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Abstract

Statistical analysis of liquid seepage in partially saturated,
heterogeneous fracture systems

by
Tai-Sheng Liou

Doctor of Philosophy in Civil and Environmental Engineering

Uni{lersity of California, Berkeley
Professor Nicholas Sitar, Chair

Field evidence suggests that water flow in unsaturated fracture systems may occur
along fast preferential” flow paths. However, conventional macroscale continuum
appfoaches generally predict the downward migratiqn of water as a spatially uniform
wetting front Subjected to strong imbibition into the partially saturated rock matrix. One
possible cause of this discrepancy may be the spatially random geometry of the fracture
surféces and, hence, the i;regular fracture aperfure. Therefore, a numerical model was
developed in thisv‘study to investigate the effects of geometric features of nétural rock
fractures on liquid Seepage and solute transport in 2-D planar fractures under isothermal,

partially saturated conditions.

The fractures weré conceptualized as 2-D hetefogeneous porous media that are
characterized by their spatially correlated permeability fields. A statistical simulator,
which uses a simulated annealing (SA) algorithm, was employed to generate synthetic
permeability fields. Hypothesized geometric features that are expected to be relevant for

seepage behavior, such as spatially correlated asperity contacts, were considered in the



SA algorithm. Most importantly, a néew perturbation mechanism for SA was developed in
order to consider specifically the spatial correlation near conditioning asperity contacts.
Numerical simulations of fluid flow and solute transport were then performed in these
synthetic fractures by the flow simulator TOUGH2,V assuming that the effects of matrix
pefmeability, gas phase pressure, -éapillary/permeability hysteresis, and molecular

diffusion can be neglected.

Results of flow simulation showed that liquid seepage 'in partially saturated

. !
fractures is characterized by localized preferential flow, along with bypassing, funneling,
and localized ponding. Seepage pattern is dominated by the fraction of asperity contracts,
and their shape, size, aﬁd spatial correlation. However, the correlation. structure of
permeability field is less important than the spatial correiation of -asperity contacts. A
faster breakthrough was observed in .fra'ctures subjected to higher normal stress,
accompanied with a nonlinearly decreasing trend of th'e_ effective permeability.
Interestingly, seepage dispersion is génerally. higher in fractures with intermediate
fraction of asperity contacts; but it is lower for small or large fractions of asperity
contacts. However, it may become higher if the pbnding becdt_nles‘ significant. Transport
sirﬁulations indicate that tracers bypass déad-end pores and ﬁavel along flow paths that
have less flow resistance. Accordingly, tracer breakthrough curves ;gene;aliy s'ho‘v.&.i more
spreading than breakthrough curves for water. Further analyses suggest that the log-
normal travel time model generally fails to fit the breakthrough cuﬁes for water, but it is

. v 5
a good approximation for breakthrough curves for the tracer.
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Chapter 1. Introduction

1.1 Motivation

The conventional approach for field-scale analysis of liquid secb_age in partially
saturated fractured media usually employs fnacroscale continuum concepts (Peters and
’ Klavctter, | 1988). Macroscale volume averagihg homogenizes hydrologic properties of the
media, such as fracture and vmatn'x perméabilities, and avefages spatially variable inputs,
'such as infiltration ratés, applied at the system boundary (Pruess th al., 1999).
Consequently; downward water migration in Such ‘media is generally modeled as a
spatially uniform wétting front, which is subject to strong ifnbibition into the partizilly

saturated rock matrix (Wang and Narasimhan, 1985, 1993).

However, preferential flow of water and tracer has been observed in the field -
under saturated or unsaturated conditions.‘At Rainier Mesa, highly localized flow of
~water from fractures into drifts was found ét depths Qf sevefa] hundred meters beneath the
land surface (Thordarson', i965). At the Stripa rhine in Sweden, localized flow paths of
water in fractured granite were idénfiﬁed from tracei' expériments (Abelin et al., 1987),
and localized prefe_rential flow was observed in s;clturatéd fractured granite (Long et al.,
11992). Strongly spatially variable solute concentration and channeling effects were alsd
shown at the Stripa mine (Neretnieks, 1993). At Fran Ridge near. Yuccé Moﬁntain, lateral
* migration and preferential flow structures were observed in the densely welded and
fractured Topopah Spring tuff (Eatoﬁ et al., 1996). Near the Radioactive Waste

Management Compléx at the Idaho National Engineering and Environmental Laboratory
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(INEEL), tracer experiments from the Large-Scale Infiltration Test (LSIT) revealed an
irregular distribution of tracer flow, mostly along vertical paths and less so along lateral
paths (Wood and Norrell, 1996). Localized preferential flow of water along nonhorizontal

fractures has also been observed in labdratory experiments (Nicholl et al.; 1994).

Fast preferential flow paths have also been observed at the Yucca Mountain sité
intended ' proposed as. the Depaftment of Energy (DOE) high-level nucleér waste
repository. Geologic units at Yucca Mountain consist primarily of welded and non-
welded tuffs, with varying degrees of fracturing in different units. The proposed
repository at the Exploratory Studies Facility (ESF) is at approximately"300v m depth. The
ESF lies within the unsaturated zone because the water table at Yucca Mountain is
approxirhately 600 m below the land surface. Fracture and fault permeabilities are
generally high, on the order of 1 — 10 darcies and 10 - 100 darcies, .respectively (Ahlers et
al., 1996). In contrast, the matrix permeabilities are on the ofder of 1 - 10 microdarcies
(Flint, 1997). The contrast of permeability in fractures and the rock matrix suggests that
most of the flow must preferentially go througl; fractures and major faults. For éxample,
field experimenis using environmental isotopes found elevated levels of 3%C] at séveral
locations in the ESF (Fabryka-Martin et al., 1996). If the effect of imbibition into the
partially saturated rock matrix were significant, the'tra‘vel time of water from the land
surface to the water table would require thousands of years and the corresponding water
velocity was roughly estimated to be on the order of 50 mm/year (Pruess et al., 1999).
However, field experiment data (Fabryka-Martin et al.,1996) suggest that water seepage

through Yucca Mountain occurs with velocities on the order of 10 m/year or faster



(Pruess et al., 1999). In addition, calcite-coating data show that deposition is found
mostly within fractures and not within the matrix. Hence, the diffusion of water into the
rock matrix is Very low. In summary, all evidence suggests that in semi-arid environments
water is able to migrate downward rather rapidly along localized preferential flow paths
through fracture networks in partially saturated rocks, without being imbibed into the

rock matrix.

L.2 Appi'oach

Unsaturated flow in naturally fractured rocks is generally a multi-phase, non- |
isothermal flow that occurs in a. three—dimensional fracture network. A complicated
model is generally needed to model the actual fluid flow and transport in natural
fractures. However, the primary interest of this study is to understand the effect of
geometric features of natural rock fractures on gravity-driven liquid seepage in fractures
under isbthermal, partially saturated conditions. Thus, the following assumptions have

been made to simplify the modeling:

a. Impact of the gas phase on seepage is neglected by assuming that gas phase
pressure is a constant. Namely, effects associated with the gas phase ﬂhid,
such as the dramatic .change of hydraulic characteristics of porous media by
trapped air (Faybishenko, 1995), are not considered in this study. For systems
with small capillary numbers, it is reasonable to ignore gas phase pressure. By
making this assumption, the total number of phases in the syst'em is reduced
by one and only the balance equation of the wetting phase fluid (e.g., water)

needs to be considered for two-phase problems. Consequently, the remaining
3



unknown variables will be either liquid phase saturation for one-component
flow systems, or liquid saturati;m and mass fraction of the second component
liquid for two-component flow sysiems. Although the gas phase is assumed to
be stagnant, phase interference is still considered by specifying the relative

permeability of the aqueous phase.

. Matrix permeability and the interaction between the fractures and the
surrounding rock rﬁatrix is negligible. This assumpﬁon is based on the
following conSidefations. First, field data show that matrix permeability for -
- some rock types, e.g., welded tuff, is orders of magnitude smaller than fracture
perméability. Second, the effect of matrix permeability on seepage evolves at a
much longer time. scale (months to years)v than the effect of fracture
vpermeability (usually hours). For solute transport, molecular diffusion may
dorrﬁnate the interaction betWeen frac'tures and the rock matrix, which is also a
slow bljocess. Thus, for shorter time scale simulations, the effect of the rock‘

matrix can be neglected.

Hysteresis effects of capillary pressure as well as perrheability are neglected.
| Hysteresis of capillary pressure occurs when fractures are subject to repeated |
wetting and drying cycles. Permeability hysteresis occurs when fractures are
undergoing repeated loading/unloading cycles. Since-most simulations in this
study consider single wetting events without loading/unloading cycles,

hysteresis effects are not important.



In addition to the ébove assumptions, this study focuses on studying seepage
" behavior in planar two-dimensional fractures that are conceptualized as 2-D
heterogeneous poroué media. Approximaﬁon of 3-D fracture networks as 2-D
heteroéeneous porous media is only applicable to. small fractures in hard roc‘ks of low
permeability, such as welded tuffs, gréywacke, mudstones, granite, and some fractured
basalts. It would not be applicable to larger fractures with 3-D void space, or to small
fractures in rocks, with signiﬁcaﬁt matrix permeability, such as non-welded tuffs and
sandsfones. of cou}se, 3-D flow effects cannot be adequately modeled in a 2-D
framework. However, such cohceptualization. is bé:lieved to be sufficient for the purpose |
of fundam¢ntal understanding of .ﬂow and transport in 3-D fracture netwprks. An
- immediate advantage of usiﬁg éuch- conceptualization is that the effective properties of
porous ﬁledia, such as relative perrheability and capillary pressure, can be substituted for
fra(;tures. Indeed, the similarity between pordus media and fractures in terms of relative
pérmeability and capiliary préss.ure has been yeﬁﬁed experinientally (Persoff and Pruess,

1995).

Fluid flow in sing]e fractures can be .con'veniently analyzed By a continuum
approach. However, imponant‘ flow mechanisms in partially-saturated fractured rock
usually operate at microscales suéh that the macroscale volume-averaged paraméte_vrs or
system of equations may not capture all the significant mechanisms:. For example,
| macrqscale continuum approaches generally fail to predict preferential flow observed in

‘partially saturated fractured media such as Yucca Mountain. Furthermore, predictions



based on macroscale continuum approaches may become totally meaningless if a great

volume of the flow system is bypassed due to fracture heterogeneities.

. The following approach is then proposed to overcome the coneeptual difficulty of
macroscale continuum approaches .fer modeling fluid flow and transport in Qariably
saturated fractured media. First, 3-D fracture systems are approximated as 2-D planar
fractures that are conceptualized as'2—D heterogeneous porous media. Volume-averaged
parameters for porous media such as porosity, rpermeability and capiliary pressure are all
expected to show spatial variability. However, this study focuses on permeability
-heterogeneity i‘n the fracture plane. Heferogene’ous perrheability fields generated with a
statisfical simulator at a high spatial resolution are used to characterize the porous media.
Then, a volume-averéged Richards’ equation is employed to model the flow beflavior in
th‘e‘ equivalent porous media. The difference between this approach and conventional
continuum approaches is that fracture heterogeneity (permeability) is explicitly
incorporated into the Richards’ equdtion. Thus, it is expected tov capture important
seepage mechanisms_ that may be overlooked by continuum approaches, such as flow

bypassing and channeling.

L.3 Objectives

Based on to the evidence of fast preferential flow at sites with thick unsaturated
fractured zones, several researchers have proposed to conceptualize unsaturated flow in
heterogeneous fractured media as a stqchastic distribution of localized seeps (Gauthier et
al., 1992; Gauthier, 1994), i.e., the Weeps model. Although oversimplified, the Weeps

model is important because it implies the relationship between the fast preferential flow
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and gcometric features of natural fractures. Accordingly, a mechanistic process model
combined with statistically characterized fracture heterogeneity is used herein to evalpate
flow and transport behavior of natural fractures. The appropriateness of the current -
approach is judged on the basis of how relevant the assumptions of significant geometric
properties of fractures are to field observations. However, our ability to directly obtaia
_ geometric characteristics of fracture void spaces from ﬁeld-observations is very limited.
Only inpat into and output frovm the flow system at the boundaries can be obtained from
field observations, which can be linked only implicitly to the assumptions for synthetic

rock fractures. Therefore, the objectives of this study are

(1) to evaluate what geometric featurcs of natural rock fractures determine -

gravity-driven liquid seepage in partially saturated conditions.

(2) to provide building blocks for a theory of liquid seepage in partially saturated .
fracture systcms, formulated in terms cf statistical properties of ensemble of

seeps.

(3) to develop guidance for observing, sampling and testing in partially saturated

fractures systems, in order to obtain meaningful field characterization.



Chapter II. Background - Fracture properties and fracture flow

I1.1 Surface properties of hatural fractures

Natural fractures are characterized by their spatially varyirig aperturé geometry
and heterogeneous permeability. These properties are the result of the spatial variability.
and correlation of the rough surface of fractures. Accordingly, the general approach for
characterizihg natural fractures is to conceptualize th¢m as two’rough surfaces that
| contact each other at discrete points, and are spatially correlated with each other at

different scales (Brown, 1995).

'i‘he topography (roughness) of fracture surfaces determines nét only the
mechanical bﬁt the hydr‘aulic/transport' properties of fractures (Glover et al., 1998a;
Brown, 1987ab, 1989; Pyrak—Nol.te et al., 1987; Brown aﬁd Scholz, 1985b; Kranz et al.,
1979). While the shape, size, and number of contact point$ bétween fractﬁré surfaces
control mecilani_cal properties of rock, geometrical pr‘opefties of fracture surfaces control
fluid flow in fractured rocks. Thus, geometric properties of fracture surfaces as well as the
resulting fracture permeability and aperture are irﬁpoﬂant factors for understanding fluid

‘flow and solute transport in unsaturated fractures.

IL.1.1 Fracture permeability

Fracture permeability can be theoretically defined by the parallel plate model
(Witherspoon et al., 1980). This model has been traditionally used to study the steady

state, single-phase, isothermal and saturated flow of incompressible fluids in single



fractures. In this model, naturally rough fracture surfaces are idealized as two smooth,

parallel plates that are separated by a constant aperture (2b), see Figure II.1.

Idealized, parabolic
velocity distribution

b
flaw
open natural fractures smooth, parallel plates |
with varying apertures - with a constant aperture

Figure IL.1 Schematic representation of the parallel plate model.

Ahalytic analyses such as' Bear (1972) show that fracture penneability (k) has the

following relationship to fracture aperture

- (@b’

k- 5 @.1)

Equivalently, fracture transmissivity (T) is found to be proportional to the cube of the
fracture aperture, ib.'_e.,v T = (2b)’. In addition, fluid ﬂuX per unit drop in head can be

developed from Darcy’s law, which may be written in a simplified form as

Qcay |
v C,(2b) @2

where Q is the volumetric flow rate across the fracture, Ah is the head drop, and Cg is a

constant depending on flow georhetry and fluid properties (Witherspoon et al., 1980).
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Equation (2.2) has been referred to as the “cubic law” in the literature. What is also
predicted from the parallel plate model 1s that the flow field within the fracture has a
symmetric parabolic velocity distribution, see Figure IL.1. This well-developed velocity-
distribution has known to be contrary fo field observations. Accordingly, the lack of
consideration of the spatially varying roughness and the spatial correlation of aperture is
the key to the failure of the pa;allel plate model to predict the real flow field in natural

fractures (Wang and Narasimhan, 1988).

Indeed, experimental as well as theoretical studies have shown that permeability
of single, natural fractures is a complicated parameter depending on several factors.
Kranz et al. (1979) found that the higher the surface roﬁghness (the 'mean-aspe'rity height)
of jointed fraétures, fhe slower the decline of permeability with increasing effective stress
"(the difference between the external confining pressure and the ir;temal fluid pressure). In
vaddition, they found that fracture permeability d‘ec—rease_s nonlinearly with increasing
effective stress and increasing sample size. ’fhis trend indicates that éffective permeability
approaches asymptotically vto the lower limit at zero for fractures subjectc*;d' to increasing
normal stress. It also implies that residual flow may exist even if the apparent fracture
aperture is e;sentially zero. The existence of residual flow in fractures at high normal
stress is consistent with experiments previously reported by Iwai (1976) and Raven and
Gale (1985). Walsh (1981) attributed the decrease of permeability with increasing normal
stress to the decrease of aperture, increase of contact points, and increase of tortuosity of
flow paths. In addition, fracture permeability measured in the laboratory exhibits a

signiﬁcaht hysteresis effect during loading and unloading cycles (Raven and Gale, 1985;
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Kranz et> al., 1979). This is attributed to plastic; deformation caused‘ by crushing of
asperities in jointed fracturés,_ or irrecoverable damage in intact rocks (Kranz et al., 1979).
Zimmerman et al. (1992) found that, regardless of the geometry of asperities, fracture
permeability decreases nonlinearly with increasing fraction of contact area. Experimental
data show that flow path tortuosity of natural fractures increases with normal stress
(Pyrak-Nolte et al., 1987). While Walsh (1981) suggested that tortuosity is not an
important parameter-in estimating the flow rate through fractures, Tsang (1984) showed
that neglecting tortuoSity effects may result in one to two orders of magnitude error in

~computing the flow rate. Moreover, fracture permeability also depends on contact area.

In general, factors éOntrolling fracture permeability include fracture aperture,
sample size, surface roughness, contact area, tortuosity, normal stress, stress history, scale
_of measurement and rock type. Permeability measured in the laboratory is generally -
several orders of .magnitude smaller than that in the field (Brace, 1980). Furthermore,
permeabilify of jointed rock is much greater thaﬁ that of intact rock (Kfanz et dl.; 1979),

implying that fluid flow is confined essentially to joints and fractures in the rock.

II.1.2 Fracture aperturé

An important aspect of modeling flow and transport in natural fractures is the
ability to describe their spatial variability of the aperture geometry. Although fracture
aperture can be inferred from surface roug'hnesvs, it is generally difficult to measure
surface foughness in fractures in-situ, especially on a large scale. Another difficulty is
posed by multiple definitions of fracture aperture and orders of magnitude differences

between various definitions. The most commonly used definitions are "hydraulic
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aperture” | and "mechanical aperture”. The hydraulic aperturé, 2b, is defined as the
~ constant opening between the two smooth surfaces in the parallel plate model. Reca}l that
it is related to the intrinsic fracture permeability (k) by k = (2b)*/12. The mechanical‘
aperture, d, is defined as the mean separation distance between two fracture surfaces that
are held parallel to each other. It is not a conskant but varies non-linearly with normal
stress (Raven and Gale, 1985). In addition, the mechanical aperture depends on the details
of fracture surface topography as well as the ‘elastic‘properties of fractures (Brown and
Scholz, 1986). Another definition of aperture vis the "voluﬁetric épérture" (Abelin et al;,
19.87), i.e., the fracture void volume per unit fracture surface area. It is often orders of
magnitude larger than the ﬁydraulic aperturé and the mechanical aperture (Abelin et al.,
1987). In addition, hydraulic aperture may underestimate the mean residence time for the
“water (Abelin et al., 1987). This implies that traéer breakthrough cuﬁes predicted from
the hydraulic aperture may h.ave earlier arrival of the peak concentfation than that

predicted from the volumetric aperture.

Much experimental research has been done in the last decade to explore the void
space geometry between fracture surfaces. Most experiments used fluid injection and
image processing methods to study this property of natural fractures. Mercury
porosimetry method is one of the method's‘used (Myer et al., 1993). However, the wood’s |
metal injection method is more popular than thé mercury porosimetry method. The
advantage of W(;od’s metal is that it can yield the éctual metal casts of the voids for the
same fracture in experiments at differeﬁt stresses (Pyrak-Nolte et al., 1987). For example,

the micrographs in Figure I1.2 were obtained by Pyrak-Nolte ez al. (1987) by the Wood’s
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metal injection method to characterize the void geometry for a natural fracture in granite,

which is subjected to increasing normal stress from 3 MPa, 33 Mpa, to 85 MPa.

Approximate scale

0.4 mm

Approximate scale

Approximate scale - 0.4 mm

0.4 mm

Figure I1.2 Change of void geometry in natural Stripa granites with respect to normal
stress, measured by Pyrak-Nolte et al. (1987) using the Wood’s metal injection method.
Asperity contacts (or inaccessible pore space) appear as black regions, while regions
penetrated by Wood’s metal are white. Note that these micrographs were take from
different portions of the same sample.

Figure I1.2 shows that contact areas generally increase nonlinearly with the normal
stress (Pyrak-Nolte et al., 1987). In addition, flow paths in the fracture plane becomes
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“more tortuous as the normal stress increases. Since contact areas and voids are spatially
correlated, a contact point (or a void site) is likely to be surrounded by other points of
contact (or other void sites) (Pyrak-Nolte et al., 1990). This spatial correlation structure

. could be numerically approximated by an exponential function (Coakley et al., 1987).

Based on direct measurement data, several researchers also found that roughnéss
of natural fracture surfaces can be described by a characteristic length scale (Brown and
Scholz, 1986; Brown et al., 1986). The asperities are correlated below this scaie and
uncorrelated above. Hence, this correlation length scale-ié c;lled the mismatch length
scale, A.. It may also bé ﬁsed as the cutoff wavelength for the scaling law of fracture
aperture (Brown, 1995). Namely, fracture aperture is scale dependent only if the

- wavelength of rbughness is smaller than A.

I1.1.3 Surface roughness -

Surface roughness is a small-scale characteristic of natural fracture surfaces. If can
be measured in the field as well as in the laboratory by a profilometer (Brown et al:, 1986;
Browﬁ and Scholz, 1985ab, 1986; Power et al., 1987; Glove_r et al., 1998b). After
comparing the roughness of various natural rock surfaces, Browp and Scholz (1985a)
concluded that fracture surfaces are fractal in nature. Thus, the surface profile of an
individual fracture‘ surface can be decomposed into a series of sinusoidal Fourier waves,
each of them have a wa{/elength, amplitude, and phase. Surface roughness depends on
sample size and the scal¢ of observation (Brown and Scholz, 1985). For example, Brown

(1995) showed that the scaling law for an individual fracture surface can be written as ¢ ~
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}»p(“'l)/z, Where o is the root—meaa—square (rms) roughness (or the standard deviation of
the height-of a fracture surface),. A is the wavelength of a sinuaoidal Fourier wave, and
ais the slope of the. >1'og—iog plot of the power spectral density of roughness versus
frequency. Surface roughness is an important in controlling laminar flow through natural
fractures in theoretical, numerical as well as experimental studies (Walsh, 1981;
Brown,1987a; Pyrak-Nolte et dl., 1987, Pyra.k—Nolté et al., 1”988;\ Browh, | 1989;

Zimmerman ef al., 1992).

The void space geometry in fractured rocks may span multiple scales. It may
range from a small scale (roughness), intermediate scale (asperity contacts,- fracture

intersections and terminations) to large scale (network connectivity). This property is due

to the small-scale variability of an individual surface and.the spatial correlation of the

- contacting fracture surfaces. It is then expected that fluid particles will take a tortuous

flow path when moving thfough a real fracture.

Brown (1995) suggested that only a few parameters are needed to exhaustively
characterize natural fracture surfaces. These parameters are the rms roughness (o), fractal

dimension (D}), and the mismatch length scale (A.). Fractal_' dimension is also used to
measure the scaling of fracture surfaces, i.e., ¢ ~ lz_D’ with o0 = 7 - 2Dy (Brown, 1995,

1987a). Recall that the mismatch length scale is also defined as the cutoff length-scale
specifying the correlation/un-correlation of fracture surfaces. In reality, however, fracture
surfaces may vary over a broad range of wavelengths (or inversely, frequencies). Thus,

‘the unique cutoff mismatch length-scale employed in Brown’s model does not seem to be
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adequate for modeling real fractures. This difficulty has been overcome by Glover et al.
(1998) by taking into account the smoothly varying degree of mismatch in natural
fractures. Of course, fractal models are not the only approach of characterizing natural
fractures. Receﬁt succéss of employingv a statistical simulator other than fractal models for
generating synthetic replica of fractured rocks has been'fepofted in the literatgre. For -

example, Pruess and Antenuz (1995) used the turning band method (TBM) to generate 7

synthetic fractures in terms of fracture permeability.

IL.2 Limitations and applicability of the cubic law ~

Numerous " experimental v.as well as theoretical stuaies have been done to
investigate the applicability of the cubic. law to natural fractures. In general, the cﬁbic law
appears to be applicable to fluid flow thrbugh loosely mated and open fractures, as well as

- to fractures with high vcon’elation between fracture surfaces (Nolte et al., 1989).
- Experimental works by Witherspoon et al. (1980‘)_vand Iwéi (1976) indicated that the
.cubic .‘law is generally valid independent of the rock type. In addition, numerical
simulations by Brown (1987) showe(i that the actual flow rate asyniptotically approaphes
that predicted by .the cubic law as the ratioi of frapture aperture  to rms roughness

increases.

However, the cubic.law generally tends to overestimate the actual flow rate in
natqral fractures. Tsang and Witherspoon (1981) found that the flow rate predicted by the
cubic law has to be reduced if surface roughness is taken into aécount. Brown (1987)
found that the actual flow réfe is only 40% - 60% of that predicted by the cubic law if the

ratio of fracture aperture to rms roughness is one; but is increased to 70% - 90% if this
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ratio.-is betwefen»Z to 4.24. Noite et al. (1989) established an empirical power law of flow
rate to mechanical aperture based on flow experiments performéd on Stripa granite. They
found that the volumetrié flow rate is proportional to aperture raised to a power greater
~ than 3 and close to 8, suggesting that the cubic law may not adequately describe naturai
fractures. In addition, permeability predicted from the cubic law was found to be v'orders of -
magnitude higher than thét measured from gxperiments (Kranz et al.,1979; Raven and

Gale, 1985).

In general, the cubic law is not applicable to rough fracturés under high normal .
stresses. As contact areas in fractures.increase with in’creasing normal st;ess' (Nolte et al.,
1989), the actual flow paths become more tortuous and channeled (Raven and Gale, 1985; -
Brown, 1987b; Glover et al., 1998b; Pyrak-Nolte et al., 1987). Thus; Pyral;—Nélte etal .
(1988) found that the flow rate predicted by the cubic law for fractures’ at high normal -
stress significantly differs from measured data. They suggested that this difference may be
a consequence of the dominating influence of a critical .neck (the point of smallest

aperture along the path of highest aperture) on flow through the fracture.

It is evident that natural fracfures shoul(ji be characterized by a spatially varying
apextﬁre distribution. From a numerical point of view, séme résear;:hers, e.g., Pruess and
Tsang (1990), adopted the approach that fracture surfaces can be. locally approximated: as
two parallel plates separated with a constant apertﬁre. In' addition, the.cubvic law is
assumed to be locally valid within that pore spéce. However, seve_ra.l aspects need to be

considered before adopting this approach.
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‘Figure I.3 (a) Schematic diagram of natural fractures idealized as smooth and parallel
plates, (b) Sketch of the capillary pressure as a function of the saturation of the wetting
phase fluid, for both the parallel plate pore model and a real porous medium.

Consider two pores idealized as parallel platés as shown schematically in Figure
I1.3(a). Assuming that the pores are initially filled with a wetting phasé fluid. Also, .
assuming thﬁt the system is connected to the right with the non-wetting phase, and to the

left the wetting phase fluid. _The drainage process can be initiated if the pressure
difference between the wetting and non-wettihg phase fluids is large enough to overcome
thé capillary pressufe P., ( = 26,w/b, ). Thus, the initial drainage curve will follow line ab
in Figure I1.3(b). Subsequently, the system is drained from location 3 to location 2 in
Figure II.3(a), corresponding to line bc in Figure II.3(B). Since the capillary pressure
needed to drain the larger pore (Pc; = 2 Gay/b;) is smaller than P, the non-Wetting phase
fluid will completely penetrate the larger pore as soon as the interface arrivés at location 2
in Figure I1.3(a). This is reflected by line cd in Figure I1.3(b). After the wetting phase is
completely drained from the larger bore, an equilibrium éapillary pressure (P;) is

reached, which is indicated by the dashed interface at the left-hand side of Figure IL.3(a).
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With the help of capillary pfessure, the wétting phase ﬂuid can be imbibed into the larger
pore if the pressure of thé wetting phase ﬁuid is slightly increased. Hence, the initial
imbibition process will follow line ef in Figure IL3(b), and the interface will 'advaﬁce
from location (1) to location (2). Sincé the capillary pressure at the pore throat (locétion
(2) in Figure 1.3(a)) is larger than P, the wetting phase flﬁid will be sucked into the
smaller pore as soon as the interface‘ reaches lbcation (2) in Figure I1.3(a). Thus, the entire

imbibition process follows line efg in Figure I1.3(b).

In reality, however, the drainage/imbibition processes for a real porous mediumf;_
would follow the dashed curve in Figure I1.3(b). Moreover,.if the ﬂow. velocity is large-,:,:‘_
flow dynamics may become dominant at the pofe throat where significant change of . ‘
surface curvature occurs. Counter—currenf eddies as shown by the da_shed arrc;ws in Figure ;
H.3(a} may develop due to the large flow velocity and may result in over-estimation of .
flow rate calcu_ldted based.on the parallél—plate model. Thérefore, neg}ecting the smail;
scale wall roughness of natural fractures may reéult in unrealistic approximation of the
real flow fieid in fractures. This is espeéially true for field scale applications because i
idealizing field scale fractures as parallel plates certainly suffers from' the difficulty of

capturing the small scale surface roughness. Overall, this overview shows that there is a.
need to develop fracture flow models which adequately and realistically describe the

.spatial Variability of the fracture aperturé. This is the approach pursued herein.
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Chapter III. Statistic Modeling of Fractures with Spatially Varying

Roughness

1.1 Introduction

Modeling of flow and transport in fractured rocks or porous media very often
faces the problem of incomplete information ai)dﬁt {he hetefogeneity of the media. Thps,
stochastic simulation has become a common tool for characterizing and visualizing
medium heterogeneity based on incomplete information. To reduce the uncertainty of
predicting heterogeneity, it is favored to incorporate field data from a variety of .sources
into a simulatbr, e.g., borehole logs (Johnson and Dreiss, 1989), seismic data (Copty and
Rubin; 1995), and tracer concentration data (i)agan et al., 1997). Such simulations not
only try to reduce the uncertainty of characterization but 4honor the sample data.

- Unfortunately, no stochastic simulators can perfectly reproduce the reality of the field and
most simulators cannot make useb of all available information. Mdreover, some simulators -
are restricted to Gaﬁssian randém fields only, e.g., the turning bénds method (TBM) -
(Mantoglou and Wilson, 1982; Tompson et al., 1989), COVAR (Williéms and El-Kadi,
1986; Abdel-Salam and Chrysikopoulos, 1996), and spectral methods (Shinozuka and
Jan, 1972). However, discrete or cbmbinaton'al optimization methods, suph as simulated
annealing (SA), have shown great promise in their applicability to various réndom fields
and their ability to incorporate data from various sources into their models by formulating
a suitablc‘ot;jective function (Datta-Gupta et al., '1995; Déutsch and Journel, 1994). In

order to model fracture characteristics, the stochastic simulator needs to be able to. model
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the following elements: (1) the presence of asperity contaéts, (2) a gradual change
towards lﬁger apertures away from the asperities, (3) fracture wall roughness, and (4)
spatial correlation structure ofl fracture aperture (Pruess and Antune;z; 1995). Simulated
annealing (SA) is chosen in this study as the numerical simﬁlator to characterize »fracture

heterogeneity because it very well satisfies these objectives, as discussed next.
II1.2 Simulated annealing algorithm ' .

Simulated annealing (SA) is an algorithm originally developed for cofnbinatorial
optimization, i.e., optimizing a system with discrete variables. The heart of SA is an
analogy with a'thgrmodynanlic system i.e., the physical process of annealing materials‘
such as semiconductors and metals (Dcuts_ch and Journel, 1994). It ié effective for large-
scale systems with discrete vériébles (Kirkpatrick et al., 1983). Howe\‘fer,A it can also be‘
applied for optimizing a system vﬁth continuous variables (Press et al., 1986). It has been
successfully applied in a great vaﬁéty of fields involving computer design (Kirkpatrick et
al., 1983), nonlinear géophysical inversion (Sen and vStoffa(, ' 1991), and stochastic
reservoir modeling (Deutsch and Journel, 1994). In hydrolbgy, SA was first employed by
Dougherty and Mai'ryott (1991) for finding an optimal groundwatér management strategy.
Several computer codes of SA are available in the literatﬁre. The éomputer code used in
this _study is updated from the subroutine SASIM in the software library GSLIB (Deutsch

and Journel, 1992).

To be able to “anneal” the numerical system in a ‘way similar to annealing a

thermodynamic system, a SA algorithm must contain the following four components: (1)
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an initial state, (2) an objective function that is to be minimized, (3) perturbation
mechanism, and (4) annealing schedule. (Deutsch and Cockerham, 1994), which will be

explained in detail in the following sections.
I11.2.1 Initial field

The initial field for SA can be a purely random field or a field that already shares
certain spatial featuljes of the desired random field (Datta-Gupta et al., 1995). For a purely .
random field, many perturbations may be needed tb reach the optimal state. However, the
performance of. the SA algorithm may be improved if the initial state already has some .

spatial features (Johnson et al., 1989).

As mentioned in» Chapter 1, fracture permeability (k) is ﬁsed to characterize
" heterogeneous vfractures. For conveni'énce,'pcrmeability is scaled by a constant reference
' permeability, k.r. The écaléd permeability is called the permeability modifier and is
symbolized as , i.e., k = kg X . A reasonable value of the reference permeability for
field-scale fractureé, e.g., weldeci tuff, may be 10° m? (1000 d). Aspe;ity contacts, i.e.,

regions with zero permeability, are simply modeled as { = 0.

All the initial states in this study are generated iﬁ the following two steps. First,
the conditioning asperity contacts are generated by a pre-processor. All conditioning data
are asperity contacts; however_, not all asperity contacts are conditioning data, see section
I1.2.1.2. Two different pre-processors are us_ed for generating the conditioning asperityr
contacts. The di_fferen.ce between these pre-processors is their ability to consider the
spatially correlation of .asperity contacts. .Second, the un-conditioned grid blocks are filled
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with data drawn from a known probability distribution. The probability distribution used
in this Study was assumed to be log-normal (see Eq(3.1)), but othér distributions may also
be possible.
1 (ln{ —Mmy, )2 ‘
=—eXp—————— 3.1y
F©) Jznsmgg p[ 28, |
Mean (myy¢ ) and staﬁdard deviation (sin¢) of the log-normal distribution, were c_hdsen as
" 1.0and 15, respectively. Note that SA does not require that the random field be Gaussian
(Dutta-Gupta et dl.‘, 1995). In contrast, the initial field can be drawn from a variety of .
~ sources. For example, field sampled data (the conditioning data) plus random values

~ drawn from a known distribution (the un-conditioned data) may be used.

