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ABSTRACT 

The Ideal Strength and Mechanical Hardness of Solids 

by 

Christopher Robert Krenn 
Doctor of Philosophy in Materials Science and Mineral Engineering 

University of California at Berkeley 

Professor J. W. Morris Jr., Chair 

Relationships between intrinsic mechanical hardness and atomic-scale prop­
erties are reviewed. Hardness scales closely and linearly with shear modulus 
for a given class of material (covalent, ionic or metallic). A two-parameter fit 
and a Peierls-stress model produce a more universal scaling relationship, but no 
model can explain differences in hardness between the transition metal carbides 
and nitrides. Calculations of "ideal strength" .( defined by the limit of elaStic 
stability of a perfect crystal) are proposed. 

The ideal shear strengths of fcc aluminum and copper are calculated using 
ab initio techniques and allowing for structural relaxation of all five strain com­
ponents other than the imposed strain. The strengths of Al and Cu are similar 
{8-9% of the shear modulus), but the geometry of the relaxations in Al and Cu 
is very different. The relaxations are consistent with experimentally measured 
third-order elastic constants. 

The general thermodynamic conditions of elastic stability that set the upper 
limits of mechanical strength are derived. The conditions of stability are shown 
for cubic (hydrostatic), tetragonal (tensile) and monoclinic (shear) distortions 
of a cubic crystal. The implications of this stability analysis to first-principles 
calculations of ideal strength are discussed, and a method to detect instabilities 
orthogonal t"o the direction of the applied stress is identified. 

The relaxed ideal shear and tensile strengths of bcc tungsten are also cal­
culated using ab initio techniques and are favorably compared to recent nano­
indentation measurements. The {100} tensile strength (29.5 GPa) is governed 
by the Bain instability. The shear strengths in the weak directions on {110}, 
{112}, and {123} planes are very nearly equal (~ 18 GPa) and occur at ap­
proximately the same strain (17-18%). This isotropy is a function of the linear 
elastic isotropy for shear in directions containing (111) in bcc and of the atomic 
configurations of energetic saddle points reached during shear. This isotropy 
may also explain the prevalence of the pencil glide of dislocations in bcc metals. 

A final chapter presents some recent ideal strength calculations of TiC and 
TiN and discusses future directions for research. 
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Chapter 1 

Atomic Bonding 
and Mechanical Hardness t 

1.1 Introduction 

For many years, scientists have tried to understand what makes a material in­
herently strong or hard from an atomic perspective. For the purposes of this 
dissertation, I will be concerned with the inherent hardness of a material, which I 
will define as. the hardness of a perfect crystal, and I will ignore the many benefi­
cial effects of impurity atoms, second phase particles, work hardening, and other 
microstructural modifications. Recent theoretical studies of superhard materi­
als have focused on the optimization of bulk modulus and have suggested, for 
example, that as the calculated bulk modulus of some carbon nitride structures 
can approach [2] or exceed [3] that of diamond, the mechanical hardnesses of 
these structures could exceed that of diamond as well. However, the connec­
tion between what makes a material stiff (having large elastic moduli) and hard 
(possessing great resistance to permanent deformation) is still not completely 
understood. 

A number of scaling relationships have been proposed for macroscopic hard­
ness as a function of atomistic ally defined crystal properties. Hardness, which is 
typically measured by indentation techniques, has been found to be an increasing 
function of volumetric lattice energy [4], bulk modulus [5], shear modulus [6, 7], 
and the size ofthe electronic band gap [8]. Each of these relationships works well 
for a certain set of materials, but none are universal. In particular, the hardness 
of metals is always observed to be much less than ionically or covalently bonded 
solids at a given value of elastic stiffness or volumetric lattice energy. Figure 1.1 
shows a plot of indentation hardness versus elastic shear modulus for a wide 
variety of materials examined in this research. The slope of all of the trend lines 
is unity, indicating a linear relationship, and it is clear that covalent solids are 
harder than metals at a given shear stiffness. 

tSome of the material in this chapter has been published in Ref. [IJ. 
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Microhardness 
(GPa) 

100 

10 

0.1 

0.01 

--all covalent 
..... all ionic 
- - -all metal 

x covalent (ZnS/DC) 
+ transition metal carbide and nitride (NaCl) 
• ionic (oxide-NaCI) 
• ionic (halide-NaCI and sulfide-ZnS) 
o metal (BCC) Error bars greater 
{; metal (HCP) than 20% are shown. 
'V. metal (FCC) 

0.00 I L ___ ----':::c=========:::::J==========::::J-----' 
10 100 1000 
Shear Modulus (GPa) 

Figure 1.1: Log-log plot of bulk hardness as a function of shear modulus for 3 
different classes of materials (covalent, ionic and metallic) with the diamond cu­
bic (dc), body centered cubic (bcc), hexagonal close packed (hcp), face centered 
cubic (fcc), NaCl, and ZnS structures. 
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1.2 Universal Scaling· Relationships for Hard­
ness 

