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Abstract

Magnetic Fields and Density Functional Theory

by

Freddie Salsbury, Jr.

Doctor of Philosophy in Chemistry

University of California at Berkeley

Professor Alexander Pines

and Professor Robert A. Harris

A major focus of this dissertation is the development of functionals for the magnetic

susceptibility and the chemical shielding within the context of magnetic field density

functional theory (BDFT). These functionals depend on the electron density in the

absence of the field, which is unlike any other treatment of these responses.

There have been several advances made within this theory. The first of which

is the development of local density functionals for chemical shieldings and magnetic

susceptibilities. These are the first such functionals ever proposed. These parameters

have been studied by constructing functionals for the current density and then using

the Biot-Savart equations to obtain the responses. In order to examine the advantages
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and disadvantages of the local functionals, they were tested numerically on some small

molecules.

In order to mitigate some of the difficulties encountered with local functionals,

nonlocal functionals of the electron density were also developed. The consideration

of nonlocal functionals led to the examination of the exchange energy in the presence

of a constant magnetic field. In order to avoid divergences, every other treatment

of the exchange has required the screening of the exchange by correlation. The first

exchange functional in which this divergence was avoided because of the bound state

nature of the electronic system was constructed. Additionally, a conjecture was made

for the form of the full exchange-correlation energy functional. In both instances,

the functionals depend on the ground state electron density in the absence of any

magnetic field.

The J, or indirect spin-spin coupling, was also examined. Estimates were made

of some intermolecular xenon J couplings, which are motivating some experimental

work. This estimate was done using BDFT, but the approach was different from

that used for the chemical shielding and the susceptibility as it was a direct energy

treatment, that is, the Biot-Savart integrals were not used.

An investigation was also made into the recently discovered magnetic field-dependent

quadrupole splitting. The physical origin and magnitudes of both the linear and
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quadratic dependencies on the magnetic field were explained.
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Introduction

Magnetic Fields and Density Functional Theory

This thesis presents theoretical developments in the study of Nuclear Magnetic

Resonance parameters including the magnetic susceptibility. The first three chap-

ters contain introductory material on magnetic interactions, electronic structure and

density functional theory. The next part of the thesis present developments in mag-

netic field density functional theory, which builds upon the introductory chapters.

The purpose of this work has been to develop a framework for the computation of

NMR parameters from ground state electron densities. This work has,. hopefully,

constructed a foundation upon which others can now build so as to perform compu-

tational investigations of NMR parameters within the context of this theory. This

theory should provide a new paradigm for the interpretation of magnetic responses to

weak, i.e., NMR strength, magnetic fields. This theory should be especially applicable

to large systems, such as biomolecules, as it is not only a density functional theory,

but also one in which excited state corrections are not needed for the computation of

NMR parameters.

The last part of this thesis focuses on the estimation of parameters that were

previously thought to be unobservable: intermolecular J couplings and field-induced

quadrupole shifts. The former still have yet to be investigated experimentally, how-

ever, this work shows that they are in principle observable due to the increase in

sensitivity obtained by using optically pumped xenon. One could imagine exploiting
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these couplings in the NMR of biomolecules with which xenon forms van der Waals

complexes. The field-induced quadrupole shifts were measured experimentally first,

and then. their existence was explained as detailed in this work. This effect is inter-

('sting as it shows that in some, albeit rare, instances the perturbation of the electron

density due to the magnetic field, cannot be neglected.
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Chapter 1

Introduction to Magnetic Fields

In order to understand how magnetic fields and density functional theory are

linked in Nuclear Magnetic Resonance (NMR), a review of how magnetic fields enter

into quantum mechanics is needed. As quantum phenomena are typically obtained

from classical phenomena through the correspondence principle, a review of some

elements of classical mechanics is warranted. [1]

1.1 The Basics

A charged particle of mass m and charge e in a magnetic field, B(r,'t) has the

following Hamiltonian. [2] [3]

1 e - 2
H = -[p - -A(r, t)]

2m c
(1.1)
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In the Hamiltonian, p is the particle momentum and ..4(r) is the vector potential given

by

, '

B(r, t) = \7 x ..4(r, t). (1.2)

Thus, the introduction of a magnetic field changes the effective momentum felt by

the charged particle as a free particle in the absence of a field would have a different

Hamiltonian.
l _

H = _1 [P]2
2m

(1.3)

The search for a Hamiltonian starts with an observed force law. To obtain the

Hamiltonian from Equation 1.1, the starting point is the Lorentz force law.

mo, = e[E(r, t) + ~v x B(r, t)].
c

(1.4)

This is the experimentally observed force law for a particle in an electromagnetic field

specified by E(r, t) and B(r, t). The magnetic field acts in a direction perpendicular to

the particle's velocity causing particles to move in a helix. This distinguishes the effect

of a magnetic field from the effect of an electric field. To obtain the Hamiltonian from

the force law, a consistent Lagrangian must be found and the Hamiltonian obtained

from the Lagrangian. [4]



r--":"l
I
;

.~ i-.
1.1 The Basics 3

To obtain a Lagrangian, one assumes that the state of a mechanical system at

a particular time can be specified by some function of its position and its velocity.

It is assumed that higher derivatives of position are not needed. This function that

specifies the state of a mechanical system in classical mechanics is the Lagrangian.

For simplicity, consider a single particle. Now to obtain the equations of motion for

the particle between f(t") and f(t' ), one invokes the principle of least action that is

sometimes called Hamilton's principle. The action, 8, is defined as the time integral

of the Lagrangian:

til

8 = r L(f, v, t)dt.
it'

(1.5)

The principle of least action requires that the system follow the trajectory that min-

imizes the action. 80 a variation of the action is performed:

til

88 = 8 r L(f, v, t)dt = O.it' (1.6)

This minimizes the action because if there exists a function f(t) which minimizes 8,

then changing f(t) slightly to f(t) + 8f(t), produces a change in 8 given by

til til

88 = r L(f + 8f, v + 8v, t)dt - r L(f, v, t)dt;hi hi (1.7)

expanding this out in a power series gives leading terms that are linear and the
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condition that there is a minimum implies that the linear terms vanish. Thus, the

variation suffices to minimize the action. Upon performing the variation, the following

is obtained:

f
L

I t/l d oL oL_
oS = --(-) + -ordt = 0

t' dt of; or

which with the variation vanishing at the endpoints yields,

(1.8)

(1.9)

This results in Lagrange's equation. With multiple degrees of freedom the variations

must be performed independently for each degree of freedom.

The following Lagrangian gives the correct force law for a particle in an electro-

magnetic field,

L(r, 1), t) = ~mv2 - e<I>(r, t) + !:f; • A(r, t).
2 c

(1.10)

<I>(r, t) and A(r, t) are the parameters which determine the electromagnetic field as

given by

B(r, t) = V' x A(r, t). (1.11)
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- 1 {) -
E(r, t) = -V<l>(r, t) - --;;;-A(r, t).

cut

5

(1.12)

A(T, t) is the vector potential and <p(r, t) is the scalar potential. For time indep€ndent

fields, they produce the magnetic and electric fields, respectively. To shoVi that

this Lagrangian gives the correct force law, Lagrange's equation is used to establish

consistency. In particular, allowing

(1.13)

(1.14)

I ,

I
L

then with some algebra, and using Equations 1.10 and 1.11, the correct force law is

obtained.

Quantum mechanic, however, is formulated with a Hamiltonian. [1] Hence, there

be must a change from Lagrangian to Hamiltonian mechanics. The Hamiltonian is

just a Legendre transform of the Lagrangian:

H=peV-L. (1.15)

\
_ LJ

I
L

The momentum p, is the canonical momentum that is given. in Equation 1.13. This

is the canonical momentum, because if A and <Pare independent of some degree of
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quences. The most famous such effect is the Aharonov-Bohm effect; a purely quantUDl

mechanical effect due to the vector potential. [7J Two variants of this problem exist:

a bound state version and an interference problem. The latter is more famous, but

the former is simpler. Hence, the Jormer shall be sketched out here.

Suppose there is a hollow cylindrical shell with a trapped particle inside the shell,

and a uniform magnetic field enclosed by the shell. This field does not penetrate into

the shell. Hence, the particle never feels the field. The particle is truly trapped by

h hell Hence, its wavefunctionvanishes at the inner and outer walls and at thet e s "

top and bottom of the cylinder. Classically, there is no force on the particle as there

is no field inside the cylindrical shell. However, quantum mechanics predicts a shift

in the particle's energy. The shift arises because the field vanishes inside the shell,

but the vector potential does not vanish. Application of Stokes theorem indicates

that to obtain a field B in the z direction inside the volume enclosed by the shell, the

following vector potential may be used

I J

'"

A(r) = ~~~f). (1.22)
'1

i .

Solving the SchrOdinger equation with this vector potential causes an observable

change in the particle's energy despite the field only being present in a region with

the particle cannot access. The Aharonov-Bohm effect is a dramatic example of the

nonlocal nature of magnetic interactions in quantum mechanics.

L,

i-..ii
~c

I
I

!

!
L.i

,
I
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1.2 Spin Hamiltonian

The Hamiltonian derived above for a charged particle in a magnetic field looks

quite different from the Hamiltonians usually seen in NMR. This is because the Hamil-

tonians of NMR are written as nuclear spin Hamiltonians and the electron interactions

are subsumed into the NMR parameters.

The nuclear spin Hamiltonian for a pair of nuclear spins is, [8]

(1.23)

Notice that the magnetic susceptibility is not present, as it. does not ''involve the

nuclear spin. Instead the magnetic susceptibility is of the form B. X. B. ''As such the

magnetic susceptibility a purely electronic property, and is independent of the nuclear

spin. This nuclear spin Hamiltonian is an effective Hamiltonian as it contains only

the two nuclei explicitly. This Hamiltonian has been written in its simplest form. It

can be written in slightly different forms as well, which you may find in other works.

[9]

The first two terms are the Zeeman interactions. These correspond to the classical

interactions between a nuclear dipole P'i and an applied field. The subscripts indicate

the two different nuclei. Hence, these are single spin operators that depend upon just

.
the interaction of external field and a single spin. The electrons are not involved.

Hence, this interaction shall not be considered in detail. The third and the fourth
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r
1

I-

terms are the chemical shielding terms. The chemical shielding tensors are denoted

by gi. These terms contain in them the coupling between the electrons and each

nuclear spin separately with the applied field. These operators are still single spin

operators. The difference between these and the Zeeman terms is the electronic

coupling, hence these operators probe the electrons. The next to last term is the J

coupling, also known as the indirect spin-spin coupling. This is the coupling between

the two nuclei, which is manifest through the electrons. Unlike the first four operators,

this is a two spin operator. The last term is the dipolar coupling, or the direct spin-

spin coupling. The dipolar coupling does not involve electronic interactions. It is the

direct nuclei-nuclei interaction. As such it is mentioned .here only for completeness.

These terms will be examined in more detail later. First, the connections between

the spin Hamiltonian and the full Hamiltonian should be made clear.

Perturbation theory is the method of choice as the interaction of the magnetic

fields with the electrons is much weaker than the electron-electron interaction. [6] A

molecular system may be considered as consisting of 2 weakly coupled subsystems.

The wavefunction for the full molecular system is \II. The first system consists of the

electrons that feel a fixed scalar nuclear potential, the second contains the nuclei that

feel a uniform external applied field and the dipolar coupling. For simplicity, it is

easiest to consider only the chemical shielding at first as the remaining interactions

f'
I
!
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are analogous. The effective spin Hamiltonian is,

11

(1.24)

The expectation value is taken over the electronic coordinates as indicated by the

subscript e. HILe is the coupling between the nucleus and the electrons. Hence, the

effective Hamiltonian depends explicitly only upon the nuclear spin coordinates, so

it is referred to as the spin Hamiltonian. To illustrate what the second, perturbative

interaction is, start with the full Hamiltonian for the two coupled systems,

H = -p,. B+ L ~(Pk + A(fk))2 +V(f)
. k 2 c

(1.25)

where .atomic units have been used, the sum runs over the k electrons, and the f in

v (f) refers to all the k electronic coordinate vectors. As this Hamiltonian will cause

the chemical shielding, the total vector potential is the superposition of two vector

potentials: the potentials due to the nuclear dipole and the uniform external field.

Hence,

(1.26)

Of course, the first term is not uniquely defined as a uniform external field has an

arbitrary origin. So any physical property should be invariant under the transform
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t 0

L
h

rk ---t (rk - S). The second term has a natural origin at the nucleus that creates it.

With this in mind, the Hamiltonian can be rewritten as follows:

I",

H - B- ~ 1(_ Ar)2 V(-)
- - fl' • + L...J - Pk + - + r

k 2 c

~ 1(_ Ar) A-/lo+ L...J - Pk + - • k + ...
k C C

(1.27)

Advantage has been taken of the divergencelessness of the gauge choice, and hence, the

commutation properties. This has been done for simplicity only. The term quadratic

in the vector potential due to the nuclear spin has been dropped as not contributing

to the shielding. The term quadratic in the vector potential due to the external field

also does not contribute to the shielding, and will be dropped later. If the nuclear

vector potential is explicitly placed into the equations then the last term becomes,

(1.28)

which is reminiscent of the classical Biot-Savart law that will be discussed later in

more detail.

Taking the expectation value of the full Hamiltonian with respect to the electronic

coordinates will generate the spin Hamiltonian. This is

(1.29)
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t -

in which Ee is the electronic energy and is constant, independent of the spins and

hence, can be dropped. After doing so, the spin Hamiltonian of Equation 1.24 is

generated. The last term is the portion of the spin Hamiltonian due to the electrons

coupling with the nucleus. This is the coupling that leads to the chemical shielding.

Explicitly, the latter term can be written as,

(1.30)

Notice that between the bra and the ket are operators with two different depen-

dencies on the applied field. The momentum has no explicit dependence on the field,

whereas the vector dependence is first order. If the exact electronic wavefunctions

determined in the presence of field were used, these different dependencies would not

matter. However, typically the zeroth order electronic wavefunction, i.e. the wave-

function without the field, is used as the starting point. To treat the two portions of

the Hamiltonian on equal footing, perturbation theory must be performed, at least

in this treatment,

(1.31)

This allows one to write the portion of the coupled Hamiltonian in a perhaps more
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familiar fashion as,

Chapter 1. Introduction to Magnetic Fields

r
L
t

r
L

(1.32)

(j is the chemical shielding tensor and contains all the electronic information in the

problem as neither the J coupling nor the magnetic susceptibility have been consid-

ered.

The integral over electronic coordinates can be divided into two parts

(1.33)

(1.34)

The first part is the diamagnetic shielding and the second the paramagnetic shielding.

The latter is the more difficult term to understand as it requires knowledge of the

excited states to calculate the perturbed wavefunction to first order. In particular,

excited states which must be known are those that are connected to the ground state

by magnetic dipole transitions. This separation into diamagnetic and paramagnetic

is a standard separation. However, such a separation is not gauge invariant. The

sum is a physical quantity and hence, is invariant under gauge transforms; it is the

individual quantities that are not invariant. One should be careful not to ascribe

undue physical significance to these quantities, with one exception. In the present

gauge, the Coulomb gauge, closed shell atomic systems are purely diamagnetic, and so
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in this gauge paramagnetic components result from the breaking of atomic symmetry.

This statement is not necessarily true in other gauges, though the overall numeric

result is independent of gauge. Additionally, one must realize that while the precise

separation into paramagnetic and diamagnetic depends upon the gauge, one cannot

always find a gauge in which the shielding is purely diamagnetic. The only instances

where one can do so are for systems that are spherically symmetric, or which have only

one or two electrons. In all other instances, the shielding, and the other responses,

will have both paramagnetic and diamagnetic portions.

The shielding interactions may be more familiarly represented as a change in the

magnetic field felt by the nucleus due to electron currents. The connection between

this representation and the above explanation can be made through the classic Biot-

Savart law.

In classical electricity and magnetism, the Biot-Savart law reproduces the observed

induced B field generated by a current. [2] An infinitesimal wire of length dl which

carries current I produces an infinitesimal field element at a position x which is,

dB = I (dl x
3
x) .

ex

Now for a general current density J(r'), the expression can be generalized to

(1.35)

(1.36)
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Of course, this begs the que..stion as to what the current density is especially in

,~

b
r
I

a molecular system. Classically, the current is the rate of particle flow through a

surface, and so quantum mechanically this would be expressed as

r;

dJ 11fJ1
2
dV = - j] _df

dt

= - j \7 - ]dV.

(1.37)

(1.38)

] is the current density and Gauss's theorem has been used to convert the surface

integral into a volume integral. This comes from the equation of continuity which

follows from charge conservation, i.e. [3],

dl7/J1 2 .-
--+\7-j=O.

dt
(1.39)

Now carrying the derivative through one obtains the following, after using the time-

dependent Schrodinger equation i~ = H1fJ,

dJ 11fJ1
2

dV = ij(1fJH*7/J* -1fJ*H1fJ)dV.
dt . (l.40)

If we start with the system in the absence of a magnetic field, then the Hamiltonian
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is just 2~2 + V and so we have that

i J(¢H*¢* - ¢*H¢)dV

= - J'V. (~(¢'V¢* - ¢*'V¢))dV

= - J'V x ]dV

17

(1.41)

(1.42)

Thus the current density, ], is defined with the momentum and vanishes for purely

real wavefunctions, e.g., closed shell systems in their ground states without a field.

The more interesting case is when there is a magnetic field present. The simplest

way to see how the current density varies in this instance is to note that the current

density can be written as

] = -~(¢p¢* - ¢*jj¢)2 . (1.43)

Then make the usual substitution, p ---+ p+ ~ as discussed before Qquation 1.15. The

following expression for the current density is obtained,

!-

(1.44)

The first portion is the paramagnetic current density and the second is the diamag-

netic current density. As usual, the division between paramagnetic and diamagnetic

is not gauge invariant, but the current density as a whole is gauge invariant. This is
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because the current density is a physical observable. A more rigorous approach would

be consider the change of the Hamiltonian due to the change of the vector potential

that interested readers can find elsewhere [5]. Notice that with this definition of the

current density, the expression for the chemical shielding can be rewritten as,

f •

1

- - J1fXJp,. jj-. B = p,. ---3-Dr.
c r

(1.45)

In this treatment, the applied field and the nuclear moment have been treated dif-

ferently. In particular, the current density has been considered as being induced by

the applied field. So the current density can be considered as the response by the

electrons to the perturbing uniform field. This unequal treatment is merely conv€-

nient. One could equally well reverse the present treatment and consider the current

density induced by the nuclear magnetic moment and take the dot product with the

applied field. This is referred to as the inverse Biot-Savart law and in an exact theory

is equivalent to the Biot-Savart law.

This use of the Biot-Savart law for the calculation of magnetic responses is referred

to as a susceptibility treatment of magnetic responses. The alternative treatment is

an energy approach in which the magnetic responses are treated as energy derivatives.

For example, from examining Equations 1.33-1.45 one has that,

::: [j2E
U= -_-.

8B8P,
(1.46)
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E is the electronic energy, and derivatives are taken in the limit of both fields be-

coming zero. In an exact theory, both approaches are equivalent. It is only with

approximation that they may become different. Writing the shielding as an energy

derivative has the advantage of making it clear that the shielding is a tensorial prop-

erty, as the fields are each a vector. Additionally, this form demonstrates that one

cannot make statements about the symmetry of the shielding without considering the

symmetry of the electron dist.ribution.

All the magnetic responses, or more properly, the lowest order magnetic responses,

not just the chemical shielding, are second order with respect to the fields. This is

because a magnetic field is odd under time reversal, unlike an electric field, which is

even. The energy is even under time reversal as the Schrodinger equation for closed

shell systems is even under time reversal. This requires magnetic fields to couple in

even orders to closed shell systems. [7] Time reversal along with the extraordinary

weak effect of magnetic fields upon most. systems explains why one need only consider

3 magnetic fields for NMR parameters: the fields from two dipoles and one applied

uniform field. In particular, the electronic energy of a closed shell molecular system

with i number of nuclei in a NMR magnet can be written as:

(1.47)

The different terms are respectively: the zero field electronic energy, the energy due
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to the magnetic susceptibility, X, the energy due to the chemical shieldings of the

nuclei, (Ti, and the energy due to the indirect spin-spin couplings between the pairs

of nuclei, Jij . In principle, the expansion could be carried out to higher orders. One

could expand the magnetic interactions to fourth order, and obtain terms coupling

up to four nuclear spins. Presently, such effects are far too small to be observed in

NMR. One could also include mixed electric-magnetic properties such as a magnetic-

field induced quadrupole moment. This has only been observed recently and will be

discussed later in Chapter 9. Notice that at this level, there is no separation into

diamagnetism and paramagnetism. It is only when the energy is divided into these

two terms that the shielding, and the other responses, become separated. This is

not a surprise as paramagnetism and diamagnetism are not in themselves uniquely

defined. Notice as well, that in the Biot-Savart law there is no such separation unless

one makes one in the current density. Hence, if expressions are obtained for the energy

or the current density respectively which avoid this separation, then one avoids· the

whole issue of gauge invariance at this level in the responses.

1.3 Nuclear Magnetic Resonance Parameters

Now that the connection between the spin Hamiltonian and the full Hamilto-

nian has been made for the chemical shielding, a more thorough discussion of the

parameters of NMR is justified. [8] [9].