Aspeﬁty contacts with and without spatial correlation are considéred in this _studj ;;
which are referred to as spatialiy cbrrelaté;i and spétially randém asperity contacts, |
;‘espectively. Indicator simulation and Bobléafl sifnulation are th’é corresponding pre-
processors for geﬁerating these types of asperity contacts. Both ;;re—processors can be

found in GSLIB (Deutsch and Journel, 1992).
I1.2.1.1 Spatialiy correlated asp_erity contacts

Since fracture surfaces are spatially correlated to each other, asperity contacts
(regions Wﬁere two fracture surfaces contaét each other) are also expected td be spatially
\ correlated. Accdrdingl_y,' the micrographs 'shown in Figure I1.2 illustrate that aSperity
contacts (the black regions) are clustered with a specific spatial édnelation. Recall that
this spatial correlation can be approximgted by an exponential function (Coakley et al.,
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1987). More§ver, these micrographs imply that the void space in a fracture plane can be
approximated By a binary process. Namely, the void space. at a specific location in the
fracture plane is either closed (asperity contact) or open (aperture). Hydrologic parameters
in some porous media may also have this binary property, such as hydraulic conductivity
in sand-shale or sand-clay formations in fractured rock (Rubin, 1995), or effective
permeability in sand-shale formations (Desbarats, 1987, 1990). Statistically, a binary
process can be described by an indicator function (Journel, 1983). Therefore, indicator
simulation (Deutsch and Journel, 1992) used in geostatistics is employed herein fo |

simulate spatially correlated asperity contacts in natural fractures.

I11.2.1.1(a) Indicator simulation

Indicator simulation is é linear regression algorithih which séquentially updates
the estimafion of a spatially rgndom variable with conditioning information collected
from a suitable neighborhood (Deutsch and. Journel, 1992). The size of neighborhood will
be discussed at the end of IIL2.1.1(c). Indicator simulation is ideally suitable for
simulating binary vaﬁables, for example, asperity contacts and void space in a fracture

plane.

A binary, spatially random variable Z(u), such as the aperture field in natural
fractures, can be defined in terms of an indicator function I(u). Hereafter in this chapter, a
béld éapital letter refers to a spatially rahdom variable, while a italic capital letter is its
realization. The indicator function is a spatially random function (SRF),‘ and can be

defined as



Iw) 1 , probability = p(u) forues
u)= : ,
0, probability =1-p(u) forug s

s = asperity contacts (3.2)
where u is the spatial coordinate. Likewise, we can define another indicator variable
(I’(u)) for the counterpart of the binary variable, e.g., void space in a fracture plane. That
is,

1, probability =1-p(u) forues’
I'(u) = ,s’ = void space (3.3)

0, probability = p(u) forues’

The expectation of an indicator variable can be derived as

Ell(w]=1:p(w)+0-(1-p)=p(w) (34

i.e., the expected value of an indicator variable is its probability of occurrence. Similarly,

the expected value of I'(u) is 1-p(u). The vafian_ce of an indicator variable is
VarlIw |=E[(10)-E[10)])*]=E[(10) ?] - E[10) "= pw- (- p@)) ~ 3.9)

Similarly, variance of the counterpart indicator variable (I'(in)) is also p(u)(1- p(w)). The

covariance of two indicator random variables separated by a distance h is

Cov[I(u), I(u+h)]=E[Ii(w)-I(u+h)]- p(u)- p(u+h)
=1-1- Prob{Z(u) =1, 7(u+h) = 1}+1-0- Prob{I(u) = 1, I(u+h) = o}
+0-1-Prob{I(u) =0, I(u+h) =1}+0-0-Prob{I(w) =0, I(u+h) =0}  (3.6)

—p(u)-p(u+h)
=Prob{7(u) =1, I(u+h) =1}~ p(u) - p(u+h)

An SRF is stationary if its cumulative distribution function (CDF) is invariant to

spatial translation. Therefore, the mean and variance for a stationary SRF are constants,
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and the covariance depends only on the magnitude of the separation distance (lhl or h). If
the indicator random variable I(u) is a stationary SRF, its mean, variance and covariance

can be rewritten as

E[I(w)]=p
Var[I(u) ]=p(1-p) €X)
Cov[I(u), I(u+h) ]=Prob{I(u) =1, I(u+h) =1}- p* =C,(h)

 The non-centered covariance of I(u) and I(u+h), i.e., E[I(u)-I(u+h)], can then be rewritten
as
E[I(u) - X(u+h)] = Prob{I(w) =1, I(u+h) =1}

=Prob{/(u) =11/(u+h) =1} Prob{I(u+h) =1} (3.8)
=Prob{I(u)=11I(u+h)=1}p | |

where Prob{/(u)=1I I(u+h)-f-'1} is the-conditional probabili‘t'y of the indicator random
variéble at u given that the indicator réndom variable 'at u+h is 1. Equation (3.8) is the
basis for indicator simulation. A suitable regression algorithm, e.g.,‘ kriging, can be used
to estiméte and ﬁpdate the conditional probability of Eq(3.8). Information for the update
processes is provided by the available daté collected within the neighborhood of the' node

being estimated.
II1.2.1.1(b) Kriging

Kriging is a linear regression algorithm which estimates an SRF at a particular
position from the information collected in its neighborhood. It is also called the “best

linear unbiased estimator” (BLUE) (Isaaks and Srivastava, 1989). The term “best” is used
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because its variance of error is minimized; it is “linear” because its estimates are
“ weighted linear combinations of existing measurements; it is “unbiased” because its mean
residual (mean error) is zero. Derivations in this section follow the line given in most

textbooks of geostatistics, such as Isaaks and Srivastava (1989).

Figure III.1 Sketch of a kriging system with three reference nodes.

For example, in Figure III.1, we want to estimate the variable (Z) at an unsampled
location, uo. In kriging, this estimate is written as a weighted linear combination of the

measurements from u; to uz i.e.,

3
Z;(uo)=ﬁo+2ﬁi<u)Z(ui) (9

where Z} (u,)is the estimate of Z at wq, Po is a correction term reflecting the

measurement bias, f; are the weights, and Z(u;) are the measurements at location u;. The

subscript K refers to different weighting methods, either simple kriging (SK) or ordinary
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kriging (OK). The difference between simple kriging and ordinary kriging will be the sum
of the weights, see the end of this section. Generally, there will be an arbitrary number of
measurements éuch that the upper limit of the summation in Eq(3.9) can be replaced by

an arbitrary integer n. Then, a more general equation is

Z;((uo) = ﬁo +Zﬂi(“)z(ui) . . | 3.10)

which simply means that the estimation of Z at location uy is a weighted linear
combination of n measurements from uj, U, ..., to U, plus an arbitrary constant 3o. The

estimation error (Yj of Eq(3.10) is defined as
Y=2w) -Zw) = Zw)-f-Y B0Zw) (3.11)
i=1l

where Z(up) is the true value of Z(u) at uy. ‘To ensure that kriging is an unbiased

estimator, the expectation of Y must be zero. From Eq(3.11) it yields
ElY]=E[Zu,)-Z, )| = mu)~ B~ B,@m(w) =0 (3.12)
i=1

where m(u;) = E{Z(u)}is the location dependent mean values of Z at u, Therefore, the

constant 8 in Eq(3. 10) is

By =m(y)~ Y B,mu,) (3.13)

Substituting Eq(3.13) into Eq(3.10) yields
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Zyu)=m@y)+ Y BwZw) -mw)] @1
i=1 _ ) v ’

which is the estimation equation used in kriging. The estimation error, Y, can then be

rg:written as
Y =2(0,)~Z; (0) =Zl) -y~ . B, Z)-mw) =Y @, W[ Zw)-mw)] (3.15)
i=1 i=0

where ao(u) = 1; and a;(u) =f— Bifor i=1, ..., n. Then, the variance of Y can be derived
as
Vaf[Y]=22a,.(u)a ;@C,(u,u) (3.16)
i=0 j=0 ' : /
where Cjj(u;, w)) is the covariance of random variables Z(u;) and Z(uj). To minimize

Var[Y], the following system of equations has to be satisfied

8Var[Y] _

- -'2|:Zdj(u)Cij(u,.,uj):|= 2{a0(ﬁ0)Cio(ui,uo)+zaj(u)Cij(ui,qj)} |
9 J=0 : , j=1
' ' T _ : (3.17) |
= Z{Cid(“vuo) - 2 B;)C;(u;,u, ).} =0 AN
- j=1 ‘ ' v |
The .mini\mur,n of Var(Y) occurs when
' 'zﬂf(“)cij(“i’.“j)=Cio(ui’v“o)’i=1""’" ' S (3.18)

which is called the normal system of equations. For a stationary SRF, the means, m(u,),

can be written as a constant m. Stationarity is usually the basic assumption of simple
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kriging. Therefore, the estimation function, the normal system of equations, and the

estimation variance of simple kriging are written as

i=1

Z, (u)=m+ Z B (w[Zu,) - m}-—- 2 B (w)Z(u,) +|1- 2 B (u) {m(3.19)
) i ) i=l

D B @C, @0 = Colu —ug) s i= L @20)

j=1

2

Stk = E[(Z(“o)“er((“o))2 ]= E Zai(zi(ui)_—m)
‘ - i=0 (3.21)

= ZZaiajCij(ui —u;)=Cyp — Zﬁisxcm(ui —u,)
-i=0 j=0 . : i=0

0

where ag=1,and @;=— B fori=1,...,n.

The difference in the bracket of the last term in Eq(3.19) is zero if the sum of

kriging weights is one. This is one of the requirements for an ordinary kriging system.
Thus, the estimation Zj, (u,)can be simplified as a linear combination of the n

measurements, without the need of knowing the constant mean value m. This constraint

can be solved by introducing a Lagrangian multiplier IT(u), i.e.,
Zox (uy) = Z B (wZ(u,) | (3.22)
i=1

&
Zﬁf" @)C,(u;, ~u,) - TI(u) = C;(u, —u,).
Ja | (323

30



2
n

s2e =B| 200 - Ze ) |8 | Y a(z.wp-m)
=0 (3.24)

= Zaiajc,.j(u,. —u;)=Cyp— ) B%Cy(u, —uy)+II(u)

where ap=1,and @;=— B fori=1,...,n.

I11.2.1.1(c) Indicator kriging

Considering the binary process of asperity contacts versus void space iﬁ a fracture
plane, the appropriate indicator random variable can be defined as Eq(3.2). To simulate
such binary process in space, it is equivalent to asking the following question: what is the
conditional probabiiity that the indicator variable at location u is 1 given that the indicator
variable at location u+h is aiso 1. This is exactly the- coﬁditional probability given be
Eq(-3.8). Thus, indicator kriging is aimed at prqviding an unbiased estimate of the
conditional probability, but not at estimating the indicator variable itself at location u
(Deutsch and Journel, 1992). For convenience, the conditionai probability estimated by
' indicator kriging is Writtén as [i(u)]". This conditional probability is equivalent to its

conditional expectation because
i(w)]" = Prob{I(w) =1|I(u+h) =1 }= Prob{I(w) = 1|(m)} = E{Iw)|(m)} (3.25)

where (n) represents the neighborhood of location u. The size of neighborhood grows as
more data, either from measurements or recent estimations, become available. The value

of [i(u)]" can be estimated either by simple kriging or ordinary kriging. From the
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properties of indicator function, ie., Eq(3.7), it is known that the mean of an indicator
function is its probability of occurrence. Since this probability is assigned prior to
indicator simulation, it is appealing to use simple kriging instead of ordinary kriging.

Therefore, [i(u)]* can be estimated by

] =Prob{r(w)=1|(n) };K

n n

=) pr @i +[1- Y AW Bfiw) (3.26)
: i o

~

i=l

= Y B¥wIu)+|1- Y B¥w)|p

The normal equations are

Eﬁf"(u)c,(u,. —u)=C/(u,-uy) ,i=1-,n (3.27)

i=

where_ I(u;) are realizations of ihdicator variable in the neighborhood (n), and Ci(h) =
Cov { I(u),I(u+ h)} is the indicator covariance. If I(u) is stationary, Cy(h) is equivalent to

Ci(h).

Indicator simulation starts fr0{n a random location, searches the neighborhood of

that location to find enough conditionibg points for performing kriging, and then updatés

“the conditional probability. This updated condifional probability is compared with a
randomly drawn probability (p) to determine the Yalue of the indicator variable at that

location. If the random brobability is smaller than or equal to p, thb indicator variable is

set to 1; otherwise it is set to 0. Subsequently, another random path is taken and the above

procedures are repeated. Note that the neighborhood (n) for subsequent updates consists

of the original data and the previously simulated indicator values. Thus, even if the
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indicator simulation starts initially from a nﬁll field (no conditioning déta at all), it
"becomes a conditional .simulatim-l as long as the neighborhood contains information that
was previously simulated.r Deﬁhing the size of neighborhood for the indicator simulation
is equivalent to specifying the search method. An efficient way of searching is not to
search all the nodes on the grid but to search a limited number of nodes that are close
enough to the node being estimated. The “closeness” is evaluated by the variogram
distance (or lag, see vsection III.2.2), ie., a ‘node is close to the estiﬁlation node if their

relative distance is smaller than the variogram distance (Deutsch and Journel, 1992).

II1.2.1.2 Spatially random asperity contacts

Boolean simulation is a process that distributes geometric objects in space
according to a desired probability law (Deutsch and Journel, 1992). The Boolean -
algorithm in GSLIB randomly generates two—dirnénsional ellipses or cirCle_s with

specified radii, orientations and aspect ratios.

Boolean siniulation starts from a random point in space which is the centroid of a
geometric object that is going to be formed. The geometric object, either isotropic (a
circle) or anisotropic (an ellipse), is constructed by adding “mass” around the centroid
until this object satisfies the randomly selected radius, orientation, and anisotropy ratio.
- Subsequently, another random centroid is chosen and the above procedure is repeated

until the specified total fraction of asperity contacts is reached.

In order to generate asperity contacts and simulate the gradual change of aperture

away from asperity contacts towards larger aperture between asperities, the original log-
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normal éample is shifted to the left by a constant {, i.e., {'=max({ -, ,0), such that

additional asperity cbntacts are produced. Figure III.2 shows that if . is 0.63, additional
15% asperity contacts are produced. These additional asperity contacts are un-conditioned

data, which may be free to move while being perturbed in a SA system.

0.4

additional asperity contacts

Figure III.2 A log-normal distribution with mean (mjyr) = 1.00 and standard deviation
. (sing) = 1.50. The permeability cutoff, ., in this plot is 0.63 such that additional 15%
asperity contacts (the shaded area) are produced. :

~ IIL2.2 Objective function

An objéctive .function., or energy function, is used to transform the SA system into
an optimization model. It is a measure of the differencé of some spatial features between
the desired distribution and the realization. In this study, the objéctiye function vis defined
as the normalized squared d'ifference of the senﬁ-variogfam betwéén the realizatioq and

an expected distribution, i.e.,

2[‘}/ (h ) Yexpected(h )] . (328)

yexpected (h )

mmal
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where v/(h,) is the semi-variogram at separation distance h, of the permeability modifier

field (£), i.e.,

N(hy)

y(h,) = [zw) -z, +h)] =E{[zw) -Z@+h))?] (329

2N (h,) b

yexpwed(h,) is the expected semi-variogram of {, Ousa is the objective function of the
initial field, and nj,g is the total number of lags for y(h,). The lag h, has to be defined in

such a way that the same data pair will not be calculated -twice. This definition is
illustrated in Figure IIL.3. The squared difference in Eq(3.28), i.e., [}" (h,) = Vexpectea (h',)]2 ,

is normalized by yzexpemd(h,) to give more weight to small values of Yexpeciea(h,). Note that
the term within the outer bracket in Eq(3.28) is further weighted by a factor 1/Ojpigjar. This’

is for mathematical convenience such that the objection function (O) always starts from'1.

~ The semi-variogram in E(j(3.28) of the numerical system can be calculated using

the following equation

N(h,)

2[§<u.-)—§(u,.)]2
A

, 1 1 Ath))
h —__ r=1 — r
2 2 g 2 N(h,) (3.30)
#of Qui —uj|=h,)

i.j
where N(h,) are the total number of { pairs at lag h,, and Ach,) is the sum of sqﬁéred '-
differences of N(h,) pairs of {’s. Recall that, in Chapter I, the spatial correlation of the

void space as well as asperity contacts can be approximated by .an exponential function.
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Therefore, it is assumed that the ( field has an exponential correlation function.

Therefore, Yexpectea(h;) in Eq(3.28) can be written as

}'exp;md (h,)=c+ sz {ll—exp(—-l-lf) } =c+ sZ {1 ——exp(-— 32’ ] } ‘ 3.31)

where c, the nugget, is assumed to be zero in this study, sz is the variance of the { field,

A is the integral scale (correlation length) in the principal direction, & is the rangé
parameter, and h, is the magnitude of the separation distance h,. Definitions of A and 'S
can be found in Appendix A. The physical meaning of range is that, at this separation

distance, the value of semi-variogram is 95% of sz. Or, equivalently, the value of the
correlation function is 5% of scz. Thus, the random field is practically un-correlated as

Iong as the separation distance is greater than the range (see Appendix A for details). In
addition, the range is three times the correlation length for exponential models. The
nugget effect is caused by small-scale variability and/or sampling error (Isaaks and

Srivastava, 1989), which is explained in Appendix B.

Equation (3.31) is an isotropic semi-variogram. For anisotropic semi-variograms,

Eq(3.31) can be modified as

2 2
Yexpected (hr) = YCxpected(h‘l’hZ) =0+ S§2' ) l—exp _\/(_x] +[_z] (3.32)

where the subscripts 1 and 2 denote the longitudinal and transverse axes, and hy, h; as

well
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_ Ax

=

~~ =horizontal offset »

- Ax
Ah )
= =vertical offset
Az

Figure III.3 Definition of lag offsets. Lag offsets are assigned such that semi-variogram
for a given pair will not be calculated twice. Fourteen lags are illustrated in this plot.
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as A1, A, are the separation distance and correlation lengths on the longitudinal and
transverse -axes, respectively. Anisotropy such as in Eq(3.32) is called the “geometric

anisotropy” (Isaaks and Srivastava, 1989).

Calculating 'y)(h,) in Eq(3.28) may be a time-consuming task if the grid size is
large. To reduce the computational effort, Deutsch and Cockerham (1954) proposed an
efficient method of updating v’(h,). Since only one random pair is perturbed at a time,
v'(h) necds not to be recalculated at each perturbation but caﬁ be updated based on
previéus information. This is illustfated in Figure IIL.4. Consider the raqdom pair, {(uy)
and {(uy). For a particular lag h,, the neighboring data pdihts cbntribﬁting to updating
Y ’(h;) are shown as solid circles; whereas data points contributing nothing to updating
y’(h,) are marked with hollow circles. Therefore, y ‘(h,) can be ppda'téd by the fbllowing '

equation

2

A+ ) @)~ + ) -C )]
N i -(3.33)
Y -ty + ¢ -sw,y]

i=1

1

v'(h,)=

where A(h,) is the sum of squared difference of { pairs from the previous perturbation.
I11.2.3 Perturbation mechanism

Starting from the initial field, SA selects a random pair of data points before each
perturbation. Each data point in this pair has to be un-conditioned data. The system is

then perturbed by comparing the system energy before and after swapping the locations of
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C(u21) |
>
O O
C(uy)
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Cuy)

grid point that is to be perturbed

@ : grid point at which variogram is re-calculated
O : unchanged grid point - |
h, : r-th lag vector

Figure IML.4 Update of simulated semi-variogram in a small grid where (u;, uy) is the
location of the random pair, and u;; and w;, are separated from u; by lag vectors +h, and
-h,, respectively.
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the two data points. If the system enérgy decreases after a perturbétion, the tWo data
points will exchange their locations. Otherwisé, the system remains unchanged. This
procéss is repeated until the system reaches the state with the nﬁnirﬁum energy (Omin); or
stopped when the number of perturbations is beyond an upper limit. Other perturbation
mechanisms may also be used. For example, one possible mechanism is to randomly
select a data point and replace its value by a new one drawn from a spéciﬁc probability

population (Datta-Gupta, et al., 1995).

The critical drawback of the above perturbation mechanisms is that the minimum
energy Omin at convergence rﬁay be a local minimum but not global. This is becaﬁse such
perturbation mechani_smsA always favor the paths with decreasing energy, and the paths
with increasing ehergy are unconditioﬁally rejected. To correc.t- this shortcoming,
Metropolis et al. (1953) préposed an algorithm such that an unfavorable perturbation can
also be accepted with a certain probability. By conditidnaﬂy accepting an unfavorablev
_perturbation, the system is able to jump out of a localv minimum. Then, the optimal system
energy at convergence can be close to the global minimum (Press et‘ al., 1986)_. The
perturbation mechanism of uncon_ditionélly accepting a favored berturbation but
conditionally accepting an unfavorable perturbation‘ has been referred to as the

“Metropolis algorithm”.

From the theories of thermodynamics and statistical physics, the probability of
changing the system energy from E; to E; can be described by the Boltzmann distribution

(Metropolis et al., 1953), i.e.,
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v exp[— (E,-E, )] _ exp[:_A_EJ | 639

where kg is the Boltzmann constant, and T is the temperature. The probability in Eq
(3.34) is modified in SA to represent the probability of accepting an unfavorable
perturbation. By letting kg = 1, AE = AO (change of objective function before and after a
pefturbation), and T = temperature parameter in SA, the acceptance i)robability in SA'is

approximated as

-AO ' :
pacceptzexpl: T ] o (3.35)

I11.2.3.1 Modified Metropolis algorithm

As mentioned earlier in Section TI1.1, a realistic representation of natural fractures~
must model the gradual change from zero aperture at asperity contacts toward larger
apertures between asperities. However, preliminary tests of the Metropolis algorithm
showed that it may not be edequate_ to achieve that goal because it is not “sensitive
enough” to simulating “simply connected” (in the topological sense) asperity contacts.

Thus, a modified Metropolis algorithm was developed as a paﬁ of this study.

The coneept of “neighborhood” was introduced in order to modify the Metropolis
algorithm. The neighborhood of an asperity contact is defined as an un-conditioned grid
block that the distance from the center of this grid block to the center of the asperiiy
contact is smaller than or equal to [ grid block units. For example, the 28 gray blocks

shown in Fig. III.5 are the neighborhood of the asperity contact located at (0,0) with [ = 3.

41



The purpose of introducing neighborhood to asperity contacts is to treat the regions near
and far from asperity contacts separately, and to emphasize particular features of the

region near asperity contacts.

Figure 1.5 Schematic definition of the neighborhood illu‘stmfed for the asﬁerity contéct
at (0,0) with / = 3.

The Metropolis algorithm is theﬁ modified by taking inio account the relative
locations of the grid blocks in a random ;;air. If the objective funétion decreases after a
perturbation, this randoin pair is accepted uncbnditionally. However, the locatioﬁs of the
‘random pairs become important if the objective function increases after a perturbation. If
both of the grid blocks are in some neighborhoods, or none of them in any neighborhood,
this. pair is still evaluated probabilistically by Eq(3.35); otherwise, this pair is accepted
only if the grid block locatéd in a neighborhood has a larger value (;f € tLén the grid blbck
that is not in any neighborhood. In o;her words, it is favored to introduce grid blocks with

small values of { into neighborhoods of asperity contacts. Figure II1.6 illustrates the idea

of the modified Metropolis algorithm. Also, see Appendix C for the source code of the
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modified Metropolis algorithm. Note that the modified Metropolis algorithm reduces to

the Metropolis algorithm if the size of neighborhood (J) is zero.

- conditioning m m O decreases, accept
asperity contacts O increases, accept with p = exp(-AO/T)

neighborhood E](_ O decreases, use Metropolis algorithm
(un-conditioned) =»1_2] Oincreases, accept only if {(u,) < {(u,)

Figure III.6 Concepts of the modified Metropolis algorithm.

II1.2.4 Annealing schedule

While annealing a material, the temperature in the thermodynamic system is
lowered gradually until the system reaches the state with the minimum thermal energy. To
numerically simulate the thermodynamic processes of annealing, it is then necessary to
define, in the numerical system, a controlling parameter which acts like the real
temperature in the thermodynamic system. In the SA algorithm, the controlling parameter
is also called “temperature”. Thus, the annealing schedule is the speciﬁcatjon of the

timing and magnitude of the temperature reduction in the numerical system.
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Since the temperature in a real thermodynamic system is lowered continuously, it
reflects that all particles in the system experience the same temperatufe as they .cool
down. In SA systems, hoWeVer, only one random pair is chosen at each perturbation. To
model the simultaneous temperature reduction analogous to a thermodynamic system, the
temperature parameter in SA systems has to be lowered piecewise but not continuously.
Numerically, this can be done by lowering the temperature when éithef one of ‘the
following twg conditions is satisfied: (1) the number of favored perturbations exceeds the
upper limit, Kaccept; OF (2) the total humber of perturbations (either favored or rejected
perturbation) after the previous perturbation at which the temperature is lowered exceeds
the maximum allowable value, Kpax. If one of the above two conditions is satisfied, the

temperafdre will be lowered by a factor T (T < 1).

A suitable annealing schedule should be chosen- such that T is as large as
possible, and T is as small as possible. Howevér, such annealing'schedule is at the
expense of large amount of computatioﬁs, especially when the grid is finely discretized.
Theréfore, a compromiée between good annealing results and a reasonable computationél
effort is necessary. Based on our experience, the followingv annealing schedule is
satisfactory, i.e., To= 1.0, T=0.9, Kmax = 50 Nyyz, Kaccept =.5 Dyyz, N =3, Om_i,;= 107, which
are .ir;itial temperature, teméerature redﬁction factor, maximum number of allowable
perturbations between two consecutive reductions of temperature,'maxirhum number of
acéppted perturbations, the maximum allowable ratio of the number of perturbations to

Kmax When the objective function continues to increase after each perturbation, and the
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minimum objective function, respectively. The number nyy, is the total number of grid

blocks.
I11.3 Effects of spatial discretization on characterization of random fieids

In general, spatial discretization of thevnumeric_al grid should be as fine as possible
to capture the detailed spatial variability of the random field. Howg.ver, fine discretization
may often make burdensome the computation loads of numerical ;haracterization é.nd
flow simulation. Moreover, preferential flow is commonly observed in ﬁnsaturated flow
in fractured rocks. This suggests that some areas in the fracture will not even be contacted -
by the aqueous phase due to flow bypassing. Therefore, from the computational point of.. .
view, using a fine discretization may not be as cost-effective for characterization purposes
as for flow modelings; ’I_‘hus,‘ a ‘l‘:reasonable” spatial discretization shouid be adépted. The
value of this spatial discretization sﬁould be chosen such that basic elements of spatial
variability of permeability are preserved, ;md th¢ r:esulting flow simulation is physicélly i
meaningful as well as representative of field conditions. In this study, the size of the flow -
domain ié 20 m x 20 m X 1 cm. Considering computational capacity and efﬁcienpy, a
suitable spatial discretization was then chosen as A = 02 m, i.e.,'. totally 10;000 grid -

blocks. For comparison purposes in this section, a finer discretization of A= 0.1 m is also

considered.

One of the factors controlling the dependence of the accuracy of the generated
random field on spatial discretization (A) is the correlation length (A) of the random field.

A dimensionless ratio of spatial discretization to correlation length, A/A, is cbmmonly
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used t;) analyze the relationship between characterization accuracy and spatial
discretization. A theoretical study by Li and Der Kiureghian (1993) suggested that a
simulated random field has negligible error with respect to its true random field if this
ratio is smaller than 0.5, i.e., A/A £ 0.5. Detailed analyses of the felationship between the
spatial discretization and the accuracy of characterization is not pursued in this study.
Instead, a sensitivity analysis is performed in this section to examine the impact of spatial
discretization on éharacterization accuracy. Another set of sensitivity analysis on the

effect of spatial discretization on seepage patterns is latter investigated in Chaptef V.

Two realizations of conditioning asperity contacts that are spatially random and
spatially correlated are shown in Figures II1.7(a) and IIL.7(b), respectively. Radius (r) and
correlation | léngthf of asperity coﬁtacts (Ao) are both 0.4m. Based on theée asperity
contacts, Figuré I8 shows corresponding realizations of perméability ﬁelds. with
. differer;t' spatial discretizations and correlation vlen"gths (Ax) of permeability. Note that the
same asperity contacts, whether spatially random or spatially correlated, are ﬁsed both in |
a coarse grid (A = 6.2 m) and a fine grid (A = 0.1 m) Two correlatibn lengths of
pern‘leabi.lity are Considered, M = 0.4 m and 0.8 m. Thus, the ratio A/A; is 0.25 or 0;5,
both satisfying the requirement of A/A; < 0.5. Modiﬁed. Metropolis algorithm was used
for annealing each of the permeability fields in Figure IIL8. In additiqn, the correlation

was given by an isotropic exponential semi-variogram, Eq(3.31).

It is expected that certain spatial features of the permeability field may become

apparent as the ratio A/A; is decreased. For pérmeability fields with spatially random
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Figure III.7 Two realizations of spatially random and spatially
correlated asperity contacts in a grid discretized with A =0.2m.
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Figure II1.8 Permeability fields used for the sensitivity analysis. Each permeability field
is annealed with the modified Metropolis algorithm in which realizations (a) to (c) are
conditioned on spatially random asperity contacts (Figure III.7(a)), and realizations (d)
to (f) on spatially correlated asperity contacts (Figure II1.7(b)). The correlation structure
for each realization is an isotropic exponential semi-variogram with nugget = 0, sill =

190 (for realizations (a) to (c)) or 110 (for realizations (d) to (f)), and correlation lengths
A\) =0.4m or 0.8m.
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asperity contacts, Figures IIL.8(a) and II.8(b) show that the clustcﬁng effect around
asperity contacts becomes more obvious as the ratio N?»k 1S decre_ased from 0.5 to 0.25.
Accordingly, flow channeling is expected to be more prominent in I‘:iguretI]I.S(b) than in
Figure II1.8(a). Comparisons between Figures ]]I.8(d) and II1.8(e), however, demonstrate
that the intrinsic variability of a random field with spatially correlated asperity contacts is
nearly preservéd as long as the ratio A/ is smaller than 0.5, though finer reéolution of

tortuosity is observed in a fine grid, Figure IIL8(e).

As stated eariier, itv is not practical to further reﬁné the grid. Thus, the other Way
\of looking at the impact of the ratio A/A; oh characterization (and/or flow simulation) is_
‘to fix the spatial di_scrétization at A = 0.2 m but increase the correlation length of
permeability. Figures II1.8(c) and IIL.8(f) demonstrate this change by increasing Ay from
0.4 m to 0.8 m. For spatially correlated asperity contacts, Figures II1.8(d) and IIT.8(f) show
that heterogeneities in these two realizations withldifferent ratios of A/A; are qualitatively
the same. However, permeability heterogeneity for random fields with spatially random

. asperity contécts varies with the ratio A/A,, see Figures II1.8(a) and [[I.8(c).v

Combinihg the abbve observations concludes that fracture heterogeneity is A
virtually insensitive to the ratio A/A; for permeability fields with spatially correlated
asperity coritacts, as. long as the ratio A/A«< 0.5. For permeability fields with spatially
random asperity contacts, permeability heterogeneity is sensitive to the ratio A/A;. As far
as the accuracy of characterization is considered, a finer grid may be needed while

considering permeability field with spatially random ziéperity contacts.
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I11.4 Examples of simulated random fields

To demonstrate the effectiveness of the modified Metropolis algorithm, Figure
M9 shows four realizations of spatially random as well as spatially correlated
conditioning asperity contacts, which are either isotropic or anisotropic. Corresponding

initial fields are shown in Figure III.10. Note that the un-conditioned asperity contacts in

Figure II1.10 were drawn from a log-normal distribution with mp= 1.0 and 515 = 1.5.

Figures III.11(c) and (d) show two permeability fields annealed with the
Metropolis and the vmodiﬁed Metropolis algorithms, fespectively. The spatial structure is
‘an anisotropic exponentialAsemi—variogram with nugget = 0.0, sill = 120, and correlation
lengths (A) = 1.6 m and 0.2 m in the major andv minor axes, respectively. Compared with
permeability fields annealed with the Metropolis élgorithm, permeability fields annealed
with the modified Metropolis algorithm have a stron;;er-tendency to draw un-conditioned

| asperity contacfs and/or grid blocks with smaller {Ialues of { into the neighborhoods of
asperity contacts. This tendency is independent of the spatially correlation of asperity
contacts. In addition, the téndency may often be obtained at the expense of a larger
number of perturba}tions, compare Figufes II.11(a) and I[I.ll(b). Thus, Figure O1.11(d)
shows a more significant clustering effect around asperity contacts than Figure MI.11(c).
.Moreover, these two realizations can be quantitatively oompared by deﬁning the average

permeability in the neighborhood as follows

» 1 M o )
K, =— Y k(X, 3.36
- Nbg( ) (3.36)
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where Nb is the total number of grid blocks that are located in the entire .neighborhood of
all asp‘e'rity contacts. The average permeability is significantly reduced from 6.7 X 10° m?
in Figures III.11(c) to 5.4 x 10° m? in Figure OI.11(d). Thus, this provides quantitative
confifmatioﬁ that the modified Metropolis algorithm is better suited to our problem than

the Metropolis algorithm.

Figures I.11(a) and I.11(b) sh.ow the change of objective function with respect
to the number of perturbation, corresponding to perrneability fields annealed with the
Metropolis and modified Metropolis algorithm, respectively. The curve in Figure III.11(a)
shows a monotonié decreésing trend. AHowever,. the curve in-Figure III.11(b) shows
significant fluctuation before convergence. Even if the Metropolis algorithm considered
the poésibility of taking an unfavorable path while peﬁurbing the random fielci, Figure
IM.11(a) suggests that it still tends to get trapped in a locél minimum. The fluctuating
curve in Figure III.11(b) implies that permeab‘ility fields annealed with the modified
Metropolis algorithm is more likely té reach the global miﬁimum energy. Although
realizations in Figuré [I.11(c) and I.11(d) reveal distinctive clustering effects, the semi-
variogram at the end of SA, Figure II.11(e) and HOI.11(f), both fit the expected correlation
structure. Figure I1I.12 shows permeability fields annealed with the modified Metropolis
algoﬁthm, corresponding to initial fields in Figure III.10. Corresponding plots of change
of objective flinction and semi-variogram are shown in Figure III.13. Again these plots
show that the modified Metropolis algorithm is able to produce significant clustering
- effect around conditioning asperity contacts as well as perturb the pérmeability field to

~ the desired spatial correlation.
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Figure I11.9 Examples of spatially random (a and b) and spétially correlated (c and d)

asperity contacts. The correlation function of asperity contacts for realizations (c) and

(d) are two exponential semi-variograms with nugget =0, sill = 0. 1875 but different

correlation scales (A)
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Figure III.10 Initial permeability fields corresponding to each of the conditoning
asperity contacts shown in Figure III.9. A log-normal distribution with mean and
standard deviation of In{ as 1.0 and 1.5, respectively, was used to generate the
un-conditioned data.
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Figure III.11 Permeability fields annealed with the Metropolis and the modified Metropolis algorithms. Each realization was
annealed with an anisotropic exponential semi-variogram with nugget = 0, sill = 120, and correlation lengths (A,) = 1.6 m and
0.2 m in the major and minor axes, respectively.
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Figure 111.12 Annealed permeability fields corresponding to the initial fields shown in
Figure III.10 Each permeability field was annealed with the modified Metropolis
algorithm. The correlation structure was an isotropic exponential semi-variogram with
nugget = 0, correlation length (A,) = 0.4m, and sill = 180.0 for realizations a and b,
and 120.0 for realizations ¢ and d. Spatial discretization (A) = 0.2m.