The functional dependence of hardness on elastic constants and lattice ener­
gies is justified because hardness is a measure of the resistance of a material 

, to permanent plastic deformation. The mechanism for this deformation in al­
most all crystalline materials, including diamond [9], involves the movement of 
dislocations, and so hardness will scale with the resistance to dislocation mo­
tion. Lattice energies offer a measure of the strength of atomic bonds. Since 
the movement of a dislocation even by kink mechanisms requires the complete 
breaking of a bond, dimensional analysis suggests that the stress (force/length2 ) 

required to break this bond be proportional to the volumetric lattice energy 
(force x length/length3 ). The scaling of hardness with elastic properties can 
be justified as follows. To move a dislocation sitting in a minimum of a peri­
odic energy field, enough stress must be applied to overcome an elastic energy 
barrier. For a given type of bonding the barrier height will be proportional to 
the curvature of the energy well which is directly proportional to the elastic 
shear modulus. Since the shear modulus is in general proportional to the bulk 
modulus, ·the hardness and Peierls stress will then be proportional to the bulk 
modulus as well. However, since the proportionality is indirect, one would not 
expect the scaling to be universal. In particular, the shape of the energy well 
will be a function of the type of bonding. For more directional bonding, the bar­
rier and thus the hardness will be larger for a given shear modulus. Figure 1.1 
and Tables 1.1-1.3 show that the hardnesses of covalently and ionically bonded 
materials are significantly larger than the hardnesses of metals of equivalent 
stiffness. 

The data used for in Figure 1.1 is shown in Tables 1.1-1.3 and were compiled 
from a variety of sources. Structures come from Wyckoff [11], and unless other­
wise noted, single crystal elastic constants are taken from the Landolt-B6rstein 
handbook, series III, volume 29a [10]. Microhardnesses of ionic materials were 
estimated from Mohs hardness values listed in Plendl and Gielisse [4] using a 
parabolic curve fit by Beckmann [20] as described by Goble and Scott [5]. Most 
other hardnesses ;ere tabulated by Ivan'ko [12] and Holleck [13]. Average poly­
crystalline elastic properties are calculated following Simmons and Wang [21] 
using an average of the Hashin and Shtrikman upper and lower bounds for cubic 
materials [22, 23]. The data tabulated and plotted represent two or more com­
plete sets of single crystal elastic constants, except for the data for CN, BN and 
ZrN. The CN data comes from a series of measurements at varying nitrogen con­
tent [14]. The BN data was included because of its technological significance. 
The ZrN data was included for comparison with ZrC. The hardnesses of the 
metals also represent two or more room-temperature micro hardness measure­
ments. Since none of our modeling takes into account thermal effects, metals 
with a melting point less than 25°C were excluded (K, Na and Pb). 

Empirically, we see that hardness Hv is directly proportional to the shear 
modulus G, but that the constant of proportionality, Ai, varies with the type 
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Table 1.1: Crystal structures, nearest-neighbor distances b in A, elastic con­
stants Cij, elastic shear (G) and bulk (K) moduli, estimated Peierls stresses Tp 

and microhardnesses of "covalently" bonded materials. All elastic constants in 
GPa. 

Materiala Structureb bC Cll C44 C12 G [( Tp Hv d 

InSb ZnS 2.81 66 30 36 23 46 1.8 2.2 
InAs ZnS 2.61 84 40 46 30 59 2.4 3.5 
GaSb ZnS 2.65 88 43 40 34 56 2.9 4.3 
GaAs ZnS 2.45 120 59 54 47 75 3.9 7.0 
Ge dc 2.45 130 67 48 55 75 4.9 7.2 
Co.sNo.2e amorph. 45 65 '- 8.4 
Si dc 2.35 170 79 63 66 97 5.8 12 
ZrN[15] NaCI 2.31 150 270 6.0 15 
Co.gNO•1 d amorph. 74 110 16 
TiN[16, 17] NaCI 2.12 630 170 170 190 320 7.5 20 
ZrC NaCI 2.34 440 150 60 170 190 7.6 28 
TiC NaCI 2.16 510 180 110 190 240 8.2 30 
BNf ZnS 1.57 820 480 190 410 400 39 50 
C(d) dc 1.54 1100 580 120 530 440 54 80 

aReferences refer to source of elastic constants if not from Landolt-Borstein LB1II/29a [10J. 
bdc: diamond cubic. 
cnearest-neighbor distances are derived from the lattice constants tabulated by Wyck-

off [l1J. 
dHardnesses in general are from Ivank'ko and Holleck [12, 13J. Hardnesses of CN films are 

from Yang [14J. Hardness of diamond is from Field [9J. 
eYoung's moduli are from Yang [14]. Shear and bulk moduli are calculated assuming 

