if itrans=2 
c If itrans=1 and xcut=O => iterate until pasp=ptarget 
c If itrans=1 and xcut>O => no iterations, transform z'=max(z-xcut,xcutO) 
c 

if (itrans.eq.2) xcut=O.O 
cutsave=xcut 
write(*,20) xcut 
write(* ~ *)'*******************~************** *** ****** **' 

20 formatC Initial PM cutoff = ',t7A) 

c 
c Check again the type of simulation: 
c 

c 

write(*,*) 
write(ldbg, *) 
if(igauss.eq.O) then 

write(* ,*) 'You are using a non-parametric distribution _ . .' 
write(ldbg, *) 'You are using a non-parametric distribution .. .' 

elseif (igauss.eq.l) then 
inquire( fi le=imageinfl,exist=image) 
if (.not.irnage) then 
write(*, *) 'You are simulating standard nonnal deviates .. .' 
write(ldbg,'*) 'You are simulating standard nonnal deviates .. .' 
end if 

end if 

c 21 13/97 : Define the value of asperity contact. 
c (a) The lowest possible of LN variate, i.e., ginv(O.O, ... ) 
c (b) A very small value defined by user, e.g., I :Oe-4 
c 
c 7/14/97 : Iterate the generating process until the proportion of asperity contact reaches the target proportion, ptarget 
c 

xcutO=aspcut 
do i=I,50 

pasp(iter)=O.dO 
xsave(iter)=O.dO 

end do 
iter=! 
psave=O.dO 
pdif=l.dO 
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c 

smean=O.dO 
smeanln=O.dO 

if (itrans.eq.2) then 
if(pcut.eq.ptarget)then 
do 17 i=I,nx. 
do 17 j=I,ny 
do ITk=I,nz 

if(.not.cond(i,j,k»then 
p=getrand(iseed) 
var(ij,k)=ginv(p,ymean,ystd,itrans) 
do while(var(i,j,k).gt.zmax.or.var(i,j,k).lt.zmin) 

p=getrand(iseed) 
var(ij,k)=ginv(p,ymean,ystd,itrans) 

end do 
end if 
smean=smean+var(i,j,k) 

17 continue 
else 
nop=nxyz*( l.dO-pcut) 
dowhile(nop.gt.nxyz*(ptarget-pcut» 

13 i I = int(getrand(seed)*nx)+ I 
j I = int(getrand(seed)*ny)+ I 
kl=1 
if(var(il jl,kl ).ne.O.O.or.cond(iI,j I,kl» go to 13 
p=getrand(iseed) 
var(i I j I,kl )=~nv(p,ymean,ystd,itrans) 

c do while(var(i I,jl,kl).gt.zmax.or.var(i I j I,kl).lt.zmin) 
c p=getrand(iseed) . 
c var(il j I,kl )=ginv(p,ymean,ystd,itrans) 
c end do 

if(var(il,j I,kl ).gt.zmax)var(i I,j I,kl)=zmax 
if(var(il jl,kl).lt.zmax)var(il,jl,kl )=zmin 
smean=smean+var(il,j I,kl) 
nop=nop-I 

end do 
end if 

else 
if(xcut.eq.O)then 
DOWHILE(pdif.gt. I.Od-3) 
smean=O.OdO 
smeanln=O.dO 
if(iter.eq.2) then 

xsave(iter)=ginv(pcut,ymean,ystd,itrans) 
elseif(iter.gt.2) then . 

xsave(iter)=(ptarget-pasp( I »*xsave(iter-I)I 
+ (pasp(iter-I )-pasp(1» 

end if 
if(iter.ge.2)xcut=xsave(iter) 
do I i=I,nx 
do I j=I,ny 
do I k=I,nz. 

p=getrand(iseed) 
if (.not.cond(i,j,k» then 

xtry(i,j,k)=ginv(p,ymean,ystd,itrans) 
var(i j,k)=arnax I (xtry(i ,j,k)-xcut,xcutO) 
if(var(ij,k).gt.zrnax)var(i,j,k)=zmax 
if(var(ij,k).It.zmin)var(ij,k)=zmin 

else 
var(i,j,k)=xcutO 

end if 
if(var(i,j,k).eq.xcutO) pasp(iter)=pasp(iter)+ l.dO 
smean=smean+var(i,j,k) 
if(var(i,j,k).gt.O.dO)smeanln=smeanln+dlog(var(i,j,k» 

continue 
pasp(iter)=pasp(iter)/dble(nxyz) 
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write(*,3) iter,xcut,ptarget,pasp(iter) 
paspsave=pasp(iter) 