55



Objective function Obijective function Objective function

Objective function

10°
10"
107
10°
10
10°
10°®

7
10 0

10%¢

10"

102}
10°%F
10°F

10°}
[og
107

1756407 3.5E+07 5.25E+07 7E+07

# of perturbations

(a-1) permeability field (a)

# of perturbations

(b-1) permeability field (b)

# of perturbations

(c-1) permeability field (c)

1.75E+07 3.5E+07 5.25E+07 7E+07
# of perturbations

(d-1) permeability field (d)

1.75E+07 3.5E+07 5.25E+07 7E+07

1.75E+07 3.5E+07 5.25E+07 7E+07

200
150
§ e horizontal y(h)
100 A vertical v(h)
theoretical horizontal y(h)
50F
00 1 L ) ) é

3
h (m)
(a-2) permeability field (a) with sill=180.0

250

200
=180
&
‘5:1 00F [ ] horizontal y(h)

A vertical y(h)
50F theoretical horizontal y(h)
00 L s N . é

3
h (m)
(b-2) permeability field (b) with sill=195.0

150
100
=
= ® horizontal y(h)
s50F A vertical
theoretical horizontal y(h)
00 1 L 1 1 é
h (m)
(c-2) permeability field (c) with sill=120.0
150
100
=
= ® horizontal y(h)
50 A vertical y(h)
theoretical horizontal y(h)
00 ! . ) L é

h (m)
(d-2) permeability field (d) with sill=120.0

Figure I1I.13 Change of objective function during annealing, and simulated
semi-variograms after annealing for permeability fields corresponding to

those shown in Figure II1.12
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Chapter IV. Flow simulation

IV.1 Numerical simulator

A general—purposé flow simulator, TOUGH?2 (Pruess, 1991), is used in this study.
TOUGH?2 is a numcrigal simulation program for nonisothermal flow of multicomponent,
multiphase_ ﬂuids in porous and fractured media. The acronym “TOUGH” stands for
“Transport Of Unsaturated Groundwater and Heat”. TOUGH?2 is “able to simulate a
variety of flow problems by substituting suitable fluid property modules into the
modulaﬁzed architecture. Each flow module gpeciﬁes the 'hydrological/_thermal properties
of fluids under consideration, which is also referred to as “equation-of—st_ate” or EOS
module. Thus, TOUGHZ is applicable to a wide range of problems including geothermal
reservoir engineering (O’Sullivan, et al., 1998), nuclear waste isolation (Senger, et al.,
1998), environmental contamination (Webb, et al., 1998), unsaturated zone hydrology

(Doughty, 1998), and mining engineering (Xu et al.; 1998)

IV.2 Governing equation

.. The problem considered in this study is strictly a two-phase (water and air) flow
under partially saturated, isothermal conditions in naturally fractured rocks. By making
proper assumptions and appfoximations (see Chapfer 1.2) fhis problefnv reduces to a
single-phase flow problem in equivalent 2-D heterogeneous poroué media. Furthermore,
fluid properties such as density as well as viscosity can be treated as constants under

isothermal conditions. Based on these assumptions and approximations, the equation-of
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state flow module reduces to that of solving the mass balance equation (the Richards’

equation) of the aqueous phase in partially saturated porous media.

In addition to the neglect of gas phase pressure, several assumptions are implied
in Richards’ equation (Philip, 1969). First, the continuum approach must be valid such
that hydrologic parameters can be represehted as values that are averaged over a
representative elemental voiume (REV), a volume that is “large” enough compared to an
individual bore but is “small” relative to some macroscale. Second, Darcy’s law must
hold. That is, inertia effects must be negligibie and fluid properties are Newtonian. Third,
the flow ié isothermal. Once thermal effects become significant, vapor diffusion rﬁay turn
out to be an important mechanism. For non-isothermal systems, an additional balance
equation of heat must be solved along with the liquid phasg balance equation. Thus, the

~ Richard’s equation can be written in a multi-phase form as follows -

J Y’ ' |
E(‘bszpl): V'[k 2 pr(Pl + plgz)] . 4.1)

1

where ¢ is porosity, S; is liquid saturation, p; is liquid density, k is the absolute
permeability, ky is the liquid phase relative permeability, 4 is liquid viscosity, P; is the
liquid phase pressure, g is gravity, and z is the elevation. Liquid saturation (S;) is defined
as

Vi _8,

S, = o =— (4.}2)

in which 6, is the volumetric moisture content of the liquid phase, i.e.,
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0,=—" ' 4.3
=y o 43

where V; is the volume of the liquid phase and V,, is the bulvk volume of the medum..
Equétibn (4.1) is a volume-averaged equation thougﬁ the scz;lé at which these average
values are taken vis not explicitly recognized. It is, however, assufned that Eq (4.1) and its
| implied approximations, such as épplicabﬂity of relative permeability and capillary

pfes_sure, are valid for the equivalent porous media on a scale of 0.1 — 1 m (Pruess, 1998).

Recall tha£ fractured media'a;e similar to pordﬁs media in terms of relative
permeability and capillary pressure (Persoff and Pruess, 1995). If hysteresis effects are -
neglected, relative permeability as well as capillary pressure cah be expressed in terms of
a single—valﬁed function of liquid saturation only. Accordingly, customary formulas of
- relative permeability and capillary pressure for porous media, such as van.Génuchten’s

equations, can be used in Eq (4.1), which are

oo
Pcap=—(?‘1’—"i)([S*]‘/“’—1)l’“’ | @)

Q

S"=(8;=8,)/(1=Sy)

where S, is the residual saturation of the liquid phase, and S is a scaled saturation such
that it is in the rahge [0, 1]. Parameters used in Eq (4.4) correspond to those for coarse
sands, i.e., ®= 0.457, S;» = 0.15 for k; and 0.0 for Pcyp, and Q = 50 m’! for reference

permeability (k) at 10° m% These two functions are illustrated _in Figure IV.1.
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Following the sign convention of P, in Eq (4.4), the liquid phase pressure in Eq (4.1)

can then be written as P; = Pgas + Pegp, in which Py, is the constant gas phase pressure.

1 00 M N v v T AS T ‘v .' T M M T Ll T T M : L] " v M

10%} -
4l S,=0.15 |

- 10_5 - ©=0.457
'Qk 10 B ]
10°} | .
10-10 | ' ]
0 02 81

1075 02 04 06 __ 0.8
Liquid saturation (S)

Figure IV.1 Relative perfneability and capillary pressure from van Genuchten’s formulas,
with parameters chosen for coarse sands.

IV.3 Integral form of Richards’ equation
Richards’ equation is conventionally written as a differential form such as Eq
(4.1), in which a divergence operator is included. The shortcoming of using a differential
form of balance equations is that the expression of thé divergence operator changes with
coordinate systems: However, the inherent physical quantity should be invariant to
coordinate systems. Therefore, an integral form of Eq (4.1) fs preferred. This is the basic
idea of the integfal finite difference scheme (Narasimhan and Witherspoon, 1976), which

is used throughout TOUGH2. Integral finite difference avoids any reference to a global

60



system of coordinates, and offers the advantage of being applicable to regular or irregular

discretization in one, two, or three dimensions (Pruess, 1991). .

Discretizing the flow domain into N elements, Eq (4.1) can be rewritten as the

following integral form

—d—JM‘”dV:JF“’ndI}J'q“)dV 4.5)
dt ) o v v
where Vn is the volume of element n in the discretized flow domain, M® is the mass of
component i in Vy; F? is the mass flux of component k across the.element bouridary I+
associated with a normal vector n, and q is the mass sink/source term of component in

element n. Each term in Eq (4.5) can be further decomposed as follows. M@v is the

accumulatéd mass of component i in all phases, ie.,
p - .
MO =03 5,X0 0, S @)
v - Bel . _

where p is the total number of phases; Sp is the saturation of phase f, X(,;) is ihe mass

fraction of component k present in phase f, and pg is the fluid density of phase . Mass

flux F is the sum of fluxes of component i from all phases, i.e.,

@) _
n$n

pa @7

ok,
Fy =- li: p[,Xﬁ,)(VP,3 —pﬁg)
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where Fj is the total mass flux of phase f, ug is the viscosity of phase f, k is the intrinsic
permeability, kg is the relative permeability of phase B, Py is the pressure of phase 3, and

gis _grévity. Note that Fgis the multiphase version of Darcy’s law.

Each integral in Eq (4.5) can be approximated by a product of element volume
(Vy) and a volume-averaged variable. The volume integral of mass M® can be

approximated as
IM(:)dV= V,M® = vﬂz‘pnsmp PupXik | - (4.8)
Vn ' B=1 ‘ .

- where M®, & Snips Pnps ande,f;, are»volumg-averaged values of M?, ¢, Sg, pg,
andxg) within element n, respéctively. Oof course, Eq (4.8) is valid only if the
discretization is fine enough so that MY, ¢n, Sap, Pnp, andX{); are uniformly

distributed within element n. By the same token, the surface integral of interface mass

flux F© can be approximated as

JF“')ndr: zAmF;g = Z'Am XFW | - (4.9)
T, m m B=1

The term FY) in Eq (4.9) is the averaged interfacial mass flux across the interface Anm

between element n and all its contacting elements m. This mass flux vector is illustrated

in Figure IV.2 as pointing from element m to clement n. For simplicity, only one

contacting element is shown in Figure IV.2. In addition, the interfacial mass ﬂuxF,f,’,f is
actually a summation of mass fluxes from various phases. Thus, F¥ is further
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decomposed as the last summation in Eq (4.9). From Eq (4.7), F{)can be further -

decomposed as

. [k . g
=) (] w0
B Jom . 4

ﬁ=l nm

k o : :
where ko , %”—, and pgnm are, respectively, the interfacial permeability, mobility, and
p i

density associated with the interface Ann. The last integral in Eq (4.5) is simply

“approximated as V_.q% in which q

)

n

is the volume-averaged sink/source.

O e P

Figure IV.2 Interfacial mass flux F across the interface A,y and associated parameters
in elements n and m. '

Different weighting schemes are used in TOUGH2 for c'alculatingb interfacial
parameters. Interfacial permeability is harmonically weighted depending on distances L,

and L, i.e.,
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ky Xkoo # L) 4oy 20 andL, 20
Lk +Lk. |
k= k ifL =0 @.11)
k ifL_=0

Interfacial density can be upstream weighted, i.e.,
Pun = WM, Xp +WM_Xp_ ’ (4.12)

where WM, = 1 and WM, = 0 if the driving force is directed toward n; otherwise, WM, =

0 and WM, = 1. Or it can be uniformly weighted, i.e.,

0.5xp, +05xp ifL #0andL_#0

oo p. =p. ifL =0 O @13)

pnmzpnlfLmzo ‘

In order to obtain physically realistic results, interfacial mobility must be upstream

weighted (Peaceman, 1977), ie.,

ke ;WMnxﬁ-+Wmek—m ' (4.14)
T I o ;

whereAWMn and WM,, are defined above.

In summary, the integral form of Richards’ equation can be approximated as

dr V

n

() ‘
™, =LZAMF,§;3 +qy - (4.15)

m
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Equation (4.15) is solved by the finite difference scheme. In order to obtain numerical
stability, time is discretized fully implicitly (Peaceman, 1977). Therefore, Eq (4.15) is

recast as

n

MO - M = 3’ {EAWF::;”' +V, q"”*‘} (4.16)

m

where j is the index of time stepping. The difference of the two terms to the left and to the
right of the equal sign is referred to as :”residual”. Therefore, solution of Eq (4.16) occurs

when the residuals are zero. Eq (4.16) can then be rearranged as
Rfll'),j-(»l (@) = Mfli),jﬂ (@)_ Mf.i),j (@)___{2 AanlE:g ,j+1 ®)+ \Y4 q(l).l"'l} 0 (4.17)

where R is the residual. For each volume element V,, there are NEQ equations. For a flow
system with N grid blocks, Eq (4.17) thus represents a system of NEQ x N coupled, non-

linear and algebraic equations. The vector ©® in Eq (4.17) contains NEQ x N independent

primary variables which completely define the state of the flow system at time level .

Expanding Eq (4.17) by its Taylor’s series to the first order yields

NxNEQ

ROM(O,,) =RO™(O,) + z

JR (x) |

©,,.-0,,)=0 (4.18)

uu+l

where v is the iteration index. Eq (4.18) can be solved by the iterative Newton-Raphson
method. Time step in Eq- (4.18) may be automatically adjusted, depending on the

: : & .
condition of convergence during the iteration processes (Pruess, 1991). Usually, Eq
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(4.18) is written in the following form

NxNEQaR(i)'jH '
E n — P D+ .
. u=l a@u ) (®u,v+l - ®u.u )_ Rn : (90) (4 19)
which is further simplified as
JAO =R (4:20)

where J is the Jacobian matrix of the flow system (the partial derivatives of R, with
respect to ©;) and R is the residual vector consisting of NEW x NEL residuals. Other
features and flexibility of TOUGH2 code can be seen in detail in user’s guides for -

TOUGH and TOUGH?2 (Pruess, 1987, 1991).

II1.4 Verification of TOUGH2 - One-Dimensio'nal Infiltration Model

An example of one-dimensional infiltration into a semi-infinite porous medium
was used to verify the TOUGH2 code. The movement of water in an one-dimensional,
semi-infinite unsaturated soil column can be described by the following form of the
Richards’ equation (Philip, 1955)

08 4 (DBG)_BK @.21)

3 x| ) ax

where K is hydraulic conductivity, and D is the diffusivity that is defined as

p=xd” (4.22)
a0
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where h is the hydraulic head, which is defined as the sum of pressure head (P/pg) and

elevation head (2), i.e.,

h = i +2z (4.23)
pg

- The first term in (4.21) represents the capillary effect, and the second term gravity
effect. Equation (4.21) can be further simplified by neglecting gravity effect. This
assumption is valid-either at earlier times of infiltration or for horizontal soil tubes. Thus

Eq (4.21) can be reduced to

3 (.00 |
—=—| D— 4.24)
ot ax( ax) (

Assume’ that the soil column has an initial water content at 0, at x > 0. In addition, water

is infiltrated into the soil surface at x = 0 at a constant water content 0. These conditions

can be written as

0=0, ,t=10x>0

(4.25)
0=0, ,x=0,t20

and are illustrated in Figure IV.3.

| / 0=0,att=0
en) semi-infinite, homogeneous and isotropic medium
" 5 hydraulic conductivity = K oo
R — » water diffusivity =D
—>
> X

Figure IV.3 Schematic diagram of the one-dimensional infiltration problem.
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Based on similarity transformation (or Boltzmann transformation), Philip (1955)
developed an iterative analytical solution for Eq (4.24) subject to initial and boundary
conditions Eq (4.25). He transformed Eq (4.24) into an ordinary differential equation by

introducing a new variable, @, that is a function of 0 only. The number of independent

variables in Eq (4.24) is then reduced to one if @ is written as
¢=0O)=x-1" (4.26)

Thus, Eq (4.24) can be recast as

_$d0_df,d0 @2
2de dol| do

Multiplying both sides of Eq (4.27) by %(g gives

_e_dfpdo (4.28)
2 8| do

Initial condition and boundary condition for Eq (4.28) can be deduced from Eq (4.25) as

0=0,,0=0
8586, ,0>0 (4.29)
Eq (4.29) implies that
4® 0500, | (430)

de

Integrating Eq (4.28) with respect to 0 then yields
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0
j&dez_zDﬁ . | 431)
0, 2 ' do '

which is subject to the condition

k-]

6=06,, ¢=0 (4.32)
Philip’s method is to solve Eq (4.31) with the condition specified in Eq (4.32). Figure
IV4 illustrates an.example of the relationship between ¢ and ©. This relationship is
obtained by assuming that relativé permeability and capillary pressure of §0il are
described by van Genuchten’s formulas, Eq (4.4), with parameters corresponding to
coarse sands. Once the function ¢(9) is found, other relationship such as saturation

profile or infiltration rate can be derived from that function.

I11.4.1 Test problem

Consider a horizontal soil fube with éemi-inﬁnite extent, e.g., Figﬁre IV.3.
Assume that this soil has a porosity of 0.45 and intrinsic perr.heability of 1.2x10™" m%
Initially, water saturation (S;) in this soil tube is 44%. Then, water is infiltrated into the
soil tube at x = O until it is fully saturated, ie., S; = 1. 'Relative- permeability (k) and

capillary pressure (Pcap) for this soil are assumed by the following linear functions

0 , S, <0333 _
k =48 _— . .
r=9520333 , 0.333<S, <1 (433)
- 0.667
| -9.7902%10* (Pa) , S, <0.333
Pop = ~9.7902x10° 125 (Pa), 0.333<S, <1 : (4.34)
0.667
0 , S,=1
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Figure IV.4 Functional form of ¢ versus O for a soil whose relative permeability and
capillary pressure functions are described by van Genuchten’s formulas.

which are illustrated in Figure IV.S. From Eq (4.33), the hydraulic conductivity, K, can
be written as the produét of k and k,, where k is the absolute permeability. Then, Eq _

(4.22) cén be rewritten as

dP
D= Kﬂ_&_‘”‘?

= = (4.35)
do  uo¢ dS
where U is water viscosity (10° Pa-s). From Eqs(4.33) and (4.34), Eq (4.35) is
_ 5.8683x1077(S, —0.333) , 0.333<S, <1 . -
D (m%/s)= ) L (4.36)
0, S, <0333

The analytical solution, i.e., ®(0), is shown in Figure IV.6. Based on this

relationship, -the saturation profile at a particular time can be obtained by multiplying
| ¢(0) by Jt . For example, Figure IV.7 shows three saturation profiles at t = 864 sec, 5184

sec, and 9504 sec. Solutions obtained by TOUGH2 are marked by symbols, and
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analytical solutions by lines. It is clear from Figure IV.7 that analyticél solutions obtained

by Philip’s method are very close to numerical solutions by TOUGH2.

T e 10000

0.8F | 18000 __

i T -

_06F ——— ki {6000 Q-

N IP__| (Pa) —

0.4} 3 J4000 §

_ F S o

02¢ 12000 —
O0———02 " 04 08 08 10

Liquid saturation

Figure IV.5 Linear relative permeability and absolute capillary pressure for the soil

considered in the test problem.
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‘Figure IV.6 Analytical' solution obtained by Philip’s method for the

infiltration problem with 6,=0.198 and 0¢=0.45.
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Figure IV.7 Comparison of analytical and numerical solutions for one-dimensional
“infiltration into a horizontal soil tube.
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Chapter V. Seepage simulations

V.1 Setup of numerical simulations and factors affecting seepage in fractures

Fluid flow in a partially saturated fracture is examined in this chapter, considering
different levels of normal stress, varying degrees of fracture heterogeneity, and various

initial and boundary conditions. Transient as well as steady state flow is considered.

The flow domain is idealized as in Figure V.1 in which the equivalent porous
medium lies within a vertically oriented fracture plane of 20 m x 20 m x lem. This
domain is furthe_:r discretized into a finite difference grid of 100 x 100 = 10,000 square
blocks. Such discretization is fine enough to represent medium heterogeneity, and'is
manageable with the available computers. Porosity heterogeneity is neglected.
Accordingly, a spatially uniform porosity (¢) of 0.35 is assumed. Water is injected into -
the top boundary with a constant rate 1073 kg/s), which is done by introducing an
additional single element (20 m X 0.2 m X 1 c¢cm) at the ground surface (z = 0). This
element not only receives the water supply but transfers fluid mass with .u;nderlvying
elements. Initial liquid saturation in fractures is assumed at the value of the residual
liquid saturation, i.e., S;,= 0.15. Lateral boundaries have no-flow boundary conditions. In
addition, a unit-gradient boundary is assumed at the bottonvl.boundary, i.e., the free
drainage boundary condition.. The above initial and boundary conditions are applied to

most simulations if no other conditions are specified.

Effects of the gas phase pressure, matrix permeability, porosity heterogeneity, and

hysteresis of relative permeability and capillary pressure are neglected in this study. The
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remaining factors affecting unsaturated seepage in fractures, therefore, are the
heterogeneity and spatial correlation of permeability, as well as the initial and boundary -
conditions. For homogeneous porous media, capillary pressure is inversely proportiohal

to a length scale that characterizes the pore structure of the media (Leverett, 1941), i.e.,

N

P, ol K ‘ 5.1)

cap ¢

where k and ¢ are the permeability and porosity of the media. For heterogeneous media,
however, both permeability and porosity may be spatially varying variables. Since the
porosity is assumed to be homogeneous, capillary pressure for heterogeneous media is

~ thus scaled as

in which k; and k; are the permeabilities of the equivalently homogeneous and

heterogeneous media, which are ks and ks X C, respectively.

Constant Q

an additional single element_

N

Unsaturated
fractured rock

a single fracture in a
3-D fracture network

2-D heterogeneous porous medium
discretized into 100 x 100 grid blocks

- Figure V.1 Idealization of the flow domain.
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The effect of t)ermeability on seepage depends not only on the aperture,'which is
a function of the magnitude of normal stress (see Figure I1.2), but also anisotropy of
asperity contacts. The latter is conceptually illustrated in Figure - V.2, which rshows
laterally extensive asperity contacts perpendicular, parallel, or oblique to the ‘downward
flow directton. Asperity contacts are fepresented as ellipses in Figure V.2 for simplicity
and conveniencc, though they may not necessarily have regular shapes. Figure V.2(‘a) |
shows that asperity contacts perpendicular to the ﬁow direction may divert flow more
dramatically than asperity contacts parallel to the flow dlrectlon i.e., Figure V.2(b). More
1mportantly, ﬂow may ‘be funneled into localized reglons 1f asperlty contacts are arranged ;
in the manner -schematlcally similar to Figure V.2(c). Funneled flow in porous media has
been indecd observed in the field (Kung, 1990ab). Thus, the ab'ilitsl of aspefity contacts to
divert flow depends on their correlation lengths, anisctropic ratio, and their orientatton

relative to the downward flow direction.

@) (b)

Figure V.2 Schematic representation of flow lines diverted by anisotropic asperity
contacts which are represented as ellipses for simplicity.

V.2 Impact of spatial discretization on liquid seepage

Recall that a sensitivity analysis of characterization accuracy. with respéct to

spatial discretization was carried out in Chapter II. Results from that sensitivity. analysis,
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Figurer I1.8, indicated that the spatial variability of permeability fields could be adequately
captured as long as A/A, < 0.5. That sensitivity analysis is further extended in this section

for investigating the effect of spatial discretization on flow simulations.

Simulated liquid saturations at breakthréugh and steady state in synthetic fractures
with simulated permeability fields shown in Figure II1.8 are represented in Figures V.3
and V 4. The term “breakthrough” is simply definéd as the condition when the first liquid
reaches the depth of —19.9 m. The term “Steady state” is herein defined as the point in
simulation when the rétio of the total flux exiting the bottom boundary to the flux
injecting to th¢ top bounda;y exceeds 0.999. It -should keep in mind that flow fields

obtained by this convention are strictly pseudo steady-state flow fields.

( Consequently, fine spatial discretization does not appear to be necessary to model

~ seepage through fractures with spatially correlated asperity contacts as long as A/Ax < 0.5.

-Figure V.3 shows that thé discretization length (A) and correlation length (As) both
influence the simulated seepage patfem in a f;acturé with uncorrelated asperity contacts.
In contrast, the simﬁlated seepage patterns in a fractufe with spatially correlated asperity
contacts are remarkably similar. The similarity is independent of the spatial discretization
as illustrated in Figures V.4(a) and V.4(b) (or Figures V.4(d) and V.4(e5) if the
permeability fields have the same correlation lengths and the ratio A/Ais smaller than.
0.5. This simi]arit); is preserved in Figurés V.4(c) and Figure V.4(f) even if the

' coﬁelation length- of permeability is increased. Thus,‘ the seepage pattern is strongly

affected by the correlation- structure of asperity contacts but to a lesser exfent the

correlation structure of permeability, for A/A; < 0.5.
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Figure V.3 Saturation at breakthrough (cases a to ¢) and steady state (cases d to f) in
synthetic fractures shown in Figure II1.8(a) to 1I.8(c), with isotropic, spatially random
asperity contacts with different radii and grids with different values of A.
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Figure V.4 Saturation at breakthrough (cases a to ¢) and steady state (cases d to f) in
synthetic fractures shown in Figures IT1.8(d) to IIL8(f), with isotropic, spatially correlated
asperity contacts with different correlation lengths and grids with different values of A.
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V.3 Seepage versus normal stress

Experimental data (Pyrak-Nolte et al., 1987) has showed that contact areas in
natural fractures increase with normal stress. However, the detailed mechanical properties
of contact areas in fractures and their relationship with the normal stress are not interested
here. Then, the relationship between liquid seepage and normal stress is simulated instead
by changing the total fraction of asperity contacts. Four different fractions of asperity
contacts are considered here, 15%, 25%, 35% and 40%. For each fraction of asperity
contacts, twenty to thirty synthetic fractures were generated in order to obtain statistically

homogeneous realizations of heterogeneous fractures.

Spatially random and spatially correlated asperity contacts corresponding to the
different stress levels are shown in Figure V.5. The corresponding realizations of
permeability fields obtained by conditioning on the asperity data are shown in Figure V.6
and V.7. The expected spatial correlation structure of the permeability fields is an
isotropic exponential semi-variogram with nugget = 0.0, correlation length (A;) = 0.4 m,
and sill number ranging from 90.0 to 190.0 in different realizations. Spatial discretization

(A)is 0.2 m, i.e, the ratio A/ Ay =0.5.

Computed saturation at the time of breakthrough and steady state obtained using
the different permeability fields is plotted in Figures V.8 to V.11. Flow simulations in
fractures with spatially random asperity contacts and low normal stress exhibit numerous
interconnected flow paths. As the normal stress increases, significant preferential flow
occurs whether the asperity contacts are spatially random or spatially correlated. The
preferential flow is accompanied by significant flow bypassing and ponding. The asperity

79



“0 2 4 6 8 10 12 14 16 18 20
Distance (m)

(a) 10%
0 0
2 2
4 4h
-6 -6
€ E-
-,qg,_-w %-.10 -
= .
a 12 a 12
-14 14
16 16
18 18
4 . 3 5 B
200274 8 10 12 14 16 18 20 20 e 810 12141618 20
Distance (m) Distance (m)
(b) 15% (c) 25%

_ Depth (m)

$ 8 10 1 14 16 18 20 E raa 10 1 14 16 18 20
Distance (m) Distance (m)
(d) 35% (e) 40%

Figure V.5 Spatially random (case a) and spatially correlated asperity contacts (cases b to e),
used as the conditioning data for heterogeneous fractures. Radius (r,) and correlation length
(A,) for asperity contacts are both 0.4 m. The correlation structure for cases b to d is an iso-
tropic exponential semi-variogram with nugget = 0.0 and sill = 0.1875.
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Figure V.6 Synthetic fractures conditioned on spatially random asperity contacts as
shown in Figure V.5(a). The expected correlation structure is an isotropic semi-
variogram with nugget = 0.0, sill = 190.0 and correlation length (A )= 0.4m. Spatial
discretization (A) = 0.2m.
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Figure V.7 Synthetic fractures conditioned on spatially correlated asperity contacts as
shown in Figures V.5 (b) to V.5(e). The expected correlation structure is an isotropic
semi-variogram with nugget = 0.0, and correlation length (A, ) = 0.4m. Sill numbers are
120.0, 115.0, 100.0, and 90.0 for realizations (a), (b), (c) and (d), respectively. Spatial
discretization (A) = 0.2m.
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Figure V.8 Saturation at the time of breakthrough at the depth of -19.9 m, in
fractures with spatially random asperity contacts. Initial water saturation is
at the value of 0.15.
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Figure V.9 Steady state saturation in fractures with spatially random
asperity contacts. Initial water saturation is at the value of 0.15.
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Figure V.10 Saturation at the time of breakthrough at the depth of -19.9 m, in fractures
with spatially correlated asperity contacts. Initial water saturation is at the value of 0.15.
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Figure V.11 Steady state saturation in fractures with spatially correlated
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contacts divert the water into spatially localized fingers that may further proceed
downward, merge with other fingers, or be terminated/ponded on laterally extensive sub-

horizontal asperity contacts.
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Figure V 12 Arithmetic means of effective permeabilities in synthetic fractures with
spatially random and spatially correlated asperity contacts.

Horizontal and vertical effective permeabilities for each‘ of the synthetic fractures
were calculated for each 'fractionvof -asperity contécts. To calcufate effective permeability,
single phase flow simulations were performed to steady state and the permeability was
calculated based on Darcy’s law (see Appendix D for details). The results are plotted in
Figure V.12 and a monotonically decrea.sing trend Withv normal stress as would be

expected.

_The vertical advance of the fastest finger with respect to time is plotted in Figure
- V.13 for flow simulations with spatially coﬁelated asperity contacts. The sIopes of these
curves tend to increase with increasing normal stress, suggesting faster breakthrough iﬁ
fractures subject to increasing normal stresses. The occurrence of faster breakthrough in
fractures results from the increasing degree of preferential flow as normal stress

increases, along with the increased Darcy’s velocity as the flow funnels into localized
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fingers. The trend of shorter breakthrough time is further verified by histograms of
breakthrough time shown in Figure V.14. The vertical advance curves for fractures
subject to low normal stress tend to be linear because the effects of bypassing and

ponding are weak. However, the curves become irregular as flow bypassing and ponding

become significant at high normal stress.
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Figure V.13 Vertical advance curves obtained from ﬂow simulations w1th spatially
correlated fracture asperities.
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Figure V.14 Histograms of time to breakthrough in fractures subject to increasing normal
stress.
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vAn altemative boundary condrtronls to con81derlocallzed 1njectlon F1gureV15
- shows the transient an_'d'stea:c:ly. s:tate.'vﬂow,}ﬁelds m fractures ;'with.'spatially'_‘correlated |
: asperity contacts, subjeCt to localiaed :injection; Water '_i'sz:..'iriij'ected at'.t.h_; center of the top
'boundary. The inje_c'tion zone has a lateralvextent{ofz lOm No fluxf 1s all'oyvedto 'a_cro_ss
the top boun'dary'outside the injection zone. The constant inj_ection:_ ”r‘_ate'_is' 10'3:'k'g/.s, and
initial conditions and 'other_ b.oundary condltions are the same'as before.' Seepage patterns
'similar to those for _d_istributed lnjection' cases are ’obsery_ed._..in thesesimulati_ons, such as
fingering, ponding, bypassing, anvd 15@@1 spreading; However, the preferential flow paths
for localized lnjeCtion cases are obViously different‘ from those.' for the distr_ibuted
injection - caSes. In addit’ionr, the location of the ﬁrstibreakthroughv- for.' 'the. localized
injection icase.bmay or may not_ be the sarne as the distributed injection case. These flow
phenomena were 'also jobserv.'ed'by .Pru'ess-(l9v98) in. his 'simulations using 'synthetic
fractures w1th spatlally random aspenty contacts Furthermore he observed that seepage
patterns in natural fractures strongly depends on fracture permeabrhty, caprllary effects
and applled flow rate. Thus it is expected that these observatrons also apply to the -

s1mulat10n results in the present study

A yerti_cal_ ad_vance curve records :the:doi\ynwar_d 'r:n__ig'ration»of the fastest finger.
Thus, an abrupt change in the slope of the curvein'dicate"s ﬁthe’emergence of a faster finger
or acceleratron/retardatlon of seepage Usually, the change of slope is ascrrbed to ponding

on asperities. For example the curve in Flgure v. 16(a) exh1b1ts an arrest in the ﬂUId,:”_

~advance before breakthrough The correspondmg ﬂow srmulatlon in. F1gure V 16(b)' '

- shows that -thls _1s_'1_ndeed because_ of}pond_rng- at'about_tl,S;.m.'-In add_rtlon_, the.slope of the
| adV:anc:e_v curve_-after pondlng may -_increase for-_dec,reas'e.ﬁ For ,éxampl'e; F'igureij.1'6(b)
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Figure V.15 Transient and steady state saturation with localized
injection in fractures with spatially correlated asperity contacts.
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Figure V.16 Vertical advance curves and corresponding saturation in synthetic fractures
with spatially correlated asperity contacts. Figure IV.16(a) and V.16(c) feature the effects
of ponding and flow funneling, respectively.
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shows that ﬁnger on the left of the ponded zone breaks through the bott.om boundary
Thrs ﬁnger has. lower seepage velocrty and the curve in Flgure V 16(a) shows a flatter
slope Just before breakthrough In contrast the curve in Frgure _V 16(c) shows that
‘ seepage starts wrth a smaller velocrty, becomes arrested by pondrng for approximately 8
hrs and then proceeds faster toward the bottom boundary The pondrng is clearly v1s1ble

in Figure V.16(d).

Break_through curve's _(BT_CS) '_correspOnding_to_;ﬂow simulations -in Figure V.11
-are presented in 'Figures V;-13(b); For better representation, tails of BTCs after 10 days

‘are truncated because they are essentially asymptotes approaching to flux ratio at 1.0.

Chesnut (1992, 1994) suggested -that travel time breakthrough curves of
grOUndwater through unsaturated media can be approximated by a log-normal model. He
proposed that the cumulative distribution functi_o'n for groundwater travel time may be

written as

O;

P(t<t0)— (ln(t0/<t>)+o't ] | S 53

Here, P(s < to):is the fractlon:-of fluid flowing between:inﬂowiand outflow boundaries for-
which travel time is less than or equal to fo, <t> is the mean travel time, o is the standard
deviation of the natural logarithm of travel time; and @ is the cumulative distribution

~ function of a normal distribution, i.'e.'_,

@)= F 'exjp( 2/2) ;_erfc( x/J— ) | »', 54



in which erfc() is the complementary error function. An important featu;e of the log-
normal model given in Eq(5.3) is that a significant fraction of flow has travel times much
shorter than the mean traifel time. This effect becomes obvious for strongly
heterogeneous media (largér oy), as shown in Figure V.17(a). Note that the hqrizontal axis

of Figure V.17(a) is the travel time normalized by the mean travel time, <>, that is fixed

at 1.0.
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Figure V.17 (a) Theoretical log-normal travel time model for different values of the
heterogeneity parameter, o; (Chesnut, 1992). The mean travel time, <¢>, is fixed at 1.0 for
all curves, which is also the normalizing factor for the horizontal axis; (b) Simulated
BTCs for flow simulations in fractures with spatially correlated asperity contacts. Note
that the horizontal axis is the travel time normalized by the mean travel time <¢>.

93



The iog-normal model is fitted to each of curves shown in Figure V.17(b), which
are the BTCs for flow simulations in fractures with spatially correlated asperity contacts.
The fitting begins by interpolating the sample BTC data and then taking numerical
derivative of the interpolated BTC. These numerical derivatives then serve as the
approximated probability distribution of the BTC data, from which the meaﬁ and
variance of trﬁvel time can be estimated. Subsequently,' analytical pdf and CDF can b’é
obtained based on these two pararﬁeters. Thé fitted results in Figure V.18 show that vvthe
log-normal model does nof adequately fit the individual travel time data. The reas(m for
this poor fit is that water transport is strongly affected By the spatiai distribution of
perrneability and the associated effects such as ponding, bypassing, a;nd change of
seepage velocity. Th;lé, the loé-normal model is too Simple to accurately capture thosé

~complicated flow effects.
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Figure V.18 Results of fitting the log- normal travel time model to each of the BTCs

shown in Figure V.17(b).
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Figure V.19 Saturation at breakthrough and steady state in fractures subject to high normal
stress, i.e., the total fractions of asperity contacts is 40%. These results illustrate the effect of
seepage retardation (cases a and b) and acceleration (cases ¢ and d) due to ponding.



Breakthrough curves in fractures subject to low normal stress tend to be smooth
and monotonically increasing curves. This is because the effect of asperity contacts is not
significant and liquid gradually comes out the entire bottom boundary in a spatially
uniform manner. For fractures subject to high normal stress, however, BTCs behave like
a step function because only a number of fingers can break through the bottom boundary.
In addition, seepage velocity within these localized fingers is generally faster, resulting in
the fast increase of a BTC. Moreover, such BTCs may intermittently exhibit horizontal
segments, which are generally the result of impedance by ponding. For example, the
effect of seepage impedance and acceleration can be demonstrated respectively from
realizations in Figures V.19(b) and V.19(d); and the solid and dashed BTCs in Figure
V.20, respectively. BTCs in fractures subject to intermediate normal stress behave
intermediately between the two extremes, and their shapes depend on the heterogeneity

of fractures, see the dash-dotted BTC in Figure V.20.