The chemical shielding is the best known of the different parameters and is the

(~

,
L
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one, which is most important to this work. In general, the chemical shielding is a

second rank tensor with 9 independent components. This is obvious as the shielding

is defined as

:; a2E
iJ=--

aiJap.'
(1.48)

Each field has three components - x, y and z in Cartesian coordinates - so the

whole tensor has 9 components and no specific symmetry in general. Any second

rank tensor can be broken up into three pieces with definite symmetries: a scalar

with one independent component, a symmetric traceless tensor with 5 independent

components, and an antisymmetric tensor with 3 independent components, i.e.,
{,.

1 0 0 au 0,12 0,13 0 b12 b13

iJ
(1.49)iJ=-O 1 0 + 0,12 0,22 0,23 + -b12 0 b233

0 0 1 0,13 0,23 0,33 -b13 -b23 0

The antisymmetric component, however, is not directly observable in NMR exper-

iments - though it may be observed in relaxation measurements [8]. Hence, there

are 6 independent elements. A simple argument with spin 1/2 particles can explain

this effect. The splitting of the energy levels of a spin 1/2 particle in a magnetic

field is given by the magnitude of the field. Hence, the Larmor frequency becomes
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I"

b

proportional to only the symmetric components as,

i
1_

(1.50)

(1.51)

where € is the unit vector along the external field, and the t indicates the transpose.

As the shielding tensor is small the last term may be disregarded which results in,

(1.52)

(1.53)

The symmetry of the particular system may reduce the number of independent el-

ements even further, if the system has a highly symmetric electron distribution, in

which the symmetry of the electron distribution follows the nuclear symmetry. For

example, a linear molecule has only 3 independent axes. These consist of an axis on

the line through the bond and two axes perpendicular to the bond. The two perpen-

dicular axes are equivalent due to symmetry. Hence, the shielding tensor has only

three components and the two perpendicular components are identical. So there are

only two independent components. Additionally, symmetry constraints on the para-

magnetic contribution can cause it to vanish for particular symmetries, i.e. spherical

symmetry or in the direction parallel to the bond axis in a linear molecule. When

the electronic distribution has the highest possible symmetry , i.e. spherical, the
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---0- ~ shielding tensor is at its most symmetric. As a result, only the isotropic compo-

nent survives. Motion that is faster than the NMR timescale can also average out

the shielding tensor. For example, in liquids or gases one typically only observes the

isotropic component as the rest are averaged away by rapid tumbling. This is because

the rapid motion cause reoriention of the molecules with respect to the field, and so

any anisotropy is cancelled away.

Typically, one takes the asymmetric tensor resulting from a calculation, .sym-

metrizes it and then diagonalizes it. The eigenvalues are referred to as the principal

values 0"11,0"22,0"33 and the eigenvectors as the principal axes, hence, the term Prin-

cipal Axis System (PAS) for the axis system spanned by the set of eigenvectors. By

convention, the principal values are ordered such that

(1.54)

However, experimentally these are not the chemical shielding tensor elements as the

chemical shielding is not the actual observed quantity in NMR. Rather, the chemical

shift is measured and defined in ppm,

8 = 106 (lis - lire!)

lire!
(1.55)

s is the system of interest, ref is a reference, and lIi is the frequency observed which
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r,
L

r
,Bo(1- 0")

v = -'------'--.:..27r . (1.56)

Now in most instances, 0" is much less than unity and so to a good approximation

the 0" which is contained in the definition of vref in the denominator of Equation 1.55

can be neglected. However, it may be important to consider this for systems with

large shieldings. One should always keep in mind the relative nature of shifts.

One typically characterizes spectra by linear combinations of the principal values.

These combinations are more reliably obtained from experimental spectra on samples

with a range of orientations, i.e., powders that give powder patterns. In particular,

these parameters are the anisotropy

the asymmetry, 7], and the isotropic shift, 0",

(0"22 - 0"11)
7] = -:,-_-.......:,-

(0"33 - O"iso)

0"11 + 0"22 + 0"33
O"iso = 3

(1.57)

(1.58)

(1.59)

These particular linear combinations are useful because in an axially symmetric sys-
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tern the asymmetry vanishes and the anisotropy becomes

25

(1.60)

Axially or nearly axially symmetric systems are commonly encountered in experimen-

tal situations.

Another important physical effect to consider when comparing theoretical and

experimental shieldings is the effect of rovibrational averaging. [9] Te majority of

experiments are carried out at room temperature. However, theoretical shifts are

usually calculated at a fixed geometry. So to compare exactly a theoretical shift

and an experimental shift one should average the theoretical results over a chemical

shielding surface. A chemical shielding surface is a surface showing the shielding

for different nuclear geometries much like a potential energy surface, but with the

shieldings instead of the energies plotted. In principle, one must do this for both the

zero-point and thermal vibrations. Now this can rarely be done at present due to the

computational cost of most theoretical treatments, which provides further motivation

for the development of new theoretical techniques.

The magnetic susceptibility is not really a NMR parameter as it is independent of

the nuclei and depends only on the electrons. However, as the Biot-Savart integrals

demonstrate it is related to the chemical shielding and hence· should be examined.
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Unlike the chemical shielding, the susceptibility truly is a symmetric tensor,

t--

r
L

- {j2E

X= 8i38iJ" (1.61)

As such it has 6 independent components and can be decomposed into isotropic and

symmetric components. The symmetry arguments, which lead to various components

vanishing, are identical to the ones used for the chemical shielding as experimentally

one observes symmetric tensors for both.

The Jcoupling is the third magnetic response to be considered here. It is the

most difficult to understand theoretically, and is the source of much confusion. It is

becoming of increased importance experimentally, especially in the study of biological

molecules.

The J coupling can also be written as an energy derivative just as the shielding

and the susceptibility. This makes it apparent that it is in general a second rank

tensor with no particular symmetry. The J coupling needs to be examined more

carefully as the J coupling does not arise from a single interaction: rather, there

are 3 different interactions that give rise to the J coupling. These interactions have

different properties and so need to be examined individually.

The J coupling arises from the same interactions between the nucleus and the

electron that cause the hyperfine and fine structure. [6] [9] In particular, there are

the dipolar, orbital and Fermi contact interactions. The orbital interaction is between
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t _ the orbital motion of the electrons and the magnetic moment of the nucleus. The

dipolar interaction is between the magnetic moment of the electrons and the magnetic

moment of the nucleus. The Fermi contact interaction r(>$ults from the electrons

penetrating into the nucleus. These three interactions provide different mechanisms

for couplings between a nucleus and the electrons. As the electrons are coupled in

a molecular system between different nuclei, these interactions provide an indirect

coupling between the nuclei.

Consider the orbital interaction between a nucleus and an electron,

H o - 1 ji'nxr ­
- 3 .p.

2c r
(1.62)

In which the electron's momentum couples to the field produced by the nucleus. This

direct coupling between a nucleus and an electron causes an indirect coupling between

pairs of nuclei which using perturbation theory gives a paramagnetic component that

IS,

(1.63)

- ~-

r
L

The letters j and k index the electrons and 1 and 2 refer to the nuclei. This is the

paramagnetic contribution. There is also a diamagnetic component. These compo-

nents arise in precisely the same manner in perturbation theory as they do in the

chemical shielding.
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This contribution has no particular symmetry and is a full second rank tensor

as the two dipolar fields may be different and are vectors. For most compounds

containing light atoms this component is rather small, but for heavier nuclei this

component can be considerable. [9]

The dipolar component arises from a Hamiltonian of the form, again for a single

nucleus and a single electron,

f',
I

H D = ~ (lin X r) • (ji,e X r)
C r 3 .

(1.64)

/i'n is the nuclear moment and jj,e is the electron moment. This leads to an indirect

nuclear coupling of the form,

_1_ L < 01(2:k 3r1k
3 (Sk • rlk)rlk - r1k

3Sk)I'11. >
4c2 En - Eo

n

X < '11.1(L 3ri}(Sj • r2j)r2j - ri}Sj)IO > .
j

(1.65)

Sk is the spin of the electron and jie = jrac-Sk2c in atoniic units. This contribution

also has no particular symmetry and is a full second rank tensor as the two-dipolar

fields may be different and are vectors. For most compounds containing light atoms

this component is rather small, but for heavier nuclei this component can be consid-

erable. The dipolar component is usually even smaller than the orbital portion and

so is often ignored. [9]

The third interaction that creates the J coupling is the Fermi contact interaction.
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l This is the largE"-st interaction for light atoms and often is the only one considered by

experimentalists.

The Fermi contact interaction arises classically from an electron penetrating into

the inside of a spherical magnetic dipole. Quantum mechanically, this is approximated

as

(1.66)

The use of a delta function is an approximation, however, for chemical purposes the

approximation typically suffices as deviations from the delta function appear on length

scales on the order of hundredths of angstroms. [10] The contact interaction has a

very different character than the other interactions that contribute to the J coupling.

The delta function renders the interaction isotropic as loosely speaking it depends

only on the amount of electron density that connect the two nuclei by penetrating to

the nuclei in question.

The coupling which arises from the contact interaction,

l . (1.67)

This interaction is the dominant interactionfor light atoms.

Hence, the anisotropic component of the J coupling is often neglected, and the J

coupling is often considered as a purely scalar interaction, even when the anisotropy is
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not averaged away. There have recently been some interesting experiments, especially

with InP, which exploit the large anisotropic components that can arise in atoms of

heavier elements. [11]

J couplings are often referred to as through-bond interactions. This is because

the coupling depends upon the electron distribution, and for the Fermi contact term

in particular on the correlation between electrons penetrating to each nucleus, and so

they will be large in those circumstances when the nuclei "share" electrons, i.e., when

a chemical bond exists. Later in this work, a particular example of small J couplings

between atoms that are not directly bonded is explicated.

There are only 2 important NMR parameters remaining: the dipolar coupling and

the quadrupolar coupling. The former is a purely nuclear interaction, and so despite

being extremely important in solid-state NMR, will not be discussed further.

The quadrupolar coupling is not a magnetic property. Rather it is an electri-

cal interaction. Nuclei with spins greater than 1/2, have an asymmetric nuclear

charge distribution. Thus besides having a magnetic dipole, they can have an electric

quadrupole. This quadrupole will interact with electric field gradients at the nucleus

created by the electron density. So to have an observable quadrupole moment, two

conditions must be fulfilled: the nucleus must have a spin greater than 1/2, and there

must exist an electric field gradient. The latter condition, for example, means that

no atom or molecule in a site with cubic or higher symmetry would have a nonzero

quadrupole coupling, regardless of spin.
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The vanishing of the quadrupole for any free atom in a magnetic field assumes

that the magnetic field doe,s not distort the electron distribution. While this is almost

true, i.e., is valid to a very large degree of accuracy, observation of field-dependent

quadrupole splittings of atoms in the gas phase allows one to measure the weak

distortion of the electron distribution by the applied magnetic field. This has been

observed recently in experiments and a more detailed theoretical description will

be given later in this work in Chapter 9. However, this does serve to illustrate a

.point. When a property vanishes at a given order in perturbation theory, a higher

order property may be observable despite being significantly weaker. For example,

the field-dependent quadrupole splittings of Xe atoms are about hertz as opposed to

megahertz. [12]
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Chapter 2

Electronic Structure Theory: An

Introduction

To understand the parameters of NMR, an understanding of the electron distri-

bution and its interaction with nuclei is needed. Two questions arise immediately:

how is the electronic distribution, or the electronic structure, determined, and what

approximations are used to calculate the NMR parameters? This thesis does not

concern itself explicitly with the former, but some understanding of that topic is re-

quired. The latter question is at the heart of this work, and so some discussion of

other modern methods is needed. This chapter is meant to be a brief overview and

an interested reader is encouraged to look elsewhere for more details. [1]

The goal of electronic structure theory is to determine molecular structure and

molecular properties from first principles. This would require solving at least the

f'
l-

r ~

!
1 _

, -
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Schrodinger equation, if not some relativistic analogue such as the Dirac equatiofl. or

even the Breit equation. The first simplification is to consider the SchrOdinger equa-

tion and to consider relativistic effects to be unimportant that suffices for most, but

not all chemistry. Schrodinger's equation cannot be solved exactly for many-electron

systems. As a result, a plethora of methods has been developed geared towards solv­

ing different aspects of the whole problem. Two immediate simplifications are made.

First, the Schrodinger equation of interest will be the time-independent equation

as the stationary state electronic structure is the relevant piece. Second, the Born-

Oppenheimer separation will be made, whereby electronic and nuclear coordinates are

separated. The latter has already been assumed in the previous derivations. Unless

otherwise indicated, the systems are assumed to be closed shell systems in which the

electrons are spin paired. This thesis will mostly consider density functional theory

(DFT) which, however, will be introduced later.

The simplest starting point is Hartee-Fock theory. This conceptually can be con-

sidered as molecular orbital theory with a Hamiltonian. The essential elements are

the same: the atoms are assigned one-electron orbitals that mix together to form

molecular one-electron orbitals. The Hamiltonian determines the mixing of orbitals',

this is an addition Hartee-Fock makes on molecular orbital theory, [2]

The first simplification made in Hartee-Fock is the decomposition of the full many­

electron Hamiltonian into a set of one-electron Hamiltonians. This decomposition is

common to all one-electron theories. For simplicity, start with the hydrogen molec 1. ue,
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G is an arbit.rary ve.c-t',or which may be picked to be zero because the matrix elements

< <PmW + As l<Pn >
c

become independent of it as can be shown with some algebra.

(2.10)

So once. a hasis set has been introduced, each one-electron orbital must be ex-

panded in terms of the basis,

K

7/Ji = L C/1-i<Pp.
/1-=1

(2.11)

This expansion reduces the problem to solving for the set of expansion coefficients

Eliminating spin, and using the Fock operator from Equation (2.4), results in
ep.i'

t1'on for the one-electron molecular orbitals,
an equa

(2.12)

An equation for the expansion coefficients can now be obtained from the molecular

orbital equation. In practice, the basis functions used are usually atomic centered.

Hence, the expansion of molecular orbitals in basis functions is equivalent to the

S
'lon of molecular orbitals as linear combinations of atomic orbitals as done in

expan '

molecular orbital theory. The difference is the use of the Fock equation to obtain the

coefficients. Explicitly by direct substitution, multiplication by <p~(1) on the left and

l~ ,
fI
ir ,
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f
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integration,

L Gvi Jdrl¢~(l)f(l)¢IL(l) = €i L Gvi Jdrl¢~(l)¢IL(l).
v v

The above can be rewritten as a matrix equation,

Pc = §c~

(2.13)

(2.14)

in which F is the Fock matrix, Cis the matrix of coefficients, Sthe overlap matrix

defined as

(2.15)

l is the diagonal matrix of the orbital energies. The solution of the Hartree-Fock

problem is now just a matrix equation. This matrix form still has three complications.

The first is that the equation is nonlinear. This is an essential feature that is in the

Hartree-Fock equation from the beginning and cannot be removed. Hence, iterations

are required to solve the Hartree-Fock equations, regardless of their form. A guess

for the initial expansion must be made, and the equations iterated until the final

coefficients match the initial coefficients within some error margin. Second, the matrix



42 Chapter 2. Electronic Structure Theory: An Introduction

equation is not in the usual form of an eigenvalue problem, i.e.,

- - -
F'C' = C/~. (2.16)

r "
!

Though a matrix equation of this form may be obtained merely by orthogonalization

of the S matrix, i.e., finding X such that

xtsx = 1.

Let,

- --
C/ == X-IC

so that,

FC=FXC'

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)
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- .... - .... ----xtPxc' = xtsxc/~ (2.22)

(2.23)

So one issue now remains to be dealt with, the explicit form of the Fock matrix

elements. First, define the electron density, p(r), and the density matrix, P/J-v,

N/2

p(r) = 2L I1/Ja(r) 1
2

a

N/2

= L[2 L C/J-aC~a]</>/J-(r)</>~(r)
f.LV a .

f.LV
N/2

Pf.LV = 2 L Cf.LaC~a·
a

(2.24)

(2.25)

The definition of the density matrix is useful as the Fock equation can now be rewrit-

ten as,

f(rd = h(rd + ~ L Pa/3[! dr2</>~(r2)(2 - P12r1l)</>a(r2)]
a/3 .

(2.26)

this form is interesting because it shows that the Fock operator can be separated into

two pieces. The first piece does not depend upon the density matrix and when matrix

elements are taken, only one integration is required. The second part depends upon



44 Chapter 2. Electronic Structure Theory: An Introduction

the density matrix, and require..8 integration over two sets of electron coordinates.

Hence, the integrals are referred to as two electron integrals. The latter integrals are

the only ones that change during interation, as can be seen from the explicit form of

In order to describe the solution of the Hartree-Fock equations, all that remains

to be done is to put the pieces together. In particular, the following steps need to be

done. First, a basis set must be chosen and a nuclear geometry specified. Second,

a guess must be made at the density matrix, from which both one and two electron

portions of the overlap and Fock integrals are obtained. Then the overlap matrix is

diagonalized and the transformati<'m matrix found. Using the guess density matrix,

the Fock matrix is obtained and then transformed using the transformation matrix.

This Fock matrix must be diagonalized to obtain the eigenvalues and the expansion

coefficients. These expansion coefficients must then be transformed using 6 = X6'

and a new density matrix calculated from the expansion coefficients. If the new

density matrix agrees with the initial density matrix to within some error margin,

then the process is done. More likely the process must be started over using more

the new density matrix rather than the original guess at the density matrix.

Note that because of the two electron integrals, the energy in Hartree-Fock is not
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the sum of the energy eigenvalues, rather the energy is,

EHF
- LEa - ~(~Jdrldr2(4):(rl)4>;(r2)rll(!>i(rl)4>j(r2)

a lJ

4>: (rd4>; (r2)rl l4>j (rl )4>i(r2)))'

A simpler notation is often used,

and in this notation,

1EHF = LEa - L - < ijllij >.
.. 2

a lJ

(2.29)

To obtain properties rather than the ground state field independent energy, as

described above, one needs to modify the Hamiltonian and to take derivatives. Ex-

plicitly, at the Hartree-Fock level the chemical shielding for nucleus i is,

i _ '" DHF a
2
hvJ1- '" aDi!: ahvJ1-

(J"af3 - ~ J1-V aB a +~ aB -a
a J1f3 a P.f3J1-V J1-V

(2.30)

Di!: is the Hartree-Fock density matrix,. hJ1-v the one electron Hamiltonian matrix

elements in the atomic orbital representation in which the atomic orbitals are labeled

by p.,I/. Notice that because basis functions that depend upon the applied field are
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often used,
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r""

b

(2.31)

r'
!

i
f -

This expression is really more general than indicated. If one obtains, a density matrix

from another theory, i.e., Moller-Plesset theory, then one obtains the properties from

that density matrix.

While properties derived from Hartree-Fock theory are often reasonable, they can

be improved upon, by using other theories. This improvement comes about because

Hartee-Fock theory is not exact. The details of electron correlation are ignored. This

causes a difference in energy between the exact energy and the Hartree-Fock energy,

this energy difference is defined as the correlation energy,

r "

E corT = Eexact _ EHF. (2.32)

Most research in electronic structure theory is centered on going beyond Hartree-Fock

by removing some of the approximations made in a computationally useful manner.

The wavefunction-based methods of improving upon Hartree-Fock are not the

focus of this work, and as such they will only be dealt with qualitatively in a broad

overview. Incorporation of correlation could be done using perturbation theory for

many systems, in the form of Moller-Plesset perturbation theory (MP theory). Or,
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it could be done exactly, at least in principle, without perturbation theory, using the

method of configuration interaction (CI). As the idea of an exact theory is promising,

it should be examined closely.

Configuration Interaction methods are based on improving Hartree-Fock theory

by considering the exact wavefunction as a linear combination of N-electron wave-

functions. Given a set of m one-electron orbitals, the wavefunction is given as a

linear combination of all wavefunction made by placing electrons in N orbitals. So

even with small basis sets, the number of terms in the expansion is very large. One

of the wavefunctions in the expansion is the Hartree-Fock ground state. All the other

wavefunctions can be considered as excitations from the ground state. Explicitly,

1'1/; >exact= 0.01'1/; >HF +L aijl1P~ > +L aijkd'l/;~~ > + L aijkImnl'l/;;~nm > +...
ij ijkl ijkImn

(2.33)

where the lowered indices label the orbitals in the Hartee-Fock ground state from

which electrons have been removed, and the raised indices label the orbitals to which

the electrons have been excited. The series extend up to all N electron excitations.

The a's indicate the degree of mixing and so for most systems 0.0 will be the largest

a. It can be show that this expansion is exact within a basis set, i.e., at the infinite

basis set limit the answer is the exact solution of the original Hamiltonian.

The problem when using the full series, which is full configuration interaction

(FCI), is the number of terms. Consider benzene in a minimal basis. A minimal basis
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is one where a single function is used for each occupied atomic orbital along with one

function for each unoccupied orbital of the same n and I as the occupied orbitals.

So benzene would have one function per hydrogen, plus 5 for carbon for a total of

36 spatial functions that generate 72 spin functions as each orbital function can be

72
associated with a spin up or spin down electron. So there would be

42

different expansions terms! This is far too many terms for any feasible calculation.