3 fonnatC iter=',i2; cut=',n.4; ptarget=',f6.2; pasp=', 
+ e20.9) 

psave=pasp(iter) 
iter=iter+ I 
pdi f=abs(ptarget -psa ve) 
if (ptarget.eq.O.dO) pdif=O.dO 
END DO 
else 
do III i=I,nx 
do III j=l.ny 
do III k=l,nz 

p=getrand(iseed) 
if (.not.cond(i,j,k» then 

xtry(i,j,k)=ginv(p,ymean,ystd,itrans) 
var(i,j,k)=amax l(xtry(i,j,k)-xcut,xcutO) 
if(var(i,j;k).gt.zmax)var(i,j,k)=zmax 
if(var(ij,k).It.zmin)var(i,j,k)=zmin 

else 
var(i,j,k)=xcutO 

end if 
if(var(ij,k).eq.xcutO) pasp(iter)=pasp(iter)+ l.dO 
smean=smean+var(i,j,k) 
if(var(i,j,k).gt.O.dO)smeanin=smeanln+dlog(var(i,j,k» 

III continue 
end if 

end if 

smean=smeaIildble(nxyz) 
smeanln=smeanlnldble(nxyz) 
sstd=O.OdO 
sstdln=O.dO 
do2 i=I,nx 
do 2j=I,ny 
do 2 k=I,nz 

sstd=sstd+(var(i,j,k)-smean)*(var(i,j,k)-smean) 
if(var(i,j,k).gt.O.dO)sstdln=sstdln+(dlog(var(i,j,k»­

* smeanln)*(dlog(var(i,j,k»-smeanln) 
2 . continue 

sstd=dsqrt(sstdl(dble(nxyz)-I.dO» 
sstdln=dsqrt(sstdlnJ(dble(nxyz)-I.dO» 
write(*,*) 
write(*,60) smeanln,sstdln*sstdln 
write(*,70) smean,sstd*sstd 
write(ldbg, *) 

c write(ldbg,60) smeanlnx,sstdlnx *sstdlnx . 

c 

write(ldbg,70) smean,sstd*sstd 
if(imageoutfl(l: 1O).ne.'nodata.dat') then 

write(limageout, *) 'Initial image data' 
write(limageout, *) 5 
write(limageout,*) 'X location' 
write(limageout, *) 'Y location' 
write(limageout,*) 'Z location' 
write(limageout, *) 'k before the cutoff 
write(limageout, *) 'k after the cutoff 

c change ymn to yini for output using DEPTH as the vertical distance 
c 

do 40 i=l,nx 
do40j=l,ny 
do 40 k=l,nz 

xx=xmn+xsiz*dble(i-I) 
yy=ymn+ysiz*dble(j-I) 
zz=zmn+zsiz*dble(k -I) 
write(limageout,30) xx,yy ,zz,xtry(i,j,k), var(i,j,k) 
if (var(i,j,k).eq.xcutO) then 

if(.not.cond(i,j,k»then 
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write(550,30) xx,yy,zz,O.O 
end if 

end if 
40 continue 

end if 
c1ose(limageout) 

30 format(3(f6.2,2x),2fl 0.4) 
60 formatC Generated statistics of In(PM) : mean= ',eI2.4: Var =', 

+ eI2.4) 
70 formatC Generated statistics of PM : mean= ',e I 2.4: Var = " 

+ e12.4) 

return 
end 

subroutine etapdf(iseed) 
c-----------------------------------------------------________________________ c. ____________________________ ------------------------------------------------------

C 

c This subroutine generates a sample that uses user-specified pdf (CDP) with the following three options: 
c 
c Case I: log-normal (see gridxyz above) 
c 
c Case 2 :(Exponential) 
c f(x)= 0.25 d(x) x<=o 
c f(x)= lumda*exp(-Iumda*x) x>O 
c 
c Case 3 : step-wise uniform 
c f(x)= 0.25 d(x) x<=o 
c f(x)= 0.1 O<x<1 
c f(x)= 0.0625 !<x=5 
c f(x)= 0.02 5<x<1O 
c f(x)= 0.01 lO<x<=25 
c f(x)= 0.004 25<x<=50 
c f(x)= 0.001 50<x<=100 
c 
c----------------------------------------------------------------------------------------------------------------------------------------------------------------

include 'metro.inc' 
real*8 xtry(maxx,maxy,maxz),xsave(50),pasp(50) 
real*8 lumbda . 