08 F i e /,
£06 |
<
o°0.4 -
0.2
0 | PR | 1 |
- 4'ﬁme (days)6 B b

Figure V.20 BTCs showing the effects of seepage impedance (the solid curve) and
seepage acceleration (the dashed curve), corresponding to flow realizations in Figures
V.19(b) and V.19(d), respectively. The dash-dotted BTC shows the interchanging effects
of seepage impedance and acceleration.

The mechanisms of seepage acceleration and impedance as a result of ponding in

fractures subject to high normal stress are not independent but compete with each other.
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5 A vertlcal hne shown 1n a BTC srmply means that seepage after breakthrough is

:.}dommated by the gravrty effect Competltlon between grav1ty and pondmg w111 not start
R untll other ﬁngers also reach the bot-_tom boundar.y.v If' the grav1ty effec,t. strll dormnates,
| _ discharge at the bottom boundary would k.eep growing and the BTC would remajn to. be
vertlcal If however seepage is 1mpeded by pondmg, discharge would keep steady for a
certam trme durmg whrch the BTC would show a horizontal segment. Not until the |
- grav1ty effect becomes srgmﬁcant aga1n would the BTC show an abrupt increase in slope
For example see the BTC in Figure V21(a) and the correspondmg d1str1but10n of
saturatlon In general the competrtlon between grav1ty and pondlng is usually

: mterrmttent for example, the dash dotted BTC in Flgure V.20.

The quantitative relations’hip‘ betWeen the degree of ponding and the total fraction
of' asperity ;c'ontact_s' dese'rve's fur_ther ’investigati__on. The degree of _ponding is_deﬁned as
follows. First, ponding-regions are defined as..:th.e 'wetted'.region? in either transient or
steadfi state ﬂow ﬁelds', in which water saturation is one. Here the term “wetted region” is
deﬁned asthe total volume in which water saturation-__i's_"}'grea_ter,than the residual water
A S?if'liratiénf_ Numerically', the cutoff _saturations for»ponded a'ndiwetted_ regions are chosen |
’_as | '0.9.9-9, and 015 1:', | 'res'p_ecti\'v_/ely.-f_"vThe :’degree of ponding ;can then be d'eﬁ_ned as, the
vvollumetric rat10 Ofthe pc;ridéd ’regions to the wetted region. Various factors vma}.lv affect'
the total volume of ponded regrons in heterogeneous fractures 1nclud1ng the total fraction

» of asperrty contacts correlatlon length of asperrty contacts and permeabrhty, and the
:‘-correlatlon drrectlons of asperlty contacts and permeablhty The parameter of the total_
| '_fractlon of aspenty contacts is consrdered 1n thrs SCCthI‘l because only synthetlc fractures :

. 'vwrth 1sotroplc asperlty contacts and permeablhty are consrdered
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Figure V.21 Breakthrough curve and saturation at steady state in a
synthetic fracture subject to high normal stress. The competition
between gravity and ponding effects can be seen from the BTC.
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Figure V.22 illustrates the degfce of ponding in synthetic fractures with spatially
random or spatially correlated asperity contacts, for transient as well as steady state flow
fields. The plots in Figure V.22 suggests that the degree of ponding generally increases
vs}ith the total fraction of asperity contacts, irrespective of the spatial correlation of

asperity contacts and the status of the flow field.
V. 4 Seepage dispersion and its dependence on asperity contacts

Most BTCs in this study exhibit a non-uniformly increasing trend with respect to
time. In this study, seepage dispersion is the term for describing the spreading behavior of
liquid seepage in heterogeneous fractures. It can be quantitatively measured by a
coefficient (D) which is the ratio of (tgg — t1o) to tso, 1e, Ds = (too-ti0)/tso. The parameters
tog, t50 and tjo are the travel times at which the flux ratios are 90%, 50% and 10% of the

‘ steady state flux (Neretnieks, et al., 1982), respectively.

-

Histograms of t;o, tso, and tgo are plotted in Figures V.23 and V.24 for synthetic
fractures with spatially random or spatially correlated asperity contacts, respecfively.
Each histogram is fitted by a normal and a log-normal distributions. In general, the log-
normal distribution usually fits the travel fime data better than the normal distribution.
The trend for t;o behaves as the breakthrbugh time, i.e., tjo generally decreases with
increasing normal stress. Similarly, tso also decreases with increasing normal stress. The
travel time tgy approximately follows the trend of steady state time, i.e., tgo tends to be -

smaller for low and high normal stresses but larger for intermediate normal stress.
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Figure V.22 The degree of ponding in isotropic fractures with isotropic,
spatially random and spatially correlated asperity contacts, for
transient and steady state flow fields.
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Figure V.24 Histograms of tyo, tso, and tgg for fractures with spatially correlated asperity

contacts.
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Figure V.25 shows the histograms of the coefficient of seepage dispersion (Ds) for‘
fractures with spatially random and spatially correlated asperity contacts. Note that the
horizontal axes of histograms with 40% asperity contacts begin from —1. This is for
representation purpose only because the fitted log-normal distribution is highly right-
skewed toward zero. Statistics for fitted normal and log-normal distributions are listed in
Table V.1, along with the goodness of fit data (p-value) obtained by the chi-square test.
The quantitative evidence that the log-normal distribution fits the sample data better than
the normal distribution is reflected by the larger p-value for the log-normal distribution
(Table Vl) Thus, each histogram shown in Figure V.25 is fitted by a log-normal

distribution.

Table V.1. Statistics of normal and log-normal distributions fitted to the sample data of
D; in fractures with spatially random and spatially correlated asperity contacts.

Normal distribution - -Log-normal distribution
. ' s
Fraction of ~ , — In(D;)
D SD / -value -value
asperity contacts s : sp,/Ds P In®s)  Sinmy In(Dy) P

Fractures with spatially random asperity contacts

15% 0.530 0.143 0.269 0.217  -0.667  0.257 0.385 0.535
25% 0.866 0.174 0.201 0389  -0.164 0.211 1.287 0.500
35% 0.903 0.533  0.591 0.289  -0.243  0.565 2.325 0.822
40% 1.114 1.400 1.256 0.0000  -0.539 1.461 2712 0.624
Fractures with spatiélly correlated asperity contacts
15% 0.795 0324 . 0408 0522  -0308 0413 1.339 0.937
25% 0915 0.355 0.387 0.381 -0.168  0.424 2533 0.715
35% 1.059 0.660 0.623 0.039 -0.077 0502 6.544 0.627
40% 0.781 0.812 1.039  0.0015 -0.958 1.660 1.733 0.245

Figure V.25 exhibits a qualitative dependence of st on normal stress. That is,

partially saturated flow tends to be more dispersive in fractures subject to intermediate

normal stress and less dispersive in fractures subject to either low or high normal stress. |
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This is because most fingers in fractures subject to low normal stress ére not significantly
affected by asperities. Thus, most realizations may have s:imilar breakthrough behavior
and the dispersion is generally weak. Similarly, only a limited mimbéf of ﬁngers in
fractures subject to high stress can break through and the dispersion is weak again.
However, many fingers can be formed in fractures subject to intermediate normal stress.
Some of them are fast and some of them are slow. Thus, greater.value of the coefficient

of seepage dispersion is generally expected in such fractures.

The seepage dispersion may be quantitatively verified by the mean value of the
natural logarithm of Dj, lniDS ) Résults in Table V.1 indicate that anDS ) is smaller in
fractures subject to low and high normal stfess, but larger in fractures subject to

intermediate normal stress. However, the arithmetic mean of D, i.e., B: in fractures
with spatially random asperity contacts and subject to high normal stress (D_S =1.114) is
larger than the value for fractures subject to intermediate normal stress (D—s = 0.866 or

0.903). This is because an outlier with a large value of D; (7.169) shows up in the sample
data of DS; see the histogram in Figure V.25(4) and the corresponding flow simulation
and the solid BTC in Figures V.16(c) and V.17, respectively. The presence of an outlier

thus increases the standard deviation of a fitted distribution, see the columns labeled sDS'

and Sin(Dy) in Table V.1. If the outlier were absent, however, the standard deviation would

generally follow the same trend as lniDS i, i.e., the standard deviation of Dj would be

larger for fractures at intermediate normal stress, but smaller for fractures at low and high

normal stresses.
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Two oppcsite effects of pcnding on seepage dispersion may ,occur in fractures
subject to high normal stress: (1) Ponding retards seepage as would be expected. Seepage
is slowed down by ponding because liquid must fill the dead-end pores 'above asperities
as a result of _the constant recharge ‘at the surface. This process can takev a long time to
complete if the total vclume of dead-end pores is_ large. For example, flow simulations in
Figures V.19(a) and V.19(b) illustrate this effect. Figure V.19(a) shows two fingers at the
time of breakthrough, one to the left arrives at the bottom boundary while the other to the
| right reaches a depthl of — ‘10 m. The left finger continuously evolves after breakthroulgh;

- meanwhile, the right finger procceds downward, hits asperities and develops signiﬁcant
ponding, see Figure V.19(b). The gradual development of the right finger is shown on the
solid BTC in Figure V.2O by a long horizontal segment, (resulting in greater value of
seepage dispersion, D; = 7.169; (2) On the other hand, ponding can gather distributed
seepage and funnel it into narrow paths with large fluxes and velocities. The cffect of
acceleratcd bréakthrough induced by pcnding can be seen on a BTC by a vertical line.
Thus, weak 'seepage dispersion would be observed under such conditions. An example of
accelerated seepage by ponding can be seen by the dashed BTC in Figure V.20 for which
~ there is nearly no dispersion at all, i.e., Dy = 0.008. The corresponding distribution of
saturation for accelerated seepage is shown in Figures V.19(c) and V.19(d). These
simulation results show that all other possible flow paths are.blocked by asperities and

fluid is only allowed to go through one finger that finally reaches the bottom boundary.
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V.5 Influence of anisotropy of asperity contacts

The purpose of these analyses is to examine the effect of anisotropy of asperity
contacts on flow patterns. Anisotropic asperity contacts, whether spatially random or
spatially correlated, are considered in isotropic permeability fields. Three principal
correlation lengths for spatially correlated asperity contacts (or principal radii for
spatially random asperity contacts), 0.4m, 0.8m, and 1.6m, are taken into account, along
with the same minor correlation length (or minor radius) of 0.2m. Four principal
directions, North, North-East (45° to North), East (90° to North), and South-East (135° to
North), are investigated. Initial and boundary conditions are the same as those in section
V.1. The total fraction of asperity contacts for these synthetic fractures is fixed at 25%.
Simulated permeability fields are shown in Figures V.26 and V.27, and corresponding

saturation at breakthrough and steady state are shown in Figures V.28 to V.31.

For notational convenience, the term “anisotropy ratio” in this section refers to the
ratio of the principal correlation length (or radius) of anisotropic, spatially correlated
(random) asperity contacts to the minor correlation length (radius) of asperity contacts.

That is, three anisotropy ratios, 2.0, 4.0, and 8.0, are considered.

Results of flow simulation show that the principal direction of anisotropic asperity
contacts determines the direction to which the flow is diverted. The larger the anisotropy
ratio, the stronger the diversion effect. In addition, the total number of fingers reaching
the bottom boundary at steady state generally decreases with increasing anisotropy ratio.
This is especially true in fractures with spatially correlated asperity contacts that are not

principally correlated in the vertical (North) direction. Moreover, the diversion effect
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Figure V.26 Isotropic permeability fields with anisotropic spatially random asperity contacts. Radii of asperity
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Figure V.28 Saturation at breakthrough in synthetic fractures with spatially random, anisotropic asperity contacts.
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Figure V.31 Saturation at steady state in synthetic fractures with spatially correlated, anisotropic asperity contacts.



seems to be more significant in fractures with spatially correlated asperity contacts than
in fractures with spatially random asperity contacts. Also, ponding effect generally

increases as the anisotropy ratio increases.

The effect of ponding on seepage breakthrough is indicated in flow simulations
illustrated in Figures V.30(4), V.30(8), and V.30(12). Although the vertical effective
permeability in the South-East direction increases as the anisotropy ratio increases from
2.0 to 4.0, the distribution of saturation in Figure V.30(8) shows a slower breakthrough
than that in Figure V.30(4). This is affected by the delaying effect of ponding, which is
shown in Figure V.30(8) at the upper right and lower right corners. As the anisotropy
ratio of asperity contacts increases from 4.0 to 8.0, Figures V.30(8) and V.30(12) show
that more ponding is developed. In addition, calculations show that the effective
permeability decreases significantly as the anisotropy ratio increases from 4.0 to 8.0.
Thus, the delaying effect of ponding associated with the decreasing vertical effective

permeability leads to the much slower breakthrough in Figure V.30(12).

The degree of ponding as a function of anisotropy ratio is shown in Figure V.32.
Generally, degree of ponding increases as the anisotropy ratio increases. In addition,
degree of ponding in fractures with vertically correlated asperity contacts is generally the
weakest, which becomes obvious as the anisotropy ratio increases. However, degree of
ponding in fractures with non-vertically correlated asperity contacts has different levels
of significance, depending on the type of asperity contacts, the principal direction, and
the anisotropy ratio of asperity contacts. For example, Figures V.32(a) and V.32(b) show

that the degree of ponding for horizontally correlated asperity contacts is always the
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greatest. However, degree of ponding strength in fractures with spatially correlated
asperity contacts generally varies with the heterogeneity of permeability. Furthermore,
there may be a dramatic increase in the degree of ponding in fractures with spatially
correlated asperity contacts that are not vertically correlated. For example, Figure V.32(c)
and V.32(d) shows that this occurs when asperity contacts are principally correlated in

the South-East direction.
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Figure V.33 Coefficient of seepage dispersion (Dy) in fractures with anisotropic asperity
contacts that are spatially random or spatially correlated.

Seepage dispersion depends on the heterogeneity of fractures as well as ponding.
The term “heterogeneity” herein means the overall effect of tortuosity, flow diversion,
and the ability of generating new fingers after breakthrough. The later varies in different
synthetic fractures but generally decreases as the anisc-)tmpy ratio increases. The general
decreasing trend of seepage dispersion with increasing anisotropy ratio is observed in
Figure V.33. However, the curve in Figure V.33(b) shows that seepage dispersion in the

North-East direction increases as the anisotropy ratio changes from 4.0 to 8.0. This
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increase is clearly due to the ponding as shown in Figures V.31(6) and V.31(10). In
addition, Figure V.33(b) shows that the seepage dispersion in the horizontal direction
significantly increases with the anisotropy ratio, which is the result of increasing
diversion effect as illustrated in Figures V.31(3), V.31(7) and V.31(11). Similar increase
of seepage dispersion with respect to anisotropy ratio also presents in Figure V.33(a) for

the curve associated with the vertical correlation direction.

V. 6 Influence of anisotropy of permeability

Anisotropy of the spatial distribution of asperity contacts logically leads to the
consideration of anisotropy of permeability. It is then expected that the realized
permeability field may have similar effects as the anisotropy of asperity contacts as far as

flow bypassing and fingering are concerned.

To evaluate the effect of anisotropy of permeability, permeability fields in this
section were obtained by conditioning on the same conditioning asperity contacts that
were used for cases (1), (4), (9) and (12) in Figures V.26 and V.27. These anisotropic
asperity contacts are principally correlated in the North or South-East directions, with
principal correlation length (or principal radius) of 0.4 m or 1.6 m. Thus, anisotropic
permeability with two principal correlation lengths (0.4 m and 1.6 m) and two principal
directions (North and South-East) are investigated. Correlation length in the minor
directions is half of its principal correlation length. Again, the total fraction of asperity
contacts is fixed at 25%. Figures V.34 and V.35 are the realized permeability fields

conditioned on spatially random and spatially correlated asperity contacts, respectively.
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Corresponding flow simulations are shown in Figures V.36 to V.39, and the strength of

ponding for these flow simulations is shown in Figure V.40.

Simulation results in Figure V.38 (or Figure V.39) closely resemble the
simulation results (1), (4), (9) and (12) in Figure V.30 (or Figure V.31). Recall that the
former and the later simulation scenarios were carried out in synthetic fractures
conditioned on the same spatially correlated asperity contacts but different correlation
structures of permeability. This similarity thus suggests that liquid seepage in natural
fractures may be less sensitive to the spatial correlation of permeability and tends to
depend more strongly on the spatial distribution of asperity contacts. It also suggests that
tortuosity of flow paths may be insensitive to the anisotropy of permeability as long as
conditioning asperity contacts are the same. However, the difference between the two
flow scenarios can be identified in terms of degree of ponding as illustrated in Figure
V.40. It shows that the two flow scenarios are obviously different from each other if the

asperity contacts are not vertically correlated, see Figures V.40(¢e) to V.40(h).

Breakthrough and steady state flow fields shown in Figures V.36 and V.37 are
also similar to corresponding simulation results, i.e., cases 1, 4, 9, and 12 in Figures V.28
and V.29. The minor difference between these simulation results is because some of the
spatially random asperity contacts in these fractures are not conditioning data. That is, the
overall spatial distribution of asperity contacts is not the same between the two flow
scenarios. The difference becomes significant only for cases with larger anisotropy ratios.
For example, the ponding strength in Figure V.40(b) and V.40(d) explicitly show the

difference between the two simulation scenarios.

118



Depth (m)

Depth (m)

| Permeability
odifier, {

_op EHEEE prote: N B
0 2 4 6 3 10 12 14 16 18 20

Nk
2 4 6 8

10 12 14 16 18

Distance (m) Distance (m)
@r,=04m,A =04m,A,=02m ) r,=0.4m, )\.H—'Otim =0.2m
principal direction = % prmmpal ditection = NW-SE

Depth (m)
3

R 20 5.“_ o : s ufm 1
2 4 B B8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Distance (m) Distance (m)
(c)A,=1.6m, —16m§<-08m @r,=1.06m A =16m A ,=0.8m
principal irection = N%§ pnnc:lpal ditéotion = NW-SE

Figure V.34 Anisotropic permeability fields conditioned on spatially random asperity
contacts. The principal radii of asperity contacts are 0.4m or 1.6m, and principal
directions in N-S or NW-SE. The anisotropic semi-variogram of permeability has
nugget = 0, sill = 190, and principal correlation length as 0.4m or 1.6m. The minor
correlation length is half of the principal correlation length. The subscripts 1 and
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for A, denote the principal and minor directions, respectively.
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Figure V.35 Anisotropic permeability fields conditioned on spatially correlated asperity
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has nugget =0, sill = 120, and principal correlation length as 0.4m or 1.6m. The minor
correlation length is half of the principal correlation length. The subscripts 1 and 2 for
A, denote the principal and minor directions, respectively.
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Figure V.40 Comparisons of the degree of ponding in two flow scenarios, one
with isotropic permeability and the other with anisotropic permeability. Synthetic
fractures for both flow scenarios are conditioned on the same anisotropic asperity
contacts.
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Chapter VI. Tracer simulations

VI. 1 Tracer transport

As stated earlier, field evidence suggests that, in semi-arid environments, water is
able to migrate downward rather rapidly along preferential paths. At Yucca Mountain,
Nevada, for example, fracture networks in unsaturated rocks may provide such fast
preferential flow paths. This observation thus raises concerns that, once a storage canister
starts leaking, radionuclides may transport with groundwater and reach the downstream
biosphere at an unexpectedly short time scale. Detailed analyses of solute transport need
to consider coupled flow and transport equations, which are beyond the scope of the
present study. To simplify the problem, however, tracer transport without taking into

account the effect of molecular diffusion is considered in this section.

“Tracers” are defined herein as dilute compounds that are completely non-reactive
and dissolved in water without significantly changing its physical properties, e.g., density
and viscosity, of water. An example would be a small amount of brine will mixed with

water. By this convention, tracers can be treated as a second component of water.

For multi-phase simulations, liquid saturation is defined as the ratio of pore
volume occupied by the liquid phase to the total pore volume, i.e.,

Vo o Vo

S = 5 (6.1)

!

where V; is the pore volume occupied by liquid phase, PV stands for the total pore

volume, ¢ is porosity, and Vj is the bulk volume of rock. Primary variables for two-
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component simulations are defined as liquid saturation (S;) (or liquid pressure (P;) ) and
mass fraction of the second component of liquid phase(X,) (Pruess, 1991). Mass fractions

for two-component flow systems are defined as

PVL Vi Vi ]

= -— 6.2
VvV, PV § G2
E M E P VI i
If the i-th component of liquid saturation is defined as
A\
S, =—= (6.3)
YopPV
then the mass fraction and liquid saturation have the following relationship
S =X, 5 (6.4)
See Figure VI.1 for illustration of two-water systems.
Air, V=(1-8)0V,
Water 1, V=X,5,¢ V, Water 2 = Tracer, V=X, S,¢ V,
(™ componenioi water) (2 componem of wale:)
(mass fraction X,} (mass fraction X,)
Figure VI.1 Schematic partition of the pore space for two-water systems.
For i=2, i.e., the second component of water; or tracer, Eq(6.4) yields
Si2=X, 8, (6.5)
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That is, the quantity S;, is in fact the pore volume occupied by tracer per unit void
volume of rock. From Eq(6.5), the volumetric fraction of tracer to the total pore volume
is the mass fraction of tracer, S;. Strictly speaking, S;2 is not liquid saturation but a
“pore-space-weighted saturation”. For notational convenience, however, S;; will be

named “tracer saturation” in the remainder of the text.

Initial conditions for tracer transport may be a steady state or a transient flow field
of water. First, let us consider the steady state flow field such as Figure V.19(d). This
flow field is interesting because (1) it is the result of water simulation in a synthetic
fracture at high normal stress, (2) it has the least seepage dispersion, and (3) it has several
regions that are fully saturated with water. These fully saturated regions have different
effects on seepage for transient and steady state flow fields. For example, the effects of
seepage retardation and seepage acceleration by ponding are illustrated by the horizontal
segment in Figure V1.2 and the dashed BTC in Figure V.20, respectively. Moreover,
some of the saturated regions may become “dead-end pores” to water. Note that dead-end
pores usually occur above laterally extensive asperity contacts or at fracture terminations,
e.g., the upper left corner of Figure V.19(d) and to the right at depths from — 3 m to — 8

1ml.

Figure V1.3 shows four snapshots of tracer transport at different times. These
simulations were obtained by injecting tracer (at the constant rate of 10” kg/s uniformly
distributed over the entire top boundary) into the steady state flow field of Figure V.19(d)

and simulating under the same boundary conditions as specified in section V.1. These
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simulations were terminated at the times when the flux ratios of tracer reached 0.1, 0.5,

0.9, and 0.987, respectively. The flux ratio for tracer simulations is defined as

sz,ijm

QZ,bot _ (6.6)

Qtop Qtop

where Qop and Qyo, are the total liquid flux at the top and bottom boundary, respectively.
Qapot 1s the total tracer flux at the bottom boundary and is defined as the numerator in
Eq(6.6). The subscript j in Eq(6.6) stands for all grid blocks that directly contact the

bottom boundary, and X is the mass fraction of tracer in grid block ;.
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Figure V1.2 Vertical advance curve for the realization shown in Figure V.19(d).

Simulation results in Figure V1.3 show that tracer not only travels along flow
paths that have been developed by water but bypasses dead-end pores. Obviously, tracer
flow paths have higher relative permeability (or, equivalently, lower flow resistance) due
to higher total liquid saturation. The bypassing of tracer away from ponded regions is

because of the assumption of non-reactive tracers and the neglect of molecular diffusion.
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Figure V1.3 Snapshots of tracer transport with the steady state flow field shown in
Figure V.19(d) as the initial condition.
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Neglecting molecular diffusion thus limits the time scale for which the realistic solute

transport can occur. The limiting time scale can be estimated by the diffusive length scale

¥ = 2Dt , where D is a typical aqueous phase diffusivity of order 10"'® m%s. For
example, the time scale for tracers to diffuse into the ponded region in Figure VI.3(d)
from depths — 11 m to — 10 m would approximately take 160 years. Since the simulation
time for Figure VI.3(d) is only 4.56 days, which is far below the limiting time scale,
tracers do not invade those dead-end pores by diffusion. Thus, the invasion of tracer into
the ponded region above the depth at —12 m is due to other mixing mechanisms. In this
study, the only mixing mechanism occurring between water and tracer is caused by the
finite spatial resolution in the computational grids, with a dispersivity on the order of
Az/2 = 0.1 m (Pruess, 1991). The quantitative measurement of the mixing is then

represented by mass fractions.

Breakthrough curves of water and tracer are shown in Figure V1.4. As discussed
earlier in section V.3 the BTC for liquid seep in Figure VI.19(d) is delayed by ponding,
and it behaves likes a step function. However, the tracer BTC is smoother than the water
BTC. Moreover, the tracer BTC is more dispersive than the water BTC and shows the

effects of dispersion.

Figure VL.5 shows the results of fitting the log-normal travel time model to each
of the BTCs in Figure VI.4. The sample BTC as obtained from flow simulations is
plotted as solid dots in Figure VI.5. Recall that analytical pdf and CDF are obtained by
calculating the sample mean and sample variance from the sample BTC data, see section

V.3, which are plotted as solid and dashed-dotted lines respectively in Figure VL5. As
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expected, the log-normal model does not fit the water BTC very well, see Figure VI.5(a).
Figure VI.5(b) shows that the log-normal model fits the tracer BTC very well, especially
for the analytical CDF. In addition, the probability distribution for tracer travel time t-ends
to be a positively skewed distribution. This property of tracer BTC suggests that the time

scale for the total breakthrough is longer for tracer transport than for water transport.
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Figure V1.4 BTCs of water and tracer transport shown in Figures V.19(d) and VI.3(d).

The next example investigates the effect of initial condition on tracer transport.
Instead of starting from a steady state flow field of water, this numerical experiment uses
a transient flow field as the initial condition. Figure VI1.6(a) shows the initial condition for
this experiment. This flow field was obtained by injecting water uniformly over the entire
top boundary into a synthetic fracture with spatially correlated asperity contacts. The
constant injection rate of water was 10™ kg/s, and the total fraction of asperity contacts
was 40%. In addition, this transient flow field was terminated at the time at which the
flux ratio is approximately 0.5. For comparison, its corresponding steady state flow field

is shown in Figure VL.6(b).
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tracer BTCs shown in Figure V1.4 '
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Figure VL6 Initial conditions for tracer simulations: (a) the transient flow field of water
which is approximately terminated at flux ratio = 0.5, and (b) its corresponding steady

state flow field.,
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Figure V1.7 shows four snapshots of tracer transport, using the transient water
flow field shown in Figure VI.6(a) as the initial condition. Again, tracer was injected
uniformly over the entire top boundary at a constant rate of 107 kg/s, starting at the time
when the water simulation is terminated. To save computation time, this tracer simulation
was terminated when the flux ratio is approximately 0.95. Similar transport behavior as
present in Figure V1.3 is also observed in Figure V1.7. Moreover, Figure V1.8(a) shows
that the tracer BTC can be reasonably fitted by the log-normal model, though the tail of
the analytical CDF deviates from the sample BTC. The deviation at the tail may be
because the tracer transport has not reached the steady state yet. For comparison, Figure
VI1.8(b) shows the BTC obtained by injecting tracer to the steady state flow field of
Figure V1.6(b). The resulting flow fields of tracer are not shown here because they are
very close to those flow fields in Figure V1.7. Because the former tracer simulation was
terminated at a higher flux ratio (at 0.97), the BTC in Figure VI.8(b) shows that it can be
better fitted by the log-normal model. For the water BTC, however, Figure VL9 shows

that the log-normal distribution is not a good model for predicting water travel time.
VI. 2 Episodic infiltration

The study of episodic infiltration is motivated by field observations that in-situ
surface infiltration into fractures may experience temporal variability to a large extent
(Bodvarsson and Bandurraga, 1996). Under such conditions, fractures are undergoing
repeated wetting and drying cycles. Therefore, hysteresis effects may become significant
for episodic infiltration events. However, detailed analysis of hysteresis effects is beyond

the scope of the present study. Instead, this section focuses on episodic infiltration events,
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which are either events with repeated wetting and drying cycles or events with temporally
intensified infiltration. The purpose of these analyses is to study the change of seepage

patterns with respect to the change of infiltration rate applied at the boundary.
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Figure VI.9 Water BTC corresponding to flow field in Figure VI.6(b).

Two types of episodic infiltration events are illustrated in Figure VI.10. The first
type, Figure VI.10(a), considers a periodic infiltration event. The intervals of wetting and
drying periods are At; and Aty, respectively. For the following example, the values of At
and At, are assumed to be 1 and 10 days, respectively. The infiltration rate for this
example is still assumed to be 10~ kg/s. Note that water 1 is the supplying fluid during
the first wetting cycle, but it is changed to water 2 in subsequent wetting cycles. The
purpose of switching the supplying fluid is to examine the effect of antecedent saturation
history on seepage. The second type considers a transient infiltration event with a
temporary intensified supply rate. This is illustrated in Figure VI.10(b) as the solid line.
The interval At is the breakthrough time for constant supply rate of Q. The arbitrary
integer n is the ratio of the intensified rate to the constant rate. Three ratios are

considered, i.e., 2, 5, and 10. Note that the total amount of liquid injected into the fracture
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Figure VL.10 Schematic of episodic infiltration events.

is the same, which is Qg X At. In both scenarios, fluid is injected uniformly over the entire
top boundary at a constant rate of 10~ kg/s. The initial saturation at non-asperities is

assumed at the value of residual water saturation.

Figure VI.11 shows the snapshots of the total water saturation at the end of each
wetting and drying cycles for the first episodic infiltration event. For comparison, the
realizations of water seepage at breakthrough and steady state for the corresponding
single wetting event are shown at the top of the figure. For both wetting and drying
cycles, water travels along the flow paths that are depicted in the steady state flow field
of water. However, the speed of downward migration during a drying cycle is slower than
the speed during a wetting cycle. This change of speed is shown in Figure VI.12 for the
first wetting and drying cycles. The average speed of downward migration is reduced
from 0.47 m/hr for the first wetting cycle to 0.31 m/hr for the first drying cycle. The
reduction of speed is because of the lower relative permeability at the smaller liquid
saturation during a drying cycle. The change of capillary pressure is shown in Figure

VIL.13(a) to VL13(c).
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Figure VI.12 Vertical advance curves of the first wetting and drying cycles, and the
single wetting event.

For subsequent wetting cycles, water only travels within flow paths that have
been developed by previous drying cycle. This is because those flow paths have higher
relative permeability than dry flow paths. New flow paths can only be developed during
drying cycles. The reason is that, from capillary theory, water (the wetting phase) tends to
remain in smaller pores during drying cycles. Since dry flow paths have smaller relative
permeability to water than wet flow paths, their effective pore space is smaller than that
for wet flow paths. Change of relative permeability in consecutive wetting and drying
cycles can be seen in Figure VL13(d) to VL13(f). It is obvious that the relative

permeability in a drying cycle is smaller that that in wetting cycles.

Because the governing Richards’ equation does not consider hysteresis effects,
liquid seepage in Figure VL.11 starts to repeat itself approximately after the third wetting-
drying cycle. However, the flow fields near the lower boundary after the second drying
cycle are somewhat different from each other because the wetting front is still sensitive to

the surface infiltration. Simulation continues after the fifth drying cycle by constantly
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injecting water 2 into the fracture, and then stops when the flux ratio of water 2 is 0.933.
The resulting flow field of total water is shown at the top left in Figure VI.14. This flow
field is, as it should be, very close to the steady state flow field of water of the single
wetting event because hysteresis effects are neglected. The top right plot in Figure VI.14
shows the water 2 saturation after the fifth drying cycle. For completeness, flow fields of

water 2 after the first drying cycle are shown in the rest of Figure VL.14.

Figure VI.15 shows the periodic change of saturation at the top surface for the
five wetting and drying cycles. For the first wetting-drying cycle, Figures VI.15(b) show
that saturation at the top surface increases rapidly to a constant value during a wetting
cycle and then decreases gradually to a lower value during a drying cycle. Because the
capillary hysteresis is neglected, it is expected that the absolute capillary pressure at the
top surface also experiences similar variations. That is, the flow simulation switches to a
constant head boundary condition during a short interval, even though the simulation
starts from a constant injection boundary condition. It is expected, therefore, that flow

simulations using a constant head boundary would be close to the present simulations.

Because drying duration was only 10 days in previous simulations, significant
changes of capillary pressure or other dynamic processes may not be evident. For
example, Figure VI.16 shows that the transient change of accumulated mass at the bottom
boundary behaves as an increasing function with time. If the drying duration was long
enough, it would be expected to see this curve to be stabilized before the end of each
drying cycle. On the other hand, the exiting flux of water 2 at the bottom boundary tends

to stabilize at the end of each drying cycle, see Figure VI.17.

143



144!

g
EE
B b kA @

0.gs

o
P
a8
Depth (m)
58

0.20

0

Iy

B 90 12w € 10 092
Disianco (m) Jistance {m) Qistance (m)

Water 2 saturation after the 5-th drying cycle

2™ wetting cycle (11 to 12d) 2™ drying cycle (12to 22 d) 3% wetting cycle (22 to 23 d)

TEIRD;

b & kW o
it

Oepih(m)

LI ]
Disiance {m)

3™ drying cycle (23 to 33 d) 4" wetting cycle (33 to 34 d) 4" drying cycle (34 to 44 d) 5" wetting cycle (44 o 45 d) 5" drying cycle (45 to 55 d)

Figure VI.14 History of water 2 saturation of after the first drying cycle. The top two plots show the total water
and water 2 saturation, respectively, for which water 2 is continuously injected into the fracture after the 5-th

drying cycle. The flow fields for the top two plots are terminated at the time at when Q,, / Q

top

Dopth(m)

= 0.933.



05 [ T T T I
” ]
Q [ i
© I ]
t 04 :
® ]
8_ I g
E 03[ -
£ i ]
C i 4
2 [
T
5 0.1 B -1
T
7] i ]
0 | U T W U [ SR T T T U T S S SR W T S S )
0 11 22 33 44 55
Time (days)
Time for drying cycle (days)
1 2 3 4 5 6 7 8 9 10 11
0-5 R T I T LAE AR e EREL A SN OO ISR N T IR I G R 0 IR S SRR VL LT e ) ISR Y

First wetting cycle
,,,,,,,,,,,,,,, First drying cycle

Saturation at the top surface

NS i L (A e, IV YT, [N, NS P (R AT AU (I 200 SOOI TS L [0S S
%0~ %61 02 03 04 05 06 07 08 08 i
Time for wetting cycle (days)

Time for drying cycle (days)
4 5 "6 ~ 7 "8

01 2 3 10 11
— ML AR LEE Y Eie Ao SUSLARELES WL AL IR R I L L) R R ML L B AR S
o
L ‘ 3
() -400_‘ B
o - g
© 3
= :
3 -800 |~ " ; i
0 A First wetting cycle |
a ; : ]
o T First drying cycle |
=200 00000 TR E
© H e e e R TR S S m i i S B S D
£
& -1600 | ]
§ i
D__EOOO:|||\||H\1[||||||||M<|\JH>l||||||\\||s|n<||||\|\\\lwllll.
0 0.25 0.5 0.75 1

Time for wettiﬁg cycle (days)

Figure VI.15 Change of saturation and capillary pressure at the top surface.

145



12000 —————————T

10000

8000

6000

TTTTT

4000

Accumulated mass (kg)

2000

PR L i T O ) SO TR T R, T S Sk
0 11 22 33 44 55
Time (days)

Figure VI.16 Change of accumulated mass of water 2 after the first drying cycle.