Poisson's ratio v = 0.22. This value was determined by interpolation from a tabulation of the 
Young's moduli and Poisson's ratio of other dc and ZnS structure materials. 

fSingle crystal elastic constants are from Grimsditch et al. [18J and yield a bulk modulus 
of 400 ± 20 GPa. However, measurements (369 ± 14 GPa) and calculations (363-370 GPa) 
of bulk modulus by Knittle et al. [19J suggest that the results of Grimsditch et al. may be 
systematically high. 
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Table 1.2: Crystal structures, nearest-neighbor distances b in A, elastic con-
stants Cij, elastic shear (G) and bulk (K) moduli, estimated Peierls stresses Tp 

and microhardnesses of "ionically" bonded materials. All elastic constants in 
GPa. 

Materiala Structure bb Cll C44 Cl2 G K Tp Hv C 

KI NaGI 3.53 27 3.7 4.3 5.9 12 0.21 0.43 
RhGI NaGI 3.29 36 4.7 6.3 7.6 16 0.27 0.43 
KBr NaGI 3.30 35 5.1 5.5 7.8 15 0.29 0.43 
NaI NaGI 3.24 30 7.4 9.0 8.5 16 0.32 0.43 
KGI NaGI 3.15 41 6.3 6.9 9.3 18 0.35 0.43 
NaBr NaGI 2.99 40 10 11 12 20 0.45 0.54 
AgBr NaGI 2.89 56 7.3 33 8.8 41 0.24 0.67 
GuBr ZnS 2.46 45 15 35 9.5 38 0.65 0.67 
AgGI NaGI 2.77 60 6.2 36 8.1 44 0.21 0.75 
NaGI NaGI 2.82 49 13 13 15 25 0.58 0.75 
KF NaGI 2.67 65 13 15 17 32 0.62 1.0 
LiBr NaGI 2.75 39 19 19 15 26 0.58 1.3 
LiGI NaGI 2.56 49 25 22 19 31 0.78 1.3 
NaF NaGI 2.31 97 28 24 31 48 1.3 1.6 
ZnS ZnS 2.34 100 45 65 32 77 2.4 1.8 
GdS ZnS 2.52 77 24 54 18 62 1.2 1.9 
BaO NaGI 2.76 120 34 45 36 71 1.3 1.9 
LiF NaGI 2.01 110 64 46 49 68 2.1 1.9 
MnO NaGI 2.22 230 78 120 68 150 2.4 2.3 
SrO NaGI 2.58 170 56 46 58 87 2.4 2.8 
GoO NaGI 2.13 260 82 150 71 180 2.4 3.8 
NiO NaGI 2.08 .250 110 110 90 160 3.5 4.4 
NiO NaGI 2.08 250 110 110 90 160 3.5 4.4 
FeO NaGI 2.15 220 52 120 51 160 1.6 5.5 
GaO NaGI 2.41 220 81 60 81 110 3.4 6.0 
MgO NaGI 2.11 290 160 93 130 160 5.8 II 

3Elastic constants are from Landolt-Borstein LBIII/29a [10]. 
bNearest neighbor distances are derived from the lattice constants tabulated by Wyck-

off [ll]. 
cMicrohardnesses estimated from Mohs hardness values (see text for details). 
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Table 1.3: Crystal structures, nearest-neighbor distances b in A, elastic shear 
(G) and bulk (K) moduli, estimated Peierls stresses Tp and microhardnesses of 
bcc, fcc and hcp metals. All elastic constants in GPa. 

Materiala Structureb bC v G K Tp Hv d 

Al fcc 2.86 0.35 26 77 0.0078 0.25 
Cd hcp 2.98 0.31 25 58 0.29 0.29 
Pd fcc 2.75 0.38 47 190 0.0099 0.40 
Th fcc 3.60 0.30 9.0 20 0.0040 0.45 
Mg hcp 3.20 0.29 17 35 0.21 0.48 
Zn hcp 2.79 0.24 47 73 0.68 0.51 
Au fcc 2.88 0.42 28 170 0.0038 0.67 
Cu fcc 2.56 0.34 48 140 0.Q15 0.76 
Ta bcc 2.86 0.34 69 190 0.43 0.89 
Ag fcc 2.89 0.37 29 100 0.0073 0.96 
Nb bcc 2.86 0.40 38 170 0.17 1.3 
Zr hcp 3.21 0.33 37 97 0.38 1.3 
Ti hcp 2.90 0.32 44 110 0.49, 1.4 
Be hcp 2.23 0.03 150 110 3.5 1.7 
Ir fcc 2.71 0.25 220 360 0.15 1.9 
Ni fcc 2.49 0.30 84 180 0.037 1.9 
Mo bcc 2.73 0.30 120 260 0.93 1.9 
Co hcp 2.50 0.32 78 190 0.87 2.5 
V bcc 2.62 0.36 48 160 0.26 2,5 
Cr bcc 2.50 0.21 110 160 1.2 2.5 
Re hcp 2.74 0.29 180 370 2.2 3.2 
W bcc 2.74 0.28 160 310 1.3 3.5 