So full Cl must remain a dream. Rather partial Cl methods can be done, where only

some excitations are included. For example, there is ClSD, configuration interaction

singles and doubles, where only terms that involve removing one or two electrons from

the Hartee-Fock ground state are considered. So for the example of a minimal basis

benzene, there are 42 orbitals from which to remove an electron and 30 originally

unoccupied orbitals to place one into so there are 1260 single excitati<)fis, and there

are 374535 double excitations, for a total of 375795 excitations, almost 15 order of

magnitudes fewer than with FCl! Though in both cases the number of terms can be

reduced as wavefunctions with different spin symmetries, e.g. singlets and triplets,

will not mix, but the number of excitations is still considerable. The result is that this

method is very expensive computationally and has a very unfavorable scaling with

molecular size, so it is not practical for large molecules, at least in its present form. A

more practical, though with a higher scaling that Hartree-Fock, method of mixing in

contributions from Hartree-Fock excitations is to use perturbation theory, i.e. Moller-

Plesset (MP) theory. This theory consists of using ordinary perturbation theory, i.e.
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Raleigh-SchrOdinger theory, with a particular partitioning of the Hamiltonian,

H=HHF+V (2.34)

(2.35)

So the starting point is the Hartree-Fock Hamiltonian and the perturbation is the

!
different between the exact Coulomb potential and the Hartree-Fock potential.

Elementary perturbation theory gives the zeroth, first and second order ground

state energies as the following:

EO LEa (2.36)
a

< 'l/JolVl'l/Jo >=< 'l/Jol(L r
l
. - L vHF(i))I'l/Jo >

'3-"

E 1 - (2.37)
tJ i

1
- - L < abllab > - L < alvHFla > (2.38)

2 ab a
1

- -2" L < abllab > (2.39)
ab

E2
Ln

1< OlVln >2
(2.40)- EO-EO ,

, o n

As usual the summation for the second order energy is over all states except the

ground state and all are zeroth order states. The Hartree-Fock ground state energy is

the &um of EO +E 1 and so Hartree-Fock theory is correct to first order in correlation.

Going to second order in correlation results in Moller-Plesset second order per-

turbation theory (MP(2)). So which states contribute to the second order energy? It
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(
I
t

turns out that only states that are double excitations from the Hartree-Fock ground

state contribute. A doubly excited wavefunction is a wavefunction obtained by re-

moving two electrons from orbitals which are filled in the Hartree-Fock ground state

and placing them into orbitals that are empty in the Hartree-Fock ground state, Le.,

promoting two electrons from occupied orbitals into virtual orbitals. The Coulomb

operator is a two electron operator, hence the appearance of only one and two elec-

tron integrals, and so it can only give nonzero matrix elements between wavefunctions

that differ by only double excitations. The single excitations can be ruled out as well

because the Hartree-Fock ground state is correct to first order already. That single

excitations do not couple directly to the Hartree-Fock ground state can be proven

rigorously as Brillouin's theorem. So the second order energy can be written as,

L

(2.41)

(2.42)

in which a and b index the orbitals from which the electrons have been excited and

rand s index the orbitals to which the electrons are promoted into. The E'S are the

orbital energies from the solution to the Hartree-Fock equations.

One could, of course, continue of beyond second order. The computational scaling,

however, becomes increasingly higher. There also are some other wavefunction-based

theories that can improve on Hartree-Fock, again with at the expense of additional
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computer time, thereby restricting their use to smaller systems. These methods

are less commonly used for magnetic responses and so will not be surveyed here.

An interested reader may find them elsewhere. The increase in computational cost

is what makes using wavefunction based theories beyond Hartree-Fock difficult. It

would be very useful to have a theory that has a similar computational complexity

to Hartree-Fock, which is also capable of correcting the deficiencies of Hartee-Fock.

Such a method is Density FUnctional Theory, the subject of the next chapter.
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Chapter 3"

Introduction to Density Functional

Theory

The existence of a theory which at worst is as simple as Hartree-Fock theory, but

which can in principle be exact, would be rather advantageous as it would increase

the scope of electronic structure theory. Such a theory does exist: Density Functional

Theory. This thesis is an explicit realization of a variant of density functional theory,

magnetic field density functional theory. As such, an introduction to the basis of

density functional theory is necessary for understanding this work. [1]

An N-particle system in 3 dimensions is represented by a wavefunction, 'l/J(i\ , r2, ...,rN, s),

which is a function of 3N spatial variables plus the 3N spin variables, s. For most of

this work, closed shell electronic systems shall be considered with Stot = O. Hence,

the spin label will now be dropped when considering the electrons. Of course, the
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nuclear spin will be explictly considered. The probability distribution for a state,

irrespective of spin, is,

(3.1)

This is interpreted as the probability of having particle one at position Tl, particle two

at position T2, up to particle N being at position TN. If this probability distribution

is integrated over all but one set of coordinates, then the result is the probability

of there being a particle at a particular position irrespective of the position of any

other particle. The identity of the particle is also lost, however, for a set of identical

particles, such as electrons in a molecule, there is no identity to lose. By integrating

the N-eleetron wavefunction over all the coordinates save for the coordinates of one

electron, the probability distribution for all the electrons is obtained. This is the

electron density.

I -

(3.2)

Unlike the N-particle wavefunction, the electron density is a physical observable.

In particular, it is measured in x-ray diffraction experiments. These two aspects

of the electron density: its physical existence and functional dependence on only

three coordinates, render theories invoking it more amenable to intuitive thought and

simplification. Hence, it would be advantageous to transform electronic structure
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theory, or some aspects of it, into a theory based upon electron densities not many-

particle wavefunctions. Formally, this is done in part by the theorems of Hohenberg

and Kohn. [2]

The first theorem is an existence statement. The external potential, v(r), is

determined to within an additive constant, by the electron density, and vice versa.

Hence, the electron density determines both the numbers of electrons in a system and

the scalar potential felt by these electrons. Thus, the electron density determines all

the ground state properties of a system. As the electron density is itself a function

of the position vector, r, properties that are determined by the electron density are

referred to as functionals of the electron density. A functional is merely a function

of some quantity that is a function of other variables, i.e., a function of a function.

This theorem demonstrates the existence of a density functional theory, but does

not present a prescription for determining anything from the density. As presented

here, the Hohenberg-Kohn theorem is restricted to ground states in the absence of a

magnetic field. There are generalizations that lift all of these restrictions. This work,

however, will restrict itself to ground states.

In DFT, there is no general prescription for the construction of functionals. This is

a significant problem in density functional theory: the lack of a hierarchy of methods

such as those present in wave function theory. This means more care must be devoted

in the use of density functional theory and more creativity and work devoted to

functional construction. Problems that are intractable in wavefunction based theories,
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however, can be computed and understood using density functional theory. [3]

The proof of the first Hohenberg-Kohn theorem is rather simple and relies on the

variational principle. Generalizations are possible [4], but this is the simplest version.

Start by considering the electron density for the nondegenerate ground state of some

N-electron system. Suppose there exist two different potentials, v(r), and v'(r) that

each have the same ground state electron density, p(r). If these two potentials differ

by more than a constant then they must have different Hamiltonians, H, and H',

which generate the same electron density, but with different wavefunctions 'I/J, and 'I/J'.

Now to prove the theorem one simply uses the wavefunction from Hamiltonian H as

a trial wavefunction for Hamiltonian H', and vice versa and arrive at a contradiction.

In particular,

Eo < < 'I/J'IHI'I/J' >=< 'IjJ'IH'I'IjJ' > + < 'IjJ'I(H - H')I'IjJ' > (3.3)

Eb +Jdrp(r) [v(r) - v'(r)) (3.4)

Eb < < 'ljJIH'I'IjJ >=< 'ljJIHI'IjJ > + < 'ljJ1(H' - H)I'I/J > (3.5)

Eo - Jdrp(r) [v(r) - v'(r)). (3.6)

Add these together and a contradiction is reached,

(­
I
I -

f '
I
l.

[ -

Eo + Eb < Eo + Eb· (3.7)

.J



f _.,

57

Hence, the original supposition was wrong. Thus, there can only be one external

potential that generates a particular electron density as its ground state.

The second Hohenberg-Kohn theorem provides density functional theory with a

formal variational principle. For an approximate density, p'(r), which integrates to

the number of electrons such that, p'(r) ~ 0, then,

Eo ~ E[p'(r)] (3.8)

Eo is the exact energy and E[p'(r)1is energy obtained from using the approximate

density.

In wavefunction based theories, the energy can be broken down into several dif-

ferent components, e.g. kinetic, exchange, correlation and electron-nuclear. [5] This

useful separation can also be done in density functional theory.

The first separation that can be done is separating out the external potential, i.e.,

E[p(r)] - Jp(r)v(r)dr + F[p(r)]. (3.9)

F[p(r)] is everything else. This unknown functional is also composed of several pieces.

F[p(r)] _ T[p(r)] + Exc[p(r)] + J[p(r)] (3.10)

T[p(r)] is the kinetic energy, which in density functional theory must be approximated.
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f
I

J[ (-)] = ~jd-d-'P(f)P(f')
p r 2 r r If _ f'l . (3.11)

r
I

This is already known from classical electrostatics as a functional of the density.

[6] Notice, this is a nonlocal functional as the value of the classical term at a particular

point in f depends upon an integral over all space due to the df' integral.

~ = jdf' p(f')
8p(f) If - f'l

(3.12)

Other nonlocal functionals will appear later in this work. Most functionals in density

functional theory are local. The locality is due to the manner in which they are

constructed, and not necessarily due to any fundamental physics. The last piece

E.r.c[p(f)] is the quantum mechanical exchange and correlation which also must be

approximated. As a further ansatz, the exchange and correlation are often considered

individually, e.g.,

Exc[p(f)] = Ex[p(r)] + Ec[p(r)]. (3.13)

The main problem in density functional theory is the actual construction of ap-

proximations to the functionals. The first set of approximations was actually con-

structed long before the theorems of density functional theory were proven. This

•I
U



f '
L

~ ~ ~

59

model is the Thomas-Fermi model that was developed in the early years of the 20th

century. [7], [8], [9] The electrons are treated statistically in a simplified model also

referred to as the electron gas model. Despite being a rather approximate model, the

Thomas-Fermi theory still forms the basis for most functional construction. There

are at least three different methods of deriving the Thomas-Fermi functionals, the

original electron gas method, plus more modern scaling and propagator methods.

The scaling method is the simplest of the three. [1] By scaling, one simply means

multiplication of the coordinate vectors by a parameter A. The wavefunction, 'l/J,

scales as,

(3.14)

A3N/ 2 preserves the normalization. The kine~ic energy scaling can also be derived

remembering that the expectation values are integrals that must be scaled as well,

T['l/J]
yr?

(3.15)- < 'l/JII:--t I'l/J >
. 2t

yr?
T['l/J>.] - < 'l/J>.I~ --tl'l/J>. > (3.16)

t

- A2 < 'l/J\~ - ~; I'l/J > . (3.17)
t

This is an exact scaling of the kinetic energy, and so even though it is derived from

wavefunctions, it should be applicable to density functionals as well. The simplest
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such functional that satisfies this scaling property is,

T[p(r)] = Jdrp5/3(r). (3.18)

[

f'

A factor of ,\5 is obtained from the p5/3(r) upon scaling and a factor of ,\-3 from the

integral. Scaling does not allow one to obtain constants, and so scaling can only be

used to obtain a form. Constants must be obtained from other methods, or by fitting

to experimental data.

The original electron gas method does allow one to obtain not only the scale, that

IS, the power of the density, but also the constants. Consider a zero temperature

electron gas. [10] Space is divided into many different cubic cells with sides of length

a, and the particles are considered as being in a three dimensional infinite well, Le.,

a particle in a 3D box, then the energy levels are

~--

{ ,

i
i
I ,

(­

i

(3.19)

For large quantum numbers, the distribution of energy levels becomes nearly con-

tinuous and so the number of energy levels smaller than a given energy, U(E), can be

approximated by one octant of a sphere. Only one octant is required as the ni '8 must

Q,,
'
~;

]I

[ :,-,,','

.. ~j
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be positive.

O"(E) -
1 (4 *7r * (n; + n; + nz )1/2)3

8 3

_ ~(8ma2E)3/2
6 h2

The density of states, g(E), is quite easily determined as,

(3.20)

(3.21)

(3.22)

To determine the total energy of the electrons and the number of electrons per

cell all that is left is to evaluate the appropriate integrals,

E = 2JEf(E)g(E)dEN = 2Jf(E)g(E)dE (3.23)

The 2 is from the double occupancy due to spin, and f(E) is the distribution func-

tion. For a zero temperature electron gas, the distribution function is just the zero

temperature limit of the Fermi-Dirac distribution, which is just a Heaviside function,

centered on the Fermi energy. Hence, the energy becomes,

E (3.24)

(3.25)
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The energy is obtained as a function of the Fermi energy. One can also obtain the

number of electrons per cube as a function of the Fermi energy. Then an inversion

is possible to obtain the energy as a functional of the electron density. This method,

that is, obtaining the density and the energy both as functionals of the same quantity

and then inverting, is a common method of constructing functionals. The number of

electrons per cell is,

N (3.26)

(3.27)

Now upon performing the inversion,

(3.28)

then substituting in the density :;; and transforming to an integral, the following is

obtained;

(3.29) .~ -

,
t -'"

This has the same form as the result obtained by scaling arguments, as it should,

but the constant has also been obtained. This is a kinetic energy functional as the

electrons have been treated as particles in a three-dimensional box. Hence, the ex-
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change and correlation energies have been completely neglected thus far.

Correlation is typically treated by numerically evaluating the correlation energy

for a uniform electron gas and then fitting the results to an analytic form. [11]

Exchange can be added to Thomas-Fermi theory via the method of Dirac. The result

is Thomas-Fermi-Dirac theory. [12] Dirac theory is derived in a slightly different

manner then the one elucidated above.

Note that the exchange energy, K[p], can be expr(l-ssed via the density matrix, [1],

So the density matrix for a closed shell N-particle system,

N/2

p(f1, f 2) = 2L 'l/Ji(Tl)'I/J;(f2)

(3.30)

(3.31)

should be the starting point in which case the Hartree-Fock energy can be expressed

as

EHF[P] = j [~l\1ip(fl' T2)h=r2dfl + jP(f)V(f)df + J[p]

-4
1

j ~p(fl' f 2)p(f2,f 1)df1df2.
T12

The first term is the kinetic energy, the second term is the electron-nuclear poten-

tial energy, the third the classical Coulomb interaction and the last the exchange
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interaction. Correlation has been completely neglected. Two of these terms are auto-

matically in the form of density functionals, the other two - the kinetic and exchange

energies - are functionals of the density matrix and they need to be expressed in terms

of the electron density. Within the Thomas-Fermi-Dirac model, one starts with the

electron gas model as before. The orbitals appropriate for this system when there are

large numbers of particles and periodic boundary conditions can be employed, are

plane waves

[',

ol'(k k k) 1 deer
'f/ 'x, 'y, 'Z = V 1/ 2e .

The k's are the quantum numbers for the particle in a box, i.e.,

27rn·
k - J

oj - Vl/3'

The density matrix can now be obtained quite easily as

(3.33)

(3.34)

(3.35)

Of course, this begs the question as to what the occupied k's are, however, this

qUf',stion only need to be answered indirectly. First, make the sum into an integral in
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k space,

(3.36)

(3.37)

and then take the diagonal elements, which give the electron density,

l ,
kJp(r) = (3.38)

\ 37r2

I
\ ,

[37r2p(r)F/3.kf(r) - (3.39)

Again, the electron density has been obtained as a functional of one quantity, the

! .

j ,

L
L

I
tJ

Fermi momentum in this instance, and the quantity of interest, i.e., the density ma-

trix that will generate the energies, has been obtained as a functional of the Fermi

momentum as well. Hence, an inversion can be done at the end to transform between

functionals of the Fermi momentum and the electron density. The integrations to

obtain the density matrix must now be performed with a particular choice of coordi-

nates. For a uniform electron gas, the most sensible choice is,

f
rl + r2

(3.40)-
2

S Tl - T2 (3.41)
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p(r, r') (3.51)

(3.52)

A representation of the density matrix in terms of t~e propagator is obtained. As

the kinetic and exchange energies can be written in terms of the density matrix, an

analytic approximation to the propagator generates approximations to the energy

functionals.

Explicitly, the lowest level of approximation that can be done is to go just beyond

the free particle propagator. [16]
, ",

in which

W(r', r) = 11

V(r + (r' - r)E)dE.

Integration generates a density matrix

(3.53)

(3.54)

(3.55)

,_,

f ')

L

L ..

I c !, I
J :::; I

L [,
I

I I
I

fi

L1 I
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where

k2 = 2(EF - W(f', f)). (3.56)

J3/ 2 is a Bessel function of order 3/2. From this density matrix, the kinetic energy

functional can be obtained using Equation (3.32) , and the density by taking the limit

f' -+ f,

Ts[p(f)] = Jdf - [ rk
_I )3/2B(k2)[( r k

2
-1)2J7/ 2(klf - r'l)

271" r - r' r' - r

If ~f'l J5/ 2(klf - f'l) + 2(f - f'). VTrW(f, f')J3/2(klf - f')

_ if ~ f'IVT;W(f, f')J1/ 2(kif _ f'l) + (If ~ f'l )2IVTrW(f, f')1 2J-1/ 2(klf - f'I)] (3.57)

Inversion to remove the Fermi momentum results in the Thomas-Fermi relation

plus corrections. The propagator method has the advantage of being the most readily

generalizable. An improved approximation to the propagator will result in improved

functionals. In chapter four this will be done explicitly .

The more exact treatment of the kinetic energy that allowed density functional

theory to find practical implementation is the Kohn-Sham density functional theory

[13]. The usefulness of this theory relies on the realization that most of the energy

in a bound system is kinetic and virtually all the kinetic energy can be obtained by

considering a noninteracting system with the same electron density.

In particular, consider the following equations, which are true exactly for N non-
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interacting electrons,

N 1
T[p] - ~ < 'l/Jil- "2\7

2 1'l/Ji >
t

N

p(r) - L L I'l/Ji(r, 8)1 2

s

(3.58)

(3.59)

where s is the spin variable, and the exact result for N interacting electrons is,

N 1
T - L ni < 'l/Jil- -\72 1'l/Ji > (3.60)

. 2
t

N

p(r) - L ni L I'l/Ji(r, 8)1 2
, (3.61)

s

For an interacting system, this sum runs over an infinite number of orbitals with

occupation numbers, 0 :::; ni :::; 1.

To take advantage of these exact identities, a nonintetacting reference system

is invoked so there are no electron-electron potential terms. Instead, the electrons

move in an effective potential, the Kohn-Sham potential lIks (r), which constraints

the noninteracting electron density to match the true density. This potential must

obviously include both the electron-electron and electron-nuclear potentials.

Specifically, one solves the Kohn-Sham equations for the Kohn-Sham orbitals, cPi,

(3.62)



~-----------------------~-
where

N

per) = L L l<Pi(r, 8)12
,

i s

and it can be shown that,

) (
_ (_) 8J[p] 8Exc[p]

Veff(r - l/ks r) =1/ r + 8p(r) + 8p(r)

(-) f per') d-I (-)
- l/ r + . If _r'l r + l/xc r .

(3.63)

(3.64)

(3.65)

d
'ty must of course be solved self-consistently just as in Hartree-Fock theo

The enS1 ry

h are N one-electron orbitals, <Pi' The form of the KS equations are Veand t. ere . .ry

. '1 t that of Hartree-Fock theory; the difference lies in the Vetter) that must b
S1m1 ar 0 e

. ated unlike the potential in HF theory. The Kohn-Sham potential can l'Uapprox1m .,

, '1 be exact which is not the case in Hartree-Fock theory, Orbital energiespnnc1P e· , are

bt 'ned in Kahn-Sham theory,
also 0 m

u

(3.66)

f 1, ,

Kahn-Sham density functional theory simplifies the problem of finding functionals

by handling the noninteracting kinetic energy exactly, The Kohn-Sham energy is not
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to the density in the computation of magnetic responses.

This theorem is for weak magnetic fields as it is based upon perturbation theory.

In particular, first expand the energy to second order with respect to its explicit

dependence upon the field,

F[p(r), 13] = F[p(r), 0] + B282

F~f}' B] . (3.104)

r j
f j

I. l

The quadratic term is taken in the limit as the field goes to zero, and there are only

even powers of B due to time reversal symmetry as discussed in Chapter 1. The

energy is even under time reversal, but an external field is odd. Hence, fields can

couple in with only even powers. Though if there are two fields present, such as a

uniform field and a dipole field, each field could couple in linearly.

Although the energy has been expanded with respect to its explicit field depen-

denee there still is an implicit field dependence through the density, as the electron

density itself depends upon the field. Now expand out the energy with respect to this

implicit dependence,

[(-) -] [(-)] J -2(- -)F[pO, 0] 2 82F[pO(r),B]
F p r ,B = F p r ,0 + drp r, B fJp(r) + ... + B 8B2 (3.105)
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where the following are defined.

pOe;) = p(r, 0)

2(- B) = B2d2p(r, B)
p r, dB2 .

(3.106)

(3.107)

Each series is stopped at second order due to the weak field, and the normalization

of p(r) requires that

As a result the energy to second order is

E[p(r),B] _ EO[ 0(-)] B2(PF[pO(r),B] +Jd- 2(- B).[8F[pO, 0]
p r + 8B2 rp r, 8p(r)

v( -) J d-I pO(r) ] .
+ r + r Jr- r'l + ...

(3.108)

The first term in the expansion is the zero field energy. The zero field density mini-

mizes this. Applying this variational condition causes the last term to vanish for the

true ground state electron density. Thus,

(3.110)

which completes the proof as only the ground state density is needed. Now if the
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full functional is used, rather than the Kohn-Sham equations, then the explicit B

dependent term, which corresponds to the second term, can be found by examination.