R0 T s e v B R R
I [
'“C\"I’ : Water 2 flux at the bottom boundary
s 0.012F . Surface infiltration E
g j f
Z 0.009fF ;
o] i 1
x I ]
= - ]
- 0.006 | G
o . ]
3 i i
S [ N
2 0.003 1
g ) 3 S | UV | N
0 11 22 33 44 55

Time (days)
Figure VI.17. Change of accumulated water 2 flux at the bottom boundary.

Now, let us consider the second type of episodic infiltration. The constant supply
rate (Qp) and the time to breakthrough (Azf) are 107 kg/s and 43.56 hrs, respectively, for
this numerical experiment. Three ratios of the flow rate (2, 5, and 10) are considered.
Therefore, the new injection rates are 2x107 kgfs, 5107 kg/s, and 1x107 kg/s, and the

new intervals of injections are 21.78 hrs, 8.712 hrs, and 4.356 hrs.
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Figure VI.18 shows realizations of saturation at breakthrough for events with a
uniformly distributed supply rate and intensified rates. All realizations are practically the
same, only with a minor difference due to free drainage after surface infiltration is turned
off. However, Figure VI.19 shows that the vertical seepage for all episodic infiltration
events evolve at a faster speed than the event with a uniformly distributed supply rate. If
the average seepage velocity is defined as the ratio of the depth of the plume tip to travel
time, Table VI.1 (see column 4) shows that the initial average velocity increases with
increasing surface infiltration. As surface infiltration increases, however, the ratio of
average velocity for episodic infiltration to the average velocity for constant infiltration
becomes smaller than the ratio of supply rate, see column 6 of Table VI.1. On the other
hand, the ratio of ponding duration is approximately the inverse of the ratio of supply
rate. Furthermore, liquid seepage after ponding proceeds at a faster speed than seepage

before ponding, see the last column of Table V1.1 and Figure VI.18.

These simulation results suggest that liquid seepage for episodic infiltration
follows some patterns if the total mass injected into fracture is conserved. These patterns
can be roughly divided into three stages: before ponding, during ponding and after
ponding. The ponding refers to the regions which significantly delay the seepage. For
example, the ponding refers to the regions above the depth at — 13 m in Figure VL18. It is

obvious that these patterns are different from each other.

The first pattern applies to the time interval before the seepage develops
significant ponding. It says that the initial average seepage velocity increases with

increasing surface infiltration. This increasing trend is because the flow resistance
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Table VI.1 Results of episodic injection

Qkgls) Tehr) Te(hr) Ve(mhr) Ro Ry = Tyhn) Vy(m/h)
1x10° 4356 2493 0.52 1 1.00  15.17 3.17
2x10° 2276 13.23 098 - 2 1.89 751 5.19
5x10°  10.31 5.69 2.27 5 437 311 8.81
Ix102 612 - 3.00 4.30 100 827  1.68 8.39

Q = surface infiltration rate

T = breakthrough time :
T = first arrival time to the depth of — 13.0 m, the depth where ponding occurs

V¢ = initial average seepage velocity, i.e., 13.0/T;¢
Ro= ratio of surface infiltration, i.e., Q/1 x 107

Ry = ratio of the initial average seepage velocity for the episodic infiltration to the

. average velocity for the event with a uniformly distributed rate
T, = time needed to completely saturate the ponded regions at -13.0 m
V, = average seepage velocity after ponding :

decreases with increasing supply rate. The decrease of flow resistance with respect to

injection rate is interpreted by the increasing relative permeability and decreasing

absolute capillary pressure at the top surface, see Figure VI.20 (b) and VI1.20(c). This

initial seepage velocity remains approximately constant until water descends to a depth at

about —13 m at which significant ponding is occuring. However, the increase of the initial

seepage velocity is not at the same pace as the increase of supply rate. This may be
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because seepage needs longer time to develop new flow paths as the supply rate
increases. Thus, the ratio of seepage veloé:ity for episodic infiltration to the velocity for

the event with uniformly distributed supply rate is smaller than the ratio of s'upply rate.

Note that each of the curves in Figure VI.20 for episodic infiltration drops off
. because of the »termination of surface inﬁlfration. In contrast, the tails of curves for
con’stént infiltration remain horizontal. In addition, all the curves in Figure VI.20 exhibit
a stépwise increasing behavior. This is because Hquid has to fill in dead-end pores before
developing new flow pafhé. Thus, there are two obvious jumps in each of these curves.

Each jump corresponds to each dead-end pore shown in Figure VIL.18.

The second-stage pattern suggests that the time needed to completely saturate the
ponded regions at — 13 m inversely follows the pattern of supply rate. This is simply
. .bec_ause of mass balance. That is, the larger the supply rate, the shorter the duration to fill

the pore space.

The third-stage pattern suggests that vseepag'e aftér ponding has an average
velocity that is even faster than the iﬁitial seepage velocity. However, there seems to be
nobexp_licit correspondencé to the pattern of supply rate. But, results in Table VI.3 suggest
that average seepage v'elocity' after ponding becofnes closer to each other as the supply

rate increases.

In summary, these patterns observed in Figure VI.19 suggest that ponding
duration inversely correspond to the pattern of surface infiltration. However, average

seepage velocity follows different patterns beforé and after ponding. Combining these
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patterns implies that ponding may have less impact if the surface infiltration becomes
stronger. For an infiltration event With é high supply rate, liquid seepage may follow a
single average seepage velocity even if significant ponding appears. On the other hand, if
the surface infiltration become weaker, time lag due to ponding may have significant

impact on liquid seepage as well as BTC behavior.
V1.3 Limitations of spacé and time averaging

It is known that the macroscale approach, instead of representing the spatial
heterogeneity of fractures with a detailed resolution, averages the heterogeneity of
fractures as well-as the inputs to the system boundary. In this section, a numerical

experiment is conducted to point out the limitations of such an approach.

Consider, for example, the Syntheiic fracture in Figure V.6(d). This fracture has
. spatially random asperity contacts with a total volumetric fraction of .40%. To simulate
the macrosc;ale averaging approach, the hétero;géneities are replaced with spatially
averaged porosity and effective permeability. The same initial and boundary conditiéns
as those specified in section V.1 are used for the simulation.‘The resulting values of
parameters for fhis flow simulation are listed in Table VI.2. The computed saturation at
breakthrough is spatially uniform with a value of 0.58. In addition, thé vertical advance
curve for transient flow field is perfectly linear. Howeve;, the time to breakthrough
obtained by the macroscale approach is longer than that obtained using detailed
resolution of fracture heterogeneity. After the first breakthrough, however, the liquid seep
corresponding to the macroscale approach takes a shorter time to reach the steady state.

Overall, the macroscale averaging approach is not able to simulate the occurrence of fast
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preferential flow paths as observed in the fields. More imporiantly, the r_naéroscale'
approach cannot predict the complicated seepage patterns, such as fingering, bypassing

and pondihg, that are expected to be seen in the fields.

Table V1.2 Comparisons between the macroscale approach and the current approach

Simulation method ke OF k (12 ke oF k mz' Breakthrough Steady state
¢ et (m’) st OF k () time (hrs) time (days)
Macroscale approach 021  0.055 x 10° 0.060 x 10° 98.64 4.78
Currentapproach 035  1.0x10°x{  1.0x107°x{ 34.85 18.80

The water and tracer BTCs for the simu_lation using the macroscale approach are
shown in Figure VI.21. Tracer simulation is co'ntinvucd from the steady state flow field
obtained by the macroscale approach. The same boundary conditions as those used for
the water simulation are employed for the tracer simulation. Again, the resulting tracer
flow field is trivial because it is also a spatially uniform saturation field. Figure V121
shows that the log-normal model can be fitted to bothv water and tracer BTCs. Note that
the o, for water BTC is very small (0, = 0.0063). Thus, the water BTC can be practically
approxirﬁated by a step function, arid its pdf can be represented by a spike at tﬁe mean
travel time (<t> = 4.22 days). However, tracer BTC is more dispersed than water BTC (o;

= 0.45).
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Figure VI.21 Water and tracer BTCs for simulations using the
macroscale averaging approach.
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Chapter VII. Discussion and conclusions

Field evidence suggests that in semi-arid environments water is able to migrate
downward rather rapidly along preferential paths. For example, at Yucca Mountain,
Nevada, environmental tracers have been shown to migrate several hundred meters deep
within decades. Howevér, the time scale of tracer transport predicted by numerical
models using conventional volume-averaging approaches is on the order of thousands of
years. In order to addreés thié discrepancy, a numerical model bésed on fundamental |

processes and mechanisms has been proposed in this study.

Attempts at modeling flow and transport in unsaturated fractured rock based on a
mechanistic process model must start from a specification of void space geometry in
fractures. Unfortunately, the multiple length scales of fracture suffaces .‘vg’enerally
complicates the specification of void space gedmetry. Oﬁ the other hand, our ability to
directly obtain geometric characteristics of ‘frélc__ture void spaces from field observations is
limited. Only inputs into and outputs frorﬁ the flow system boundaries can be obsérved in
the field, which are all subject to significant temporal as well as spatial variability. In this
study, void spaces in fractures are characterized based on hypothesized geometric.
features, such as spatially correlated a;perity contaéts. These spatial characteristics are
expected to be most reievant for seepége behavior. The appropriatenéss of these
'.geometric features is then judged by whether they are able to reproduce flow and

transport behavior that would be observed in the field.

Fluid flow and solute transport in natural fractures'generally occur in 3-D fracture

networks. In this study, however, fracture networks were approximated as 2-D
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heterogeneous porous media in a vertical fracture plane. In addition, the effect of matrix
permeability was neglected. This assumption is reasonable for short-term flow , and '
transport behavior, but may not be viable when considering long-term flow patterns.
Thus, the present study is applicable to “small” fractures in hard rocks of low
permeability, such as welded tuffs,_ graywacke, mudétones, granite, and some fraciured
basalts. It would not be applicable to larger fractures with 3-D void space, or to small
fractures in rocks with significant matrix permeability (e.g., non-welded tuffs dr

sandstones).

Several approxirﬂations and assumptions were made in this study. Effects of
entrapped air were neglected. Hysteresis effects in capillary pressure and relative -
‘permeability were also neglected. Furthermore, permeability heterogeneity was assumed
to be the dominating influence on seepage. Porosity heterogeneity was nc')t‘considered.
For solute transport, molecularl diffusion was neglecfed. The last assumption suggests that |
the "only mixing mechanism. is due to the ﬁnife spatial discretization. In addition,
neglecting molecular diffusion limits the time scale for which the realistic solute transport

can occur.

Among the various spatial features of fracture void spaces, the spatial 'correlation
around asperity contacfs i.s focused in this study. This is motivated ny preliminary
analyses that conventional semi-variograms are not very sensitive to the topology of
| asperity contacts in fractures. The reason for this insensitivity may be because the
detailed heterogeneity of a random field is averaged out by the semi-variogram. Thus, a

modified Metropolis algorithm is proposed as a new perturbation mechanism for
Al
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simulated annealing (SA). This modified algorithm is able to emphasize the
neighborhoods of conditioning asperity co‘riltacts, while formulating the objectivé function
by employing the conventional semi-variogram. Simulated permeability fields obtained
by the modified Metropolis algorithm thus show much stronger clustering of asperity

contacts.

It was found from sensitivity anaiyses that the ratio of A/A; < 0.5 is preferred for
better representation of spatially correlated perme“abili'ty fields. However, seepage
‘patterns were not as sensitive as charécterization accuracy to this ratio. Indeed, seepage
patterns are virtually insensitive to the.ratio A/?»g as long as'its is smaller than 0.5. This is
especially true for flow simulations in permeability fields with spatially correlated
asperity contacts. This insensitivity is explained by the significant bypassing effect of

flow due to asperity contacts that are laterally correlated to a large extent.

Seepage in unsaturated fractures with either localized or distributed injection is
characterized by localized pr'eferential ﬂbw, along with bypasSing, funneling, and
localized ponding. Generally, flow and transport behavior is dominated by the fraction of
asperity contacts, and fheir shape, size, distribution and spatial correlation. However, the
detailed distribution_ of permeability in the open space of fracture is less impprtant than

the spatial correlation of asperity contacts. For increasing fraction of asperity contacts,

N

there is more flow bypassing and ponding, but fewer fingers. For a fixed fraction of
asperity contacts, however, flow bypassing, fingering and average vertical seepage
velocity depend on the correlation -lehgth and the principal correlation direction of

asperity contacts. If asperity contacts are horizbntally correlated, flow bypassing,
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fingering, and average vertical seepage velocity generally increase With increasing
horizontal correlation length of asperity contacts. For non-horizontally or non-vertically
correlated asperity contacts, flow bypassing and average vertical seepage velocity
increase as the anisotropy ratio of asperity contacts increases; but flow fingering

decreases with increasing anisotropy ratio.

Seepage dispersien is generaliy higher for fractures with intermediate fraction of
asperity contacts; but it‘is lower for emall or large fractions of asg;erity contacts. The
feason for this behavior is that many fingers can be formedlin fractures with small
fraction ef asperity contacts. These fingers are not sigx.liﬁcantly. affected by asperity
contacts, and they all have similar breakthrough behavior. Thus, seepage dispersion is
weak. With a large fraction of asperity contacts, only a limited number of fingers
(sometimes only one) can break through; thus, seepage dispersion is generallly weak.
However, a few ﬁngers (both fest and slow) are formed in fractures with intermediate

fraction of asperity contacts. Thus, seepage dispersion is generally stronger.

Ponding occufs in regions that leck permeability in the vertical direction. It is then
expeeted that ponding would .slow down vthe downward advancement of seepage. As a
result, seepage dispersion may become larger because of ponding, even for fractures with
large fraction of asperity contacts. However, if ponding is significant, it may gather
distributed seepage and foces flow into more localized pathways. Accordingly, seepage
may be accelerated because the funneled flow has a higher seepage velocity. Under such
circumstances, seepage dispersion may be greatly reduced, and the resulting water BTC

behaves like a step function.
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The strength of ponding depends on the .fraction of asperity contacts and their
correlation structure, i.e., their correlation lengths, anisotropy ratio, and the principal
direction. In synthetic fractures with isotroﬁic permeébility and asperity contacts, the .
strength of ponding increases with increasing fraction of asperity contacts. Yet, the
relationship between thé stféngth of ponding and the anisotropic structure of permeability

and asperity contacts is still not clear.

Simulation results found that BTCs for solute transport tends to be more.
dispersive than water BTCs. This is because water has to ﬁli dead-end pores along its
flow paths while migrating downward. However, tracers bypass these dead-end pores and
travel along flow paths that have less flow resistance. Therefore, tracer transport is more
uniform than water transport. More importantly, it was found that the log-normai travel
time model does not fit water BTCs very well. In contrast, BTCs of solute transport either
under transient or steady state flow field of water can be fitted very well by‘the lbg-'

" normal modei. The positi§ely skewed log-normal distribution implies that tracer transport

may evolve over a longer time scale than water transport.

The general features of flow patterns, as well as the different scaling laws with
respect to infiltration events with differént rates of surface injection have several
implications for field experiments. First, the in-situ sampling techniques need to consider
the effect of preferential flow and flow bypassing.. Installing sampling devices in a
spatially uniform manner may nof be cost-effective because ﬂow may onlyv break fhrough '
certain locations at the exiting boundary. Second, accelerate;i or delayed seepage due to

ponding needs to be considered when designing the sampling intervals, especially for
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automatic Sampling equipment. Third, ﬁeld experiments. should.be carefully designed to
cohsider the temporal and spatial variability of the input to fractures. Results of our
simulation suggest that initial seepage velocity increases with the infiltration rate. In
addition, the effect of pdnding also changes V;/ith the supply rate. Therefore, seepage
patterns are also subject to change with the surface infiltration. For waste isolation
‘problems, it may be necessary to locate the fast preferential flow paths to prevent the
infiltrating water from contacting the storage canister. Frqm the aspect of waste
mémagement, it may be needed to consider the transport pathways of solute once a

_ storage canister is exposed to water.

In the future, studies of flow and solute tfénsport in natural fractures should focus
on employing more realistic assumptions. The numerical model should be expanded to
considér 3-D effects. In addition, flow and 'solufe transbort in unsaturated fractures is at
least a two-phase process, effects of the gas phase should not be neglected. For example,
Richards’ equation implicitly assumes that the noﬁ-wetting phase fluid (air/gas) does not
interfere with the movement of the wetting phase. In reality, however, air may be trapped
within dead—end pores or be accumulated ahead of a critical pore neck. Therefore, it may
block the movement of the wetfing phase. Its pressure may be increased to a critical
point, e.g., the bubbling pressure, such ghat it may be released by bubbling or be pushed
through the pofe neck. Thus, phase interference and phase change are essential
mechanisms for two-phasé problems. The appearance of pore necks then raiées the
concern of the spatial variability of porosity. Porosity heterogeneity may have long-term
effects on seepage as well as solute transport. Furthermore, the effect of .matrix

permeability should be included when considering long-term seepage effects. As a result,
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molecular diffusion should also be considered because it is the dominating mechanism of
mass transfer between the rock matrix and f_facturés. Furthermore, ﬁeld observations
~ indicate that surface infiltration and percolation are both subject to temporal variabilify.,
Seepage is therefore expected to experience hysteresis effects. Therefore, hysteresisv

effects of capillary and relative permeability should also be included.
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Appendix A. Derivation of a semi-variogram model and
its corresponding correlation function |
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(A) Definitions

+ sample data pair U=V
+
+
+ + +
+ +
+
+ +
+ +
+ ]
+ Y4 +
* A A
+ + it
+ -l-+ &
v, ¥ } +
E(Ui'vi)
+
U U

Figure A.1. Scatterplot of random variables U and V.

Dependence of two random variables U and V can be visualized from their
scatterplot as shown in Figure A.1 (Isaaks and Srivastava, 1989), in which sample data of
U and V measured at the same location are plotted against each other on the same
diagram. Note that the solid line at 45° features the perfectly correlated pair, i.e., U= V.
The spatial correlation of the two random variables is usually quantitatively measured by
their covariance function, Cov[U, V] '

Cov[U, V]= E[(U-mU )(V-nz;, )]= E[U~V]—— mymy (A-1)

where my and my are means of U and V, respectively. Covariance is used to measure the
similarity between two random variables. However, the variability of two random
variables is usually measured by their moment of inertia about the 45° line on their
scatterplot. This quantity is called “semi-variogram” in the literature of geostatistics,
which is written as

1 N - 1 N ' i .
=—Yd*=—NYU. -V} A-2
'YUV NZ i ZNE( i 1) ( )

i=]

where N is the total number of random pairs (U;, V;), and d; is distance on a scatterplot
from a random pair (U;, V;) to the line on which U = V. Semi-variogram and covariance
have the following relationship

2Ypy = ’:—;fi(]iz _mé}-l_[%i‘/lz _m\zz jl_l:'l%,“iU,V, _Zmumv:l'*'(mu _mv)z
i=] i=]

i=l

(A-3)
_ 2 2 ‘ 2 ’
= sy +5y —2Cov[U,V]+ (mU —my )
where sy and sv' are standard deviations of U and V, respectively. The above definitions
of covariance and semi-variogram can be applied to two random variables measured at
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the same location, e.g., U; and V; in Figure A.l; or the same attribute measured at
different locations. The latter is usually used in the literature of geostatistics to measure
the spatial variability of a spatially random function (SRF).

For a SRF Z(u), its spatial variability is quantitatively measured by calculating
the mean squared difference between a pair (Z(u), Z(u+h)), where h is the separation
distance between Z(u) and Z(u+h). Based on Eq(A-2), the semi-variogram of Z(u) is

N(h)

2,0 =5 Y (2@ -2+ 0] =E{zw-zaswl} 4

IfZisa statiohary SREF, i.e., the statistics of Z are independent of location, Eq(A-4) can
be simplified as

2y, () =E{[Zw) - Z+0)]* }= 2varzw)]- 2Cov[Z(u), Z(u+h)] (A-5)

or ,
Yz(h)= Cz(0)-C,(h) . . (A-6)
where Cz(0) is the variance of Z, and Cz(h) is the covariance of Z with separation

distance h. Hereafter, the subscript in yz(h) or Cz(h) will be omitted for 81mp11c1ty if it is
clear that what SRF is being dealt w1th

' (B) Mathematical models of y(h) and C(h)

A function that can be used as a covariance function must be positive definite
such that a function that is a weighted linear combination of n SRF’s has a non-negative
variance. From this property, other properties of C(h) can be inferred, which are (a)
C(0)= Var(Z(u)) = 0, (b) C(h) = C(-h), and (c) IC(h)I £ C(0). (Journel and Huijbregts,
1978).

In the literature of geostatistics, there are several models of semi-variogram that
-have shown to be positive definite. One of the most commonly used models is the
“exponential model which is defined as

y(h)=s l:l - exp(— %}—l- H | (A-7)

its corresponding covariance function is defined as

C(h)= s exp(— Z—h] (A-3)

where h = lhl is the magnitude of the separation distance, & is the range parameter, and
s} is the sill (or the variance of the underlying random variable Z). Note that Eqs (A-7)
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is an isotropic model, thus, y (h) = 7y (k). The “range” is defined as the distance at which
the semi-variogram reaches 95% of the sill. That is, at & = &, equation (A-7) reduces to

y(h) = s2[1—exp(-3)]=0.95s2 - (A9)

For any semi-variogram model, the integral scale A, (or correlation length) of Z is
defined as (Dagan, 1989)

A =—12—j°°C(h)dh | (A-10)
5770
Therefore, for an exponential semi-variogram, A can be derived as
. _ L=, 3h ¢ ’
A —;—)2(—'[) sx-exp[-?]dh—-g (A-11)

That is, for'an exponential semi-variogram, the correlation length is one third of the
‘range. See Figure A.2 for illustration.

v(h) or C(h)
Sill, si ‘ _
“\‘ 'Y(h 095 S;

\\ 2
\ 0.63s
\\\ YA
‘Q.37 si

~C(h)

\\

’\\-%.*N_._____
A &:37\. - h

Figure A.2. Tllustration of an exponential semi-variogram and its
corresponding correlation function.

From Eq(A-i 1), Eq(A-7) can be recast as
) 2 h _
y(h)=s, [1 - exp(— IH , } (A-12)

For an anisotropic exponential semi-vario gram, Eq(A-12) can be rewritten as
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A A

X Z

2 2
y(h) =y(h,,h,) =c+s2{l—exp —\/(h—*j +[vh—1) (A-13)

where A, and A, are the correlation lengths in the x and z directions, respectively; and h,
and h, are the separation distances in the x and z directions, respectively. Note that this
kind of anisotropy is called “geometric anisotropy” in the literature of geostatistics
(Isaaks and Srivastava, 1989).
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Appendix B. Nugget effect of a semi-variogram model
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Theoretically, semi-variogram model at zero separation distance (4 = 0) should
have a zero value, i.e., y(0) = 0, regardless of what type of model it may be. This property
comes from that fact that the spatial correlation of Z to itself at # = 0 should be its"

univariate variance s;. When fitting a semi-variogram model to sample data, however, it

may happen that the intercept extrapolated from the sample data to the vertical axis at the
origin is a finite value but not zero. Likewise, the covariance function at large separation
distance may approach asymptotically a finite value, not zero. This non-zero semi-
‘variogram value at zero separation distance is called the “nugget effect” in the literature
of geostatistics. '

Nugget effect can be attributed to sampling error as well as small-scale variability
(or microvariability) (Kitanidis, 1997). Usually, these two effects occur simultaneously in -
the field. Sampling error may be removed by following cautious sampling procedures, or
using equipment with better precision, while taking field measurements. However, it is
generally difficult to map the detailed variability of a spatially heterogeneous field by
using finite sampling intervals. Thus, it is worthy to understand these effects and find an
analytic way to describe them.

(A) Nugget effect due to sampling error

Denote the spatial random function by Z. At a particular location u, let the true
value of Z be zp(u), and the measured value be Z(u). Due to sampling error, zo(u) and
Z(u) may not be the same. Thus, we may write Z(u) as the sum of zo(w), sampling error
(¢) and a random fluctuation term (y(u)), i.e.,

Z(u) = zg(u) + € + x(u) | B

where zp(u) is a constant and € is a constant random variable. Assume that € has mean
and variance as U and s”, respectively; and x(u) is a random fluctuation term with mean
and variance as 0 and sfc , respectively. Furthermore, assume that x(«) and y(u+Au) are

correlated to each other with a general correlation function y,,(u), and € and § are
independent to each other. Then, statistics of Z(u) can be derived as the followings

E[Z(u)]= z,(u) + m, |
Var[Z(u)]=s? + 52 . (B-2)
Cov[Z(u), Z(u + Aw)]=s? +y, (u)s? = C(Au) = C(h)

Assuming positive correlation of ), i.e., 0 < y,,(u) < 1, then s? < C(h) < s,f+s§ )
The correlation function C(h) is shown schematically in Figure B.1. It is obvious from
Figure B.l1 that the covariance function does not go to zero as h increases but go
asymptotically to a constant s:. Statistically speaking, the contribution of sf to the

correlation function C(h) is called “bias” (Rice, 1995). In other words nugget effect may
be resulted from a biased measurement. '
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(B) Nugget effect due to small-scale variability

To make measurements of a SRF in the field, it is inevitable to have a minimum
sampling interval due to the constraint of cost and efficiency. That is, spatial variability
within the minimum sampling interval may not be sampled. See Figure B.2(a) for
illustration, in which the nugget effect is caused by the small-scale variability. In this
case, however, there may still exist a semi-variogram that fits the sample data but has a
zero value at h = 0, see Figure B.2(b). In other words, the semi-variogram at 2 = 0 may
still be zero but jumps to a finite value at small separation distance due to small-scale
variability. ' :

C(h)

nugget

h
Figure B.1 Nugget effect due to sampling error (or bias).

To model the discontinuous jump at the origin, a semi-variogram model, e.g.,
exponential, with a nugget effect can be recast as

0 ifh=0 . |
= h : - B-3
YW =12 2| 1mexd <3| itnso0 | (B-3)
‘ 4
and the corresponding correlation function can be written as

So+s; ifh=0 .
Chy=1 , _ B-4
.( ) s;exp(—%) if h>0 B

where séis_ the nugget, and s; + s5 is the sill (Isaaks and Srivastava, 1989).

Equations (B-3) and (B-4) can be plotted in Figures B.3(a) and B.3(b),
respectively. Figure B.3(a) shows that y(h) at the origin still has a zero value. As soon as
h becomes larger than zero, there is a sudden jump from 0 to sy. This sudden jump
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reflects the fact that the sampling interval is too large to capture the spatial variability
within the distance smaller than the sampling interval. The corresponding covariance

function shows that C(k) at & = 0 is the summation of s, and s; (the nugget). As soon as

h becomes larger than 0, C(h) suddenly drops to sé. As h becomes even larger, C(h)

. decreases asymptotically to zero, suggesting as it should be because Z’s become
uncorrelated to each other at large separation distances.

¥(h) | v(h)

X sample data b o extrapoiated sample data
possible semi-variogram considering
small scale variability

nuggeti"'/ nugget®’

(a) sample data (b) fitted semi-variogram

Figure B.2 Illustration of nugget effect due to small scale variability (from de Marsily,‘
1986).

One way to overcome the small-scale variability is to reduce the sampling
interval. However, doing so may not be practical due to the extra number of sampling
points. Thus, the other convenient alternative is to manipulate the definition of y(h) and
introduce a discontinuity at the origin such as Eqs(B-3) and (B-4).

v(h) v C(h)
54t - et
o
o d
*~— £ h £ h

(a) (b)

Figure B.3 Exponential semi-variogram and its corresponding correlation function with
nugget effect due to small-scale variability.
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Appendix C Source code of the modiﬁe-d Metropolis algorithm
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(1) Flowchart

Randomly select two un-
( ) ™ conditioned grid points u, and u,
1

. Calculate the objective function, O, with original locations of u, and u,
Calculate a new objective function, O,,,,, by swapping u, and u,

AO = Onew - oold

Oold < Omin or Iend 2 bl

Both or none of u, and
u, in a neighborhood

u, in a neighborhoo
u, not in a neighborhood

E(uy) < &u

No ot40m 5
Yes
- Swap {(u,) and L(u,) ( : )
Naccept = Naccept + 1

Thew= TToq Thew= T Tog

ieng = 0 ieng = leng + 1

Naccept = 0 T Nacept = 0
Ny =0 Ny =0

Newap = Nswap + 1
My = Ny + 1
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(2) Source code

C INCLUDE FILE ‘METRO.INC’

C% %% %e %o %o %o %o %o To To To FoFo %% o o o To %o o To %e %o o To To %o To To To % To To %o To To To Fo Fo Fo T Yo To Fo To %o Fo o %o o To To To Fo To %o %o Yo To %o To %o

C

C Copyright (C) 1992 Stanford Center for Reservoir Forecasting. All rights reserved

.C Distributed with: C.V. Deutsch and A.G. Journel.

C “"GSLIB: Geostatistical Software Library and User's Guide,” Oxford University Press, New York, 1992.

C

C The programs in GSLIB are distributed in the hope that they will be useful, but WITHOUT ANY WARRANTY. No author or

%o
%
%
%
%
%

C distributor accepts responsibility to anyone for the consequences of using them or for whether they serve any particular purpose %

C or work at all, unless he says so in writing. Everyone is granted permission to copy, modify and redistribute the programs in
C GSLIB, but only under the condition that this notice and the above copyright notice remain intact.

%
%

C%%% %o % %o %6 To % %o Te To % %o To o To %o %o %o T Fo %o To %o %o Fo %o To To % Yo %o o To %o To To To To To %o %o To %o o To %o To Fo To Yo %o To To Fo Te o Yo To Fo o To Fo

c
¢ The following Parameters control static dimensioning within sasim3d:
c

¢ MAXX  maximum nodes in X

¢ MAXY ° maximum nodes in Y

¢ MAXZ  maximum nodes in Z

¢ MAXCUT maximum number of cutoffs/data to define CDF

¢ MAXLAG maximum number of lags in variogram calculation
¢ MAXNST maximum number of structures for variogram model
c

¢ Author: C.V. Deutsch Date: February 1990

c .

implicit real*8(a-h,0-z)

parameter (MAXX = 100, MAXY =100, MAXZ = 1,

+ MAXCUT =5, MAXLAG = 500, MAXOBI = 2,

+ MAXNST = - 4, EPSLON=1.0d-20,VERSION=1.200)
c
¢ Array declaration:
c

real*8  cutMAXCUT),cdf(MAXCUT),var(MAXX,MAXY MAXZ),sas(6)

real*8 varnew(MAXLAG,MAXOBJ),varmod(MAXLAG),

+ varact{MAXLAG,MAXOBJ),sclifac(MAXLAG),

+ vardiv(IMAXLAG,MAXOBIJ),Itpar,utpar,renorm

integer seed,part,report,ixiMAXLAG),iy(MAXLAG),izI(MAXLAG),
+ ittMAXNST),utail,Itail

logical twopar,only2d,condMAXX,MAXY ,MAXZ),comp

real*8 cc(MAXNST),aa(MAXNST),angl(MAXNST),ang2(MAXNST),

+ ang3(MAXNST),anis {(MAXNST),anis2(MAXNST),

+ gammanew(maxlag,Z),gammah(maxlag,Z);gammav(maxlag,2),
+ divnew(maxlag,maxobj)
real*8 gamunwt(maxlag)
c
¢ - .y

¢ 1/20/97 : The following lineé are added by Tai-Sheng Liou
c

real*8 ymean,ystd )

integer itrans,nbhd(maxx,maxy),defnbhd

character datafl*40,outf1*40,dbgfl*40,condf1*40,lagfl*40,
+ horvarfl*40,vervarfl*40,varfl*40,imageinfl*40,

+ imageoutfl*40
*k ’rﬂraﬁ***********\

C

¢ Common blocks:

c .
common /grid3d/ xsiz,ysiz,zsiz,xmn,ymn,zmn,nx,ny,nz
common /genral/ seed,nsim, var,sas,part,llag,fimagein, limageout,
+ lout,lvar,idbg,report,ldbg

common /inimod/ cut,cdf, ltpar,utpar,ltail,utail zmin,
+ zmax,igauss,isill,ncdf
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common /variog/ sclfac,varnew varact,vardiv,

+ varmod,divnew,renorm,nlag,
+ neighbor,ixl,iyl,izl
common/variogl/ gamunwt
common /cova3d/ c0,cmax,cc,aa,angl,ang2,ang3,anis1,anis2,nst,it
common /logics/ twopar,only2d,cond '
common /compwt/ wicomp,oinit,pmsum,pmnew,gamdf,comp,nwt
c
C-rm*¥ o ook s ook **% L2 33 ******/
¢ 1/20/97 : The following common blocks are added by Tai-Sheng Liou
c

common /lognorm/ ymean,ystd,pcut,itrans’
common /weight/ wfedge, wfcond,scale,iedge,icond
common /anisop/ lhvar,lvvar,noisop
common /datapt/ noncond
common /cutoff/ xcut0,aspcut,xcut,ptarget,cutsave,paspsave
common /fname/ datafl,outfl,dbgfl,condfl,horvarfl,vervarfl,
+ varfl,lagfl,imageinfl,imageoutfl,intervar,nswap
common /gamma/ gammanew,gammah,gammav
common /neighbor/ nbhd
common/annealmg/metro defnbhd,imodifield
C *EE\

C MAIN PROGRAM ‘SASIM’ (the calling program for SA)

subroutine sasim

[+

C

C Distributed with: C.V. Deutsch and A.G. Journel

C “GSLIB: Geostatistical Software Library and User's Guide," Oxford University Press, New York, 1992

C

C The programs in GSLIB are distributed in the hope that they will be useful, but WITHOUT ANY WARRANTY. No author or
C distributor accepts responsibility to anyone for the consequences of using them or for whether they serve any particular purpose
C or work at all, unless he says so in writing. Everyone is granted permission to copy, modify and redistribute the programs in

C GSLIB, but only under the condition that this notice and the above copyright notice remain intact.

C

C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

C Copyright (C) 1992 Stanford Center for Reservoir Forecasting. All rights reserved.

%
%
%

C %% Yo %o %0 %% %o %o %e To %o To %o To Te Yo To %o To %o %o %o To %o Fo Yo To Fo To To %o Fo To To To To To To To To %o To Te o o To To To To Fo To To To To To Fo To To To %o %o Yo Yo

c
c 3-D Simulation by Annealing
c
¢ .
¢ Conditionally Simulate a Complete 3-D Field with Simulated Anealing.
c

¢ The objective function is the squared difference between the desired variogram and the actual variogram for as many lags as
c specified. The objective functmn may be in two parts - one part includes the conditioning data and the other includes pairs of

¢ simulated data only.

¢ INPUT/OUTPUT Parameters:

Name of a data ﬁlc of conditioning data (GEOEAS formal)
column numbers for x, y, z, and variable
trimming limits (used to flag missing values)

Name of a data file for non-parametric distribution
column numbers for variable and weight

data timits (used for tail extrapolation)

option and parameter for the lower tail

option and parameter for the upper tail

An output file (may be overwritten)

A output file for variograms (may be overwritten)

The debugging level (integer code - larger means more)

[ I ST

0000000000000
f
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O00000000000000000000000O0

Cc

A file for the debugging output

Whether or not to use an automatic annealing schedule (O=auto)

-annealing schedule

Whether a one part or a two part objective function is used

Random Number Seed

The number of simulations

X grid definition (number, minimum, size): nx,xmn,xsiz

Y grid definition (number, minimum, size): ny,ymn,ysiz

Z grid definition (number, minimum, size): nz,zmn,zsiz

The maximum number of lags to be considered

Variogram Definition: number of structures(nst), nugget, and whether or not to renormalize sill to the variance(0=auto)

the next "nst*2" lines require: '

First line:
a) an integer code for variogram (1=sph,2=exp,3=gaus,d=pow)
b) "a" parameter (range except for power model)
b) "c" parameter (contribution except for power model).