c 
c Generate the initial image in ihe grid 
c (The conditioning data is not changed) 
c 

c 

smean=O.OdO 
p=getrand(iseed) 
iseed=O 
nxyz=nx*ny*nz 

c Set non-conditioning data to 0.000 
c 

nocond=O 
do 3 i=I,nx 
d03j=l,ny 
do 3 k=I,nz 

if (not.cond(i,j,k» var(i,j,k)=O.OdO 
if (cond(i,j,k»nocond=nocond+ I 

3 continue 

c 
c Check ag,ain the type of simulation: 
c 

write(*,*) 
write(ldbg, *) 
if(igauss.gt.2) then . 

icase=igauss-I 
write(*,*) 'You are using ',icase: -th kind ofCDF 
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c 

write(\dbg,*) 'You are using ',icase,' -th kind ofCDF 
end if 

c 6/30/97 : Generate initial permeability field using 
c user-defined CDF 
c 

c 

nop=O 
nopmax= I 0000*( l.dO-ptarget) 
icase=igauss-I 
if(icase.eq.2)then 

c Case 2 -- 25% exponentially decayed pdf with 
c 
c p(x)=lumda*exp( -Iumda*x), CDF(x)=O.25+O.75*( I-exp( -Iumbda*x» 
c lumbda=lI(mean of PM) 

c 

lumbda=0.065 
write(\dbg,*) 'lumbda=',lumbda 
write(\dbg,*) 'nop = ',nop 
write(\dbg, *) 'ptarget=' ,ptarget 
write(\dbg, *) 'nopmax=' ,noprnax 
write(\dbg,*) 'xcutO=',xcutO 
if (pcut.eq.ptarget)then 

c Assign pm values to grid blocks sequentially if fraction of conditioning data is exactly ptarget 
c 

do 100 i= I ,nx 
do lOOj=l,ny 
do 100 z=1,nz 

if(.not.cond(i,j,k»then 
do while(var(i,j,k).eq.xcutO) 

c .or. var(i,j,k).gt.zmax.or. var(i,j,k).It.zmin) 
p=getrand(iseed) 
i f(p. gt. ptarget )var( i ,j ,k )=-dlog( l.dO-(p-ptarget)1 

+ (l.dO-ptarget»lIumbda 
end do 
if(var(i,j,k).gt.zmax)var(i,j,k)=zmax 
if(var(i,j,k).It.zmin)var(i,j,k)=zmin 
end if 

100 continue 
else 

c 
c Assign pm values to grid blocks randomly if fraction of conditioning data is less than ptarget 
c 

6 
do while(nop.lt.nopmax) 

i=int(getrand(iseed)*nx)+ I 
j=int(getrand(iseed)*ny)+ I 
k=1 
if(var(i,j,k).ne.xcutO.or.cond(i,j,k))goto 6 
do while(var(i,j,k).eq.xcutO) . 

c .or. var(i,j,k).gt.zmax.or. var(i,j,k).It.zmin) 
p=getrand(iseed) 
if(p.gt.ptarget)var(i,j,k)=-dlog( l.dO-(p-ptarget)1 

c 

+ (l.dO-ptarget»lIumbda 
end do 
if(var(i,j,k).gt.zmax)var(i,j,k)=zmax 
if(var(i,j,k).lt.zmin)var(i,j,k)=zmin 
if(p.gt.ptarget)nop=nop+ I 

end do 
write(*, *) 'End of generating sample data' 

end if 

c Case 3 -- 25% of total asperity contacts 
c 

elseif(icase.eq.3)then 
if(pcut.eq.ptarget)then 

, . 
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c 
c Assign pm values to grid blocks sequentially if fraction of conditioning data is exactly ptarget 
c 

do 200 i=l,nx 
do 200 j=1 ,ny 
do 200 k= I,nz 
do while (p.lt.0.2S.or.p.gt.l.dO) 
p=getrand(iseed) 
if(p.gt.0.2S.and.p.le.0.3S)var(i,j,k)=(p-O.2S)/0.ldO 
if(p.gt.0.3S.and.p.le.0.60)var(i,j,k)=I.+(p-0.35)/6.25d-2 
if(p.gt.0.60.and.p.le.0.70)var(i,j,k)=5.+(p-0.60)l2.d-2 
if(p.gt.O. 70.and.p.le.0.85)var(i,j,k)= 10. +(p-O. 70)/I.d-2 
if(p.gt.0.85.and.p.le.0.95)var(i,j,k)=25.+(p-0.85)/4.0d-3. 
if(p.gt.0.95.and.p.le.I.00)var(i,j,k)=50.+(p-O.95)/I.d-3 

end do 
200 continue 

else 
c 
c Assign pm values to grid blocks randomly if fraction of conditioning data is less than ptarget 
c 