As the Kohn-Sham equations are used in any practical application, the problem seems

to be more complicated as

(3.111)

where E? = Ekxc or E? = Exc depending upon the Kohn-Sham equations used. Now

the latter term can be obtained trivially by examination given some approximation

to the functional. The explicitly field dependent portion of the noninteracting kinetic

energy, however, cannot be found by examination because the orbitals are not known

as functionals of p(r, B).

The explicit field dependence of the kinetic energy, however, can be obtained.

Consider Ts as an expectation value of a one-electron kinetic energy operator, as in

coupled Hartee-Fock theory,

N/2

Ts = L < iltli >

then the explicitly field dependent portion becomes

(3.112)

(3.113)



r· .,
_ L-
.~ r-

t

- ~

85

Now if the first set of Kohn-Sham equations is used then all the terms above are

pr€'-sent, and one need calculate linear field corrections to the Kohn-Sham orbitals.

The second order property theorem is still valid as these corrections can be calculated

with the zero field electron density. Now if the second set of Kohn-Sham equations

is used, then the one-electron kinetic energy operator is just

1 2
t = --V'

2

and hence, the energy to second order in the field is given by,

which means there is another advantage to the second formulation.

(3.114)

(3.115)

f
~ t ~

The basic and essential elements of density functional theory both with and with-

out magnetic fields have been reviewed. The background has been laid for further

development of Magnetic Field Density Functional Theory (BDFT) as discussed in

the next few chapters.
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Chapter 4

Local Current Density Functionals

In this chapter, I present my work on local current density functionals. These

functionals are used with the Biot-Savart integrals to obtain the magnetic responses

as functionalsof the zero field electron density. A gradient expansion of the electronic

current density in the electron density is used to obtain these expressions for the

magnetic susceptibility and chemical shielding. The first term in the expansion is

the Thomas Fermi expression. All succeeding terms diverge for both properties. A

renormalized functional is used which removes the divergences and gives asymptotic

diamagnetism. This renormalized functional uses a single parameter that depends

linearly on the number of electrons gives heavy rare gas susceptibilities to within 1%

of exact calculations using electron densities calculated at the same level of theory.

Similar results are found for the chemical shielding. Susceptibility and shielding

calculations for the helium dimer and the hydrogen molecule in singlet and triplet
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states are presented. The results are compared with other calculations over a full

range of internuclear distances. .

4.1 Introduction

The earliest use of density functional theory as a means of calculating magnetic

responses may be found in the work of Cina and Harris. [1] They used an electron gas,

or Thomas-Fermi-Dirac, type theory to calculate the magnetic susceptibility tensor

of the triplet state of H2 . Grayce and Harris then used a similar description of the

electrons to calculate the shielding tensor of the same state of H2 . [2]

The above usage of density functional theory might be called a "pure density

functional theory". That is, responses are obtained from an energy functional by

invoking the Hellman-Feynman theorem and taking the appropriate derivatives. This

method is in contrast to more recent calculations that solve the Kohn-Sham equations

in a vector potential. [3]

In 1995, an entirely different theory of magnetic responses was advanced. [10]

[11] This theory demonstrated that the magnetic responses are all related to a single

tensor response functional. This functional is a universal functional of the electron

density in the absence of the magnetic field. The functional is, of course, unknown.

If one could find reasonable approximations to the functional, all field dependent

methods of calculating magnetic responses could be dispensed with. This may well

lead to a simpler way of obtaining and understanding the responses.



90 Chapter 4. Local Current Density F'unctionals

Locally uniform approximations to the functional have been developed. These

were developed by Cina and Harris [1] and Grayce and Harris, [2], in what may

be considered precursors to the general theory. In reality their work was a hybrid

of ideas. As the functional was meant for application to interacting closed shell

systems, additive densities were used. These additive densities were used as their work

was based upon Gordon-Kim theory. [11] In Gordon-Kim theory, additive densities

are used to obtain incremental responses. The full responses are obtained with the

additive densities and then the atomic 'responses are subtracted away. The hope

is that the incremental responses are modeled well. Gordon-Kim theory has been

applied with some success to electrical responses. [12] In the work of Harris and Cina

and Grayce and Harris, each atomic density was in the presence of the appropriate

magnetic fields. Thus, terms in the functional, which would make no contribution

if the exact nonadditive density were used, are manifestly present. This seeming

contradiction to the tenets of the general theory is not a surprise. A similar result

occurs in all linear responses via density functional theories of interacting closed shell

systems: additivity in the presence of external fields is approximately equivalent to

nonadditivity in the absence of the fields. [11]

In this chapter, an attempt is made to obtain the magnetic susceptibility and the

chemical shielding directly from the total current density. [18],[19],[20] The result-

ing integral expressions, (sometimes called the "Biot-Savart integrals") [20], for the

shielding and susceptibility are consequences of linear response theory. As such, the
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E -

induced current density may be looked upon as a response. Hence, according to the

general theorems of BDFT, the current density is a linear function of the external

magnetic field and a functional of the unperturbed electron density.

The attempt to construct responses via the induced current density has a long

history. [15], [16], [17] Such attempts usually involve bypassing perturbation theory

or using a Dalgarno-Lewis version of perturbation theory. [16][17] Indeed there even

has been attempts to construct currents from a form of quantum hydrodynamics.

[16] None of these theories related the current density to the unperturbed electron

density, although some came close. [15]

4.2 The Current Density

The current density, ](r), is not arbitrary. [12] For a bound stationary state it

must be transverse,

,
,'-

and so one must have,

\7 • ](r) = 0

](r) = \7 x M(r).

(4.1)

(4.2)
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As the chemical shielding and the magnetic susceptibility are the quantities of interest,

the line.ar response regime may be considered. In this regime, the external magnetic

field is constant and uniform. Hence, the most general form of M(r)), to within a

gradient of a scalar, is

(4.3) L _

_ -::. (2) .

M(O)(f), M(l)(f) and M (f) are, respectively, irreducible zero, first and second rank

tensors. The shielding and susceptibility tensors may be written in terms of the M

tensors through use of the Biot-Savart integrals [12],[14]

(4.4)

and

(4.5)

Substitution of Eqn. (4.4) into Eqn. (4.5) gives a contribution from M(l) to X that

is a rank one tensor, so that the full X tensor would be asymmetric. The X tensor,

however, is symmetric, hence M(l) must equal zero. M(O) contributes to the scalar

-::. (2)
component of both 0- and X , as well as the symmetric component of 0-. M

contributes to all ranks of both responses.
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Now the !VI tensor will be determined. as a functional of the unperturbed electron

density. In order to orient oneself, begin with the only systems, besides the nonin-

teracting uniform electron gas, where the current density and hence, M, are known

exactly, given that the magnetic field is either constant or that due to a nuclear spin.

[12] These systems are closed shell atoms, or more generally, any rotationally invari-

ant bound system in a state of zero angular momentum. Here the current density is

entirely diamagnetic. [12] That is, in the gauge where

\7. A(f) = 0,

and, e.g.,

- 1 -
A(f)) = 2B x f,

the current density is, in units where all constants are set equal to one,

J(f) = -A(f)p(f).

Thus,

(4.6)

(4.7)

(4.8)

(4.9)
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From Equations (4.8) and (4.9) the scalar, M(O) may be determined, namely,

1iTI

M(O) ="2 0 dr'per').

Now the scalar susceptibility and shielding are given, respectively by,

x = - j drM(O)p(r)

and

(4.10)

(4.11)

(4.12)

f -,
i

l _

The 1\1(0)(0) indicates evaluation at the nucleus whose shielding is to be calculated.

In terms of the density, the well-known results are, [10]

and

u =100

drrp(r)

(4.13)

(4.14)

As mentioned above, the starting point will be the locally uniform electron gas

model. Here, as shall be seen, both the current density and M(O)(O) are local func-
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tions of the density. Hence, by comparing Eqn. (4.12) in the local electron gas

limit with Eqn. (4.15), a failure of the local theory is immediately seen. Th.e exact·

diamagnetic M(O)(O) is nonlocal. Hence the shielding is an integral over all space.

The shielding in the local electron gas theory depends on the density at the nucleus

(r=O). Thus, it should come as no surprise that a purely local theory may fail to

predict shieldings well, but may generate reasonable susceptibilities. Nor should one

be surprised if a "corrected" local theory requires different functionals for shieldings

and susceptibilities.

4.3 The Gradient Expansion of The ·Current Den-

sity

The problem is how to obtain the current density as a functional of the density..

It shall be assumed that the current density is that which arises from the solutions

of the Kohn-Sham equations, e.g., Equations 3.36-3.69, in the presence of a vector

potential. (7],(19] Thus, the current density constructed is not exact. If the Hellmann-

Feynman theorem is used to derive the current density from the energy functional,

there are additional terms. (9] The present approximation is the same approximation

used in the work of Harris and Cina (18] and the path integral theory of Harris and

Pratt. (19] The situation is not unlike the so-called" adiabatic approximation" in

time-dependent density functional theory. (20]
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Both position variables, rand i-', have been explicitly indicated. The diamagnetic

contribution to the Cllrrent density is exactly canceled by the i3.~xrl term in W(r, t)

as W( (r, t) is exponentiated in the propagator and derivatives are then taken.

A gradient expansion for J(r) is sought for in terms of the electron density. This

maybe accomplished by expanding both WO(r, t) and WI(r, t) as power series in

time, and then expanding both the current density and the electron density in terms

of the potential and inverting to obtain J(r) as a functional of the electron density,

)[p(f)l. Thus,

(4.22)

and

(4.23)

The first nonvanishing contributions to the W's appear at t 2
. This can be demon-

strated by allowing for lower order terms and then substituting into the Schrodinger

equation. All lower order terms are contained already in the free particle propagator,

(
_1_. )3/2e

iJr-;;/)2. After substituting the WO(r, t) power series into Eqn. (4.21) one
21l"zt

i .

r !

I~

~

L I
I

I
I

fL...

l=
t
l

{

I
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obtains,

n

(n - I)W~ + (r - r') • ~W~ - i~2WLl + L ~w~ • ~wLm
m=2

- ~(r-r')xB.~W~_l

99

(4.24)

where n = 3...00 . The lowest order contribution to the current density is Wi, which

yields the current density

(4.25)

Since W~ = -V(r) after taking the limit, one can change the current density from a

functional of the potential into a current density that is a functional of the electron

density. This is done via the Thomas-Fermi relation, [20]

(4.26)

The resulting current density is identical tothe Thomas-Fermi current density derived

by Harris and Cina, as it should be. [18]

(4.27)

Their treatment is equivalent to the present one in lowest order.
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Now the treatment is extended to fourth order in time. This gives the first gradient

corrections to the Thomas-Fermi current density. The relevant part of the propagator

is,

\ -

to third order in ·gradients the current density is,

(4.28)

](r)
iJ x \7Wf iJ x \7\72Wf (iJ x \7Wf)\72Wf

- 127l"2(2W~)1/2 - 487l"2(2Wf)3/2 + 167l"2(2W~)5/2

iJ x \7W~(\7W~? iJ x \7\7W~ • \7W~
+ 1927l"2(2W~)7/2 967l"2(2W~)5/2

(4.29)

Inversion to obtain the current density as a functional of the electron density requires

the use of the Thomas-Fermi relation for the last two terms. The first term requires

gradient corrections to the electron density .[25]

Instead of writing the current density explicitly, it is written in terms of M. Only

/1,£0 appears to second order in the gradients of the density.

(4.30)

where x = ~f3' As the gradient expansion at this order contains only MO, only the
p

scalar component of the magnetic susceptibility can be calculated and the scalar and

symmetric component of the chemical shielding. Tensor terms do not appear even
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r-- ~ to sixth order in time in the gradient expansions. It may very well be that no finite

gradient expansion can ever give tensor terms.

An additional deficiency of the gradient expansion is the divergence of the terms.

If the full gradient expansion is used to calculate the magnetic susceptibility, the result

diverges. The reason is that atomic and molecular electron densities are exponential

at long range. Since ('\1p)2 / (pr /3 _ p-l/3 as does '\12p/ (p)4/3, the resulting integrals

over all space diverge. pl/3 is still finite in this instance; although the decay is not

fast enough to recover diamagnetism. This divergence is the same type as that which

appears in gradient expansions of the kinetic energy at sixth order in the dimensionless

variable x, and at fourth order for the exchange energy. [26] In the case of the

current density, the divergence occurs ata lower order because the scale, pl/3, is at a

lower power of the density. Similarly, the expression for the shielding in the gradient

expansion, Eqn. (4.13), is incorrect because the infinite surface integral has been

neglected. This point shall be returned to in a little while.

4.4 Atomic Susceptibilities and Shieldings

Suppose that the current density is truncated at the Thomas-Fermi current den-

sity. What accuracy can be expected? Cina and Harris performed calculations for

the susceptibility of the hydrogen atom and the triplet state of hydrogen molecule

within the additive density approximation. They called their term "the direct term".

Similar calculations were performed using the exact density of the hydrogen atom,
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Table 4.1: Atomic Shieldings and Susceptibilities (atomic units)
Atom Exact Exact TF TF TF +grad

Shielding Susceptibility Shielding Susceptibility Shielding
H 0.333 -0.500 0.282 -0.958 0.294
He 1.127 -0.394 1.005 -0.841 1.058
Ne 10.7 -1.388 5.787 -1.064 6.017
Ar 22.9 -4.34 10.28 -2.576 11.96
Xe 106.2 -9.00 31.57 -4.308 32.8

e~2r, and Hartree-Fock densities [27] for helium, neon, argon, and xenon. The shield-

ing has also been calculated using the same approximations for the electron densities.

The results are given in Table 4.1. The exact calculation of the diamagnetic sus-

ceptibilities and chemical shieldings, using the same densities as those used in the

Thomas-Fermi calculations, is presented for comparison.

The Thomas-Fermi results for the susceptibility are within a factor of 2.2 in all

cases. For hydrogen and helium Thomas-Fermi overestimates. For the remaining

atoms, however, the results are too low. The reasons for the trend in the Thomas-

Fermi magnetic susceptibility is that the Thomas-Fermi susceptibility density, i.e. the

integrand in the susceptibility integral (Eqns. 4.12 and 4.14), decays far too slowly at

long distances, but also is too small at short distances. For hydrogen and helium, the

Thomas-Fermi underestimate at short distances is over-compensated by the slower

decay at long distance. For the heavier elements, the short distance shell behavior

is more important, and so the underestimate at short distances is not compensated

by the long-term distance behavior. That neon is most accurately represented by the
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Thomas-Fermi function is simply a manifestation of these two errors approximately

canceling.

The behavior of the chemical shielding is harder to understand. In a local density

functional theory, the shielding is a functional of the electron density at the origin

alone, whereas in exact diamagnetism, the shielding still involves an integral over all

space. The inconsistency here may be an indication that a local density functional

theory cannot represent the chemical shielding accurately, or it could mean that

different functionals are needed to represent the shielding.

As discussed earlier, the gradient expansion for the magnetic susceptibility di-

verges as does the gradient expansion for the shielding. For the shielding, the diver-

gence appears in the infinite surface terms that must sum to zero as the exact result is

finite. The local contributions are finite. Thus, gradient corrections to the Thomas-

Fermi may be considered, if only the local terms are kept, disregarding the divergent

surface terms. These surviving terms involve the electron density, the gradient of the

electron density, etc., all evaluated at the nucleus.

The gradient-corrected calculations have been carried out for the noble gas atoms.

Using the first correction to Thomas-Fermi,

(4.31)

As may be seen in Table 4.1, the improvement is not great.
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To improve on the Thomas-Fermi functional and its gradient corrections, inspi-

ration was taken from the work of A. D. Becke. [28], [29],[30] The crucial idea is

that to improve a Thomas-Fermi functional one should multiply it by a function of

the dimensionless variable x = (~~fJ), such that in the limit of the gradients going to

zero, the Thomas-Fermi function is recovered, and such that some exact constraint, or

constraints, of bound systems is satisfied. Becke constructed an exchange functional

in this manner by considering the exact expression for the exchange hole. The same

is done for the current density.

At long distances, one should not be able to tell the difference between at atom and

a molecule, as in both cases the electron density looks the same. Atoms are, of course,

purely diamagnetic. Thus, the long-range behavior which one would like to recover is

the one in which MO
-+ p(r)r2/2. This reproduces asymptotic diamagnetism in the

susceptibility density. The susceptibility density is the integrand of the susceptibility

integral. The functional arcsinh[x]/x -+ r[p(rW/3 as the electron density becomes

exponential at large distances. There are many functionals that could reproduce this

behavior. The only one, which was found to be reasonably successful in reproducing

both the susceptibility and the susceptibility density, was:

\ -

M(O) = p(r)1/3 [1 + Qxarcsinh[x]]2
4(31T2)2/3 1 + x2 .

(4.32)

Q is a linear function of the number of electrons. Figures 4.1-4.4 show how well the
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modified functional reproduces the exact susceptibility density.

105

It must be pointed out that M(O) as represented by Equation 4.32 has a serious

flaw. It can never give net paramagnetism because it is always positive. This is

because the constraint of asymptotic diamagnetism was imposed without sufficiently

flexibility. This restricted physical behavior is also true of the Thomas-Fermi M(O)

and its first gradient correction. Hence, one must be satisfied with obtaining responses

in the region of net diamagnetism.

These modified functionals have been used to calculate the magnetic susceptibili-

ties and the chemical shielding of hydrogen, helium and the heavier noble gas atoms.

Table 4.1 shows the atomic susceptibilities as given by the Thomas-Fermi approxi-

mation as well as the exact results. As the deviation between the exact results and

the ones obtained by using the fit functional is 1% or less, the fitted results are not

presented. Different Q's had to be used for the susceptibility and the shielding, Qx

and Qu respectively. The Qx for hydrogen and helinm is different from that for the

heavier atoms and is given by 3.92 for hydrogen and 3.41 for helium. The Qx of •

the heavier atoms is fit to a functional of the form,Qx = .0067N + 4.26, where N is

the number of electrons. Qu for the three heavier atoms may also be fit to a linear

function of N: Qu = 0.0232N + 1.87. For hydrogen and helium, the values of Qu are

1.79 and 1.65, respectively.

The modified functional corrects the shielding results from the Thomas-Fermi

functional and the gradient corrected functional. As indicated above, the fitted shield-
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Exact Ma~tic Susceptibility Density of He
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Figure 4.1: The exact magnetic susceptibility density of He is shown. The electron
density is obtained from the wavefunctions in ref. 30. ! •
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Figure 4.3: The exact magnetic susceptibility density of Ne is shown. The electron
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Figure 4.4: The magnetic susceptibility density of Ne obtained from the Beckeized
functional is shown. The electron density is obtained from the wavefunctions in ref.
30.
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ing functional requires different values of the parameter Q than does the susceptibility

functional. The N dependence is much stronger for the shielding than for the suscep-

tibility. This is because the functional dOE'$ not correctly reproduce the short-range

dependence of the shielding density. This problem requires a functional that repro-

duces diamagnetism close to the nucleus. Clearly the values of the parameter Qq

which generate good values of the shielding for the atoms are those for which cancel-

lation of error occurs.

4.5 Susceptibilities and Shieldings for H2and (He)2

Calculations of susceptibilities and shieldings have also been performed for the

hydrogen molecule in both the singlet and triplet states, and for the helium dimer.

These calculations were carried out at a variety of internuclear distances. These

calculations were carried out using Thomas-Fermi, gradient-corrected Thomas Fermi

(for the shielding), and the modified M(O)'s.

These results were calculated using Mathematica [31] with input densities from

GAMESS. [32] The densities are constructed from finite superpositions of gaussians.

Hence, the cusp condition at the nucleus is poorly satisfied. It is precisely the gradient

at the origin that matters in the shielding calculations beyond Thomas-Fermi. The

density at the origin is quite good. Instead of using the calculated radial derivative,

r
\

r _
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the radial cusp condition is imposed, [33], [34]

d:~) = -2Zp(O). (4.33)

\ .;

\ '

I'~ .. .)

- \ i
\-1

L

!

pCr) is the radial density; that is, the coefficient of the zeroth rank sphericalharrnonic

in an expansion of the density in spherical harmonics. Direct calculation shows that

the angular gradient contributes only a few tenths of a percent in all cases that have

been considered.

Now consider these results in light of a few general considerations. The magnetic

responses of the hydrogen singlet must be diamagnetic over the full range of intern.u_

clear distances. The reason is simply that a two-electron system in its ground state

has no nodes. [15], (35] The triplet 'state of hydrogen and the He dimer do have

nodes, hence, they may exhibit net paramagnetism in principle. Thus; these results

are expected to be particularly poor when there is a region of internuclear distance

near where net pararnagnetism is obtained.

Consider first the He dimer. Van Wullen [36] has carried out a careful calculation

of the chemical shielding. All three of the functionals give close agreement with

Van Wullen's calculations near the united atom limit. At large internuclear distance,

all of the functionals reach the separated atom limit; a limit that differs somewhat

for each functional. The separated atom limit is so close foraH three functionals

because the Thornas-Fermi theory is rather accurate, as illustrated in Table 4.1. As
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Table 4.4: Chemical Shielding of Hydrogen Triplet (ppm)

Internuclear Internuclear

distance (Angs .)
Beckeized TF TF +grad

distance (Angs.)