Second line:
a) azimuth principal direction (measured clockwise from Y).
b) dip of principal direction (measured negative down from X). :
c) a third rotation of the two minor directions about the principal direction. This angle acts counterclocwise

when looking in the principal direction. ’
" Two anisotropy factors are required to complete the definition

of the geometric anisotropy of each nested structure: )
d) radius in minor direction at 90 degrees from the principal direction divided by the principal radius.
e) radius in minor direction at 90 degrees vertical from the principal direction divided by the principal radius.

)

¢ The output file will be a GEOEAS file containing the simulated values The file is ordered by x,y,z, and then simulation (i.e., x cycles
c fastest, then y, then z, then simulation number). - .

c
¢ Original: C.V. Deutsch Date: April 1990

C .

¢ Definitions of some variables

c : .

¢ varact(il,io) - sum of squared difference between the weighted variogram and the model variogram

c vamew(ilio) - same as 'varact' but used in the subroutine 'OBJECT". If perturbation accepted, set varact=varnew; otherwise,reset
c  varact to the previous value at the next perturbation

¢ var_unwt(ilio) - sum of squared difference between the un-weighted variogram and the model variogram. This variogram value is
c used to test the convergence ’

¢ varwl(ilio) - - same as var_unwt but used in the subroutine 'OBJECT If perturbation accepted, set var_unwt=varwl; otherwise,
c reset var_unwt to the previous value at the next perturbation

¢ vardiv(ilio) - number of pairs at il-th lag for weighted variogram

¢ divrew(il,io) - same as vardiv but used in 'OBJECT". It will be restored to the previous value if a perturbation is rejected.

¢ div_unwt(il,io) - number of pairs at il-th lag for unweighted variogram

c

N :Ne)

kkokokk ok k *ok ok ok kok dodokf

Updated by Tai-Sheng Liou, 4/22/1997

include 'metro.inc’

[

logical accept,first,vgmout(6)
real*8 actsv(30,2),divsv(30,2)

¢ Read the data (Initialize) and find the starting objective function:

c

open(50,file="obj.dat',status="unknown")
first=.true.
doi=1,6
vgmout(i)=.false.
end do
do 10 i=1,nx
do 10 j=l.ny
nbhd(i j)=0

10 continue

[+

¢ 6/28/97 : Find the neighborhood of aspersity contacts
¢ nbhd=1, neighborhood is defined as a square
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¢ nbhd=2, neighborhood is defined such that the distance between a grid block and an asperity contact is smaller than the size of
[ neighborhood . ’ .
c - .
c
open(777.file="neighbor.dat’ status="unknown’)
size=real(neighbor) ’
do 12 i=1l,nx
do 12 j=1,ny
do 12 k=1,nz
if (cond(i,}.k)) then
do ii=-neighbor,neighbor
do jj=-neighbor,neighbor
ix=i+it
iy=j+ii
iz=k
if (defnbhd.eq.2) then
dx=real(ii)
dy=real(jj)
dist=sqrt(dx*dx+dy*dy)
end if
if (ix.ge.1.and.ix.le.nx.and.iy.ge. | .and.1y.le.ny.and.
+ iz.ge.1.and.iz.le.nz) then i
if (defnbhd.eq.1) then i
if(.not. cond(ix,iy.iz).and.nbhd(ix,iy).eq.0)then
nbhd(ix,iy)=1
xasp=xmn+real(ix-1)*xsiz
yasp=ymn-treal(iy-1)*ysiz
write(777,778) xasp,yasp,0,wfcond
end if
elseif(defnbhd.eq.2) then
if(.not. cond(ix,iy,iz).and.nbhd(ix,iy).eq.0.
+ and.dist.le.size) then
nbhd(ix,iy)=1
~ xasp=xmn+real(ix-1)*xsiz
yasp=ymn-+real(iy-1)*ysiz
write(777,778) xasp,yasp,0,wfcond
end if ’
end if
end if
end do
end do
end if
12 continue
778 format(2(f6.1,1x),i4,2x,£5.1)

close(777) ' ; :
C ok Heofeofek *k ***\
¢ .
¢ 1/28/97 : Write header to lagfl if the filename of lagfl is not ‘nodata.dat’
c

¢  if (firstand.lagfl(1:10).ne.'nodata.dat’y then
c write(llag,9990)
c endif

call initob(obj,first)
first=.false.

c
c¢ Initial Conditions:
c
nswap =0
iend =0

temp =sas(l)
accept = .false.
if(only2d) then
ki=1
k2=1
endif
c .
¢ Loop until convergence or the stopping number:
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1 naccept=0
atry = 0
write(Idbg,*) ' Obj. Fun. # of swap’
if(idbg.gt.2) then
write(*,777) obj
write(*,996) temp,nswap
write(ldbg,996) temp,nswap
write(ldbg,997) obj,nswap
write(50,*) nswap,obj
" 996 format(' New Temperature: 'e12.5, Total swaps: 'i12)
997 format('0 ,e14.7,1x,i12)
717 format(' Objective function: ‘,€14.7)
endif
c
¢ Keep attempting to swap values unti! some limit is exceeded:
c
2 ntry =ntry +1 .
nswap =nswap + | '
if(idbg.gt.2) then
if((int(nswap/report)*report).eq.nswap) then
© write(*,998) obj,nswap
write(1dbg,999) obj,nswap
write(50,*) nswap,obj
endif
998 format(' Objective Function: ',e14.7," Total swaps: ',i12)
999 format(‘l ',e14.7,1x,i12)
endif
c
¢ Find a random pair such that none of the data is a conditioning point
c
3 il = int(getrand(seed)*nx)+1
* jl = int(getrand(seed)*ny)+1
if(.not.only2d) .
+k1 = int(getrand(seed)*nz)+1
if(cond(il,j1,k1)) go to 3
4 12 = int(getrand(seed)*nx)+1
J2 = int(getrand(seed)*ny)+1
if(.not.only2d)
+k2 = int(getrand(seed)*nz)+!
if(¢ond(i2,j2,k2)) go to 4
if(i2.eq.il.and j2.eq.jl.and k2.eq.k1) go to 4

c
¢ Calculate Objective Function: .
c .

call object(il,j1,k1,i2,j2,k2,accept,objtry)
c

¢ Accept the swap if the objective has gone down and with a certain probability if the objective has gone up:
c
accept = false.
~ if(objtry.gt.obj) then
unif = dmax 1(EPSLON,getrand(seed))
if(metro.eq.1) then
if(imod.eq.1) then

CH¥*rrk HhAok skt Rk Ak

C
c
¢ MOD1: s

both P1 and P2 in nbhd  : standard Metropolis

none of P1 and P2 in nbhd. : standard Metropolis

Pl in nbhd butnot P2 : standard Metropolis and P2<P]

O o600

if(nbhd(i1,j1).eq.1.and.nbhd(i2,j2).eq.1) then
if(objtry.It.(obj-temp*dlog(unif))) accept = .true.
elseif(nbhd(il,j1).ne.1.and.nbhd(i2,j2).ne.1) then
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if(pbjuy.lt.(obj-temp*dlog(unit))) accept = .true.
elseif(nbhd(il j1).eq.1.and.nbhd(i2,j2).ne.1) then~
if(objtry.lt.(obj-temp*dlog(unif)).and.

+ var(i2,j2,k2).It.var(il,j1.k1))accept=true.
else
if(objtry.1t.(obj-temp*dlog(unif)).and.
+ var(il jl k1).lt.var(i2,j2 k2))accept=.true.
end if
elseif(imod.eq.2) then
c
¢ MOD2:

¢ bothPland P2 innbhd : reject

¢ none of Pl and P2 in nbhd. : standard Metropolis

¢ Plinnbhdbut P2not :standard Metropolis and P2<Pl
c

if(nbhd(il,j1).eq.1.and.nbhd(i2,j2).€q.1) then -
accept=_false.
elseif(nbhd(il j1).ne.1.and.nbhd(i2,j2).ne.1) then
if(objtry.lt.(obj-temp*dlog(unif))) accept = .true.
elseif(nbhd(il j1).eq.1.and.nbhd(i2,j2).ne.1) then
if(objtry.It.(obj-temp*dlog(unif)).and.
+ var(i2,j2,k2).1t.var(il j1,k1))accept=.true.
else
if(objtry.It.(obj-temp*dlog(unif)).and.
+ var(il,j1,k1):1t.var(i2,j2,k2))accept=.true.
end if
elseif (imod.eq.3) then

c
¢ MOD3:

c¢  bothPland P2 innbhd : standard Metropolis
¢ none of Pl and P2 in nbhd. : standard Metropolis
c Pl in nbhd but P2 not  : P2<P1
c

if(nbhd(il,j1).eq.1.and.nbhd(i2,j2).eq.1) then _
if(objtry.lt.(obj-temp*dlog(unif))) accept = .true.

elseif(nbhd(il j1).ne.1.and.nbhd(i2,j2).ne.1) then
if(objtry.lt.(obj-temp*dlog(unif))) accept = .true.

elseif(nbhd(il,j1).eq.1.and.nbhd(i2,j2).ne. 1) then
if(var(i2,j2,k2).1t.var(il,j1 k1))accept=.true.

else
if(var(il,j1,k1).lt.var(i2,j2,k2))accept=.true.
end if
. elseif(imod.eq.4) then
[
¢ MOD4:

¢ bothPland P2innbhd : reject

¢ none of P1 and P2 in nbhd. : standard Metropolis
c Pl in nbhd but P2 not  : P2<P1
c

if(nbhd(il,j1).eq.1.and.nbhd(i2,j2).eq.1) then
accept = .false.
elseif(nbhd(il j1).ne.1.and.nbhd(i2,j2).ne. 1) then
if(objtry.It.(obj-temp*dlog(unif))) accept = .true.
elseif(nbhd(il j1).eq.1.and.nbhd(i2,j2).ne.1) then
if(var(i2,j2,k2).It.var(il,j1,k1))accept=.true.
else
if(var(il j1,k1).1t.var(i2,j2,k2))accept=.true.
end if
end if
else
et e e e S M 2 e e e e 2 en
¢ Standard Metropolis considering the acceptance probability
C--:

if(objtry.lt.(obj-temp*dlog(unif))) accept = .true.
end if :
else
accept = .true.
endif
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if(ifield.eq.1) then
if(nswap.eq.led)vgmout(1)=.true.
if(nswap.eq.1e5)vgmout(2)=_true.
if(nswap.eq.1e6)vgmout(3)=.true.
if(nswap.eq.1e7)vgmout(4)=.true.
if(nswap.eq.2.e7)vgmout(5)=.true.
if(nswap.eq.3.e7)vgmout(6)=.true.

end if
c
c If we are keeping it then update the variogram arrays:
c
if(accept) then
ni=le4
if (ifield.eq.1) then .
do kk=1,6

if(kk.le.4)n2=n1*10
if(kk.ge.5)n2=nl+1e7
if(vgmout(kk))then
if(nswap.ge.ni.and.nswap.lt.n2) then
vgmout(kk)=.true.
. no=1230+kk
nol=1250+kk
if(kk.eq.1)open(no,file="gammad4.dat’,status="unknown’)
if(kk.eq.2)open(no,file="gamma5 .dat'status="unknown')
if(kk.eq.3)open(no,file="gamma6.dat',status="unknown")
if(kk.eq.4)open(no,file='gamma7 dat',status="unknown')
if(kk.eq:5)open(no,file='gamma71.dat'status="unknown")
if(kk.eq.6)open(no,file="gamma72.dat',status='unknown’)
if(kk.eq.1)open(nol file="real4.dat’status="unknown")
if(kk.eq.2)open(nol,file="real5.dat' status="unknown’)
if(kk.eq.3)open(nol file="real6.dat’status="unknown’)
if(kk.eq.4)open(nol file="real7.dat',status="unknown")
if(kk.eq.5)open(nol file="real71.dat'status="unknown')
if(kk.eq.6)open(nol file="real72.dat',status="unknown")
end if -
end if
if(kk.le.3)n1=n1*10
if(kk.ge.4)nl=nl+1e7
end do
end if
do 5 ilag=1,nlag
do 5 iobj=1,part
varact(ilag,iobj) = vamew(ilag,iobj)
vardiv(ilag,iobj) = divnew(ilag,iobj)
actsv(ilag,iobj) = varnew(ilag,iobj)
divsv(ilag,iobj) = divnew(ilag,iobj) -
5 continue
naccept = naccept + 1
obj =objry =
vartemp =var(il,jl k1)
var(il,j1,k1) = var(i2,j2,k2)
var(i2,j2,k2) = vartemp
if(ifield.eq.1) then
dokk=16
ro=1230+kk
nol=1250+kk
if (vgmout(kk)) then
do 11 j=1,nlag
do 11 k=1 ,part
varact(j,k) = 0.0d0
vardiv(j.,k) = 0.0d0

1t continue .
C ook ok ke e ook ok ok ok feok ok L 22N
c _ C
¢ Calculate the Experimental Variogram:

c

do 31 ix=1,nx
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do 31 iy=1,ny
do 31 iz=1,nz
vl = var(ix,iy,iz)
do 41 il=1,nlag
itx = ix + ixI(il)
iy =iy +iylGn
kkz =iz +izl(il)
if(iix.ge.1.and iix.le.nx.and.
+ jiy-ge.1.and jjy.le.ny.and.
+ kkz.ge.1.and.kkz le.nz) then
v2 = var(iix,jjy.kkz)
io=1
varact(il,io) = varact(il,io)+
+ (v1-v2)*(vl-v2)
vardiv(il,io) = vardiv(il,io)+2.d0
endif
4] continue
31 continue
write(no,*) ' nswap = ,nswap
write(no,500) :
do il=1,nlag
dx = dble(ixI(il)) * xsiz
dy = dble(iyk(il)) * ysiz
dz = dble(izi(il)) * zsiz
dx = sqrt(dx*dx+dy*dy-+dz*dz)
write(no, 105) il,dx,varmod(il),
+ varact(il,1)/vardiv(il,1),actsv(il,1)/divsv(il,1)
end do
do 13 iz=1,nz
do 13 iy=1,ny
do 13 ix=1,nx
xx=xmn+xsiz*dble(ix-1)
yy=ymn+ysiz*dble(iy-1)
zz=zmn+zsiz*dble(iz-1)
if(cond(ix,iy,iz)) then
if (var(ix,iy,iz).eq.xcut0)
+ var(ix,iy,iz)=0.0d0
write(nol,701) xx,yy,zz,var(ix,1y,iz)
else )
write(no1,702) xx,yy,zz,var(ix,1y,iz)
endif
13 continue
701 format(3(f8.2,2x),f12.4, ¢)
702 format(3(f8.2,2x),f12.4)
105 format(i4,£10.4,6f18.8)
vgmout(kk)=.false.

close(no)
close(nol)
end if
end do
end if
end if
c\
¢ Converged to a Solution?
c.
C** Aeskokok dkeskokokkkdokokk kdkok d 3 **/
C .

¢ 1/21/97 : The following lines are added to show the users why the program is terminated , Tai-Sheng Liou
c
" ¢ Test the convergence based on the un-weighted variogram: var_unwt
c .
if(obj .le.sas(6).or.iend.ge.sas(5)) then
write(50,*) nswap,obj
if (intervar.gt.nswap) write(*,*)
+ ‘intervar = 'intervar,' > ',nswap
if (obj.le.sas(6)) then -
write(*,600) nswap,obj,sas(6)
write(ldbg,600) nswap,obj,sas(6)
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end if
if (iend.ge.sas(5)) then
write(*,*) "Have tried ',iend,

$ : sas(3)," iterations -Program terminated’
write(Idbg,*) 'Have tried 'iend,
$ sas(3),’ iterations -Program terminated’
end if

if (part.eq.1) then
if(.not.first) write(lvar,500)
if (noisop.eq.1 .and. .not first) then
write(lhvar,500) ’
write(lvvar,500)
end if
else
if (.not.first) write(lvar,510)
if (noisop.eq.! .and. .not.first) then
write(lhvar,510)
write(lvvar,510)
end if
end if

C Aok ko ok ko k% _ Ak k ok
c
¢ Calculate the experimental semi-variogram of the final image as a final check of the simulation
C .
first=.false.
call initob(obj, first)
rms=0.0d0
do il=1,nlag
dx = dble(ixi(il)) * xsiz
dy = dble(iyl(il)) * ysiz
dz = dble(izl(il)) * zsiz
dx = sqrt(dx*dx-+dy*dy+dz*dz)
write(lvar,102) il,dx,varmod(il),
+ gammanew(il,1),gammanew(il,2),gamunwt(il)
if (noisop.eq.1) then
if (noisop.eq.1) then
if(iyl(il).eq.0) write(thvar,102) il,dx,
$ varmod(if),gammah(il, 1),gammahil,2)
if(ixI(il).eq.0) write(lvvar,102) it,dx,
$ varmod(il),gammav(il, 1),gammav(il,2)
end if
end if : .
rms=rms+(varmod(il)-gamunwt(il))**2.d0
end do
rms=dsqrt(rms)
write(lvar,*)
write(lvar,505) rms
505 format('RMS of semi-variogram = ',f9.4)

return
endif
c
¢ Tried too many at this “temperature”?
c
if(ntry.gt.sas(3)) then
iend =iend + 1
temp = sas(2) * temp
gotol ’
endif
c
¢ Accepted enough at this "temperature”?
c

if(naccept.gt.sas(4)) then
temp = sas(2) * temp
iend=0
gotol
endif
c
¢ Go back for another attempted swap:
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c
102 format(i4,f10.4,6f12.4)
500 format(3x,i',4x,h 9%, r(model) 4x, r(actual)’,15x,'r(final)")
510 format(3x,1.4x,'h'.9x,'r(model)' 4x,'r(simu.), 1 7x,'r(cond.)’)
600 format(' At'il2, -thiter., obj =",e12.5, <,el2.5)
9990 format(' lag',2x,'t2 w2 ") VI-'6x,VI'7x,t1 wl"',

+ ' Vi+axtd wd'5x,'V2-.6x,'V2,7x,'13 w3

+ 2x,'V2+,7x,'rth), 10x,'r_exp(h,1),6x,

+ 'r_exp(h,2)")

goto2
end
c
c
c Little function to shorten the calling arguments each time a random number is needed
c
real*8 function getrand(seed)
implicit real*8(a-h,0-z)
real*8 randnu(l)
integer seed
call rand(seed, 1,randny)
getrand = randnu(1) '
return X
end
c
subroutine initob(obj, first)
c
c Routines to Compute Objective Function )
c ** Ak Hrtok )
c

¢ The objective function is the squared difference from the mode! variogram and the experimental variogram.

C The user specifies the lag separation distances and the number of lags that contribute to the objective function.

c ’ : :

c 1. Initial Objective Function - Compute Both the Experimental and the Model Variograms. Compute the objective function as the
c ' squared difference between the actual and the model variograms: R

¢ 2. The second routine updates the variogram when a swap is being considered.

c
¢ Author: C.V. Deutsch Date: April 1990
Co-r ;
include 'metro.inc’
logical first,image
c .
c Initialize the varigoram arrays:
c
do 1 j=1,nlag
if(.not. first) gamunwt(j)=0.d0
do 1 k=1,part
varact(j,k) = 0.0d0
vardiv(j,k) = 0.0d0
1 continue
c
¢ Calculate the Experimental Variogram:
c
do 3 ix=1,nx
do 3iy=1,ny
do3iz=lnz
c .
¢ Consider the first value in the pair and all directions and lags:
c
vl = var(ix,iy,iz)
do 4 il=1,nlag . : S .
il =ix + ixI(il)
i =iy +iylly
kk =iz +izl(il)
if(ii.ge.1.and.ii.le.nx.and.
+ ji-ge.1.and jj.le.ny.and.
+ kk.ge.l.and kk.le.nz) then
c
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"¢ Found a pair that should go in calculation. Possibly keep the pairs involving a conditioning data separately:
c

v2 = var(ii,jj,kk)

io=1
varact(il,io) = varact(il,io)+
+ (v1-v2)*(vi-v2)
vardiv(il,io) = vardiv(il,io)+2.d0
endif

4 continue

3 continue

c

¢ Reture if obj=-1, i.e., obj=-1 for checking the experimental variogram at certain iterations
c
if(obj.eq.-1.d0) return
¢ .
¢ write out the experimental varigoram:
¢ .

obj = 0.0d0
do S il=1,nlag
if (first) then
dx = dble(ixI(il)) * xsiz
dy = dble(iyl(il)) * ysiz
dz = dble(izl(il)) * zsiz
dx = sqrt(dx*dx+dy*dy+dz*dz)
demon=varmod(il)
sclfac(il) = 1.0d0/(dmax 1(1.d-4,demon*demon))
end if
c o
¢ Compute the objective function while we're at it:
c
if(vardiv(il, 1).le.0.0d0) then
write(*,*) ‘ERROR: lag ‘il
write(*,*) 'there are no pairs!!'.
stop S
endif
- if(part.eq.1) then
act = varact(il, 1 Y vardiv(il,1)
obj = obj + (varmod(il)-act)
* (varmod(il)-act)
+ * sclfac(il)
if(.not. first) gamunwt(il)=act
else ‘ : .
actl = varact(il,1)/vardiv(il,1) ‘
- obj =abj + (varmod(il)-actl)
T+ * (varmod(il)-actl)
+ * sclfac(il) -
if(vardiv(il,i0).gt.0.5d0) then
act2 = varact(il,2)/vardiv(il,2)
obj = obj + (varmod(il)-act2)
+ * (varmod(il)-act2)
+ * sclfac(il)
endif
endif
5  continue

+

c .
¢ Normalize the scale factors so that the initial objective function is 1.0:
c .
if(first) then )
inquire(file=imageinfl,exist=image)
if(image) then

renorm=1.d0 -
else

renorm = 1.0d0 / obj
end if :
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do9il=1nlag
sclfac(il) = sclfac(il) * renorm ' -
9 continue :
obj =1.0d0
endif
if(first) then
open(8888.file="initvar.dat',status="unknown")
doil=1,nlag -
dx=ixI(il)*xsiz
dy=iyl(il)*ysiz
dz=izl(il)*zsiz
h=sqrt(dx*dx+dy*dy+dz*dz)
if(io.eq.1) write(8888,*) h,varmod(il),
+ varact(il, 1)/vardiv(il, 1)
if(i0.eq.2) write(8888,*) h,varmod(il),
+ varact(il, 1 Y/vardiv(il, 1),varact(il,2)/vardiv(il,2)
end do :
close(8888)
end if

102 format(i4,f10.4,3f12.4)
500 format(’ i h  r(model) r(actual))
510 format(" i h r(model) r(simu.) r(cond.))

c
¢ Return with the current objective function:
c . ) ;
return
end
c
c

¢ Considering a swap: Update the Experimental Variogram and then compute the objective function as the squared difference between
¢ the actual and the model variogram. :

c .
¢ Author: C.V. Deutsch " Date: April 1990
c -
subroutine object(il,j1,k1,i2;j2,k2,accept,objnew)
include 'metro.inc'
logical accept
c

c Ensure that the experimental variogram array values are currént. If the last swap was accepted then we don't have to update the new
c array, otherwise we have to reset back to the correct variogramarray:

c

if (nswap.le.50.and.lagfl(1:10).ne.'nodata.dat’)

+ write(llag,*) nswap,’ -th perturbation’

if (nswap.le.50.and.lagfl(1:10).ne.'nodata.dat')

+ write(llag,*)

if(.not.accept) then

do 10 il=1,nlag
do 10 io=1,part
varnew(il,io) = varact(il,io)
divnew(il,io) = vardiv(il,io)
10 continue

endif

vl =var(il,jl k1)

v2 = var(i2,j2,k2)
c .
¢ MAIN LOOP 1o consider the change to all lags and directions:
c .

do 20 il=1,nlag
c
¢ Update the variogram near the first point (positive lag):
[¢

ii =il +ixI(il)
ij=jl + iyl
kk = k1 + izlGil)
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if(ii.ge.1.and.ii.le.nx.and.
+ jj-ge.1.and.jj.le.ny.and.
+ kk.ge.l.and kk.le.nz) then
if(ii.ne.i2.or jj.ne j2.or.kk.ne.k2) then
v0 = var(ii,jj,kk)
io=1
if (twopar) then
if(nbhd(il,j1).eq.1.and.cond(ii,jj,kk))io=2
if(cond(il,j1,k1).and.nbhd(ii,jj).eq.1)io=2
if(nbhd(il,j1).eq.1.and.nbhd(ii,jj).eq. 1 )io=2

end if .
varnew(il,i0) = varnew(il,io)
+ ~(v1-v0y*(v1-v0)+(v2-v0)*(v2-v0)
end if
‘end if

c
¢ Update the variogram near the first point (negative lag):
c

ti =il - ixI(il)
qi=jl-iylah -
kk =kI -izl(il)
if(ii.ge.1.and.ii.le.nx.and.
+ jj-ge.l.and.jj.le.ny.and.
+ kk.ge.1.and kk.le.nz) then
if(ii.ne.i2.or jj.ne j2.or kk.ne k2) then
- v0 = var(ii,jj,kk)
io=1 :
if (twopar) then
if(nbhd(il,j1).eq.1.and.cond(ii,jj,kk))io=2
if(cond(il,j1 k1).and.nbhd(ii,jj).eq.1)io=2
if(nbhd(il,j1).eq.1.and.nbhd(ii,jj).eq.1)io=2

end if
varnew(il,io) = varnew(il,io)
+ ~-(vI-v0)*(v1-v0) + (v2-vO)*(v2-v0)
end if
end if

c
¢ Update the variogram near the second point (positive lag):
c

ii =i2 + ixKil)
1 =j2 +iylah
kk = k2 + izI(il)
if(ii.ge.1.and.ii.le.nx.and.
+ jj-ge-1.and jj.le.ny.and.
+ kk.ge.1.and.kk.le.nz) then
if(ii.ne.il.orjj.ne jl.or kk.ne.kl) then
v0= var(it,jj.kk)
o=l
if (twopar) then
if(nbhd(il,j1).eq.1.and.cond(ii,jj,kk))io=2
if(cond(il j1 k1).and.nbhd(ii,jj).eq.1)io=2
if(nbhd(il,j1).eq.1.and.nbhd(ii,jj).eq.1)io=2
end if '
varnew(il,io) = varnew(il,io)
+ ~(v2-v0)*(v2-v0) + (v1-v0)*(v1-v0)
endif
end if

c
¢ Update the variogram near the second point (negative lag):
c

ii =12 - ixI(ih

ii=j2 - iyl

kk = k2 - izKil)

if(ii.ge.1.and.ii.le.nx.and.
+  jj.ge.l.and jj.le.ny.and.
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+ kk.ge.1.and kk.le.nz) then
if(ii.ne.il.or.jj.ne.jl .or.kk.ne.kt) then

v0 = var(ii,jj,kk)

io=1

if (twopar) then
if(nbhd(il,j1).eq.1.and.cond(ii.jj,kk))io=2
if(cond(il j1,k1).and.nbhd(ii,jj).eq.1)io=2
if(nbhd(i1,j1).eq.1.and.nbhd(ii,jj).eq.  io=2

end if
varnew(il,io) = varnew(il,io)
+ ~(v2-v0)*(v2-v0) + (v1-vO)*(vi-v0)
end if
end if

20  continue
c
¢ Compute the objective function and return:
c
objnew = 0.0d0
do 30 il=1,nlag
do 30 io=1,part
act = varnew(il,io)/divnew(il,io)
objnew = objnew + (varmod(il)-act)
+ * (varmod(il)-act)
+ * sclfac(il)
gammanew(il io)=act
if (noisop.eq.1) then
if (iyKil).eq.0) gammah(il,io)=act
if (ix1(il).eq.0) gammav(il,io)=act
end if
30 continue

if(nswap:le.50.and.lagfl(1:10).ne.'nodata.dat’)
+ write(llag,*) ' Obj = ",0bjnew
if (nswap.eq.intervar) then
open(999,file='varmid.dat',status="unknown’)
do il=1,nlag .
dx = dbleixI(il)) * xsiz
dy = dble(iyl(il)) * ysiz
dz = dble(izl(il)) * zsiz
dx = sqrt(dx*dx+dy*dy+dz*dz)
“write(999,199)il,dx, varmod(il)
end do
close(999)
end if :
199 format(i2,f10.4,2x,3f12.4)
9901 format(2x,i2,1x,2(2(f4.1,2x),2(f7.4,2x),2(f4.1,2x),f7.4),
+  3(f124,2x))

return
end
c .
real*8 function cova3(xl,yl,z1,x2,y2,22,nst,c0,it,cmax,cc,aa,
o+ angl ,ang2,ang3,anis1,anis2 first)
c
c Covariance Between Two Points (3-D Version)
Cc * ek e ko ok ok ok o ok sk ook ok ok ok
c

¢ This function returns the covariance associated with a variogram model that is specified by a nugget effect and possibly four
c different nested varigoram structures. The anisotropy definition can be different for each of the nested structures (spherical,
c exponential, gaussian, or power).

c
¢ INPUT VARIABLES:

c

¢ xl,yl,zl  Coordinates of first point

¢ x2,y2,z2 Coordinates of second point

c nst Number of nested structures (max. 4)..
c c0 Nugget constant (isotropic).
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Maximum variogram value needed for kriging when using power model. A unique value of cmax is used for all

¢ cmax
c nested structures which use the power model. therefore, cmax should be chosen large enough to account for the

c argest single structure which uses the power model.

¢ cc(nst) Multiplicative factor of each nested structure. slope for linear model.

¢ aa(nst)  Parameter "a" of each nested structure.

c it(nst) Type of each nested structure:

c 1. spherical model of range a;

c 2. exponential model of parameter a; i.e. practical range is 3a

c 3. gaussian model of parameter a; i.e. practical range is a*sqrt(3)

c . 4. power model of power a (a must be gt. 0 and it. 2). if linear model, a=1,c=slope.

c angl(nst) Azimuth angle for the principal direction of continuity (measured clockwise in degrees from Y)

¢ ang2(nst) Dip angle for the principal direction of continuity (measured in negative degrees down)

c ang3(nst) Third rotation angle to rotate the two minor directions around the principal direction. A posmve angle acts

c clockwise while lookmg in the principal direction.

¢ anisl(nst)  Anisotropy (radius in minor direction at 90 degrees from ang| divided by the principal radlus in direction angl)

¢ anis2(nst)  Anisotropy (radius in minor direction at 90 degrees vertical from "angl" divided by the principal radius in direction
c "angl")

c first A logical variable which is set to true if the direction specifications have changed — causes the rotation matrices to be
c recomputed.

C -
¢ OUTPUT VARIABLES: returns "cova3" the covariance obtained from the variogram model. )
C .

¢ .

¢ NO EXTERNAL REFERENCES:

c

implicit real*8(a-h,0-z)
parameter(DTOR=3.14159265d0/180.d0,EPSLON=1.0d-20)
real*8  aa(*),cc(*),angl(*),ang2(*),ang3(*),anisi(*), amsZ(*)
+ maxcov

integer it(*)

logical first

save  maxcov

c

[

¢ The first time around, re-initialize the cosine matrix for the variogram structures:

if(first) then
maxcov = c0
do 1 is=1,nst -
if(it(is).eq.4) then

maxcoVv = maxcov + cmax

else

Maxcov = maxcov + cc(is)

endif
i continue . . N

endif
c

¢ Check for very small distance:

C

hsqd = sqdist(x1,y!,21,x2,y2,22,ang1(}),ang2(1),ang3(1),

+

anis1(1),anis2(1))

if(hsqd.1t. EPSLON) then
cova3 = maxcov

retum

endif
c

¢ Non-zero distance, loop over all the structures:

C

cova3 = (0.0d0
do 2 is=1,nst ¢

Cc

[V

c Compute the appropriate structural distance:

if(is.ne.1) hsqd = sqdist(x1 ,yl',zl,x2,y2,22,angl(is),

+

ang2(is),ang3(is),anis 1 (is),anis2(is))

h = sqrt(hsqd)
if(it(is).eq.1) then

195



. C

¢ Spherical model:

c
hr = h/aa(is)
if(hr.ge.1.0d0) goto 2
cova3 = cova3 + cc(is)*(1.-hr*(1.5d0- SdO*hr*hr))
else if(it(is).eq. 2) then
c
¢ Exponential model:
c
cova3 = cova3 +cc(is)*dexp(-h/aa(is))
else if(it(is).eq. 3) then
¢ Gaussian model:
c
hh=-(h*h)/(aa(is)*aa(is))
cova3 = cova3 +cc(is)*dexp(hh)
else
c
¢ Power model:
[4
' covl =cmax - cc(is)*(h**aa(is))
cova3 = cova3 + covl
endif
2 continue
return
end
c
[
c .
real*8 function sqdist(x1,y1,z1,x2,y2,22,angl ,ang2,ang3,anis1,
+ anis2)
c : Amsotroplc Distance Calculation
c ok ok kK *k
c .

¢ This routine calculates the anisotropic distance between two points given the coordinates of each point and a definition of the
c anisotropy. The components of the vector in the rotated coordinates are calculated and then the squared anisotropic distance is
¢ calculated.

c
c .
c INPUT VARIABLES:

xl,yl,zl Coordinates of first point

x2,y2,22 Coordinates of second point )

angl . Azimuth angle for the principal direction of continuity (measured clockwise in degrees from Y)

ang2 Dip angle for the principal direction of continuity (measured in negative degrees down)

ang3 Third rotation angle to rotate the two minor directions around the principal direction. A positive angle acts clockwise

) while looking in the principal direction.
anis} Anisotropy (radius in minor direction at 90 degrees from angl divided by the principal radius in direction angl)
anis2 Amsotropy (radius in minor direction at 90 degrees vertical from "angl" divided by the principal radius in direction
"angl") ’
OUTPUT VARIABLES:
sqdist The squared distance accounting for the anisotropy and the rotation of coordinates (if any).

PROGRAM NOTES:

1. The program converts the input (angl,dip,plg) to three angles which make more mathematical sense:
alpha angle between the major axis of anisotropy and the E-W axis. Note: Counter clockwise is positive.
beta = angle between major axis and the horizontal plane. (The dip of the ellipsoid measured positive down)

theta angle of rotation of minor axis about the major axis of the ellipsoid.