do while (nop.lt.nopmax) 
7 i = int(getrand(seed)*nx)+ I 

j = int(getrand(seed)*ny)+ I 
k= I 
if(var(i,j,k).ne.O.O.or.cond(i,j,k)) go to 7 
p=getrand(iseed) 

if(p.gt.0.2S.and.p.le.0.3S)var(i,j,k)=(p-O.25)/0.ldO 
if(p.gt.0.35 .and.p.le.0.60)var(i,j,k)= 1.+(p-0.35)16.25d-2 
if(p.gt.0.60.and.p.le.0.70)var(i,j,k)=5.+(p-0.60)l2.d-2 
if(p. gt.O. 70 .and. p .Ie. 0 .85 )var(i,j ,k)= 1 O. +(p-O. 70)/l.d-2 
if(p. gt.O .85 .and. p .le.O. 95 )var( i ,j ,k)=25. +(p-O. 85 )/4.0d-3 
if(p.gt.0.95.and.p.le.I.00)var(i,j,k)=50.+(p-0.95)/l.d-3 
if(p.gt.0.25.and.p.le.I.0) nop=nop+ I 

c elseif(icase.eq.4) then 
c 
c Case 4-- 30% of total asperity contacts 
c 
c if(p.gt.0.25.and.p.le.0.30)var(i,j,k)=(p-0.25)/0.05dO 
.c if(p.gt.0.30.and.p.le.0.40)var(i,j,k)=I.+(p-0.30)/2.5d-2 
c if(p.gt.0.40.and.p.le.0.45)var(i,j,k)=5.+(p-0.40)II.d-2 
c if(p.gt.0.45 .and.p.le.O.5S )var(i,j ,k);' I O.+(p-0.45)/6.66667d-3 
c if(p.gt.0.55.and.p.le.0.65)var(ij,k)=25.+(p-0.55)/4.0d-3 
c if(p.gt.0.6S.and.p.le.0.75)var(ij,k)=50+(p-0.6S)/4.d-3 
c if(p.gt.0.75.and.p.le.I.00)var(ij,k)= 75.+(p-0.75)II.d-2 
c if(p.gt.0.25.and.p.le.1.0) nop=nop+1 

end do 
end if 
end if 

smean=O.O 
doS i=l,nx 
do 5 j=l,ny 
do 5 k=l,nz 

smean=smean+var(i,j,k) 
5 continue 
10 write(*, *) 

write(*,*) 'nop = ',nop 
smean=smeanldble(nxyz) 
sstd=O.OdO 
do 2 i=l,nx 
do2j=l,ny 
do2 k=l,nz 

sstd=sstd+( var( i ,j ,k )-smean)* (var( i ,j ,k )-smean) 
2 continue 

sstd=sqrt(sstdl(dble(nxyz)-I.dO)) 
write(*, *) 
write(ldbg, *) 
write(*,70) smean,sstd*sstd 
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write(ldbg,70) smean,sstd*sstd 
c 
c change ymn to yini' for output using DEfYfH as the vertical distance 
c 
c yinit=-(ysiz*dble(ny)-ysizl2.dO) 

if(imageoutfl( I: 1O).ne.'nodata.dat') then 
write(limageout, *) 'Initial image data' 
write(limageout, *) 5 
write(limageout, *) 'X location' 
write(limageout, *) 'Y location' 
write(limageout,*) 'z location' 
write(limageout, *) 'k before the cutoff 
write(limageout, *) 'k after the cutoff 
do 40 i=1 ,nx 
d040j=l,ny 
do 40 k=l,nz 

xx=xmn+xsiz*dble(i-I) 
yy=ymn+ysiz*dble(j-I) 
zz=zmn+zsiz*dble(k-I) 
write(limageout,30) xx,yy,zz,var(i,j,k),O.O 
if(var(i,j,k).eq.O.dO) then 

if( .not.cond(i,j ,k) )then 
c yy=yinit+ysiz*dble(j-I) 

write(550,30) xx,yy,zz,O.O 
end if 

end if 
40 continue 

end if 
c1ose(limageout) 

30 format(3(f6.2,2x),2fI 0.4) 
60 format(, Generated statistics of In(PM) : mean= ',f7.3: Var = " 

+ f11.3) 
70 format(, Generated statistics of PM : mean= ',f7.3: Var =', 

+ f11.3) 

return 
end 
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(3) Sample input file 

Parameters for SASIM 
******************** 

START OF PARAMETERS: 
nodata.dat 
image.dat 
asperity.dat 
I 203 
-1.0e21 1.0e21 
nodata.dat 
3 0 
0.0 
I 
4 