Current Chapter G&H G&H

0.2 30.9 21.31 21.7

0.3 26.5 19.1 19.72

0.4 23.6 17.8 18.2 32.6 0.375

0.5 21.5 16.5 17.1

0.6 20.2 15.7 16.36

0.7 19.38 15.29 15.91 9.186 0.70

0.75 19.14 15.26 15.78

0.8 18.97 15.07 15.69 6.053 0.79

0.9 18.79 14.98 15.60

1.0 18.71 14.94 15.57 3.425 1.0

1.5 18.39 14.80 15.43 6.85 1.39

2.0 18.02 14.64 15.28 13.54 1.78

Table 4.5: Incremental Magnetic Susceptibility of Hydrogen Triplet (atomic units)
. Internuclear Current .

distance (Angs.) Chapter Cina & Harris
0.2 -1.09
0.4 -0.95 0.788
0.6 -0.80
0.8 -0.64 0.568
1.0 -0.46
1.5 -0.07
2.0 0.538
3.2 0.468
4.0 0.394
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Figure 4.7: The shielding has been calculated using the Beckized, Thomas-Fermi
(TF), and Gradient corrected Thomas-Fermi (TF + grad) functionals. The results
of Grayce and Harris (ref. 2) are shown for comparison. The densities have been
obtained from GAMESS using a 6-311* basis set.
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Figure 4.8: The susceptibility has been calculated using the Beckized functional by
subtracting twice the atomic results from the total. The results of Cina and Harris
are shown for comparison. (ref. 1) The densities have been obtained from GAMESS
using a 6-311* basis set.
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Table 4.6: Magnetic Susceptibility of Hydrogen Singlet (atomic units)
Internuclear Internuclear

distance (Angs.) distance (Angs.)
Current Chapter Cina & Harris Cina & Harris

119

0.2 -0.543
0.3 -0.593
0.4 -0.655
0.5 -0.723
0.6 -0.795
0.7 -0.867
0.8 -0.941
1.0 -0.990

-0.679
-0.693
-0.806
-0.893
-1.026

0.53
0.58
0.69
0.79
0.95

Table 4.7: Incremental Magnetic Susceptibility of Hydrogen Triplet (atomic units)
Internuclear Current

distance (Angs.) Chapter Cina & Harris
0.2 -1.09
0.4 -0.95 0.788
0.6 -0.80
0.8 -0.64 0.568
1.0 -0.46
1.5 -0.07
2.0 0.538
3.2 0.468
4.0 0.394
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Chemical Shielding of 1he Hydrogen Singlet
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Figure 4.9: The magnetic susceptibility has been calculated using the Beckized func­
tional referred to in the text. The densities have been obtained from GAMESS using
a 6-311* basis set. The results of Zeroka (ref.38) are shown for comparison. The
density has been obtained from GAMESS using a 6-311* basis set.
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Incremental results have been calculated using the Beckized functional by subtracting
twice the atomic results from the total. The results of Zeroka (ref. 38) are shown for
comparison. The densities have obtained from GAMESS using a 6-311* basis set.
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Chemical Shielding of lhe Hydrogen Singlet
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Figure 4.11: The shielding has been calculated using the Beckized, Thomas-Fermi
(TF), and Gradient corrected Thomas-Fermi (TF + grad) functionals. The results
of Zeroka (ref. 38) are shown for comparison. The densities have obtained from
GAMESS using a 6-311* basis set.
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L 4.6 Conclusions

The theory constructed in this chapter, is approximate at two levels. First, the

explicit magnetic field-dependent corrections to the Kohn-Sham equations have been

ignored. Their presence is expected and is explored in Chapter 7. The size of this

error has not been investigated.

Secondly, the current density has been expanded in a gradient expansion in the

unperturbed electron density. This expansion is transverse and gauge invariant. How-

ever, as discussed earlier in this chapter, this expansion has huge flaws. To reiterate:

a finite sum of gradients can never give pure diamagnetism, the tensor character of

the magnetic susceptibility does not appear, and the low order terms in the expansion

only give diamagnetism, that is, negative magnetic susceptibilities and positive shield-

ings. And to top it off, for any exponentially decreasing electron density, each term in

the magnetic susceptibility and chemical shielding diverges beyond the Thomas-Fermi

approximation.

Thus, an approximate density functional theory of the magnetic susceptibility

and chemical shielding has been constructed. The theory is based on the Biot-Savart

integrals and a density functional expression for the ground state current density

induced by a homogeneous magnetic field.

An attempt has been made to ameliorate at least some of the above problems. The

calculations have been limited to the scalar responses. Two attempts have been made

to deal with the divergences. The first, which holds only for the chemical shift, is to
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[
h

transform the divergences to infinite surface integrals that must sum to zero. Hence,

the shielding is left as a power series in the density, its gradients, etc., at the nucleus

whose shielding is being measured. The second way to correct the current, as well as

to give diamagnetism asymptotically, is to modify the current functional using ideas

developed by A. D. Becke. Both of the above methods are still incapable of giving

net paramagnetIsm. In spite of the failings of the approximations, a single parameter

modified functional, linear in the number of electrons, is shown to be capable of giving

magnetic susceptibilities and chemical shieldings of the rare gas atoms to within 1%

of the best calculated values.

The calculations on the two states of the hydrogen and the helium dimer show

that qualitative accuracy can be obtained for hydrogen and helium chemical shifts

when the system is not paramagnetic or near paramagnetic. The calculations of the

magnetic susceptibility show that qualitatively accurate results can be obtained for

at least one system that is always diamagnetic: ground state H2. This reinforces the

idea that this method in its present form will work best for molecules that are not

paramagnetic or nearly so.

Some progress has been made in mitigating the titanic shortcomings of the theory

presented in this chapter. Recapitulating 25 years of density functional theory history

in order to obtain magnetic responses of chemical accuracy should not be necessary.

[42] Indeed, the next chapter shows calculation of the hydrogen shieldings of a number

of small molecules using this new theory. [40]
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and the susceptibility measure different aspects of this functional in physical space.

The current is a strongly nonlocal functional of the density. (41] The shielding
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It is remarkable that such simple, highly local functionals of the density give such

good results in the regions of a priori applicability.
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Chapter 5

Hydrogen Chemical Shieldings

In this chapter, three approximations to the isotropic chemical shielding functional

are used to calculate isotropic hydrogen chemical shieldings in small molecules. The

approximations require, at most, the electron density and its angular derivative at

the hydrogen nucleus. Results are compared to a variety of theoretical calculations

and/or experiments. Deviations from these calculations are at worst off by 40%, and

at best off by a few percent.

5.1 Introduction and Theory

Calculations of molecular chemical shieldings are becoming routine [1]. Methods

used range from coupled Hartree-Fock calculations [2]' through many-body theory,

[3] [4] [5] ending up with density functional theories [6] [7] [8]. All of the calculations

involve the determination of single particle and/or many particle wavefunctions.

(~
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Recently a new theory of the chemical shieldings was advanced [9]. The theory

is based upon magnetic field density functional theory and is explicated is this thesis

[10]. A result of this theory is that the chemical shielding is a universal functional

of the ground state electron density. Hence, if one could find the functional, one

could dispense with all of the above methods that involve calculations at the field-

dependent level. In addition, one could, perhaps, develop methods for using the

chemical shielding to obtain aspects of the electron density itself, as well as its familiar

usage in determining molecular structure.

Previously, in what is a precursor to the present work, the chemical shielding

tensor was calculated from an energy. functional in a generalized Thomas-Fermi-Dirac

approximation [11]. This functional is bilinear in the external magnetic field and the

magnetic moment of the nucleus.

Because of the difficulty of constructing an energy functional that goes beyond

the generalized Thomas-Fermi-Dirac approximation, the chemical shielding tensor

was determined in Chapter 4 via the Biot-Savart integral [9]. This required obtaining

the current density in a weak and uniform magnetic field. According to the general

theory, from chapter 3, the current density itself is a universal functional of the ground

state electron density, i.e.,

J(r) = J[p(r)]. (5.1)
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Accordingly, afunctional can be constructed which is linear in the external magnetic

field, and more amenable to corrections beyond the Thomas-Fermi approximation

[12]. For a stationary state the current density, J(f), is transverse. Hence, [13]

f'
i
<=

r'

J(f) = \7 x M(f)

where M(f) is defined in the previous chapter.

(5.2)

The shielding tensor may be written in terms of the M tensors through use of the

Biot-Savart integral. The nuclear spin is taken to be at the origin. Upon integration

of the Biot-Savart integral by parts, an expression arrived at for the scalar component

of the shielding tensor,

J - 1
(7 = 87rM(O) + dr\7\7;. : lvl(2) + (surfaceterms). (5.3)

In Chapter 4, M was constructed at three levels [9]. These three levels are truly

an example of ontogeny recapitulates phylogeny in density functional theory [14].

The current density was expanded in gradients and higher derivatives of the electron

density. Beyond the Thomas-Fermi level, e.g., the lowest-order contribution to the

shielding, the surface terms each diverge. They,however, must sum to zero, so they

may be ignored. This leads to a remarkable conclusion. To at least a rather high

order, the isotropic chemical shielding is a function of the density, the gradient of the

density, the curvature of the density, and so on, all localized at the position of the
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nuclear spin.
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As the method of obtaining the gradient expansion is given in great detail in our

previous chapter, only the results are repeated here. The lowest order contribution

to the chemical shielding is the Thomas-Fermi approximation. The shielding is given

by,

(5.4)

The Thomas-Fermi isotropic chemical shielding plus its first gradient correction

has the form,

where as usual,

_ 'Vp
x = p4/3

(5.5)

(5.6)

is the dimensionless gradient and i(O) indicated evaluation at the nucleus. We note

that (J' > 0 when the density does not vanish at the nucleus. Hence, the isotropic

chemical shielding must be net diamagnetic in this instance. The third approximation

to (J' will also have this character. Paramagnetic contributions appear in the gradient

expansion at higher order.
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The third approximation is carried out by a process that is called "Beckeization."

In the late 1980s, A. D. Becke intuitively corrected the Dirac exchange potential

such that a number of physical conditions in bound systems were satisfied [15]. This

began the leap of density functional theory into quantum chemistry. Here a form of

Beckeization is performed.

Since a gradient expansion can never give pure diamagnetism, the current den-

sity is constrained to be asymptotically diamagnetic; a quality that is shared by

all molecular systems. In addition, the current density is required to reduce to the

Thomas-Fermi current density in the absence of gradients. Finally, a single parame-

ter that is a linear function of the number of the electrons of the magnetic nucleus is

introduced.

The Beckeized isotropic chemical shielding is written as,

t -

(B) = 21l'(p(0)) 1/3 [1 + Q1i(0)larcsinh1i(0)lj2
(J (31l'2)2/3 1 + i(0)2 (5.7)

Q is the single parameter defined in the previous chapter. (J depends upon two molec-

ular parameters: the electron density and the angular gradient of the electron density

at the nucleus. The absence of the radial gradient as an independent parameter is

due to the exact cusp condition, namely [16],

ap(f) = -Zp(O)
or (5.8)
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The derivative is evaluated at the nucleus.
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i - In this chapter, the isotropic hydrogen chemical shieldings for an assortment of

small molecules are calculated using the three isotropic chemical shielding functionals.

There is no free parameter in any of the functionals, as the hydrogen atom Q=1.79

is used. So the chemical shielding of the hydrogen atom is fit to its exact value. It is

shown that one can obtain qualitative and sometimes quantitative agreement with the

most sophisticated theories as well as with experiment, with the Beckeized shielding

function. The theory's failures shall also be discussed.

5.2 Methods and Results

All three isotropic chemical shielding functionals require as input the electron

density at the nucleus. Two of the shielding functions require the angular gradient of

the density at the nucleus. That is all. The electron densities are calculated at the

Hartree-Fock level using the GAMESS program [17]. As the exact cusp condition is

rigorously enforced, the flaw in a finite gaussian representation of the density gradients

at the origin is not an issue.

A simpler approximation to all three functions would be to neglect the small

angular gradients and consider the functions as depending only on the electron density

at the nucleus. An examination of the effect of the angular gradient shows that it

actually contributes little to the gradient corrected Thomas-Fermi results. Neglecting

the angular gradients changes these results by between 0.04 and 0.62 ppm in all
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instances [18]. The angular gradients playa more substantial role in the Beckeized

functional. The change upon neglecting them varies from 0.4 ppm to 2.8 ppm with

the change usually around 1 ppm [18].

The results of the calculations, as well as other theoretical calculations and some

experimental shieldings are presented in Table 5.1. When comparing experimental

and theoretical results, one must keep in mind that the theoretical results are at the

equilibrium position of the nucleus. The experimental results are averaged by nature.

Of course, the theoretical results could easily be averaged.

The best functional overall in comparison with experiment is the Thomas-Fermi

with gradient correction. The root mean square deviation is only 2.55%, this is only

slight worse than the GIAO SCF method that has a root mean square deviation

of 1.71%. The Thomas-Fermi method by itself has a root mean square deviation

of 3.49%, and the Beckeized functional has a root mean square deviation of 4.83%.

The root mean square deviation of the Beckeized functional so large because of its

inadequate treatment of the hydrogen molecule, ethylene and benzene. If one omits

these three molecules, the root mean square deviation of the Beckized functional

is only 2.01%. Unlike GIAO SCF which always overestimates the isotropic chemical

shielding, the methods presented here can either over- or underestimate the shieldings

Thus, one cannot simply scale our results in order to obtain better correlation with

experiment.

[.
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Table 5.1: Isotropic Hydrogen Chemical Shieldings of Small Molecules (ppm)
* Indicates the hydrogen for which -the shielding was calculated. a Full Configura­
tion Interaction (FCI) result from Ref. 19. b Ref 20. c Ref 9. d Exact Result e
Ref 21 interpolated to R=Re. f Ref 22. g Ref 23 h Ref 24. i Ref 25. j Ref 26. k
Ref 27. Coupled Cluster Singles Doubles (Triples) (CCSD(T)) results from Ref. 20.
Moller-Plesset Fourth order Perturbation Theory (MP(4)) results from Ref. 4. Multi­
Configurational Self Consistent Field (MCSCF) results from Ref. 28. Salahub's Sum
Over States Density Functional Theory results are from Ref. 29. Gauge-Including
Atomic Orbital (GIAO) SCF results from Ref. 30.

CCSD(T) MP(4) MCSCF Salahub
14.97H

H2

H20
C2H2

CH4

HF
H2S
NH3

C2H4

C2H6

CH30H
Benzene

HCN
HNC

a26.68
30.9
30.62
31.6
29.2

29.0

26.67
30.9

31.5
29.1

31.6

31.13
29.26
31.01

31.1

31.1
30.3
30.54
31.1

GIAO
c15.61
b26.49
32.11
30.99
31.94
30.31

32.67
26.78
31.50
29.26
24.81
29.93

TF

26.10
25.87
25.87
26.33
25.30
24.79
26.30
26.40
26.13
24.78
26.49
25.66
25.41

TF+grad
c17.7
27.69 .
27.70
27.41
27.76
28.89
26.31
28.02
27.92
27.93
26.59
27.95
27.45
27.09

Beckeized
d17.7
34.36
29.73
31.96
33.68
29.06
30.27
31.34
33.09
31.96
28.14

'33.64
31.20
30.09

E

e26
f3(

g2~

f3(

f2~

h3(

i3C
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The failure to reproduce accurately the equilibrium shieldings of H2 and the two

Sp2 hybridized molecules appears to be a consequence of the localized nature of our

present functionals, as well as their overemphasis on asymptotic diamagnetism. In-

deed, the results of ethylene and benzene may be accurately reproduced with a single

negative Q.

It is remarkable that such simple functions of the electron density and its gradient

at the origin is able to give such a variety of hydrogen isotropic chemical shielding

to within a few ppm of the results of very sophisticated calculations. It will be

certainly necessary to build more sophisticated functionals, including the explicit role

of correlation in the current density functional.

Finally, it is noteworthy that GIAO SCF and DFT methods are the only ones

that currently are being applied to large biomolecules. As the method presented here

should be readily applicable to arbitrarily large molecular systems, further develop-

ments in the theory are surely warranted.



,~,
l _
[ -

139

Bibliography

[1] Theoretical calculations of NMR chemical shielding tensors are regularly re-

viewed by C.J. Jameson. See e.g., Nuclear Magnetic Resonance: A Specialist

Periodical Report 26 (Royal Society of Chemistry, Cambridge,1,996), as well as

earlier volumes of the same periodical.

[2] W. N. Lipscomb, Adv. Mag. Res.2 (1979) 137.

[3] T. D. Bouman and A. E. Hansen, Chern. Phys. Lett. 175 (1990) 292, and refer-

ences therein.

[4] J. Gauss and J.F. Stanton, J.Chem.Phys.104 (1996) 2574 and references therein.

[5] C. Van Wullen and W. Kutzelnigg, J. Chern. Phys. 104 (1996) 2330.

[6] V. G. Malkin, O. L. Malkina, and D. R. Salahub, Chern. Phys. Lett. 204 (1993)

80.

[7] C. Van Wullen, J. Chern. Phys. 102 (1995) 2806.

[8] F. Mauri, B. G. Pfrommer, and S. G. Louie, Phys. Rev. Lett. 77 (1996) 5300.



140 BIBLIOGRAPHY

[9] F.R Salsbury, and RA. Harris, J.Chem. Phys., 107 (1997) 7350.

[10] C.J. Grayce and R A. Harris, J. Phys. Chern. 99 (1995) 2724.

[11] C.J. Grayce and R A. Harris, Mol. Phys. 71 (1990) 1.

[12] R A. Harris and J. A. Cina, J. Chern. Phys 79 (1983) 1381.

[13] W.N.Lipscomb, Adv.Mag.Res.2 (1979) 137.

[14] RG.Parr and W. Yang, Density-Functional Theory of Atoms and Molecules,

(Oxford University Press, New York, 1989).

[15] A. D. Becke, Phys. Rev. A 38, 3098 (1988); A. D. Becke, J; Chern. Phys. 98

(1993) 1372; A.D. Becke, Can. J. Chern. 74 (1996) 995.

[16] W.A.Bingel, Naturforsch.A 18 (1963) 1249.

[17] GAMESS is General Atomic and Molecular Structure System and is under copy-

right to the Gordon Group at Iowa State University.

[18] F. R Salsbury and R A. Harris, unpublished calculations.

[19] D. Sundholm, J. Gauss, and R Ahlrichs, Chern. Phys. Lett. 243 (1995) 264.

[20] S. M. Cybulski, and D. M. Bishop, J. Chern. Phys. 106 (1997) 4092.

[21] W. T. Raynes, and N. Panteli, Mol. Phys. 48 (1983) 439.

[22] W. T. Raynes, Nuclear Magn, Resonance, 7 (1978) 1.



f 0

~ ~ ~

f'
\
t=

BIBLIOGRAPHY

[23] L. Petrakis, and C. H. Sederholm, J. Chem. Phys. 35 (1961) 1174.

141

, -, [24] K. Ruud, T. Helgaker, R. Kobayshi, P. Jrgensen, K. L. Bak, and H. J. A. Jensen,

J. Chem. Phys. 100 (1994) 8178.

[25] W. G. Schneider, H. J. Bernstein, J. A. Pople, J. Chem. Phys. 28 (1958) 601.

[26] J. P. Chauvel Jr. and N. S. True, Chem. Phys. 95 (1985) 435.

[27] A. R. Karitzky, Handbook of Heterocyclic Chemistry, (Pergamon Press, Oxford,

1985).

[28] J. Gauss, Chem. Phys. Lett. 229 (1994) 198.

[29] V. G. Malkin, O.L. Malkina, M. E. Casida, and D. R. Salahub, J. Am. Chern.

Soc. 116 (1994) 5498.

[30] D. B. Chesnut, Reviews in Computational Chemistry, eds. K. B.Lipkowitz, and

D. B. Boyd, 8 (1996) 242.



142

Chapter 6

A N onlocal Current Density

Functional

A nonlocal current density that is a gauge invariant functional of the electron

density in the absence of the magnetic field is constructed. Unlike local functionals,

which reduce to the Thomas-Fermi current density in the limit of zero gradients,

the new functional treats diamagnetism exactly. Additionally, unlike earlier local

functionals, the new functional has the capacity to support net paramagnetism. The

full magnetic susceptibility and chemical shielding tensor density functionals are also

derived.
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6.1 Introduction

There has been a blossoming of density functional calculations of magnetic re-

sponses. Most of these calculations have been based on generalizations of the Kohn-

Sham equations. Recent developments in exchange-correlation functionals have made

these methods viable alternatives to those of conventional quantum chemistry. In-

deed, density functional theory combines the promise of accurate results with cheaper

computation. There is the added bonus that systems too large to be examined by

conventional methods are now studied routinely. [1]

As was discussed in Chapter 3, there is a theoretical difficulty in using density

functional theory to calculate magnetic responses. The original Hohenburg-Kohn

theorem is valid only for a scalar potential. If the system is in the presence of a

vector potential, then one needs a generalization of the Hohenburg-Kohn theorem.

This generalization was first performed by Rajagopal and Callaway. They showed that

one could include vector potentials in density functional theory, if one considered

functionals of the current and electron densities. [2]. Rajagopal and Callaway's

generalization was in the form of an existence theorem. It was left to Vignale and

Rasolt to put what is now known as current density functional theory (CDFT) on firm

footing. [3] Of particular importance, Vignale and Rasolt showed that by solving the

Kohn-Sham equations, appropriately generalized exactly, then by definition, the exact

current and electron densities would be obtained. For molecular systems, however,

implementation of their theory has proven to be difficult. [4]
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In BDFT, however, the energy functionals depend on the magnetic field and on the

electron density. As the magnetic field is fixed by the physical problem, the functionals

for a given magnetic field depend solely on the electron density. In particular, for the

calculation of chemical shifts, and magnetic susceptibilities, one need only consider

the magnetic field produced by a constant applied field and a single magnetic dipole.