NO EXTERNAL REFERENCES

O00MA6000000000000000000000o0

¢ Author: C. Deutsch Date: July 1939
c
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implicit real*8(a-h,0-z)
parameter(DEG2RAD=3.14159265d0/180.d0)
real*8 rmatrx(3,3) .
save  rmatrx,anglo,ang2o,ang3o0,anis!0,anis2o
c
¢ Compute rotation matrix only if required:
c .
if(angl.ne.anglo.or.ang2 ne.ang2o.or.ang3.ne.ang30.0r.
+ anisl.ne.anislo.or.anis2.ne.anis20) then

anglo =angl
ang20 =ang2
ang3o =ang3

anislo = anisl

anis2o = anis2 .

if(angl.ge.0.d0.and.ang1.1t.270.d0) then
alpha = (90.0d0 -angl) * DEG2RAD

else
alpha = (450.0d0 - angl) * DEG2RAD
endif
beta =-1.0d0 * ang2 * DEG2RAD
theta = ang3 * DEG2RAD

cosa = cos(alpha)
cosb = cos(beta)
cost = cos(theta)
sina = sin(alpha)
sinb = sin(beta)
sint = sin(theta)

rmatrx(1,1) = (cosb * cosa)
rmatrx(1,2) = (cosb * sina)
rmatrx(1,3) = (-sinb)

rmatrx(2,1) = (1.0d0/anis1)*(-cost*sina + sint*sinb*cosa)
rmatrx(2,2) = (1.0d0/anis1)*(cost*cosa + sint*sinb*sina)
, rmatrx(2,3) = (1.0d0/anis1)*( sint * cosb)
rmatrx(3,1) = (1.0d0/anis2)*(sint*sina + cost*sinb*cosa)
rmatrx(3,2) = (1.0d0/anis2)*(-sint*cosa + cost*sinb*sina)
rmatrx(3,3) = (1.0d0/anis2)*(cost * cosb)
endif )
c
¢ Compute component distance vectors and the squared distance:
c
dx =x1-x2
dy=yl-y2
dz=1z1-22
sqdist = 0.0d0
do 1i=1,3
temp = rmatrx(i,1)*dx + rmatrx(i,2)*dy + rmatrx(i,3)*dz
sqdist = sqdist + temp*temp .
1 continue
return
" end

c
c Order of magnitude of a number
¢ Argument

c x - input number

order - order of magnitude of x

c
[V

integer function order(x)
real*8 x.div

n=0
if(x.eq.0.d0) then
order=0
return
endif
67 if(x.gt.1.d0) div=x/(10.d0**n)
if(x.1t.1.d0) div=x*10.d0**n
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68

if(div.lt.10.d0.and.div.ge.1.d0) then

goto 68

else

n=n+1
goto 67

end if

if(x.gt.1.d0)order=n

if(x.1t.1.d0Yorder=-n
return
end

C SUBROUTINE ‘SASIMM’ (the SA algorithm)

program sasimm
C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

C

C Copyright (C) 1992 Stanford Center for Reservoir Forecasting. All rights reserved.

-CDistributed with: C.V. Deutsch and A.G. Journel.

C “"GSLIB: Geostatistical Software Library and User's Guide," Oxford University Press, New York, 1992.

C

C The programs in GSLIB are distributed in.the hope that they will be useful, but WITHOUT ANY WARRANTY. No author or
C distributor accepts responsnblhty to anyone for the consequences of usmg them or for whether they serve any particular purpose
C or work at all, unless he says so in writing. Everyone is granted permission to copy, modify and redistribute the programs in

C GSLIB, but only under the condition that this notice and the above copyright notice remain intact.

%o
%
P .
%

C % %% %% %o %o %o %6 %o Fo To Yo FoTo %o %o %o % %o To % %o %o To Fo To o %o o %o %o To Fo %o To To Fo To Fo Fo o To Fo T Fo %o To Fo %o Fo %o T %o To %o To To T T To To %o To

[
C
[
[of
c

¢ This is a template driver program for GSLIB's "sasim" subroutine. 3-D realizations with a given autocovariance model and
C conditional to input data are created. The conditional simulation is achieved by modifying an initially uncorrelated image..

C

¢ The program is executed with no command line arguments. The user will be prompted for the name of a parameter file. The
C parameter file is described in the documentation (see the example sasim.par) and should contain the following information:

c

O000000000000000000000000000O00600

Conditional Simulation of a 3-D Rectangular Grid
ook 3k ok ok ok kok Aok

Name of a data file of conditioning data (GEOEAS format)
column numbers for x, y, z, and variable

Minimum acceptable value (used to flag missing values)
If a standard Normal deviate is to be simulated set to 1
Name of a data file for non-parametric distribution
column numbers for variable and weight

option and parameter for the lower tail

option and parameter for the upper tail

An output file (may be overwritten) -

A output file for variograms (may be overwritten)

The debugging level (integer code - larger means more)

A file for the debugging output

‘Whether or not to use an automatic annealing schedule (0=auto)
annealing schedule

Whether a one part or a two pait objective function is used
Random Number Seed

The number of simulations

X grid definition (number, minirmum, size): nx,xmn,xsiz
Y grid definition (number, minimum, size): ny,ymn,ysiz
Z grid definition (number, minimum, size): nz,zmn,zsiz
The maximum number of lags to be considered

Search Anisotropy

Variogram Definition: number of structures(nst), nugget, and whether or not to renormalize sill to the variance(0=auto)

the next "nst*2" lines require:
First line:
a) an integer code for variogram (1=sph,2=exp,3=gaus,4=pow)
b) "a" parameter (range except for power model)
b) “c” parameter (contribution except for power model).
Second line:.
a) azimuth principal direction (measured clockwise from Y).

b) dip of principal direction (measured negative down from X).

198



C
¢
C
c

c c) a third rotation of the two minor directions about the principal direction. This angle acts counterclocwise

c when looking in the principal direction.

c Two anisotropy factors are required to complete the definition of the geometric anisotropy of each nested structure:
c d) radius in minor direction at 90 degrees from the principal direction divided by the principal radius.

c e) radius in minor direction at 90 degrees vertical from the principal direction divided by the principal radius.

c

c The output file will be a GEOEAS file containing the simulated values The file is ordered by x,y.z, and then simulation (i.¢., x cycles
c fastest, then y, then z, then simulation number).

c

¢ Original: C.V. Deutsch Date: August 1990

c ) .

¢ 1/20/97 : Updated by Tai-Sheng Liou in the subroutines

READPARM - Read mean and variance of in(k) and ITRANS |

INITMOD - Change the calling arguments of GINV

GINV - Transform N(0,1) to LN(m,s) depending the flag ITRANS. The purpose of this change is to generate a parametric
realization of log-normally distributed variate which is then combined with the conditioning data in file ‘condfl'

o a0 Moo

include 'metro.inc’
character*1 chriL,chrlR,chr2L,chr2R

open(500,file="adasp.dat’ status="unknown')
“open(550,file="imgasp.dat',status="unknown’) .
open(600,file="aspnbhd.dat',status="unknown')

call timer(itimeQ)

Read the Parameter File and the Data:
call readparm

c
C Establish the number of lags to keep

T c

call getlag
C
¢ Loop over ail the simulations:
C
do 1 isim=1,nsim
c
c Initialize an image and the statistics :
c
call initmod
write(*,*)
write(ldbg, *)
write(*,20) ymean,ystd,pcut,paspsave,ptarget,
+ cutsave,xcut,aspcut,xcutQ
write(ldbg,20) ymean,ystd,pcut,paspsave,ptarget,
+ cutsave,xcut,aspcut,xcutQ .
20 format(/' Ensemble staistics :/
+ ' Mean of Ink ='16.2/
+ 'S.t.d. of Ink ='16.2/
+ " Initial cutoff probability = ',f6.4/
+ * Iterated cutoff probability=',f6.4/
+ * Target cutoff probability =',f5.3/
+ * Initial cutoff PM value ='f7.4/ :
+ * Iterated cutoff PM value =',7.4/ N
+ ' Asperity contact =6.2/
+ ' Minimum PM value ="16.2//)
write(ldbg,*)
c
¢ Call sasim for the simulation:
call sasim
c
¢ Write the Simulated results, close the output files, and stop:
c

write(lout,*) 'Permeability field from simulated annealing’
write(lout,*) 4

write(lout,999) 'X','X",nx, X', xmn, X', xsiz

write(lout,999) Y","Y' ny,"Y',ymn,"Y .ysiz

write(lout,999) 'Z','Z' ,nz,'Z',zmn,'Z’ zsiz
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999 format(A1,’ location N' A1.'="i4,1x,2(1x,'D',A1,'=",16.2))
write(lout,*) ‘Permeability field'
do 2iz=1,nz
do 2 iy=1,ny
do 2 ix=1,nx
xx=xmn+xsiz*dble(ix-1)
yy=ymn+ysiz*dble(iy-1)
zz=zmn+zsiz*dble(iz-1)
if(cond(ix,1y,iz)) then
if (var(ix,iy,iz).eq.xcutQ) var(ix,iy,iz)=0.0d0
write(lout, 101) xx,yy,zz,var(ix,iy,iz)
else
write(lout,102) xx,yy,zz,var(ix,iy,iz)
endif
c
¢ 7/16/97 : Write additional asperity contacts and z'<=5.0 to addasp.dat
c
if(var(ix,iy,iz).eq.0.0d0) then
if(.not.cond(ix,iy,iz))write(500,102) xx,yy,2z,0.0

end if
if (var(ix,iy,iz).gt.0.0d0.and.
+ var(ix,iy,iz).le.5.0d0)
+ write(500,102) xx,yy,zz,var(ix,iy,iz)
C .
c
¢ 10/8/97 : Write permeability modifier, excluding the conditioning asperity contact data, in the neighborhood
c
if (nbhd(ix,iy).gt.0)
+ write(600,102) xx,yy,zz,var(ix,iy,iz)
2 continue

101 format(3(f8.2,2x),f12.4," c")
102 format(3(f8.2,2x),f12.4)

c .
¢ Calculate the average perméability for two kinds of neighborhood
c
c First, assign nbhd(ij)=1 for defnbhd=1 only and nbhd(i,j)=2 for defnbhd=1 and defnbhd=2
c o '
size=real(neighbor)
do 12 i=1,nx
do 12 j=1,ny
do 12 k=1,nz
if (cond(i,j k)) then
do ii=-neighbor,neighbor
do jj=-neighbor,neighbor
ix=i+ii
iy=ji
iz=k
dx=real(ii)
dy=real(jj)
dist=sqrt(dx*dx-+dy*dy)
if (ix.ge.1.and.ix.le.nx.and.iy.ge.1.and.iy.le.ny.and.

+ iz.ge.1.and.iz.le.nz) then
if(.not. cond(ix,iy,iz).and.nbhd(ix,iy).eq.0)
+ nbhd(ix,iy)=1
if(nbhd(ix,iy).eq.1.and.dist.le.size) nbhd(ix,iy)=2
end if ) .
end do
end do
end if
12 continue
c .
¢ Second, calculate avg. PM for two kinds of neighborhood
c
if (neighbor.ne.0) then
zsuml1=0.0
zsum2=0.0
nozl=0

200



noz2=0
do 3 ix=1,nx
do 3 iy=1,ny
do 3 iz=1,nz
if (nbhd(ix,iy).eq.2) then
zsum2=zsum2+var(ix,iy,iz)
noz2=n0z2+1
zsuml=zsuml+var(ix,iy,iz)
nozl=nozl+1
end if
if (nbhd(ix,iy).eq.1) then
zsuml=zsuml+var(ix,iy,iz)
nozl=nozi+l
end if
3 continue
if (defnbhd.eq.1) then -
chr2L="('
chr2R="Y
else
chrlL="(
chrlR="y
end if
write(ldbg,*)
write(ldbg,*) " NBHD = ‘,defubhd
write(ldbg,50)chr1L,nozl,zsuml,zsum1/dble(nozl),chrlR,
+ chr2L,noz2,zsum2,zsum?2/dble(noz2),chr2R
50 format(/,
+2x,A1,'First nbhd : Nbl= "5, Suml=",f9.4," Avg="8.5 A1/
+2x,A1,'Second nbhd: Nb2=",i5,' Sum2="9.4,’ Avg="8.5,A1)

end if
c
¢ End loop over all simulations:
c
1 continue

¢ call timer(itimel)
itime=itime1-itimeQ
time=real(itime)/100.0
ihr=int(timé/3600.0)
imin=int((time-real(ihr)*3600.0)/60.0)
sec=time-real(ihr)*3600.0-real(imin)*60.0
write(ldbg,5) ihr,imin,sec
write(*,5) ihr,imin,sec

5 format(/1x,'Elapsed time = ',i2," hours ,",i3, mins, ',f5.2,
+ ‘'secs) ' )

close(lout)

close(lvar)

close(ldbg)

write(*,*) ‘Finished SASIM: simulated results in ',outfl
write(*,*) ' variogram output in ‘,varfl
write(*,*) ' debugging output in ‘,dbgfl
write(*,*)

stop

end

subroutine readparm

c
(o4 B

c Initialization and Read Parameters

c Aok sk sk e sk ok ok skok Ak R AR

. .

¢ The input parameters are read from a file name provided from standard input (a default name will be tried if none is keyed in by the
C user). ) :

. .

¢ The complete 3-D field is then filled in with values drawn at random from either a standard normal distribution or some distribution
¢ specified in a non-parametric way-(i.e., a series of values and associated weights) with possibly a parametric option to treat values
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c in the tails of the distribution.

c

¢ Conditioning data is then read in (if available) and assigned to the nearest node if within the grid network.
c .

¢ Error checking is performed and the statistics of both the initialrealization and conditioning data are written to the debugging file.
c .

c

c

c Original: C.V. Deutsch Date: July 1990

c
include 'metro.inc'
parameter(MV=20)
real*8  val(MV)
logical - testfl,image
character str*40,title*80

c
¢ Unit numbers:
c
lin =1
lout=2
ldbg =3
Ivar =4
lhvar=35
lvvar =6
llag =7
limagein= 8
limageout=9
c
¢ Open the input file 'sasim.par’
c .
open(lin,file="sasim.par',status="OLD")
c
¢ Find Start of Parameters:
¢ B

1 read(lin,'(24)",end=97) str(1:4)
if(str(1:4).ne’STAR") go to |
c
c Read Input Parameters:
c

read(lin,'(a40)',err=97) imageinfl

if (imageinfl(1:10).ne.'nodata.dat') - :

+ write(*,*) 'Initial image file :‘imageinfl

read(lin,'(a40)',err=97) imageoutfl

write(*,*) ‘Output image file - : ',imageoutfl

read(lin,'(a40)’,err=97) condfl

write(*,*) 'Conditioning data file: ',condfl

read(lin, *,err=97) ixloc,iyloc,izloc,ivrl

read(lin,*,err=97) tmin,tmax
- read(lin,*,err=97) igauss

read(lin,'(a40)' ,err=97) datafl

read(lin, *,err=97) ivr,iwt

read(lin,* err=97) zmin,zmax

read(lin,*,err=97) Itail, Itpar

read(lin,*,err=97)  utail,utpar

read(lin,'(a40)’,err=97) outfl

write(*,*) 'Output file: ' outfl

read(lin,'(a40)',err=97) varfl -

write(*,*) "Overall variogram output file: ',varfl

read(lin,'(a40)',err=97) horvarfl

write(*,*) 'Horizontal variogram output file: 'horvarfl

read(lin,'(a40)',err=97) vervarfl . -

write(*,*) 'Vertical variogram output file: ‘,vervarfl

read(lin,*,er=97)  idbg,report,intervar

read(lin,'(ad0)',err=97) dbgfl

write(*,*) 'Debug file: ' dbgfl .

open(ldbg, file=dbgfl status="UNKNOWN") \

write(ldbg,*) 'Conditioning data file: ‘,condfl . ’
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read(lin, (240)',err=97) lagfl
write(*,*) ‘Lag file: " lagfl

write(®,*)** *kkk
read(lin,*,err=97) isas
write(*,111) isas
write(ldbg,111) isas
111 format(/' Annealing schedule : ',i2/,
+ ' ( O:user, 1:default, 2:fast, 3:very fast ) )
- read(lin,*,err=97) (sas(i),i=1,6)
read(lin, *,err=97) part
read(lin,*,err=97) seed
read(lin,* err=97) nsim
read(lin, *,err=97) nx,Xmn,xsiz
read(lin,*,err=97)  ny,ymn,ysiz
read(lin, *,err=97) nz,zmn,zsiz
read(lin, *,err=97)  nlag,neighbor
c
c 1/23/97 : Select the annealing schedule
¢ 0- User supplied
¢ | - Default
c 2-Fast
¢ 3-Very fast
¢ Tai-Sheng Liou (Deutsch and Cockerham, 1994)
c
sas(3)=sas(3)*dble(nx*ny*nz)
sas(4)=sas(4)*dble(nx*ny*nz)
if(isas.eq.1) then
sas(1) = 1.0d0
sas(2) =0.1d0
sas(3) = 100.d0*dble(nx*ny*nz)
sas(4) = 10.d0*dble(nx*ny*nz)
sas(5) = 3.d0
sas(6) = 0.001d0
elseif(isas.eq.2) then
sas(1) = 1.0d0
sas(2) = 0.05d0
sas(3) = 50.d0*dble(nx*ny*nz)
sas(4) = 5.d0*dble(nx*ny*nz)
sas(5) = 3.d0
sas(6) = 0.001d0
elseif(isas.eq.3) then
sas(1) = 0.5d0
sas(2) = 0.01d0
sas(3) = 10.d0*dble(nx*ny*nz)
sas(4) = 2.d0*dble(nx*ny*nz)

sas(5) = 3.d0
sas(6) = 0.001d0
endif

write(*,112) (sas(i),i=1,6),part
write(ldbg,112) (sas(i),i=1,6),part
112 format(' User set schedule : '/

* ok d k!

+ 'T0 =51/

+ ' T factor = ',f5.1,/

+ 'Kmax ="e7.1/

+ ‘ Kaccept ='e7.1/

+ 'S ='15.1/

+ 'Omin  ='e7.1,/

+  CPart ='i2)

write(*,*)"** sokokokok
read(lin,*,err=97) nst,c0,isill

sill = cO

write(*,100) isill,nst,cO
if(nst.le.0) then

write(*,9997) nst
9997  format(' nst must be at least 1, it has been set to ',i4,/,
+ ' The ¢ or a values can be set to zero")
stop
endif
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C

¢ 1/25/97 : noisop=0 for isotropic variogram; noisop=1 for-anisotropic variograms ' -
C .

noisop=0

do 3 i=1,nst

read(lin,* err=97) it(i),aa(i),cc(i)
sill = sill + cc(i)
read(lin,*,err=97) ang1(i),ang2(i),ang3(i),anis1(i),anis2(i)
if (anisl(i).ne.1.or.anis2(i).ne. 1) noisop=1
write(ldbg,*)
write(ldbg,*) ‘Semi-variogram model :'
If (it(i).eq.1) write(ldbg,*) 'Spherical model
if (it(i).eq.2) write(ldbg, *) 'Exponential model'
if (it(i).eq.3) write(ldbg,*) 'Gaussian model’
if (it(i).eq.4) write(ldbg,*) 'Power model'
if (noisop.eq.0) write(ldbg,*) 'isotropic model with'
if (noisop.eq.1) write(ldbg,*) ‘anisoptropic model with’
write(ldbg,20) sill,aa(i)
if (noisop.eq.1) then
write(ldbg,21) ang] (i),ang2(i),ang3(i),anis1(i),anis2(i)
end if
3 continue
20 format('Sill = ',f8.2/'Longitudinal correlaiton length = ,£8.2)
21 format(anisotropic angle! ="' 8.2/ -
+ ‘anisotropic angle2 = ',f8.2/
+ ‘anisotropic angle3 = ',f8.2/
+  ‘anisotropic ratiol =',f8.2/
+ ‘anisotropic ratio2 = ',f8.2)
c
¢ 1/21/97 : The following lines are added by Tai-Sheng Liou
¢ iedge=(0)1-(not)correct edge-effect with weighting factor=wfedge
¢ icond=(0)1-(not)correct discontinuity-effect with weighting factor=wfcond
¢ itrans=(0)! -(not)transform N(0,1) to LN(xmean, xstd) {y=Inx]
citrans=2 - transform N(0,1) to LN(xmean,xstd) but do not shift the LOGNORMAL data . :
cnoiter - maximum number of iteration for calculating the sample statistics in order to have statistics as close to ensemble statistics
c as possible
c
read(lin,*) iedge, wfedge
" read(lin,*) icond,wfcond
write(*,*)
write(*,*)
c  wrte(*,*) 'Weighting factors *'
c if (iedge.eq.0) write(*,*)'Edge effect not weighted'
c if (iedge.eq.1) write(*,21) wfedge
c
c

if (iedge.eq.0) write(ldbg,*y'Edge effect not weighted'
if (iedge.eq.1) write(ldbg,21) wfedge
. ¢21 format(’ Edge factor - =16.2)
¢ if (icond.eq.0) write(*,*) ‘Discontinuity effect not weighted'
¢ if (icond.eq.1) write(*,22) wfcond
c if (icond.eq.0) write(ldbg,*) 'Discontinuity effect not weighted’
¢ if (icond.eq.1) write(ldbg,22) wfcond’
c22 format(’ Discontinuity factor = ',f6.2)
write(*,23) nlag,neighbor
write(ldbg,23) nlag,neighbor
23 format(’ Total # of lags  =",i4/
+  '#of neighborhood =',i4)
Wﬁ[e(*,*)'*********************************************'
read(lin,*) ymean, ystd,itrans
read(lin,*) pcut,aspcut,xcut,ptarget
c
c Read which annealing algorithm should be used:
¢ 0 - standard Metropolis algorithm, 1- modified Metropolis algorithm
c
read(lin,*) metro
write(ldbg,*)
if (metro.eq.0) then
write(*,*) 'Using standard Metropolis algorithm’
write(ldbg,*) ‘Using standard Metropolis algorithm'’
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elseif(metro.eq.1) then
write(*,*) ‘Using modified Metropolis algorithm'
write(ldbg,*) 'Using modified Metropolis algorithm'
else
write(*,*) Type of SA algorithm is not specified'
stop :
end if
read(lin,*) defnbhd
write(Idbg, *)
if (defnbhd.eq.1) then
write(*,*) The neighborhood is defined as a square’
write(ldbg,*) "The neighborhood is defined as a square’
elseif (defnbhd.eq.2) then
write(*,*) "The neighborhood is a square plus four ears’
write(ldbg,*) ‘The neighborhood is a square plus four ears'
else . :
if(metro.eq.1) then -
write(*,*) ‘Neighborhood is not defined'
stop
end if
end if
write(ldbg,*)
read(lin,*) imod
if(imod.lt.1.or.imod.gt 4) then
write(*,*) '‘Choose the type of Modified Metropolis’,
+ ' algorithm, i.e., imod=1 or 4'
stop :
end if
write(*,*) 'Using MOD',imod
write(ldbg,*) ‘Using MOD',imod
read(lin,*) ifield
. if(ifield.lt.0.or.ifteld.gt.1) then
write(*,*)'Enter 0 (No) or 1 (Yes) to print out evolving files’
end if
if(ifield.eq.0) then
write(*,*) ‘Do not generate internal files of PM fields'
write(ldbg,*) 'Do not generate internal files of PM fields'
else
write(*,*) 'Generate internal files of PM fields'
" write(ldbg,*) 'Generate internal files of PM fields’
“end if

c
close(lin) .
100 format(/,’ Reset sill: ",i2/, .
+ ' oumber of structures = ",i3,/,
+ ! nugget effect ="f8.4) .
101 format( ' type of structure *,i3,' =",i3,/,
+ ! aa parameter ="'f12.4/,
+ ! cc parameter ="'f12.4)
102 format( ' angl, ang2, ang3 ='3f6.2/,
+ ! anisl, anis2 ='2f12.4)
c

¢ Reset the annealing schedule if automatic timing is being used:
c .
if(part.eq.1) then

twopar = .false.

else
twopar = .true.
endif
if(nz.le.1.or.izloc.le.0) then
only2d = .true.
else
only2d = false.
endif
c
¢ Perform some quick error checking:
c

if(nx.gt. MAXX) stop nx is too big - modify .inc file'
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if(ny.gt MAXY) stop 'ny is too big - modify .inc file'
if(nz.gt. MAXZ) stop 'nz is too big - modify .inc file'
if(nlag.gt. MAXLAG) stop 'nlag is too big - modify .inc file'
if(nst.gt. MAXNST) stop "nst is too big - modify .inc file’

c .

¢ Open the debugging and output files:

¢ .
open(lvar,file=varfl,status="unknown")
open(lhvar,file=horvarfl,status="UNKNOWN")
open(lvvar, file=vervarfl,status="unknown’)
open(lout,file=outfl,status="UNKNOWN") .

if(lagfl(1:10).ne.'nodata.dat’)

+ open(llag,file=lagfl status="unknown')

if (imageinfl(1:10).ne.'nodata.dat’)

+ open(limagein,file=imageinfl,status="unknown')

if (imageoutfl(1:10).ne.'nodata.dat’)

+ open(limageout,file=imageoutfl,status="unknown’y "~
¢ . .
. ¢ If possible read in the cdf ("cut" and "cdf™ arrays) to use as the distribution to initialize the realization:
c

title = 'SASIM SIMULATIONS: "
+ , .
if(igauss.eq.0) then

inquire(file=datafl,exist=testfl)
if(.not.testfl) then
write(*,*) 'ERROR file ',datafl,’ does not exist!
write(*,*) ' you need a univariate distribution’
write(*,*) ' unless you want a Gaussian distribution
stop
endif
ncdf = 0.0d0
cedf =0.0d0 )
open(lin,file=datafl status="OLD")
read(lin,'(@60)',err=98) title(21:80)
read(lin,* err=98) nvari .
do 4 i=1,nvan
4 read(lin,* err=98)
5 read(lin,* end=6,err=98) (val(j),j=1,avari)
if(val(ivr).It.tmin.or.val(ivr).ge.tmax) go to 5
ncdf =ncdf+1

if(ncdf.gt MAXCUT) then
write(*,*) ' ERROR: exceeded storage for cdf' ,ncdf
stop )
endif
cut(ncdf) = val(ivr)
if(iwt.le.0) then
cdf(nedf) = 1.0d0
else
cdf(ncdf) = val(iwt)
endif
cedf = ccdf + cdf(ncdf)
goto5s
6 close(lin)

¢ Turn the (possibly weighted) distribution into a cdf that can be used to initialize all the grid nodes:

call sortem(1,ncdf,cut,1,cdfc,d.e.f,gh)
oldcp = 0.0d0
cp =0.0d0
cedf =1.0d0/ cedf
do 7 i=1,ncdf
cp =cp +cdf(i) * ccdf
cdf(i) =(cp + oldcp) * 0.5d0
oldep =cp
7 continue
endif
c .
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¢ Turn all conditioning flags to false:
c .
do 8 ix=1,nx
do 8 jy=1,ny
do 8 iz=1,nz
" cond(ix,iy,iz) = .false.
8 continue
c
¢ Check to see if a file of conditioning data exists, if it does then read.in the data:
c .
inquire(file=condfl,exist=testfl)
if(testfl) then :
open(lin,file=condfl,status="OLD")
read(lin,'(a60)',err=99) title(21:80)
read(lin,*,err=99) nvari
nd=0
av =0.0d0
ss = 0.0d0
do 9 i=1,nvari
9 read(lin,'(a40),err=99) str
c
c Read all the data until the end of the file:
‘c
. 10 read(lin,* end=11,err=99) (val(j),j=1,nvari)
if(val(ivrl).le.tmin.or.val(ivri).gt.tmax) go to 10
nd =nd + 1
av =av + val(ivrl)
ss = 8s + val@ivrl)*val(ivrl)
ix=min0(max0((int((val(ixloc)-xmn)/xsiz+0.5d0)+1),1),nx)
iy=min0(max0((int((val(iyloc)-ymn)/ysiz+0.5)+1),1),ny)
iz=min0(max0((int((val(izloc)-zmn)/zsiz+0.5)+1),1),0z)
if(only2d) iz=1
var(ix,iy,iz) = val(ivrl)
cond(ix,iy,iz) = .true.
goto 10
- close(lin)
c
¢ Compute the averages and variances as an error check for the user:
c
av = av / amax1(dble(nd),1.0)
ss =(ss / amax1(dble(nd),1.0)) - av * av
write(ldbg,*) 'Data for SASIM: Variable number ',ivrl
write(ldbg,*) ' Number of acceptable data =',nd
write(ldbg,*) ' Equal Weighted Average ‘,av
write(ldbg,*) * Equal Weighted Variance =
endif

S8

c . _

c 1/27/97 : Calcuate the number of data points that is not conditioning data (noncond)

c .
noncond=nx*ny*nz-nd )

c

¢ Write a header on the output file and return:

¢ 1723/97 : Comment out by Tai-Sheng Liou

c
c wn'te(]oqt,lOS) title )
c 105 format(a80,/,'1'/,'simulated value')

return
c
c Error in an Input File Somewhere:
c

97 stop ‘ERROR in parameter file!
98 stop 'ERROR in distribution file!
99 stop 'ERROR in data file"

end
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subroutine initmod

Initialization of Grid
dkokkkdok ko kokkdkkkokkkkk

O 00000

include 'metro.inc’
real*8  randou(l)
logical image

c . .
¢ Initialize all nodes to some random quantile:
¢ .
call rand(seed, I ,randnu)
seed=0 |

- do 6 ix=1,nx
do 6 iy=1,ny
do 6iz=l,nz )
if(.not.cond(ix,iy.iz)) var(ix,iy,iz)=0.d0
6 continue

c

¢ 2/4/97 : Read the initial image file or automatically genreate the initial image by either non-parametric distribution or Gaussian
c distribution, Tai-Sheng Liou ) :

c

inquire(file=imageinfl,exist=image)
if (image) then
- read(limagein,*)
read(limagein,*) nheader
do i=1,nheader ' ‘ ) .
" read(limagein,*)
end do
do 10 iz=1,nz
do 10 iy=1,ny
do 10 ix=1,nx
read(limagein,*) dummy,dummy,dummy,var(ix,iy.iz)
10  continue
write(*,15) imageinfl
15  format(' Using ',al5,’ as initial image')

write(*,*)
else
c g -
¢ 1/27/97 : Draw a Monte Carlo Realization from either a Gaussian distribution (igauss.ne.0) or a non-parametric distribution
c (igauss.eq.0), Tai-Sheng Liou
c : :
if (igauss.eq.0) then
do I i=1,nx
do 1 j=1,ny
do ! z=1,nz
c
c Only initialize if not a conditioning datum:
c

if(cond(i,j,k)) goto 1
call rand(seed, 1 ,randnu)
call beyond(ncdf,cut,cdf,zmin,zmax,tail,
+ Itpar,utail,utpar,var(i,j k),randnu(1),ierr)
1 continue
elseif (igauss.eq.1) then
call gridxyz(seed)
else
call etapdf(seed)
end if
end if
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¢ Renormalize the variogram parameters to the variance of the realization if requested:

c
if(isill.eq.1) then
c
¢ Get current sill of variogram:
c .
sill = c0
do 2 i=1,nst
2 sill = sill + ce(i)
c .
¢ Get variance of realization:
c
av = 0.0d0
ss = 0.0d0
do 3 i=1,nx
do 3 j=1,ny
do 3 k=1,nz

av =av + var(i,j,k)
ss = ss + var(i,j,k)*var(i,j k)
3 continue
av =av/dble(nx*ny*nz)
ss = ss / dble(nx*ny*nz) - av*av

c
¢ Now, scale the variogram parameters:
c ) i
fac = ss/sill
c0 =c0 * fac
do 4 i=1,nst
4 cec(i) =cc(i) * fac
c ~
¢ Also, scale the varmod array:
c
~ do5i=l,nlag
5 varmod(i) = varmod(i) * fac
endif )
c
c Finished getting initial image:
c
" return
end
subroutine rand(seed,n, vector)
c
c

¢ This random number generator generates random numbers in 10,1[ Note that if the seed value is zero on the first call, a default value
¢ of 1369 will be used in a linear congruential generator to generate 55 odd integers for the array 'itab()'. These values are preserved
¢ by a common statement, so that they may be used in subsequent calls by setting the seed to zéro.If the value of ‘seed' is greater than
¢ zero in a call to the subroutine, then the array ‘itab’ will be initialized and a new seed value will be returned by the subroutine. Best
c results are obtained by making the initial call with a seed of your choice and then setting the seed to ‘0’ for all subsequent calls.

c
c

implicit real*8(a-h,0-z)
real*8§ vector(*)
common /unusual/itab(55),n1,n2,nseed
integer mi,seed ¢
c
¢ Test to see if 55 odd integers must be generated.
c i
if((seed.gt.0).or.(nseed.lt.1)) then .
nseed = seed
if(seed.le.0) nseed = 7931
do 10i=1,55
ml=mod(nseed*9069,32768)
_if(mod(m1,2).eq.0) ml =ml-1
itab(i) = m1
- nseed = ml
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10 continue

nl=0 .
n2=24
endif
c
¢ generate "n" random componeats for the vector "VECTOR"
c
do30i=1l,n

itab(55-n1) = mod(itab(55-n2)*itab(55-n1),32768)
vector(i) = abs(float(itab(55-n1))/float(32768))
nl = mod(nl+1,55) .
n2 = mod(n2+1,55)
30 continue

if(seed.gt.0) seed=nseed

return

end

subroutine locate(xx,n,is,ie,x,j)
c

c
c Given an array "xx" of length “n", and given a value "x", this routine returns a value "j" such that "x" is between xx(j) and xx(j+1).
C xx must be monotonic, either increasing or decreasing. j=0 or j=n is returned to indicate that x is out of range.

c .
¢ Modified to set the start and end points by “is" and "ie"

c
¢ Bisection Concept From "Numerical Recipes”, Press et. al. 1986 pp 90.
c
implicit real*8(a-h,0-z)
real*8 xx(n)
c
c Initialize lower and upper methods:
c
ji=is
ju=ie R
c
c If we are not done then compute a midpoint:
c

10 ifGju-jlgt.1) then
Jm = Gu+jiy2

c
¢ Replace the lower or upper limit with the midpoint:
c ’
if((xx(n).gt.xx(1)).eqv.(x.gt.xx(jm))) then
jI=jm
clse
ju=jm
endif
~goto10
endif
c
¢ Return with the array index:
c .
j=i
return
end
subroutine sortem(ib,ie,a,iperm,b,c.d,e.f,g.,h)
c
c
c Quickersort Subroutine
c * *
c

¢ This is a subroutine for sorting a real array in ascending order. This is a Fortran translation of algorithm 271, quickersort, by R.S.

¢ Scowen in collected algorithms of the ACM. The method used is that of continually splitting the array into parts such that all

c elements of one part are less than all elements of the othér, with a third part in the middle consisting of one element. An element
c with value t is chosen arbitrarily (here we choose the middle element). i and j give the lower and upper limits of the segment being
c split. After the split a value q will have been found such that a(q)=t and a(l)<=t<=a(m) for all i<=l<q<m<=j. The program then

¢ performs operations on the two segments (i,q-1) and (g+1,j) as follows The smaller segment is split and the position of the larger
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¢ segment is stored in the It and ut arrays. If the segment to be split contains two or fewer elements, it is sorted and another segment is
¢ obtained from the It and ut arrays. When no more segments remain, the array is completely sorted.

c
c

¢ INPUT PARAMETERS: )

c L
¢ ibjie start and end index of the array to be sorteda

ca array, a portion of which has to be sorted.

¢ iperm 0 no other array is permuted.

c 1 array b is permuted according to array a : .
c 2 arrays b,c are permuted.

[ 3 arrays b,c.d are permuted.

c 4 arrays b,c.d,e are permuted.

c 5 arrays b,c,d,e.f are permuted.

c 6 arrays b,c.d,e,f,g are permuted.

c 7 arrays b,c,d,e,f,g,h are permuted.

c >7 no other array is permuted.

c

¢ bedef.gh arrays to be permuted according to array a.

c . :

¢ OUTPUT PARAMETERS:

c

¢ a =the array, a portion of which has been sorted.

. .

¢ bedef.gh =arrays permuted according to array a (see iperm)

c .

¢ NO EXTERNAL ROUTINES REQUIRED:

c

c

implicit real*8(a-h,0-z)
real*8 a(*),b(*).c(*),d(*),e(*).f(*).g(*).h(*)

c
¢ The dimensions for 1t and ut have to be at least log (base 2) n
¢ , . .
integer [t(64),ut(64),i,j.,k,m,p.q
c ' i
c Initialize:
c
jo=ie
m =1
i =ib
iring = iperm-+1
if (iperm.gt.7) iring=1
c

¢ If this segment has more than two elements we split it

. C

10 if (j-i-1) 100,90,15 )

. c . . .
" c pis the position of an arbitrary element in the segment we choose the middle element. Under certain circumstances it may be
¢ advantageous to choose p at random.