100.0 
1.0 
2.0 

case.dat 
var.dat 
varh.dat 
varv.dat 
3 5000000, 25000000 
case.dbg 
nodata.dat 

1.00.950.05.0 3 1.0d-7 
I 
112063 
I 
100 0.1 0.2 
100 -19.9 0.2 
I 0.5 1.0 
14 3 
I 0.00 
2 0.2 190.0 
0.0 0.0 0.0 1.0 1.0 
o 4.0 
I 1.0 
1.0 1.5 I 
0.10 0.0 0.0 0.25 
o 
2 

Notes: 

\input initial image fi Ie 
\output initial image file 
\conditioning data (if any) 
\columns: x,y,z, vr 
\data trimming limits O=non parametric; l=Gaussian; 2=left open; 3=Exp: 4=step-wise uniform) 
\non parametric distribution 
\columns: vr,wt 
\minimum and maximum data values 
\lower tail option and parameter 
\upper tail option and parameter 
\output File for simulation 
\output File for variogram 
\output file for hori. variogram 
\output file for ver. variogram 
\debug level, reporting interval 
\output file for debugging 
\output file for lag information 
\annealing schedule? (0-3 with O=user supplied, l=default, 2=fast, 3=very fast) 
\manual schedule: to,lambda,ka,k,e,Omin 
\1 or 2 part objective function 
\random number seed 
\number of simulations 
\nx,xmn,xsiz 
\ny,ymn,ysiz 
\nz,zmn,zsiz 
\max lags for conditioning 
\nst, nugget, (J=renormalize) 
\it,aa,CC: STRUCTURE I 
\angl, ang2, ang3, anis I, anis2: 
\iedge(l:yes,O:no),wedge 
\icond(J :yes, O:no),wcond 
\mlnk,stdlnk,itrans 
\pcut ,aspcut(xcutO), xcut, ptarget 
\O:standard, I :modified Metropolis algori'thm 
\1 : first hbhd, 2:second nbhd 
\imod.(different perturbation mechanisms) 
\ifield (l(O)=do(not) generate evolving files of PM and semi-variogram fields) 

itrans=O not transform to LN data, itrans>O, transform to LN data 
itrans=1 z'=max(z-PMCUT,aspcut) where PMCUT=xcut, if xcut .ne. 0 or PMCUT=LN-I (ymean,ystd,pcut) if xcut=O 
itrans=2 z'=max(z,aspcut), i.e., PMCUT=O (without shifting) 
aspcut=PM value of asperity contact 
xcut=cutoff permeability (O=defualt) 
pcut=cutoff probability=ratio of asperity contact to total rock volume and is used to calculate xcut 

(4) Sample output file 

Permeability field from simulated annealing 
4 

X location NX= 100 DX= 0.10 DX= 0.20 
Y location NY= 100 DY=-19.90 DY= 0.20 
Z location NZ= I DZ= 0.50 DZ= 1.00 
Permeability field 
0.1000 -19.9000 0.5000 
0.7000 -19.9000 0.5000 

19.7000 -0.1000 0.5000 
19.9000 -0.1000 0.5000 

36.1209 
2.7844 

0.0000 
2.7400 
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Appendix D. Calculation of effective permeability 
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(A) Horizontal effective permeability 

To calculate the horizontal effective permeability, attach two boundary elements, 
'rhs l' and 'lhs I' to the entire right and left hand side boundaries, respectively, and let the 
element'lhs I' be inactive such that primary variables in that element will not be changed 
during simulation. Inject water from 'rhs I' and tum the gravity off. Run the simulation 
under single-phase conditions then the pressure in element 'rhs I' will increase and reach 
to a constant value after a short transient, i.e., the steady state is reached. Calculate the 
horizontal effective permeability according to Darcy's law, i.e., 

(D-I) 

where Il [Pa·s] is water viscosity, q [kg/s] is injection rate, p [kg/m3
] is water density, A 

[m2
] is the contact area of 'rhs l' to the entire right hand side,boundary, and ~P [Pal and 

ill [m] are the pressure difference and horizontal distance between 'rhs I' and 'lhs 1', 
respecti vely. 

(B) Vertical effective permeability 

Vertical effective permeability can be obtained by following the same procedures 
as in (A) but attaching two boundary elements, 'top I' and 'bot I', to the entire top and 
bottom boundaries, respectively. Let the element 'bot I' be inactive and inject water from 
'top I'. Gravity is sill turned off in this case. Therefore, the vertical effective permeability 
is calculated according to' . 

(D-2) 

where Il, q, and p are the same as in (A), A is the contact area of the element 'top I' to the 
entire top boundary, ~ is the pressure difference between 'top I' and 'bot I', and ru: is 
the vertical distance between 'top I' and 'bot I'. 
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