A concomitant of BDFT is that the current density is a functional of the electron

density. In the linear response regime, the current density functional depends on the

zero field electron density. As a consequence, magnetic responses in the linear regime

are functionals solely of the electron density in the absence of the magnetic field. At

present, generalizations of Kohn-Sham density functional theory (KSDFT) are used

to obtain magnetic responses. These methods use perturbation theory to obtain the

responses. The magnetic responses are not obtained as functionals of the zero field

density alone. As a result, magnetic responses should be simpler to calculate and

interpret in BDFT than in ordinary KSDFT based methods.

Unlike in CDFT, the current density obtained from the Kohn-Sham equations is

not exact. This is the equivalent of saying that the total energy obtained from the

Kohn-Sham equations is not exact. The explicit exchange-correlation contributions

to the current must be obtained via coupling constant integration. In this chapter,

these corrections shall be ignored, but they will be considered in Chapter 7.

The first steps in constructing current density functionals within BDFT are dis-

cussed in Chapter 4. [6] The dependence of the current density upon the electron
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density was exploited to show that one could construct density functionals for the

chemical shift and the magnetic susceptibility via the Biot-Savart law.

While the application of this method to the hydrogen chemical shieldings of some

small molecules showed that qualitative accuracy could be obtained by calculations

that were trivial, given a ground state electron density. [7] The local functionals do

have deficiencies that need to be remedied. As such the development of a nonlocal

current density functional would be useful as was discussed in Chapter 4. [6], [8] In

this chapter, the first such functional is constructed and discussed.

6.2 Review of BDFT

A key point from Chapter 4 is that a finite gradient expansion does not allow

for pure diamagnetism. The diamagnetic term has been canceled out prior to the

expansion, and no finite sum of gradients can recover it. This gradient expansion

obtains, after inversion, a ][Po(f)] of the form,

To this order, ][p(f)] may be written as,

][p(f)] = B x \7MO.

(6.1)

(6.2)



This form of the current density has several consequences:

(1) To second order in derivatives the current density can never be net paramagnetic,

i.e. the responses are always diamagnetic.

(2) At this level of truncation, the current density from Equation 6.1 does not allow

for the appearance of all the tensor elements of X and a.

In addition, for finite systems, the gradient expansion of the current density diverges

term by term after the first, or Thomas-Fermi, term. This divergence may be removed

by considering a resummation of the gradient expansion subject to the condition of

asymptotic diamagnetism. [6] This resummation is similar to the one which A.D

Becke performed on the exchange energy density '[12].

Even when UO is not local, a further consequence of the form of ] [p(r)] from Equa­

tion 6.2 is that after integration by parts, one can rewrite the isotropic susceptibility

and isotropic shielding as respectively,
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[

j .

X = - JdfM
o (6.3)

(6.4)

i _J

where ri is the position of nucleus i. The local form of MO reduces calculation of a

to the evaluation of a local functional at the nuclear position. [7]

Equations 6.3 and 6.4 have the advantage of being particularly easy to use. Specif-
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ically, they were used in calculations of hydrogen chemical shieldings for some small

molecules. [7] Extending this work to other elements, however, has proved problem-

atic because of the necessity of including higher derivatives in the gradient expansion

that diverge because of the nuclear radial cusp. As a result, a nonlocal current density

functional may be useful in alleviating some of the less desirable aspects of the local

current density functional.

6.3 Construction

In this section, a nonlocal current density functional is constructed. The functional

which was used in our previous work is automatically gauge invariant, has the correct

Thomas-Fermi limit, and is asymptotically diamagnetic. Here the starting point is

the opposite limit. A current density that is automatically purely diamagnetic in the

appropriate limits is constructed. Of course, the current density must be transverse:

gauge invariant, support net paramagnetism and support tensor terms in the chemical

shielding and the magnetic susceptibility. [13]

In constructing the current density, the Coulomb gauge shall be used, /1(f) -

~ (B x f). In this gauge, the current density of atoms is purely diamagnetic. In another

gauge, there would be a paramagnetic contribution that would be exactly cancelled by

an additional diamagnetic component. As the results are gauge invariant, a sensible

approach is to pick the simplest gauge possible. [14]

As in the last section, the density matrix is constructed to first order in B. The
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first order contribution in E to the density matrix must vanish when [L, V(f)] = O.

The propagator is now used in a new way to realize this commutation relation. The

assumption here is that the ground state electron density has the same symmetry as

V(f).

To first order in B, the Hamiltonian is,

HB=H-LeB

which implies that the unitary operator,

U(t, 0) ~ exp(-iHt) + i e~p(-iHt) it L(t') e Edt'

(6.5)

(6.6)

t -

where L(t') is the interaction representation of the angular momentum operator.

When [L, H] = 0, e.g. a locally free electron, then L(t') = Land
, ,

U(t,O) = exp(-iHt) + iexp(-iHt)L e Et (6.7)

If one stopped here, there would have zero current density as the diamagnetic

current would be canceled and nothing would remain. The impo~tant point is that

this term does not contribute to the density matrix for bound systems, assuming that

there is a gap between the ground state and the lowest excited state.



r .
i
t ~ 6.3 Construction 149

This term shall be ignored by looking at the equation of motion for I(t'). Namely,

- ~

i ~,L(t') = [L(t'), H].

Integrating up, the following is obtained

t'

L(t') = L(O) - i1dt"[L(t"), H].

Ignoring the first term gives

t'

L(t') =-i1dt"[L(t") , H].

The latter, Equation 6.10, is the approximation that shall be used. Now

[I(t"), H] = exp(iHt") [I, H] exp( -iHt")

And critically, since,

[I, H] = [I; V] = r x [P, V]

then,

t'

L(i') = -i1exp(iHt")r x [P, V] exp(-iHt")dt".

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)
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After integrating once over time,

U(t,O) = exp(-iHt) + iexp(-iHt)

x it dt'(t - t/) exp(iHt')r x [P, V] exp(-iHt') • B.

Therefore in physical space,

< fIU(t, O)lf' >~< ft!f'O > +1.'(t - T) J< ft - Tlf" >

X (r" x 'VV(r)) • B < r"7Ir'0 > dr".

The resulting density matrix is,

p(r, r/) = p(r,r/)o +Jdr"f(r,r',r")r" x 'VV(r"). B,

with

f(r, r', r") ex: 2
1

.Jdt r d7(t - 7) < rt - 7if" >< r"7Ir'0 > .
1r'l t io

(6.14)

(6.15)

(6.16)

(6.17)

f~

f .
l .
h

t -

l --=

f\

When V(r) = V(r), or some other suitable symmetry, then r x 'VV = O. Thus, when

the system is purely diamagnetic in an exact treatment, it is in this treatment as well.

In order to actually construct a nonlocal current density functional, approxima-

tions must be made to the propagators and then some nontrivial integrations per-
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The Makri-Miller approximation to the zero field propagator, Equations 4.18-4.21 ,

shall be used as in Chapter 4 [6],

(
1 )4Jdt it (·c -11)2)

J(
- -/ Til) = i - -dr(t - r)-1/2(r)-3/2 exp 1, r - r
r, r , 211" t 0 2(t - r)

(
,(-/I r/)2)1, r - . 0 - -II . 0 -/I -/xexp .2r exp(1,W (r,r ,(t-r)))exp(1,W (r ,r,r)).

In lowe,St order the result is:

(
1 ) 4 Jdt it (.C -11)2 )

J(
- -I r") = i - ~ dr(t - r)-1/2(r)-3/2 exp 1, r - r
r, r , 27f t 0 2(t - r)

(
'C" -/)2)

X exp 1, r ~ r exp(iW~(f,r")(t - r)) exp(iW~(r",f/)r).

Where, explicitly, [11)

with

- (- + (-II -))x=r r-rE.

(6.18)

(6.19)

(6.20)

(6.21)
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. . f Gfz] froU1 Equations 6.27 and 6.28, and with the Thomas-Fermi relation
definItIon 0 l "

between VCr) and pCr) as,

(6.35)

Hence,

(6.36)

This implies that

(

"

Xo:(3

(6.37)
f '

L

<I

<Tap ~ Jdf(r2
""", - r.rp)~?; - C~) 3 JdfJ(df"[V'''(31f

2p(r''j)i X f").

L'V J.' d£(31f2p(,,;» i X ; LG[z]). (6.38) H
n:
"l' 11
j'



r ~

I
L

- f-

6.5 Conclusions

The use of the Thomas-Fermi relation changes z into a density functional,

6.5 Conclusions
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(6.39)

, -

- ~-

!
- ~

A current density functional that gives all the properties that a current density

should has been constructed. The price is nonlocality. The functionals not only

have different r's which must be integrated over, but also an integrated version of

the electron density appears in the functional. All these nonlocal aspects may make

practical implementation of this functional difficult. However, that these functionals

use the zero field electron density to obtain magnetic responses could make usage

of this functional profitable and interesting. Another advantageous property of this

functional is that the treatment of pure diamagnetism is exact; it is the treatment

of paramagnetism that is approximate. This places the calculation of the current

density, the shielding and the susceptibility into a situation analogous to that of the

energy in KSDFT. In KSDFT, one calculates the kinetic energy of a noninteracting

system exactly, which obtains most of the energy of the system. The approximations

lie in the treatment of correlation and exchange that are small energetically, but

which change the most in chemical reactions. Here there is the capacity to treat

the diamagnetic component exactly, and hence, calculate the larger component of
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the responses exactly. The approximation lies in the treatment of the paramagnetic

component, the part that changes the most upon bonding.

Thus, while this functional may be difficult to implement, or to further approxi-

mate, it will be valuable to do so.
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6.6 Appendix

In this appendix, the solution of the integrals is sketched out and the full nonlocal

paramagentic current reported.

From Equation 6.37, one can see that the integrals which must be solved are in

the form of a convolution, in particular

(AI),

where

(
0(- -")2)

F -3/2 Z r - r
l=X exp 2

x

p. = x~/2exp (i(f - f")2)
2 . 2x'

(
0(_ -")2)D -1/2 Z r - r

£3 = X exp ,
2x

where x = t or x = t - 7 °

(
0(_ -")2)D _ -5/2 Z r - r

£4 - X exp ,
2x

(A2)
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By the convolution theorem we have,
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(A3)

, ­,

where L denotes the Laplace transform, and L -1, the inverse Laplace transform.

The Laplace transforms and the inverse Laplace transforms can be found in the

Bateman Manuscript Project [15]. This leaves only one time integral to perform.

This can be readily done analytically via integral tables or a symbolic mathematics

program. Performing these integrations leads to the portion of the current density

which contributes to the magnetic responses, Equation6.25, plus the following terms,

(
1 ) 3 J (f". -) ( [[Wi ] cos [4JWJilf - fill] )JO(f) = --' - df"V2 - r sin 4 WOlf - f"l + .

P 217" W~ 2 JWJilf - fill
(A4)

Equation (A4), can be written in a simpler form as:

3;(f) = - C~)' fJdf" (1- f :.t") F[f, f"l, (A5)

with

F[- -II] -r,r -
( [ ]

cos [4JWJilf - f"l] )
sin 4 ~If - f"l· + _.1 .VVVi JWJiIT _f"l W~

(A6)
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Chapter 7

The Exchange Energy Functional

for a Uniform Magnetic Field

A density functional theory for the Kohn-Sham exchange energy of a bounded,

closed shell system in a weak and uniform magnetic field is presented. The form

obtained vanishes when the electron density is radial. Unlike the unscreened exchange

energy of a locally uniform electron gas, it does not diverge due to the Coulomb

interaction. The role of the exchange-correlation functional in the context of magnetic

response theory is also examined.

7.1 Introduction

Kohn-Sham density functional theory is on center stage in quantum chemistry.

. The emergence of this development after decades of hovering at the edges has been
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due to remarkable progress in obtaining approximations to the exchange-correlation

functional. 'These approximations reflect the localized nature of most molecular sys-

terns. [1]

In order to rigorously calculate magnetic responses, e.g., the parameters of NMR,

it is necessary to examine how the exchange-correlation functional changes in the

presence of weak magnetic fields. In particular, the exchange energy functional in a

weak magnetic field shall be investigated in this chapter.

Using ordinary perturbation theory, the exchange energy never appears. This is

because one starts with wavefunctiQns determined in the absence of the magnetic

field. The perturbation then has two terms: one linear in the vector potential and

one quadratic in the vector potential. The linear term requires one to carry out

perturbation theory to first order in the field. This is the paramagnetic term. The

quadratic term just requires the electron density without the field. This is the dia-

magnetic component. The magnetic responses are then obtained from the sum of the

two terms via the Hellman-Feynman theorem. [2]. This is discussed in more detail

in Chapter 1.

It is only with theories that begin with Hartree-Fock, or its correlation general-

izations, that the exchange potential appears. [3], [4], [5] The reason is that these

theories are nonlinear. If one starts with the field in the nonlinear part of the Hamil-

tonian then the appearance of the exchange potential with an explicit dependence on

the vector potential is a necessity for gauge invariance.

r~

l
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L In this chapter, the exchange energy, and in passing the exchange-correlation en-

ergy, shall be investigated in the context of Kohn-Sham theory and its corrections.

The bound nature of the system is explicitly taken into account. It is also considered

that such a system in general possesses symmetries that are not isotropic and homo-

geneous. It will be shown that writing the energy as the sum of Kohn-Sham orbitals

plus a coupling constant integration is crucial for the analysis. This analysis is based

upon gauge invariance and the properties of bound state systems.

The theoretical underpinning of this analysis is magnetic field density functional

theory. [6] This theory indicates, through the variational theorem, that the energy in

a weak magnetic field, such as those used in NMR/MRI experiments, is a functional

of the ground state electron density obtained in the absence of the field. In this thesis,

the Kohn-Sham approximation to the theory has been used to calculate the current

in two limits: the locally uniform electron gas plus gradient corrections, and the fully

bound state limit. [7],[8],[9] As will be seen, the method used in the latter case shall

be exploited here.

The correlation energy of a uniform electron gas diverges order by order in per-

turbation theory. The sum, however, is convergent. The exchange energy does not

diverge in the absence of an applied magnetic field. In the presence of a weak and

uniform magnetic field, however, the long range of the coulomb interaction is man-

ifested earlier: the exchange energy diverges and the divergence of the correlation

remains when exchange and correlation are considered separately. The removal of
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the divergence involves the screening of exchange by the correlation. [10],[11],[12]

The divergences of the exchange energy in a locally uniform electron gas in a

weak magnetic field was noted by Cina and Harris. [13] They were attempting to

calculate molecular magnetic susceptibilities using density functional theory. They,

however, did not screen the exchange; they ignored it. Grayce and Harris calculated

the exchange energy functional in the bilinear presence of a constant magnetic field

and that due to a nuclear spin. [14] By not treating the field due to the dipole

as locally uniform, they were able to obtain a finite exchange energy functional for

a bound electronic system. So it appears that obtaining a finite exchange energy

without screening may require boundness.

In this chapter, two important conclusions are presented. First, it is proven that

the Kohn-Sham exchange as well as the total exchange-correlation energy vanishes

when the electron density is spherical. Although self evident for a bound system, this

result is totally absent in the local electron gas approximation. Secondly, a general

form for the exchange energy functional that explicitly manifests the above result,

and has a natural cut-off is obtained. The latter renders the exchange energy finite.

This cut-off is due to the quantum mechanics of a localized electronic system, not

electron correlation. The simplest explicit exchange energy functional will also be

derived and its properties discussed.

r.
L
r >

!
'- ­,
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7.2 Theory

First, begin with density functional theory from the point of view of magnetic field

density functional theory. [6] Recall from previous chapters, that this theory states

that for each magnetic field the total energy is a universal functional of the density.

By the usual arguments, the total energy in the presence of a magnetic field, B, may

be written as,

(7.1)

The term EifS[p] is from the sum of the Kohn-Sham orbital energies and EgC[p] is

the exchange-correlation functional. This energy also contains the correlation correc-

tion to the kinetic energy. An explicit correlation correction to the kineti~ energy

may be avoided by carrying out a coupling constant integration over ground state

wavefunctions which give the exact density. [1] That is, in second quantization, and

in terms of the coupling-constant-dependent ground state wavefunction, I'l/JB(A) >,
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The densities depend upon the magnetic field, of course. The energy EIfS[p] is the

sum of the orbital energies, €i (B, p), of the Kohn-Sham equation,

r­
i _

I '

(7.3)

A change in the gauge, A~ A+ 'lA, manifests itself only in the kinetic energy, as

the potential, l/T B' depends upon B. This means that the coupling constant integral,

is gauge invariant.

Now consider weak magnetic fields and one of the central results of this paper. In

the weak field limit, it has been shown that only the zero field electron density, Po,

appears in the energy. [6],[15] Thus, to second order in B, the energy may be written

as,

EtC (Po) ~ ~ 1.' d>' < 1/>~ (Po) IJdfJdf'~ 1/>;;(f)1/>;;; (f') If .~ f'l

VJa(f')VJal(f)IVJ~(po) > -~ Jdf J df'Po(f) If ~ f'IPo(f'). (7.4)

The above results shall now be used assuming that the magnetic field is constant.

The ground state energy may be written as,

(7.5)

Here, X[Po] is the magnetic susceptibility tensor. It is a universal functional of the
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magnetic field independent density. From the previous analysis,

169

(7.6)

Now to an important point in the analysis. Suppose the system is purely diamag-

netic, such as a closed shell atom, or a cluster in a J=0 electronic ground state. It is

clear that the Kohn-Sham contribution to the energy contains the exact diamagnetic

energy. This is because the Kohn-Sham density is the exact density. This result is

gauge invariant. A change in the gauge manifested in the diamagnetic term will be

canceled by a change in the paramagnetic contribution to the Kohn Sham energy.

In other words, the exchange-correlation energy contributes nothing here. It is also

clear that if the system is in a state with vanishing angular momentum along certain

symmetry axes, the ~xchange-correlationcontribution also vanishes.

The situation is not unlike that which occurs for the current density. [9] Here,

within Kohn-Sham, the current is exact when the system is diamagnetic. The param-

agnetic portion is constructed to explicitly vanish when the system is purely diamag-

netic. Indeed, the method of constructing the exchange functional is closely related

to the construction of the Kohn-Sham current density.

The>' = 0 contribution to the exchange-correlation energy is called the KS ex-

change. It is constructed from the single particle density matrix made up of Kohn-

Sham orbitals. It is a functional of the exact density. Here consider the density
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matrix in a constant B field and keep terms to O(B2 ). The exchange energy itself is

given by,

EX. = - Jd- Jd-' IPB(f, f'W
B r r ,- _'I 'r-r

where the density matrix is given by

(7.7)

(7.8)

The orbitals, ¢>i(f), and the energie13, €i, are solutions of the Kohn-Sham equation,

1 2 - - .J IPo(f) I . . 1 - 2
[-"2\7 - I. B + lIe (f) + df If _ f'l + lIxcB(Po(f)) + 4(f x B) ]¢>i(f) = €i¢>i(f).

(7.9)

j is the single electron angular momentum operator, lIe (f) is the external potential

and lIxcB(Po(f)) is the exchange-correlation potential.

Because the density in the absence of the magnetic field appears, the potential is

the explicit magnetic-field-dependent exchange-correlation potential,

(7.10)

The derivative is evaluated at Po(f).

Hence, to O(B2), the diamagnetic and explicitB dependent parts of the exchange-
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correlation manifest themselves in the ordinary exchange-correlation energy through

a B2 dependent density.

However, magnetic field density functional theory states that the only density that

appears to lowest order in B is the ordinary, field independent, density. Hence, only

the paramagnetic term is to be used when constructing the exchange and correlation

energy. Note that a change of gauge does not affect the energy; it changes the density

matrices by a phase.

Now the Kohn-Sham exchange is formally constructed such that it explicitly van-

ishes, if the system possesses the proper symmetries. As stated before, the method

is the same as that used to construct a current density with the proper diamagnetic

limit. [9] Begin by writing the density 'matrix in terms of the single electron propagator.

That is,

where

1 2 - - _
H = -'2'\7 -Ze B + v(r,po) - CF.

(7.11)

(7.12)

Here v(r, Po) is the total potential in the absence of the B field. Henceforth, Cj is

absorbed into the potential. The propagator is expanded to second order in the

magnetic field. So that the density matrix retains its idempotency, the propagator is
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constrained to be unitary. Unitarity is preserved in exact time dependent perturbation

theory, order by order. The unitary operator, e-iHt , to second order, is

t t t'

e-iHt = (1 - iB.l f(t')dt' - B1f(t')dt'B.l f(t")dt" + ... (7.13)

As in the derivation of the current density in Chapter 6, [9] f(t) is replaced by a

commutator,

The commutator is given by,

f(t) ~ -iit [f, Ho](t')dt'.

[f, Ho] = -if x \lv.