[

15 p =(G+H)2
ta =a(p)
a(p) = a(i)
goto (21,19,18,17,16,161,162,163),iring

163 th =h(p)

h(p) = h(i)
162 g =g(p)
8(p) = g(i)
161 tf =f(p)
f(p) = f(i)
16 te =e(p)
e(p) = e(i)
17 td =dp)
d(p) = d(i)
18 tc =c(p)
e(p) = c(i)
19 tb =b(p)
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b(p) = b(i)
21 continue
c
c Start at the beginning of the segment, search for k such that a(k)>t
c

q=j ¢
k=i

[[l}

20 k=k+! .
if(k.gt.q) goto 60
if(a(k).le.ta) go to 20 |

C .
c Such an element has now been found now search for a q such that a(q)<t starting at the end of the segment.
c g

30 continue
if(a(q).lt.ta) go to 40
q=q-1
if(q.gtk) goto30
goto 50

c

¢ a(q) has now been found. we interchange a(q) and a(k)

c

40 xa =a(k)

a(k) = a(q)

a(g)=xa )

g0 10 (45,44,43,42,41,411,412,413),iring
413 xh =h(k) ’

h(k) = h(q)
h(q) = xh
412 xg =g(k)
gk) =g(@
2(qQ)=xg
411 xf =f(k)
(k) = f(q)
f(q) = xf
41 . xe =e(k)
e(k) = e(q)
e(q) =xe
42 xd =d(k)
d(ky=d(q)
d(q) = xd
43  xc =c(k)
c(k) =c(q)
e(q) = xc
44 xb =b(k)
b(k) = b(q)
b(q) = xb
45 continue
c
c Update q and search for another pair to interchange:
c
q=g1
goto 20
50 g=k-1
60 continue
c-
¢ The upwards search has now met the downwards search:
c
a(i)=a(q)
a(q)=ta

20 t0 (65,64,63,62,61,611,612,613),iring

613 h(i) = h(q)

h(q) = th
612 gi)=g(q

8@ =1g
611 f(i)=f(q)

f(q) = tf
61 e(i)=e(q

e(q)=te
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62 d@)=d(q
d(q)=ud
.63 cliy=clq)
c(@)=tc
64 b(i)=b(q)
b(g) =tb
65 continue
c
¢ The segment is now divided in three parts: (i,g-1),(q).(q+1,j) store the position of the largest segment in It and ut
c .
if (2*q.le.i+j) go to 70
It(m) =i
ut(m) = q-1,
i=q+l
goto 80
70 It(m)=q+l
ut(m)=j
j=q!
c
c-Update m and split the new smaller segment
c
‘80 m=m+l
goto 10

-

c .
¢ We arrive here if the segment has two elements we test to see if the segment is properly ordered if not, we perform an interchange

c
90 continue
if (a(i).le.a(j)) go to 100
xa=a(i) ) _
a(i)=a(j)
T a(j)=xa
80 t0(95,94,93,92,91,911,912,913),iring
913 xh =h()
h(i) = h(j).. -
h(j) = xh : :
912 xg =g()
g@i) = g()
g() =xg
911 xf =f(i)
() = ()
f(G) = xf
91 xe =¢(i)
e(i) = e(j)
e(j) =xe
92 xd =d(i)
d(i) = d()
d(j) =xd
93 xc =c(i)
c(i) = c(j)
c(j)=xc
94 xb =b(i)
b(i) = b(j)
b(j) = xb
95 continue

c .
¢ If It and ut contain more segments to be sorted repeat process:
c -
100 m=m-1
if (m.le.0) go to 110
i=lt(m) -
Jj=ut(m)
goto 10
110 continue
return
end
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subroutine beyond(ncut,cut,cdf,zmin,zmax,ltail Itpar,utail,utpar,
+ zval,cdfval,ierr)

(eI I o I )

Go Beyond a Discrete CDF

Fodokktk

c . ) o :
¢ This subroutine is a general purpose subroutine to interpolate within and extrapolate beyond discrete points on a conditional CDF. If
c the Z value "zval” is specified then the corresponding CDF value "cdfval” will be computed, if the CDF value "cdfval” is specified

¢ the corresponding Z value “zval” will be computed.

c
c ) . .
c
¢ INPUT/OUTPUT VARIABLES:
c

ncut number of cutoffs defining the global CDF

cut() real array of the ncut cutoffs

cdf() - real array of the global cdf values

Zmin,zmax minimum and maximum ailowable data values

Itail option to handle values in lower tail

Itpar parameter required for option ltail

utail option to handle values in upper tail

utpar parameter required for option utail

zval interesting cutoff (if -1 then it is calculated)

cdfval interesting CDF (if -1 then it is calculated)

ferr | error flag: 0 - no problem

1 - both zval or cdfval can not be
defined or undefined
2 - invalid parameters

O000000000000060000000

Original: C.V. Deutsch October 1991

implicit real*8(a-h,0-z)
parameter(EPSLON=1.0d-20,UNEST=-1.0d0)
dimension cut(ncut),cdf(ncut)
real*8  utpar,ltpar,lambda .
integer Itail,utail

c

c Figure out what part of distribution: ipart = 0 - lower tail
c ipart = 1 - middle
c © ' ipart=2 - upper tail )
ipart=1
if(cdfval.le.cdf(l)) ipart=0
if(cdfval.ge.cdf(ncut)) ipart = 2
c
¢ ARE WE IN THE LOWER TAIL?
c
if(ipart.eq.0) then
if(ltail.eq.1) then
c .
¢ Straight Linear Interpolation:
c
powr = 1.0d0
zval =powint(0.0d0,cdf(1),zmin,cut(1),cdfval,powr)
else if(ltail.eq.2) then
c
¢ Power Model interpolation to lower limit "zmin"?
c
cpow = 1.0d0 / Itpar
zval = powint(0.0d0,cdf(1),zmin,cut(1),cdfval,cpow)
else
c

¢ Error situation - unacceptable option:
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ierr=2
retum
endif
endif
c
¢ FINISHED THE LOWER TAIL, ARE WE IN THE MIDDLE?
c .
if(ipart.eq.1) then
c
c Linear interpolation between the rescaled global cdf?
c
call locate(cdf ncut,1 ,ncut,cdfval,ilow)
ihigh = ilow + 1
powr = 1.0d0
zval = powint(cdf(ilow),cdf(ihigh), cut(llow) cut(ihigh),
+ cdfval,powr)
endif
c
¢ FINISHED THE MIDDLE, ARE WE IN THE UPPER TAIL?
[
if(ipart.eq.2) then
if(utail.eq.1) then
powr = 1.0d0
zval = powint(cdf(ncut),1.d0,cut(ncut),zmax,cdfval,powr)
else if(utail.eq.2) then
c
¢ Power interpolation to upper limit "utpar"?
c
cpow = 1.0d0/ utpar
zval = powint(cdf(ncut),1.d0, cut(ncut) zmax,cdfval,cpow)
c
¢ Fit a Hyperbolic Distribution?
c )
else if(utail.eq.4) then
c
c Figure out "lambda" and required info: .
c :
lambda = (cut(ncut)**utpar)*(1.0d0-cdf(ncut))
zval = (lambda/(l OdO cdfval))**(1.0d0/utpar)
else
c
¢ Error situation - unacceptable option:
c
ierr=2
retum
endif
-endif _
if(zval.gt.zmax) zval = zmax
[
¢ All finished - réturn:
c
return
end
real*8 function powint(xlow,xhigh,ylow,yhigh,xval,pow)
c
c

c Power interpolate the value of y between (xlow,ylow) and (xhigh,yhigh) for a value of x and a power pow.
[ B

c
implicit real*8(a-h,0-z)
parameter(EPSLON=1.0d-20)
powint = ylow + (yhigh-ylow)*
+ (((xval-xlow)/amax 1(EPSLON ,(xhigh- xlow)))**pow)
retum
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end

real*8 function ginv(p,ymean,ystd.itrans)
c

c .
¢ Computes the inverse of the standard normal cumulative distribution function with a numerical approximation from : Abramovitz,
¢ M. and Stegun, 1., 1972, handbook of mathematical functions, 10th printing, National Bureau of Standards, p. 933.

c .

c

c
c Coefficients of approximation:
c
implicit real*8(a-h,0-z)
data c0/2.515517d0/,c1/.802853d07,c2/.010328d0/
data d1/1.432788d0/,d2/.189269d0/,d3/.001308d0/

c
¢ Values for -+ and - infinity:
c
data gneg/-5.0d0/,gpos/5.0d0/
c .
¢ Check for probability = 0 or 1
c
if(p.1e.0.0d0) then
ginv = gneg
else if(p.ge.1.0d0) then
ginv = gpos
c
¢ Approximate the function:
c
else
pp=p

if(pp.ge.0.5d0) pp = 1.0d0 - pp
t = dsqrt(dlog(1.d0/(pp*pp)))
2 =t*t
3 =12%t
‘ginv =t - (cO+cl*t+c2*t2)/(1+d 1 *t4+d2*t2+d3*t3)
if(p.eq.pp) ginv=-ginv "
endif .
if (itrans.ge.1) then
ginv=dexp(ystd*ginv+ymean)

end if
c
¢ Return with ginv:
c

return

end

subroutine getlag

c
c Establish the number and location of the lags to consider

c EE2S * fokkkdk sk skdok ook kkokoke Aok
c

c

o

¢ Author: C.V. Deutsch Date: April 1992

c

include ‘metro.inc’
real*8  maxcov
¢ real*8 dist(maxlag)
logical covaf
c
¢ Compute maximum covariance:
c
covaf = true.
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maxcov = cova3(0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,ast,c0.it,
+ cmax,cc,aa,angl ,ang2,ang3,anis1 anis2,covaf)
covaf = false.

c
c Initialize the variogram and lag arrays:
c
do 1 i=1,nlag
varmod(i) = 1.0d+20
c dist(i) =1.0d10
ixli) =0
iyld) =0
izli) =0
I continue
c
¢ Calculate the Experimental Variogram:
c
na =0
nxl=nx/2
nyl = ny/2
nzl = nz/2
do 20 ix=0,nx1

do 20 iy=-nyl,nyl
do 20 iz=-nzl,nz!
if(ix.eq.0.and.iy.eq.0.and.iz.eq.0) go to 2
if(ix.eq.0.and.iy.le.0.and.iz.le.0) go to 2
dx = dble(ix) * xsiz )
dy = dble(iy) * ysiz
dz = dble(iz) * zsiz
c dxyz=sqdist(0.d0,0.d0,0.d0,dx,dy,dz,ang1,ang2,
¢ +ang3,anisl,anis2) -
vario = maxcov - cova3(0.0d0,0.0d0,0.0d0,dx,dy,dz,nst,c0.it,
+ cmax,cc,aa,angl,ang2,ang3,anisl,
+ anis2,covaf) '

if(na.eq.nlag.and.vario.gt.varmod(na)) go to 2
c if(na.eq.nlag.and.dxyz.gt.dist(na)) goto 2
¢ .
¢ Consider this sample (it will be added in the correct location):
¢ .

if(na.lt.nlag) na=na+ 1

c do no=1,na .
c if (vario.eq.varmod(no)) goto 20
c if (dxyz.eq.dist(no))goto 20
c end do
ixl(na) =ix
iyllna) =iy
izl(na) =iz

varmod(na) = vario
dist(na)=dxyz
if(na.eq.1) goto 2

2]

c.
¢ Sort samples found thus far in increasing order of distance:
c
nl =na-1
~ do3ii=1,nl
k=ii
if(vario.lt.varmod(ii)) then
c if(dxyz.lt.dist(ii)) then
jk=0
do 4 jj=k,nl
j =nl-k
jk =jk+1
jl=j+1
varmod(j!) = varmod(j)
c dist(j1)=dist(j)
ixIG1) =ixIG)
iylGl) =iylQ)
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T c

izl(j1) =izl()

4 continue
varmod(k) = vario

c dist(k)=dxyz
ixIk) =ix
izi(k) =iz
goto2

endif
3 continue
c

¢ 1/22/97 : The following debugging information are added by Tai-Sheng Liou to see how lags are chosen
c .

2 if (na.eq.nlag.and.vario.gt.varmod(na))goto 20
¢ 2 if (na.eq.nlag.and.dxyz.gt.dist(na)) goto 20

20 continue
c minus=1

¢ doi=l,nlag

c iyl(i)=iyl(i)*(-1)**minus

c minus=minus+1

c dx=ixI(i)*xsiz

c dy=iyl(i)*ysiz

c dz=izi(i)*zsiz

[ varmod(i)=maxcov-cova3(0.0d0,0.0d0,0.0d0,dx,dy,dz,nst,c0,it,
c + cmax,cc,aa,angl ,ang2,ang3.anisl,

c + anis2,covaf)

c end do

¢ Debugging information:
c

write(ldbg, 100) nlag _
100 format(/'Closest ",i3,' lags: Lag number variogram offsets’)

do 10 i=1,nlag
write(ldbg,101) i,varmod(i),ixI(i),iyl(i),izl(i)
c .
¢ 1/22/97 : The following line is addefi by Tai-Sheng Liou

c write(7788,101) i,varmod(i),ix|(i),iyl(i),izl(i)
c .

101  format(i2,1x,f12.4,3i3)

10 continue

c
¢ Return with the closest lags:
c

return

end _

- subroutine gridxyz(iseed)

c
c

¢ This subroutine generate a sample that honors the input mean and variance of the variable on the non-conditioning points. The
c probability distribution of the variable is assumed to be log-normal.

c

¢ Input :

c ymean : Mean of In(x) [y=In(x)]

c ystd : S.T.D. of In(x)

c iseed : Initial seed number

c
¢ Output :

c var(nx,ny,nz) : Image of the random field in the grid
c
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¢ Remark :
¢ .. noncond = # of data points that are not conditioning data
c

C

include ‘'metro.inc’
real*§ xtry(maxx,maxy,maxz),xsave(50),pasp(50
logical image ’
c
¢ Generate the initial image in the grid
¢ (The conditioning data is not changed)

c
p=getrand(iseed)
iseed=0
nxyz=nx*ny*nz
¢ .
¢ 2/10/97 : Define xcut,i.e., the cutoff value of z
c (1) itrans=1 : zZ’=max(z-xcut,xcut0)
c (2) itrans=2 : z'=max(z,xcut0)
c xcutO=minimum PM (or Ks) value
c

ci.e. if itrans=1 and xcut.ne.0, use input value as cutoff PM value
¢ ifitrans=1 and xcut=0, xcut=LN-1(pcut,ymean,ystd)

¢ if itrans=2, the cutoff PM value(xcut) is defaulted as 0.0

c

c-----Reset cutoff PM (or Ks) value (xcut) to zero if itrans=2
¢ Ifitrans=1 and xcut=0 => iterate until pasp=ptarget
¢ Ifitrans=1 and xcut>0 => no iterations, transform z'=max(z-xcut,xcut0)

c
if (itrans.eq.2) xcut=0.0
cutsave=xcut
write(*,20) xcut
write(*,*) ¥ sk ok ek A
20 format(' Initial PM cutoff ='17.4)
c
¢ Check again the type of simulation:
c
write(*,*)
write(ldbg,*)
if(igauss.eq.0) then

write(*,*) "You are using a non-parametric distribution ...
write(ldbg,*) “You are using a non-parametric distribution ..."
elseif (igauss.eq.1) then
inquire(file=imageinfl,exist=image)
if (.not.image) then
write(*,*) 'You are simulating standard normal deviates ...
write(ldbg,*) 'You are simulating standard normal deviates ...
end if
end if

c
"¢ 2/13/97 - Define the value of asperity contact.
¢ (a) The lowest possible of LN variate, i.e., ginv(0.0,...)
¢ (b) A very small value defined by.user, e.g., 1.0e-4
c :
¢ 7/14/97 : Tterate the generating process until the proportion of asperity contact reaches the.target proportion, ptarget
c - .
xcutO=aspcut K
do i=1,50
pasp(iter)=0.d0
xsave(iter)=0.d0
end do
iter=1
psave=0.d0
pdif=1.d0

219



17

13

o000

1

smean=0.d0
smeanln=0.d0

if (itrans.eq.2) then
if(pcut.eq.ptarget)then
do 17 1=l nx .
do 17 j=1,ny
do 17'k=1nz
if(.not.cond(i,j,k))then
p=getrand(iseed)
var(i,j, k)=ginv(p,ymean,ystd,itrans)
do while(var(1,j,k).gt.zmax.or.var(i,j,k).lt.zmin)
p=getrand(iseed)
var(i,j,k)=ginv(p,ymean,ystd,itrans)
end do
end if
smean=smean-+var(i,j,k)
continue
else
nop=nxyz*(1.d0-pcut)
dowhile(nop.gt.nxyz*(ptarget-pcut))
il = int(getrand(seed)*nx)+1
j1 = int(getrand(seed)*ny)+1
kl=1
if(vér(il.jl.k] ).ne.0.0.or.cond(il,ji k1)) goto 13
p=getrand(iseed) )
var(il j1 . kI)=ginv(p,ymean,ystd,itrans)

do while(var(il,j1,k1).gt.zmax.or.var(i1,jI k1).lt.zmin)
p=getrand(iseed) -
var(il j1 k!)=ginv(p,ymean,ystd,itrans)

end do

if(var(il,j1,k1).gt.zmax)var(il,j1, k1)=zmax
if(var(il j1,k1).It.zmax)var(il ,j! k1)=zmin
smean=smean+var(il jl,k1)
nop=nop-1

end do

end if

else

if(xcut.eq.0)then

DOWHILE(pdif.gt. 1.0d-3)

smean=0.0d0

smeanln=0.d0

if(iter.eq.2) then ’ :
xsave(iter)=ginv(pcut,ymean,ystd,itrans)

elseif(iter.gt.2) then
xsave(iter)=(ptarget-pasp(1))*xsave(iter-1)/

+ (pasp(iter-1)-pasp(1))

end if
if(iter.ge.2)xcut=xsave(iter)
do 1 i=1,nx
do 1 j=I,ny
do1k=l,nz,
p=getrand(iseed)
if (.not.cond(i,j.k)) then
xtry(i,j,k)=ginv(p,ymean,ystd,itrans)
var(i j.k)=amax 1 (xtry(i,j.k)-xcut,xcutO)
if(var(i,j.k).gt.zmax)var(i,j,k)=zmax
if(var(i,j k).It.zmin)var(i,j,k)=zmin
else
var(i,jk)=xcut0
end if
if(var(i,j,k).eq.xcutQ) pasp(iter)=pasp(iter)+1.d0
smean=smean+var(i,j,k)
if(var(i,j,k).gt.0.d0)smeanIn=smeanln+dlog(var(i,j,k))
continue
pasp(iter)=pasp(iter)/dble(nxyz)
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write(*,3) iter,xcut,ptarget pasp(iter)
paspsave=pasp(iter) .
format(' iter=",i2," cut=",f7.4," ptarget=",{6.2," pasp=",

+ €20.9)

psave=pasp(iter)
iter=iter+1
pdif=abs(ptarget-psave)
if (ptarget.eq.0.d0) pdif=0.d0
END DO
else
do 111 i=l,nx
do 111 j=l,ny
do 111 k=1,nz
p=getrand(iseed)
if (.not.cond(i,j,k)) then
xtry(i,j.k)=ginv(p,ymean,ystd,itrans)
var(i,j,k)=amax I{xtry(i,j.k)-xcut,xcut0}
if(var(i,j k). gt.zmax)var(i,j,k)=zmax
if(var(i,j,k).lt.zmin)var(i,j,k)=zmin
else
var(i,j,k)=xcutO
end if ‘
if(var(i,j,k).eq.xcut0) pasp(iter)=pasp(iter)+1.d0
smean=smean-+var(i,j,k) o
if(var(i,j,k).gt.0.d0)smeanln=smeanln-+dlog(var(i,j,k))

111 continue

C

end if
end if

smean=smean/dble(nxyz)
smeanln=smeanIn/dble(nxyz)
sstd=0.0d0
sstdln=0.d0
do 2 i=1,nx
do 2 j=1,ny
do 2 k=1,nz
sstd=sstd+(var(i,j,k)-smean)*(var(i,j,k)-smean)
- if(var(i,},k).gt.0.d0)sstdIn=sstdIn+(dlog(var(i,j.k))-
*  smeanln)*(dlog(var(i,j k))-smeanln)

" continue '

sstd=dsqrt(sstd/(dble(nxyz)-1.d0))
sstdin=dsqrt(sstdln/(dble(nxyz)-1.d0))
write(*,*)
write(*,60) smeanin,sstdln*sstdin
write(*,70) smean,sstd*sstd
write(ldbg,*) ’
write(ldbg,60) smeaninx sstdinx *sstdinx ,
write(ldbg,70) smean,sstd*sstd
if(imageoutfl(1:10).ne.'nodata.dat’) then
write(limageout,*) 'Initial image data’
write(limageout,*) 5
write(limageout,*) ‘X location’
write(limageout,*) 'Y location’
write(limageout,*) 'Z location'
write(limageout,*) 'k before the cutoff
write(limageout,*) 'k after the cutoff'

¢ change ymn to yini for output using DEPTH as the vertical distance

C

do 40 i=1,nx
do 40 j=1,ny
do 40 k=1,nz
xx=xmn+xsiz*dble(i-1)
yy=ymn+ysiz*dble(j-1)
zz=zmn-+zsiz*dble(k-1)
write(limageout,30) xx,yy,zz,xtry(i,j,k),var(i,j,k)
if (var(i,j,k).eq.xcut0) then
if(.not.cond(i,j,k))then
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write(550,30) xx.yy.zz,0.0
endif -
end if

40 continue

end if

close(limageout)
30 format(3(f6.2,2x),2f10.4)
60 format(' Generated statistics of In(PM) : mean="',el2.4,' Var=",

+ el24) :
70 format(’ Generated statistics of PM : mean='el2.4,' Var=",

+ el24) :

return
end

subroutine etapdf(iseed)

c
c
¢ This subroutine generates a sample that uses user-specified pdf (CDF) with the following three options:
c .

¢ Case : log-normal (see gridxyz above)

c
¢ Case 2 :(Exponential)

c f(x)=0.25 d(x) x<=0

c f(x)= lumda*exp(-lumda*x) x>0
c

¢ Case 3 : step-wise uniform

c f(x)=0.25 d(x) x<=0
f(x)=0.1 O<x<1
f(x)=0.0625 1<x=5
f(x)=0.02 S<x<I0
f(x)=0.01 10<x<=25
f(x)=0.004 25<x<=50
f(x)=0.001 50<x<=100

O0600000600

include ‘'metro.inc’
real*8 xtry(maxx,maxy,maxz),xsave(50),pasp(50)
real*8 lumbda
c
c Generate the initial image in the grid
¢ (The conditioning data is not changed)
c )
smean=0.0d0
p=getrand(iseed)
iseed=0
nxyz=nx*ny*nz
[
¢ Set non-conditioning data to 0.000
c u
nocond=0
do 3 i=1,nx
do 3 j=1,ny
do 3 k=Inz
if (.not.cond(i,j,k)) var(i,j,k)=0.0d0
if (cond(i,j,k))nocond=nocond+1
3 continue

c
¢ Check again the type of simulation:
¢ .

write(*,*)

write(Idbg,*) o

if(igauss.gt.2) then 7 -

icase=igauss- |
write(*,*) 'You are using 'icase,’ -th kind of CDF
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write(ldbg,*) ‘You are using ‘,icase,’ -th kind of CDF
end if )
c .
¢ 6/30/97 : Generate initial permeability field using
c user-defined CDF
c
nop=0
nopmax=10000*(1.d0-ptarget)
icase=igauss-1
if(icase.eq.2)then

. c

¢ Case 2 -- 25% exponentially decayed pdf with

c

c p(x)=lurnda*exp(-lumda*x), CDF(x)~0 25+0.75*(1-exp(-lumbda*x))
c lumbda=1/(mean of PM)

lumbda=0.065
write(ldbg,*) 'lumbda='",lumbda
write(ldbg,*) ‘nop = '.nop
write(ldbg, *) ‘ptarget=',ptarget
write(ldbg,*) ‘nopmax=",nopmax
write(ldbg,*) 'xcut0=",xcut0
if (pcut.eq.ptarget)then
¢ .
¢ Assign pm values to grid blocks sequentially if fraction of conditioning data is exactly ptarget
c
do 100 i=1,nx
do 100 j=1.ny
do 100 z=1,nz
if(.not.cond(i,j,k))then
do while(vax(i,j,k).eq.xcut0)
c .or.var(i,j,k).gt.zmax.or.var(i,j.k).It.zmin)
p=getrand(iseed)
if(p.gt.ptarget)var(i,j, k)=-dlog(1.dO-(p-ptarget)/
+  (1.dO-ptarget))/lumbda
end do )
if(var(i,j,k).gt.zmax)var(i,j,k)=zmax
if(var(i,j.k).It.zmin)var(i,j,k)=zmin
end if
100 continue
else
¢
c Assign pm values to grid blocks randomly if fraction of conditioning data is less than ptarget
c .
do while(nop.lt.nopmax)
.6 i=int(getrand(iseed)*nx)+1
j=int(getrand(iseed)*ny)+1
k=1
if(var(i,j,k).ne.xcut0.or.cond(i,j,k))goto 6
do while(var(i,j,k).eq.xcut0)
c .or.var(i,j,k).gt.zmax.or.var(i,j.k).lt. zmin)
p=getrand(iseed)
lf(p gt.ptarget)var(i,j k)=-dlog(1.d0-(p- ptarget)/
+ (1.dO0-ptarget))/lumbda
' end do
if(var(i,j,k).gt.zmax)var(i,j,k)=zmax
if(var(i,j,k).lt.zmin)var(i,j,k)=zmin
if(p.gt.ptarget)nop=nop-+1

end do
write(*,*) ‘End of generatmg sample data’
end if .

C .

¢ Case 3 -- 25% of total asperity contacts

c

elseif(icase.eq.3)then
if(pcut.eq.ptarget)then
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c .
¢ Assign pm values to grid blocks sequentially if fraction of conditioning data is exactly ptarget
c
do 200 i=1,nx
do 200 j=1,ny
do 200 k=1,nz
do while (p.1t.0.25.0r.p.gt.1.d0)
p=getrand(iseed)
if(p.gt.0.25.and.p.le.0.35)var(i,j.k)=(p-0.25)/0.1d0
if(p.gt.0.35.and.p.le.0.60)var(i,j,k)=1.+(p-0.35)/6.25d-2
if(p.gt.0.60.and.p.le.0.70)var(i,j,k)=5.+(p-0.60)/2.d-2
if(p.gt.0.70.and.p.le.0.85)var(i,j,k)=10.+(p-0.70)/1 .d-2
if(p.gt.0.85.and.p.le.0.95)var(i,j.k)=25.+(p-0.85)/4.0d-3
if(p.gt.0.95.and.p.le.1.00)var(i,j,k)=50.+(p-0.95)/1.d-3
end do
200 continue
else
¢ .
¢ Assign pm values to grid blocks randomly if fraction of conditioning data is {ess than ptarget
c
do while (nop.It.nopmax)
7 i = int(getrand(seed)*nx)+1
j = int(getrand(seed)*ny)+1
k=1 -
if(var(i,j.k).ne.0.0.or.cond(i,j,k)) go to 7
p=getrand(iseed)
if(p.gt.0.25 .and.p.le.0.35)var(i,j,k)=(p-0.25)/0.1d0
if(p.gt.0.35.and.p.le.0.60)var(i,j,k)=1.+(p-0.35)/6.25d-2
if(p.gt.0.60.and.p.le.0.70)var(i,j,k)=5 +(p-0.60)/2.d-2
if(p.gt.0.70.and.p.le.0.85)var(i,),k)=10.+(p-0.70)/1.d-2
if(p.gt.0.85.and.p.le.0.95)var(i,j,k)=25.+(p-0.85)/4.0d-3
if(p.gt.0.95.and.p.le.1.00)var(i,j,k)=50.+(p-0.95)/1.d-3
_ if(p.gt.0.25.and.p.le.1.0) nop=nop+1.
" elseif(icase.eq.4) then

Case 4-- 30% of total asperity contacts

if(p.gt.0.25.and.p.le.0.30)var(i,).k)=(p-0.25)/0.05d0
if(p.gt.0.30.and.p.le.0.40)var(i,j.k)=1.+(p-0.30)/2.5d-2
if(p.gt.0.40.and.p.le.0.45)var(i,j,k)=5.+(p-0.40)/1.d-2
if(p.gt.0.45.and.p.le.0.55)var(i,j,k)=10.+(p-0.45)/6.66667d-3
if(p.gt.0.55.and.p.le.0.65)var(i,j k)=25 +(p-0.55)/4.0d-3
if(p.gt.0.65.and.p.le.0.75)var(i,j.k)=50+(p-0.65)/4.d-3
if(p.gt.0.75.and.p.le.1.00)var(i,j,k)=75.+(p-0.75)/1.d-2
if(p.gt.0.25.and.p.le.1.0) nop=nop+1

end do

end if

end if

000000000000

smean=0.0 -
do 5i=I,nx
do 5 j=1.ny
do 5 k=1,nz
smean=smean+var(i,j,k)
continue
10 write(*,*)
write(*,*) 'nop = ",nop
smean=smean/dble(nxyz)
sstd=0.0d0
do 2 i=1,nx
do 2 j=1,ny
do 2 k=1,nz .
sstd=sstd-+(var(i,j,k)-smean)*(var(i,j,k)-smean)
2 continue
sstd=sqrt(sstd/(dble(nxyz)-1.d0))
write(*,*)
write(ldbg,*)
write(*,70) smean,sstd*sstd
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write(ldbg,70) smean,sstd*sstd
c .
¢ change ymn to yini for output using DEPTH as the vertical distance
c
¢ yinit=-(ysiz*dble(ny)-ysiz/2.d0)
if(imageoutfl(1:10).ne.'nodata.dat’) then
write(limageout,*) ‘Initial image data’
- write(limageout,*) 5
write(limageout,*) ‘X location'
write(limageout,*) 'Y location’
write(limageout,*) 'Z location'
write(limageout,*) 'k before the cutoff’
write(limageout,*) 'k after the cutoff’
do 40 i=1,nx
do 40 j=1.ny-
do 40 k=1,nz
xx=xmn+xsiz*dble(i-1)
yy=ymn+ysiz*dble(j-1)
2z=zmn+zsiz*dble(k-1)
write(limageout,30) xx,yy.zz,var(i,j,k),0.0
if (var(i,j,k).eq.0.d0) then
if(.not.cond(i,j.k))then
c yy=yinit+ysiz*dble(j-1)
write(550,30) xx,yy.zz,0.0
end if
~ endif
40  continue
end if
close(limageout)
30 format(3(6.2,2x),2f10.4) - )
60 format(' Generated statistics of In(PM) : mean="£7.3,' Var=",
+ fl1L3) )
70 format(' Generated statistics of PM : mean='f7.3, Var=",
+ fil3)

return
end
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fr)

(3) Sample input file

Parameters for SASIM

Fkokokkok ok k dokok kok ok kokok ok kok

START OF PARAMETERS:

nodata.dat
image.dat
asperity.dat
1203
-1.0e21 1.0e21
nodata.dat
30

0.0 100.0

1 10

4 20
case.dat
var.dat
varh.dat
varv.dat

3 5000000, 25000000
case.dbg
nodata.dat

1.00.950.05.0 3 1.0d-7
!

112063

1

100 0.1 02
100-19.9 0.2

1 05 10

14 3

1 000

2 02 1900

0.0 0.0 0.0 1.0 1.0
0 40

110

10 1.5 1
0.100.0 0.0 025

0

2

Notes:

\input initial image file
\output initial image file
\conditioning data (if any)
\columns: x,y,z,vr

\data trimming limits O=non parametric; l—Gaussnan 2=left open 3=Exp: 4=step-wise uniform)
\non parametric distribution

\columns: vr,wt

\minimum and maximum data values

\lower tail option and parameter

\upper tail option and parameter

\output File for simulation

\output File for variogram

‘output file for hori. variogram

\output file for ver. variogram

\debug level, reporting interval

\output file for debugging

\output file for lag information

\annealing schedule? (0-3 with O=user supplied, 1=default 2=fast, 3=very fast)

\manual schedule: t0,Jambda.ka,k,e,Omin

\l or 2 part objective function

\random number seed

\number of simulations

\nx,xmn,xsiz

\ny,ymn,ysiz

\nz,zmn,zsiz

\max lags for conditioning

\nst, nugget, (1=renormalize) )
\it,aa,cc: STRUCTURE 1 -
\angl, ang2, ang3, anisl, anis2:

\iedge(1:yes, 0:no),wedge

\icond(1:yes, 0:no),wcond

\mink,stdink,itrans

\pcut ,aspcut(xcut0), xcut, ptarget

\0:standard, 1:modified Metropolis algorithm

\1:first hbhd, 2:second nbhd

\imod (different perturbation mechanisms)

\ifield (1(0)=do(not) generate evolving files of PM and semi-variogram fields)

itrans=0 not transform to LN data, ltrans>0 transform to LN data

itrans=1 z'=max(z-PMCUT aspcut) where PMCUT=xcut, if xcut .ne. 0 or PMCUT=LN-1(ymean,ystd,pcut) if xcut=0
itrans=2 z'=max(z,aspcut), i.e., PMCUT=0 (without shifting)

aspcut=PM value of asperity contact

xcut=cutoff permeability (O=defualt)

pcut=cutoff probability=ratio of asperity contact to total rock volume and is used to calculate xcut

(4) Sample output file

Permeability field from simuldted annealing

4

. X location NX= 100 DX= 0.10 DX= 0.20

Y location NY= 100 DY=-19.90 DY= 0.20
Zlocation NZ= 1 DZ= 0.50 DZ= 1.00

Permeability field

0.1000 -19.9000 0.5000
0.7000 -19.9000 0.5000

19.7000 -0.1000 0.5000
19.9000 -0.1000 0.5000

36.1209
2.7844

0.0000
2.7400
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Appendix D. Calculation of effe'ctive» permeability
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(A) Horizontal effective permeability

To calculate the horizontal effective permeability, attach two boundary elements,
‘ths 1” and ‘lhs 1’ to the entire right and left hand side boundaries, respectively, and let the
element ‘Ihs 1” be inactive such that primary variables in that element will not be changed
during simulation. Inject water from ‘rhs 1 and turn the gravity off. Run the simulation
‘under single-phase conditions then the pressure in element ‘ths 1’ will increase and reach
to a constant value after a short transient, i.e., the steady state is reached. Calculate the
horizontal effective permeability according to Darcy’s law, i.e.,

I R . 1
Ketn = pAVP = PA(AI/AX) (D-1)

where [ [Pa-s] is water viscosity, q [kg/s] is injection rate, p [kg/m3 ] is water density, A
[mz] is the contact area of 'ths 1’ to the entire right hand side boundary, and AP [Pa] and
Ax [m] are the pressure difference and horizontal distance between ‘ths 1” and ‘lhs 1/,
respectively. ' ‘

(B) Vertical effective permeability

Vertical effective permeability can be obtained by following the same procedures
as in (A) but attaching two boundary elements, ‘top 1 and “bot 1’, to the entire top and
bottom boundaries, respectively. Let the element ‘bot 1’ be inactive and inject water from
“top 1. Gravity is sill turned off in this case. Therefore, the vertical effective permeability
is calculated according to : ’ '

L ' _
Ky = ’ P pA(A%z) (D-2)

where W, g, and p are the same as in (A), A is the contact area of the element “top 1’ to the
entire top boundary, AP is the pressure difference between “top 1’ and ‘bot 1’, and Az is
the vertical distance between “top 1” and "bot 1’.
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