(7.14)

(7.15)

Now substitute Equation (7.14) into Equation (7.15) and go into the position repre-

sentation. The resulting propagator is,

< ftlf'O > -iit dT(t - T) J < rt - TW'O > B. f" x \lv(f")df"

t dt" t dt,[(t - t')2 _ 'f/(t" _ t') (t - t
ll
)2] Jdflldfl1l

Jo Jo 2 2

< ft - tllf"O > Bfl1l x \lv(flll ) < flllt'lf'O > . (7.16)

< ftlfO > is the single electron propagator in the absence of the magnetic field. Thus,
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upon carrying out the time integration, the density matrix must have the form,

173

(- -I) (- -I) .Jd-lIj (--I-II)B- -II '" (-II)d-Pb r, r = Po r, r - 1, r 1 rr r e r x v II r r

Jd-lld-IIIB- -II '" (-II)} (--I-II-III)B- -III '" (-III)- r r er X vllr 2rrrr er X vllr .

Given the above, the exchange energy functional must have the form,

E: = E; +Jdfdf'Be f x \711(f)F(ff')B e f' x \711(f').

(7.17)

(7.18)

Here F(ff) , a universal functional of the density, may be derived from particular

forms of the propagator, or may be constructed phenomenologically.

From the form of the integral, some comments for the case of a neutral bounded

electronic system may be made. The total potential, lI(f), is a functional of the den-

sity. Thus, the long range behavior of lI(f) is governed by the long range behavior

of p(f) or some functional of p(r). The long range behavior of p(f) is exponential

and radial. Thus, f x \711(f) vanishes beyond the distance where the radial behavior

dominates. Hence, any divergence in the f and f' integrals is naturally cut-off at the

distance where the density becomes radial. Of course, as shall be seen, this natu-

ral cut-off does not prevent the integrand from diverging in certain approximations.

These divergences will not be due to the long range of the coulomb interaction. Thus,

there is a natural convergence for the exchange energy functional that need not in-

volve screening. The convergence is due to the nature of the bound states of finite
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electronic systems.

Now consider the locally uniform electron gas approximation, but in such a way

that it preserves the structure given above. There is no free lunch. The density

matrix that is constructed does not have vanishing diagonal elements to first order.

Also, the integral diverges; not from the long range of the coulomb interaction, but

from a variant of the divergence of the gradient expansions of the ordinary kinetic

and exchange energy functionals. [16]

Suppose the presence of the exponential time dependence is ignored in Equation

(7.13) Then with,

r'
L
h

l(t) ~ -if x "VlIt

and

"Ht "H t - t
2

- 2 t
4

e-t = e-t 0 [(1 - B • f X "V1I) 2" - (B • f X "V1I) "8 + ...].

(7.20)

(7.21)

In physical space, to lowest order in the gradients, in center of mass and relative

coordinates, the propagator is,

- -
< R + ::le-iHtIR - ::. >

2 2
~ 1 eix2/2te-il/(R)t[(1 _ B. R x "VlI(R)) t

2

(21fit)3/2 2

(B. R x "V1I(R))2 ~]. (7.22)
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Rather than explicitly write out the density matrix, one may go straight to the

exchange energy itself. Namely,

Now the potential, v(R) will be scaled out. The first term is the Dirac expression for

the field-independent exchange energy. The Dirac exchange plus the field-dependent
<

part of the exchange energy is,

E§ = E; + a JdR(B. R x V'lnv(R))2 (7.24)

where a is a constant that has been omitted for the sake of clarity. Substituting the

Thomas-Fermi relation between potential and density, the result is

(7.25)

(J is another constant again omitted for the sake of clarity. It is immediately seen

that the natural cut-off appears as V' In p(R) -+ R/R at large distances.

There is, however, a fly in the ointment: the constants diverge. This divergence

is derived in the Appendix. As is shown there, the source of the divergence is not the

long range of the coulomb interaction, but the time integrals. These ordinarily arise
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in propagator derivations of gradient expansions. Thus, the source of the divergence

is from the gradients. A "conjoint" [17] expression for the B field exchange may exist

which is of the form,

\ -

with the usual definition of,

x(R) = 1\7~(R)I
p(R)4/3

(7.26)

(7.27)

as a "bounding" function introduced by A. D. Becke. [1],[7],[8],[17] This function

removes the divergence and has the correct asymptotic behavior while preserving the

fundamental character of the energy functional.

7.3 Conclusions and a Conjecture

The coupling constant integrated exchange-correlation energy in a uniform mag-

netic field has been shown to vanish when the ground state density is spherical. It

also vanishes when the field is parallel to certain symmetry axes as manifested in the

density. Next the A = 0, or Kohn-Sham exchange energy functional was examined.

It was shown that an explicit functional could be obtained which satisfied the above

criteria. Unlike the exchange energy of a locally uniform electron gas, the divergence
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~ ­,
that the most general form of the exchange energy is, for the field-dependent part,

E: - Et = Jdff'iJef x VV(f)F[ff'p]Bef' x Vv(f'). (7.28)

It is worth a conjecture that the full exchange-correlation energy has the same form.

7.4 Appendix

The divergence from the space integrals of Equations (7.21) and (7.22) is demon-

strated.

The exchange energy density is the sum of three terms,

(7.29)

The first term is the exchange energy density in the absence of the magnetic field.

Defining,

g(x t) = 1 eix2 /2teiVt

'(27rit)3/2 ' (7.30)
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Then the terms are explicitly

b
t

o J J dt dt' ( ) *( , ')Ex = dx 21rit 21rit,g x, t 9 x, t ,

1 J J dt dt' 2'2 ( ) *( , ')Ex = dx --.-.-t t 9 x, t 9 x, t ,
21r~t 2mt'

2 J J dt dt'4 ( ) (' ')Ex = dx --.-.-t 9 x, t g* x ,t .
21r~t 21r~t'

After performing the time integrations, one obtains the following, [18]

o f /(2V) 3 If ] 2Ex = . dx( .) (J3/2[ V (2V)x) ,
21r~.T

1 1 4 J 21rix If] 2E <X (-2) dx( If (J-12 [V (2V)x) ,
1r V (2V)

2 1 4 J 21rix If] If) ])E <X (-) dx( If (J3/2[V (2V)x )(J-5/2 [V (2V x
21r V (2V)

J'kill. are spherical Bessel functions.
2

(7.31)

(7.32)

(7.33)

(7.34)

(7.35)

(7.36)

l _

Upon scaling out the potential, V, and performing the final integration, the first

term remains finite and proportional to V(x)2, which is correct for the Dirac exchange..

The remaining integrals, however, diverge both separately and when summed. The

source of the divergence is the behavior of the Bessel functions of negative order near

x=O. Hence, the exchange energy still diverges, but this divergence is of the kind

typically found in gradient expansions. [16]
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Chapter 8

Estimation of Intermolecular

Xenon J Couplings

8.1 Introduction

In Nuclear Magnetic Resonance (NMR), improving sensitivity is a major concern

of researchers. The use of optically pumped noble gases is one means of obtaining

signal enhancement in order to observe signals that ordinarily would be too small

to measure [1]. Optical pumping produces a very large, nonthermal, nuclear spin

polarization. This large spin polarization is equivalent to having a very low spin

temperature. Optically pumped xenon, in particular, may be used as a spin probe.

Signals can be observed signals that previously were too small to observe, either

through direct observation of the xenon, or by transferring the nuclear polarization
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to other spins. [2].

One of the more useful NMR parameters in obtaining structures is the J or indirect

spin-spin, coupling. The J coupling is a second rank tensor. The Fermi contact

contribution, however, usually dominates and is a scalar. Hence, only this scalar

term shall be estimated. These J couplings are widely used to determine connectivity

in directly bonded systems [3]. The small size of J couplings between systems that are

not chemically bound such as Van der Waals complexes have rendered intermolecular J

couplings unobservable until now, and hence, uninteresting. More recent experiments,

however, using laser polarized xenon have lead us to consider indirect spin-spin, or

J, couplings of xenon in Van der Waals clusters. These small couplings may be

observable in the near future using laser polarized.

As the J coupling is linear in each nuclear spin, a large enhancement of the nuclear

spin polarization could allow for observations of very small J couplings. These large

enhancements could be obtained via optical pumping of the nuclear spins of xenon or

helium. The xenon-hydrogen and xenon-xenon J couplings that are calculated in this

chapter are on the order of mHz-p,Hz in regions of physical interest. More conventional

techniques allow for the trivial observation of J couplings on the order of a few Hz.

Due to the factors of 10,000 or more enhancement in the xenon spin polarization that

may potentially be obtained with optical pumping, the small xenon J couplings which

one would expect in Van der Waals complexes may be experimentally observable.

This potential for the observation of small Xe-H J couplings is exciting as xenon

,'
i
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often binds biomolecules via Van der Waals interactions. Observing J couplings could

provide more structural information than measuring the chemical shift as there are

potentially multiple Xe-H J couplings present in a biomolecule. In addition, the

possibility of observing Xe-Xe J couplings in cavities provides an impetus for their

calculation. [4], [5]

In this chapter, the Fermi contact contribution to the J coupling of Xe-H and

Xe-Xe is estimated using a variant of density functional theory. The Xe-Xe coupling

may be between Xe129 and Xe131 or between xenon atoms of the same isotope in

chemically different environments.

8.2 Previous Theoretical Frameworks

The J coupling tensor has been studied previously in both wavefunction and den-

sity functional frameworks [3]. The work presented in this paper is based upon Mag-

netic Field Density Functional theory [6].

Grayce and Harris showed that a consequence of magnetic density functional the-

ory is that the energy to second order in field strength may be written as

(8.1 )

where the functional, F(po, r, r'), is a universal functional of the unperturbed electron
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density, Po. The magnetic field due to the nuclear spins A and B is,

. (8.2)

in which {LOt is the magnetic moment of the a spin, and Ro: is the position of the a

spin.

(8.3)

Grayce and Harris also showed that one could obtain the Fermi contact contributions

to the J coupling without knowing F[f, f', Po], by using spin density functional theory

[8]. The resulting equation required one to obtain the electronic spin polarization,

X(f), from a density functional generalization of the Dalgarno-Schwartz equation for

the hyperfine coupling in one-electron atoms.

Both the above methods are unnecessarily complex for the estimate, as the inter-

est is in weakly bound electronic systems. The method used here is referred to as an

electron gas theory, e.g., a Gordon-Kim theory as applied to responses. This theory

uses the sum of the atomic electron densities in the presence of the external fields,

that is, the additive density approximation [9]. For the Fermi contact coupling con-

stant, like earlier theories of electrical responses, only the usual forms of spin density

functionals are needed. [10] That is, there is no need to know F[po, Ro:, R,a] explicitly.
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8.3 Present Theoretical Framework

Given the weakly bound nature of the complexes, it is a reasonable to consider

only two atoms as a prototype for the entire complex. Atom A is at the origin and

atom B is at R. Two situations shall be considered. In the first instance, the atom

at R has only one electron, e.g., a hydrogen atom, and the atom at the origin is a

closed shell system, e.g., xenon. In the second case, both atoms are electronically

identical closed shell atoms, for example, a pair of xenon atoms. In zeroth order, the

total electron density of the closed shell atoms is twice that of its spin up component.

Thus, only the change of the spin up component need be considered in both scenarios.

(8.4)

The first term is the spin up density of atom B, the second the spin up density

of atom M, and ~i(f) is the spin up density change induced by the Fermi contact

perturbation to the ground state. The Fermi contact perturbation due to both nu-

clear spins. ~i (f) is included within the additive density approximation upon which

Gordon-Kim theory is based as,

(8.5)

where gdi is the gyromagnetic ratio for nucleus i times the spin for nucleus i, oJ is
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l···'-

t-

the dimensionless perturbation of the density via the Fermi contact interaction, me

is the mass of the electron, mp the mass of the proton, and J.LB is the nuclear bohr

magneton. Details of the calculation of <51 are deferred to the next section. A similar

expression exists for spin down,

(8.6)

For the Xe-H interaction, the hydrogen atom at R is chosen to have a spin up

electron. The electron could have been picked to be spin down without changing the

results. Hence, only need the deviation of the spin up electron density is needed,

(8.7)

According to spin density functional theory, the relevant portion of the energy

may be written as

E = Ekinetic[Pi] + Ekinetic[Pt] + Eexchange[Pi] + Eexchange[Pt] + Ecorrelation[Pt, Pi]

where Ecorrelation,Ekinetic, and Eexchange are the correlation, kinetic energy and ex-

change energy functionals, respectively, and the last term is the explicit Fermi con-

tact energy. As the J tensor can be obtained from as an energy derivative, the J
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tensor is divided into two terms. The first term is the direct term which with our

approximations depends only on the perturbed densities at the nuclear positions.

(8.9)

This term is obtained solely from the Fermi contact perturbation. The second term,

the indirect term, requires derivatives of the energy functionals. In order to esti-

mate the indirect term, the simplest density functionals extant are used: namely the

Thomas-Fermi-Dirac (TFD) functional. In the TFD approximation, the total energy,

with neglect of correlation, is expressed as [10],

(8.10)

Ck and Cx are constants which for closed shell systems are 2.871 and 0.7386 respec-

tively in atomic units. The density is now placed into the energy functional. The

"indirect" term is obtained by differentiation of the TFD energy functional. This

term contains products of the perturbed densities of atom A and atom B due to their

own hyperfine interactions.

The off center perturbation is neglected as being significantly smaller than the on

center one. Carrying out the required functional differentiation gives the indirect J

as,
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r~

L

_ me 2 J1'~ 1611" 2 J - b
2
Ekin b

2
Ex) [ r - r - -]

Jirulired - m
p
2(3) dr(b(pr(r))2 + b(Pr(r))2 gagb1ah ba(r)bb(r - R).

(8.11)

Thus, the present method requires on.ly functional evaluations at two points for the

direct term, but requires an integral over all space for the indirect term. Performing

the latter requires a numerical integration program. Note that, the terms direct and

indirect here refer to different portions of the Fermi contact contribution to the J

coupling. This usage should not be confused with the use of direct and indirect

spin-spin coupling to refer to the dipolar spin-spin and the total spin-spin couplings,

respectively. This chapter is only concerned with a portion of the J coupling.

8.4 Fermi Contact Perturbation

The problem of solving for b1 (f) remains. In order to determine the effect of the

Fermi contact interaction on the electron density, perturbation theory and hydrogenic

orbitals are used. The results are correct to first order for hydrogenic orbitals. How-

ever, the use of hydrogenic orbitals requires that the density for xenon and hydrogen

be expressed in terms of hydrogenic orbitals with effective Z's. This will be discussed

in more detail later in the chapter. Other work has been done on perturbation theory

of the Fermi contact interaction such as the work of Harris and Pitzer. [11] The

r ~.
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method used here is similar, though with slight differences. Additionally, the method

is generalized to arbitrary quantum number, n, and effective charge, Z.

For the Fermi contact interaction, only the ns states need be considered as only s

states penetrate to the nucleus. The differential equation that must be solved from

perturbation theory is,

(8.12)

The various terms in Equation 8.12 are,

Z2

E
o -
n = 2n2

(8.13)

(8.14)

(8.15)

(8.16)
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The following amplitude is also defined,

Z3/2exp(-Zr/n)
'¢ns = ( ,

where ( is the normalization constant for the '¢~s state, such that

The assumption is also made that,

(8.17)

(8.18)

(8.19)

i _, -

Fn[rZ] is, of course, not the same as pn[rZ]. The spirit of this approach is the same

as in Dalgarno-Lewis perturbation theory. [12] The precise details, however, are not

the same. In Dalgarno-Lewis theory, one would assume a form of '¢~s = Cn[rZ]'¢~s.

In this particular instance, the form from Delgarno-Lewis perturbation theory is not

the most facile approximation.

The differential equation is solved in more detail in the appendix. The only

remaining issue that must be dealt with to obtain perturbed densities is the role of

effective Z's. As estimated of the J coupling is all that is desired, first use Slater's

rules to obtain Z effectives for all but the 5s and 5p orbitals. [13] The Z's for the n=5

shell are obtained by first calculating the electron density at R, the position of the
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second nucleus, via a Hartree-Fock calculation and then fitting. Obviously a possible

improvement would be to do a more global fit, but for this estimate it was believed

to be unnecessary.

8.5 Results

After obtaining the perturbed densities, solving for the J couplings becomes a

matter of numerical evaluation for the direct term, and numerical integration for

the indirect. These results are quoted in Table 8.1, and Figures 8.1-8.5. From an

inspection of the figures one can see several trends. Figure 8.1 indicates that the Xe-

Xe J coupling decays roughly as an exponential, though with some slight oscillations

as indicated in Figure 8.2. In the region of physical interest, 8-12 bohr, the coupling

is of the order of millihertz. The Xe-Xe coupling is dominated by the indirect term.

The direct term is never more than 1% of the indirect. Aplot of the Xe-Xe interaction

potential is included to illustrate the region of significant overlap [14]. In the case

of Xe-H, the prototype for Xe in a cage molecule, the direct and indirect terms are

of roughly equal magnitude as demonstrated in Figures 8.3 and 8.4. The total J

couplings has an approximately exponential decay, as demonstrated by the plot of

the In[J] in Figure 8.5. The region of physical interest for xenon contained in a cage

molecule is 6-8 bohr where the couplings are of the order of 10-100 microhertz.
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Table 8.1: J Couplings
Xe-Xe Xe-H Total Xe-H IndirectInternuclear

Xe-H direct
Distance (Bohr)

4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0
10.5
11.0
11.5
12.0
12.5

J Coupling

1.59
8.60
13.6
6.50
4.86
2.53
1.18

0.373
0.0732

0.00429
-0.0149

-0.00147
0.00657
0.00902
0.00752
0.00481

J Coupling
63.0
3.32

0.758
0.149
0.089
0.045

J Coupling
4.80
1.79

0.178
0.114
0.074
0.037

J Coupling
58.2
1.53

0.580
0.0350
0.0155
0.0083
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Figure 8.1: The Xe-Xe Fermi Contact J coupling is shown along with. the Xe-Xe
interatomic potential. The latter is obtained from ref. 16.
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Xe-Xe J Coupling at Longer Distances
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Figure 8.2: A blowup of the tail of Fig 8.1 to illustrate the oscillations in the coupling.
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Figure 8.4: The indirect portion of the Xe-H Fermi contact J coupling is shown.
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8.6

Chapter 8. Estimation of Intermolecular Xenon J Couplings

Conclusions

Using an electron gas theory, the J couplings between two inequivalent Xe atoms

and between a xenon and a hydrogen atom are estimated. The latter is a prototype

for the xenon-hydrogen coupling in a cage molecule. An approximately exponential

dependence on internuclear distance in these parameters in the region of weak overlap

was found. The values estimated are within the potential ability of experimentalists

to measure with the techniques of optical pumping. Hopefully, these estimates will

provoke experimentalists to measure these quantities.
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8.7 Appendix

The simplification and solution of the Fermi contact differential equation are ex-

hibited in this appendix. In order to solve for F[r], an approximation needs to be

made. When r=O, the left hand side of equation (4.12) diverges because of the delta

function. Assume that it suffices to only consider the divergence to first order. So

that the divergence can be approximated by afro One can immediatly simplify the Z

dependence of the differential equation. Define r'=rz. Then the differential equation

~ -

l

f .
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becomes,
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(8.20)

Thus, this equation can be for arbritary Z. For the remainder of the discussion, Z shall

be set equal to one, and generalizations made when appropriate. The differentiation

equation for the Fermi contact perturbation in the Is state becomes,

(8.21)

Hence, if one lets F[r] = air, then the first two terms cancel, leaving the following,

(8.22).

Hence, F[r] = air is not correct, and two more terms are necessary in order to obtain

the full F[r] from Equation 8.21. Additionally, a constant term must appear so that

orthogonality is preserved,

(8.23)
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The end result is an expression which has 4 terms,

a
F[r) = -+ b+ cr+ dln[2')'r),

r

BIBLIOGRAPHY

(8.24)

t -

where a,c, and d are obtained from the differential equation using Mathematica and b

is obtained from the orthogonality constraint. Euler's constant, ')' introduced so that

the coefficents are all rational. The crucial step in realizing how to solve for higher n

states is to note that the left hand side of the differential equation (4.12) changes at

higher n merely by the multiplication of an nth order polynomial, i.e.,

So the F[r)'s for higher n states, Fn[r]' must have the form

Fn[ ) - an b "n C j "n-1d i-II [2 )r - - + n + LJj=1 jnr + LJi=O inr n ')'r,
r

(8.25)

(8.26)

where the coefficents can be obtained readily using Mathematica or some other sym-

bolk mathematics program. Some explict solutions for a few s states include, s=l

1 _ -2 exp(-r)
'ljJls - (- - 10 + 4r + 4ln[2')'r)) 1/2'

r ~

(8.27)
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1 -4 2 exp(-r/2)
'l/J2s = (--:;:- - 6 + 13r + 8lnbr ] - r - 4rlnbr]) 321r1/ 2 ' (8.28)

s=3

0/.1 = (-48 _ 454309 1610806r _ 40844062 r2 961n[ r]
'f/3s r 6561 + 19683 1778257 + 'Y +

64 3 64 2 e.r,p(-r/3)
81 r - 64rlnbr ]+ gr Inbr ])81 (121r)1/2 . (8.29)

There are similar but more complicated expressions for the n=4 and n=5 states which

were used in the calculations. Subsitution of rz for r allowed the useage of effective

Z's.
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Chapter 9

The Magnetic Field Dependent

Quadrupolar Splitting

In this chapter, it is confirmed that the recently discovered field dependent nuclear

quadrupolar splitting of Xe131 arises from a distortion of the electron density due to

the applied magnetic field. [1] Ordinarily, the spherical symmetry of the electron

density would result in a vanishing quadrupolar splitting even in the spin ~ Xe131

isotope. In a high enough magnetic field, however, the electron density can be slightly

distorted causing a break in the spherical symmetry. The distortion depends both

linearly and quadratically on the applied field. The existence of the former is due

to the coupling to the field and the nuclear spin. The latter is a manifestation of

the quadratic Zeeman effect. In addition to confirming the order of magnitude for

the observed effect, it is shown that there should be an asymmetry introduced in the

Lr-

r--
\ -
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spectra due to the linear coupling with the nuclear spin. This effect has not been

seen experimentally.

9.1 Introduction

Recently, evidence has been found for the existence of a magnetic field dependent

quadrupolar splitting in gaseous 131Xe. [1] The precise nature of the effect was not

anticipated. However, previously in unpublished work, Rex Gerald III had speculated

that a measurable quadratic effect would exist, and that the linear effect would be

unmeasurably small. [2] Earlier experimental work had failed to observe any such

effect. [3] In this work, a theory is presented which confirms the sign and magnitude

of the experimentally observed linear and quadratic effects.

The intuitively obvious explanation of this behavior is that a magnetic field dis-

torts the electron density. As expected, this distortion and hence, the quadrupole,

is very small due to the weak interaction of the field and the electrons. There are

two terms in this field induced nuclear quadrupolar Hamiltonian: a term linear in

the field and a quadratic term. The sources of the two terms are respectively, the

coupling of electrons to both the nuclear magnetic moment and the external field, and

the ordinary diamagnetic coupling of the electrons to the external magnetic field. In

the absence of the quadrupole, these terms generate respectively the ordinary chem-

ical shielding and magnetic susceptibility. Hence, the description may be reversed

so that the nuclear quadrupole distorts the electron density. The chemical shielding
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and magnetic susceptibility of an isolated atom would then become dependent on the

orientation of the nucleus relative to the applied field. For a molecule there would

be additional paramagnetic contributions to the induced quadrupole moment. These

terms shall not be considered here as the atomic case is the one of interest.

The calculation of the two effects is presented here. Then the sign and magnitude

are calculated exactly for a fake H like system. By fake hydrogren, an atom identical to

hydrogen with nuclear spin 3/2 and 131Xe nuclear magnetic and quadrupole moments

is meant. Finally, an estimate of the size of the effect in real 131Xe is given and the

results are compared to the experiments.

9.2 General Theory

An isolated atom does not possess a field gradient at the nucleus because the elec-

tron density depends only upon the radial distance from the nucleus. When the atom

is placed in an environment in which the electron density is perturbed and the expan-

sion of the perturbation in spherical harmonics contains Y2m components amongst

others, a field gradient is generated. In the present situation, the perturbations are

an applied magnetic field and a nuclear magnetic moment.

The relevant electronic Hamiltonian for an atom in the presence of both a nuclear
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quadrupole and a magnetic field may be decomposed into four pieces,
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(9.1)

Ho is the zero field Hamiltonian for the electrons. HQ , the ordinary quadrupolar

Hamiltonian, is in atomic units,

(9.2)

Ymn(Oi) denotes spherical harmonics and, Oi, ri the electron coordinates. HD is the

diamagnetic interaction,

(9.3)

B is in the atomic unit of 12.5 Tesla, and ex is the fine structure constant which in

atomic units is ~ ~ 1;7" Finally there is the diamagnetic coupling, Hu , of the nuclear

spin, I, to the magnetic field that would give rise to the chemical shielding in the

absence of the quadrupole. [4]

(9.4)

The nuclear g factor may be positive or negative and ;;; ~ 18~O.
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Instead of calculating the distorted electron density, the contribution to the ground

state electronic energy that is linear in HQ and linear in each H D and H q is calculated.

This nonvanishing energy is proportional to the field induced electric quadrupole

coupling hamiltonian.

As the atoms are in the gas phase, only the irreducible second rank terms in H D

and Hq are kept. Due to the high field, only one component remains namely Y20(Oi)'

Thus,

[ -

t "
I

(9.5)

and

(9.6)

The resulting energy, bilinear in HQ and HD and H(T is,

(9.7)

Eno is the energy difference between the ground state, 10> and the excited state

In >. The terms linear and quadratic in the field have different dependencies on the

nuclear spin. In particular, the quadratic term depends as (31; - 1(1 + 1)), whereas



9.2 General Theory 209

( ,

!, -, -

I •

the linear term is 1z(31; - 1(1 + 1)), the latter leads to a splitting of the nuclear

spin degeneracy. Additionally, the signs of the linear and quadratic terms may be

different. Indeed, the Hamiltonian may be written as,

2 (31; - 1(1 + 1)) (31; - 1(1 + 1))
H = g(l - <Y)B1z + QADB (312 _ 1(1 + 1)) - gQAuB (312 _ 1(1 + 1)) 1z, (9.8)

in which <Y is the chemical shielding. The signs of AD and Au may be proven to be

the same in a simple Kohn-Sham approximation. The signs are conjectured to be the

same in the exact theory.

Now specialize to the specific case of 1=3/2. In particular, the spectra of a fake

spin 3/2 hydrogen will be examined. In the absence of the quadrupole terms all the

energy transitions are equal. Hence, there is only one line, assuming equal populations

of the four m levels and neglecting induced emission. With the two additional terms

the degeneracy is broken in a field dependent manner with different dependencies for

each line. In experimental situations it may be necessary to track the lines relative

to the center line, so the relative energies would be,

3 1 2 ] (9.9)D.E(-- ~ -2") ex: -2[ADB - gAuB
2
1 1

(9.10)D.E(-- ~ 2") 6< gAuB2

D.E(~ ~ ~) ex: 2[ADB 2 + gAuB]. (9.11)
2

The transition energies as a function of field for two different ratios of AD to Au are
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plotted in Figures 9.1 and 9.2.

Notice that there is a B for which the 3 lines collapse into 2. This Be is given by

B . 3gAq

c 2AD
(9.12)

which could experimentally provide the ratio of the two coupling effects. The coupling

constants could be obtained experimentally by fitting results from a variety of field

strengths.

A bound for E(2) can now be calculated assuming that the ground state is from a

single determinant, e.g., from Kohn-Sham theory,

I -
I

(9.13)

(9.14)

where p(r) is the electron density.

An explicit calculation can be performed for this bound with fake hydrogen, given

an estimate for E*. Simple evaluation of the first term obtains,

(9.15)
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Figure 9.1: The transition Energies {l.8 a function of magnetic field strength for the
case in which the quadratic coefficient is ten times the linear coefficient.
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Figure 9.2: The transition Energies as a function of magnetic field strength when
quadratic coefficient is one-tenth the linear coefficient.
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which with E* = 3/8, the excitation energy to 1= 2 , yields
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(9.16)

i .

in units of hertz with QB2 in units of (tesla-meter)2. The bound for the second term

linear in B is much less useful as it diverges.

In order to quantitatively examine the magnitude of the two terms they are cal-

culated exactly for" fake" hydrogen. First, the energy of fake hydrogen with charge

Z, quadrupole moment Q, and gryromagnetic ratio g is related to the energy of fake

hydrogen with unit charge. Simple scaling obtains the results.

E1(Z) = ZED (l)

E;(Z) = Z4Eu (1)

(9.17)

(9.18)

Next an elementary calculation using Dalgarno-Lewis-Schwartz perturbation theory

is performed. [5] The results of an earlier calculation of the quadrupolar induced

dipole moment in HD may be used. [6] The second order energy is,

(9.19)
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I'l/Jq > is the wavefunction perturbed to first order by the quadrupole. Explicitly,

r
~--­

!

I

i-
f=

with fQ the solution of,

-1 rP 1 d 3 1(-- + (1 - -)- + - )fQ = --
2 dr2 r dr r2 r3

A particular solution to equation (21) is,

1
fQ = -(- + 19)

3r

As the ground state wavefunction is simply

.1,0 l_r
'P =-evn

with,

(9.20)

(9.21)

(9.22)

(9.23)

(9.24)

f -

t
\
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where

E(2) = -5Q J 4d -2r(~ ~)B2Z(31; - 1(1+ 1))a
4

D· 61l" r re 3r + 9 (312 - 1(1 + 1))

E(2) = 5Q Jd -2r(~ ~ )BZ4 1 (31;- 1(1 + 1))a
4

u 61l" r r 3r + 9 9 z (312 - 1(1 + 1)) .

Elementary integration yields,

E(2) = _QB2*5 6 * 1O-2Z(31; - 1(1 + 1))a
4

D . (312 - 1(1 + 1))

E(2) = QB2*5 2 * 1O-5 Z4 1 (31; - 1(1 + 1))a
4

u . 9 z (312 - 1(1 + 1))

in atomic units.

9.3 Comparison with Experiment
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(9.25)

(9.26)

(9.27)

(9.28)

The experimental splittings were fit as linear plus quadratic terms in the magnetic

field. These results, in hertz per Tesla2, and hertz per Tesla respectively, are [1] :

and

E(2)
; = 0.016986

(2)Eu13 = -0.077511.

(9.29)

(9.30)
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The comparison to theory is not entirely straightforward as the peaks were assumed

to split symmetrically about the center peak. While the experimental spectra do look

asymmetric at low field, it is difficult to determine how much of this is from exper-

imental artifacts. It is clear, however; that the experiments found a field dependent

splitting that has both linear and quadratic dependencies. Moreover, the experiment

found that the fitting constants for the two effects are comparable in magnitude.

These results shall now be shown to be reasonable.

For fake hydrogen, substitute the parameters for Xe into equations (9.9), (9.10)

and (9.11) to obtain the following results in units of hertz and tesla,

3
-~) = -3.08 * 1O-3B 2 + 7.09 * 1O-6 B (9.31)/1E(-- -2

1
~) = -3.55 * 10-6B (9.32)/1E(-- -2

/1E(~ - ~) = 3.08 * 10-3 B 2 + 7.09 * 10-6 B. (9.33)
2

Experimentally the only available reference is the center line, and so relative to

that line, the transition energies become,

3
- ~) = -3.08 * 10-3B 2 + 1.06 * 10-5B (9.34)/1E(-- -2

1 1
(9.35)/1E(-- - -) = 0

2 2

/1E(~ - ~) = 3.08 * 10-3B 2 + 1.06 *10-5B. (9.36)
2

r
1-t ::;
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For fake hydrogen, the quadratic term dominates by almost 2 orders of magnitude.

In fact Be = 0.0034 Tesla. Clearly, for any reasonable experimental field, such as the

7.05 to 16.92 Tesla fields used in the xenon experiments, one would see a symmetric

splitting quadratic in the field. For atoms other than hydrogen, one would have two

changes. The first is that the nuclear charge changes. So Z is no longer one and

effective Z's may be introduced into equations (9.27) and (9.28). These Z effectives

may even be different for the linear and quadratic term, as one would find in the

ordinary chemical shielding and magnetic susceptibility. [7] The second change i's

that there is more than one electron present. This causes an additional change in

the constants beyond the change in the Z's. The latter change may be estimated

by scaling by the change in the chemical shielding and the magnetic susceptibility

in going from hydrogen to xenon. The shielding increases by a factor of about 300,

whereas the susceptibility increases only by a factor of 20. Applying these arguments,

one obtains the following,

3 1
~E(-- -t -"2) = -6.16 * 10-2B 2Zeff + 3.18 * 10-3BZ;ff (9.37)

2
1 1

~E(-- -t -) = 0 (9.38)
2 2

~E(~ 3
-t "2) = 6.16 * 10-2B 2 Zeff + 3.18 * 10-3BZ;ff' (9.39)

2

This estimate overestimates the quadratic term versus the linear term when com-
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pared to the experimental results. The agreement, however, is not bad for a simple

scaling argument. One could also attempt to reproduce the experimental results by

adjusting the effective Z's. The linear coefficient would be reproduced by an effective

Z of 9.2 whereas the quadratic coefficient would require an effective Z of 5.5. The

different r-dependencies of the operators would require the use of different effective

Z's. Attempting to adjust the effective Z's to reproduce the experimental data is not

necessarily sensible as one must consider that the experimental data was interpreted

as being symmetric whereas the theory predicts an asymmetry. Additionally, this is

only meant as an estimate of the effect not as a precise calculation.

9.4 Conclusions

The estimates presented in this chapter confirm the supposition that a magnetic

field dependent quadrupole splitting in 131Xe is due to a diamagnetic distorted atomic

electron density. This distortion is primarily quadratic in the field for light atoms, but

may have a substantive linear component in heavier atoms. Additional motivation for

continued experimental work in this area is also presented as the predicted asymmetry

in the spectra requires more conclusive experiments. It would also be fruitful to

develop an experiment in which the reference is not the central transition as one could

then see if the central transition also moves linearly with the field. Experiments in

which this effect is sought for in othersystems, i.e. other atoms, molecules, and solids,

are likely to occur in the near future.
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Chapter 10

Conclusions and Future Work

The major focus of this thesis has been on developing functionals for the magnetic

susceptibility and the chemical shielding within the context of magnetic field density

functional theory (BDFT). These functionals depend on the electron density in the

absence of thefield , which is unlike any other treatment of these responses. Additional

work has also been done on intermolecular J couplings and the magnetic field-induced

quadrupole splitting.

There are several developments reported in this dissertation. First, is the develop-

ment of local density functionals for chemical shieldings and magnetic susceptibilities.

These are the first such functionals ever proposed. In order to ex~mine their advan-

tages and disadvantages, they were tested numerically on some small molecules.

In order to mitigate some of the difficulties encountered with local functionals,

nonlocal functionals of the electron density were also developed. The examination
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of the local current density functionals led to consideration of the field dependent

portion of the exchange-correlation. The examination of nonlocal current density

functionals generated the method used. In order to avoid divergence every other

treatment of the exchange has required the screening of the exchange by correlation.

The first exchange functional in which this divergence was avoided because of the

bound state nature of the electronic system was then constructed. Additionally, a

conjecture was given for the full form of the exchange-correlation energy functional.

In both instances, the functionals depend on the ground state electron density in the

absence of any magnetic field.

Additionally, the J, or indirect spin-spin coupling, was considered. An estimate

was made of some intermolecular xenon J couplings, which have provided motivation

for some experimentalists. These coupling are of interest because they could be used

to study cage molecules or even xenon-protein complexes. This estimate was done

using BDFT, but the approach was different from that used for the chemical shielding

and the susceptibility. In particular, an energy approach was used within the additive

density approximation. The use of the additive density approximation was justified

as all that was· desired was an estimate.

The recently discovered magnetic field-dependent quadrupole splitting was also

investigated. The physical origin and magnitudes of both the linear and quadratic

dependencies on the magnetic field were explained. The existence of a linear depen-

dence had been particularly troubling as experimentally it had the larger coefficient
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in xenon, whereas previous researchers had claimed that it would not exist at all!

Of course, at higher magnetic fields the quadratic effect does dominate despite its

smaller coefficient. The small size of this effect makes it difficult to observe, however,

there are some interesting effects that I have predicted, which have yet to be observed

experimentally. In particular, the peaks should have slightly different dependencies

on the magnetic field strength. In lighter atoms, the quadratic effect should have

the larger coefficient. Hence, neon would be an ideal system to examine to test this

effect. It is not surprising that these effects have yet to be observed. The experi-

ments in which the gross effect was observed are at the cutting edge of NMR in 1998.

The varying dependence of the lines is simply too fine a detail to be observed at the

present. Additionally, this effect has only been observed in gaseous xenon, an ideal

system for these studies. In order to test how the linear and quadratic dependencies

vary from system to system, more. experimental work is needed on other systems that

may be beyond the state of the art at the present. However, creation of higher and

higher strength magnets is an ongoing and intensive field of research. As such, these

predictions should be tested in the near future.

Hence, quite a bit of progress has been made in Magnetic Field Density Functional

Theory. However, more must be done before it becomes a tool which experimentalists

can routinely use. The work presented in a portion of this thesis is just a beginning,

and there are many questions remaining to be answered within this theory.

The first practical concern that must be addressed is that of computation. The

f -

I '.
f -
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nonlocal functionals explicated in Chapter 6, or more local approximation to these

functionals, must be implemented within an electronic structure package. Such com-

putation implementation will provide for a rigorous test of these functionals. If the

accuracy of these functionals is less than desired, than the next step will be to para-

materize these functionals as was done for the local functionals. The parametrization

of these functionals along with localization approximations will probably be the most

important practical problem within this theory. It will be interesting to see if some

of the nonlocality present in these functionals can be neglected, as that would reduce

the computational aspect of the problem. In particular, there are presently three

integrals that must be performed. Hence, this step would have a high computational

scaling. The high computational scaling is mitigated by the need to perform only a

single pass through the functional. As the zeroth order electron density is all that

is required, the basic electronic structure calculation can be performed and then the

functional evaluated once. Still it would be useful to reduce the scaling and theoreti-

cally interesting to see what degree of nonlocality is really required. The first obvious

place in which nonlocality can be reduced is in the integration within W~ in which

the integral could by replaced by the sum of the endpoints. Once such computational

work has been performed than this theory can really be used to ask questions about

how the magnetic responses are really sensitive to electronic structure. For example,

one could easily imagine mapping out orbital contributions to shifts that may allow

one to precisely examine the sensitivity of NMR to bonding. One could also imagine
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merely using this theory as a faster method of calculating magnetic responses with-

out using any of the potential advantages this theory has for interpretation. Hence,

computation investigation is the first challenge that should be addressed.

Another logical extension of the work would be to include th~ orbital portion

of the J coupling in this theory. Formally, most of this thesis has focused on the

functionals when there is either a uniform field or a uniform field plus the field from

a nuclear dipole. These are the appropriate fields for the magnetic susceptibility and

the chemical shielding, respectively. However, they are both limits of one field: that

due to two nuclear dipoles. The latter field is what gives rise to the orbital portion

of the J coupling. So if one determined the, functionals for the latter field, by taking

limits one would obtain functionals for the other fields. What is needed to be done

in order to incorporate the· J coupling more fully into this theory is to reverse the

limit. A full treatment of the orbital portion of the J coupling would require the

exact same treatments as has been done except rather than considering the current

density induced by a uniform field, one needs to consider the current density induced

by a nuclear dipole. However, as one takes a dipole and moves it to infinity than one

obtains a uniform field, i.e. considering the energy,

i -

(10.1)

as the dipole is moved to infinity. This suggests that to first approximation we ignore
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terms which vanish in the limit, and hence, replace the f x V which appears in

the nonlocal functional for the chemical shielding by jr!R13 where R is the nuclear

position and generate an approximation to the orbital J coupling. This should be a

first approximation in extending the theory to handle another response.

There are other issues that presently are of more theoretical concern. The first is

how to reconcile local and the nonlocal functionals. There are in some sense small

deviations from opposite limits; the locally uniform electron gas in one instance, and

an atomic system in the other. The exact functional would incorporate both limits,

but it is not obvious how to connect these two limits. Such a reconciliation is a

fundamental unanswered question in this theory.

Another theoretical issue is the role of exchange-correlation. A form of the ex-

change functional was derived for a uniform magnetic field. A form for the full

exchange-correlation functional was postulated. There are several natural extensions

of this work. One would be to prove that the full exchange-correlation form is cor-

recto Another would be to extend this work to fields from a nuclear dipole and a

uniform field. This would allow one to consider the role of field dependent exchange-

correlation in the chemical shielding. An issue of more practical concern would be to

actually parametrize the functionals so that they could be used in the calculation of

NMR parameters. This would be of interest other workers tend to ignore the effect of

the field-dependent exchange-correlation. However, at present one cannot make any

-- rigorous claims as to the importance of this effect as other density functional theories
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are either too inaccurate to study the effect, or have an ad hoc basis. So would be

useful to actually test for the importance of the field-dependent exchange-correlation

that could be done within this theory.

An area that should be explored is the development of energy functionals. In

most of this thesis, the functionals are current density functionals and so explicit

calculation of the energy functionals is avoided. However, a current density and an

energy approach are both equally valid. In work prior to the development of the

general theory, Grayce and Harris used an electron gas approach to obtain a local

energy functional that looks considerably different from any in this work. In would

be interesting to bring that work into the context of this theory and to reconcile

the energy and current density approaches. Of particular interest is the use of a

different dimensionless variable (rp(r))1/3 in the work of Grayce and Harris. This

incorporates r into the theory is a manifestly different manner that presently done.

An investigation into using functionals of this form, perhaps in conjunction with the

insight gained from the nonlocal functionals, is warranted. Also notice that is this

work r has been brought back into density functional theory through the nonlocal

functionals. Perhaps similar approaches would be useful in other areas of density

functional theory.

Though before giving up on the local functionals further investigations are also

warranted. Extending this theory to carbon so that carbon shifts can be done readily

is the next logical step. Additionally, recall from Chapter 4 that the local functionals
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were constructed from an approximation to the single-electron propagator, hence, it

may be profitable to investigate other propagators. As an approximation to the prop-

agator generates an approximation to the functional, and so perhaps using different

propagator approximations would lead to other useful functionals.

Considerable work has been accomplished on linking density functional theory and

magnetic fields in this dissertation. This thesis has paved the way for further theo-

retical and computation development of Magnetic Field Density Functional theory.

Additionally, small effects have been addressed which require cutting-edge experi-

mental techniques, but which could be interesting and useful to examine further both

theoretically and experimental. Thus, there are still many open questions and so this

field should remain one full of challenges for a considerable time.
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