aElastic constants are from Landolt-Bi:irstein LBIII/29a [10]. 
bbcc: body centered cubic, fcc: face centered cubic, and hcp: hexagonal close packed. 
cNearest neighbor distances are derived from the lattice constants tabulated by Wyck-

off [11]. 
dHardnesses are from Ivan'ko [12]. 
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of bonding in the solid: 

(1.1) 

To capture the exponential dependence, we can define a new relationship for 
A ·' t· 

Ai = Ao exp( -Ci ), (1.2) 

so that 

(1.3) 

where C i is a function of the bonding type. For the following fitted values of 
Ci, 

G G G 
Hv = 2 exp( -1), Hv = 2 exp( -2), and Hv = 2 exp( -3), (1.4) 

Fig. 1.2 shows that the majority of the data can be collapsed onto a single trend 
line which spans from the softest metals and salts to diamond. In addition, a set 
of hardness values from thin film specimens of nitrogenated amorphous carbon 
lie close to the trend line as well. 

A more analytical approach to the differences between classes of materials 
involves estimates of the Peierls stress. The term "Peierls stress" not only refers 
to the general notion of the stress required to move a dislocation a single Burgers 
vector, but to a family of mathematical models of this stress first described by 
Peierls and Nabarro [24, 25]. Essentially, these models offer a modification of 
the continuum solutions for the stresses and strains around a dislocation by 
incorporating an elastic shear stress restoring term along the slip plane which 
is periodic in the Burgers vector. If this stress is assumed to be sinusoidal, an 
analytic solution is possible which predicts finite strains at the dislocation core 
and a Peierls stress of the approximate form: 

2G ( -27rh ) 
Tp = (1 -'- v) exp b(1 - v) , (1.5) 

where G is the shear modulus, v is Poisson's ratio, h is the spacing between 
slip planes, and b is the Burgers vector. In a recent review of the history of 
these models of the Peierls stress, Nabarro [26], pointed out some errors in 
the original derivations and cited Huntington [27] as the accurate solution to 
the problem as originally posed (the constants result from two Taylor series 
numerical approximations in the derivation): 

Tp = (0.15 + 0.03 (b/,,,h) )G exp (_ 21Tb"lh) ; 
I-v . 

1 
"1= . 

2(1 - v) (1.6) 

Figure 1.3 shows hardness plotted as a function of the Huntington Peierls stress. 
Table 1.4 lists the values of hand b used in the calculations. Except for the 
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Figure 1.2: Log-log plot of bulk hardness as a function of a two-parameter curve 
fit for 3 different classes of materials. 

fcc metals and the transition metal carbides and nitrides, this model also works 
relatively well. 

This section has shown that hardness scales very closely with elastic mod­
uli for a given class of material. Appendix A shows how one can use scaling 
relationships between lattice constant and elastic moduli to design new hard 
materials. 

1.3 Hardness of Metallic Carbonitrides 

Upon closer examination; both the empirical model of hardness and the Hunt­
ington Peierls stress model break down in one very technologically important 
set of materials: the transition metal carbides and nitrides. All are interstitial 
compounds with identical crystal structures and slip systems. Although the in­
corporation of Poisson's ratio differences in the Peierls stress does make a small 
difference, the mechanical hardnesses of ZrN and TiN are significantly less than 
ZrC and TiC despite comparable values of the shear modulus and Huntington 
Peierls stress (see Fig. 1.4). 
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Table 1.4: Values of hand b for various crystal structures. 

Structure h b h/b 
dc . {111}/12 (112}/6 0.353 
ZnS {111}/12 (112}/6 0.353 
NaCl {110}/2 (110) 0.500 
hcpa 0.720 
bcc {110}/2 (111}/2 0.816 
fcc {111}/3 (112) /6 1.414 

aTable 1.3 and Fig. 1.3 use this value of h/b which was taken from Ref. [28]. For the hcp 
metals, a value of approximately 1.414 is more appropriate and will shift the hcp metals into 
the fcc scatter band, but this will not change the conclusions of this chapter. 
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Error bars greater 
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10 100 

Figure 1.3: Log-log plot of bulk hardness as a function of the Huntington Peierls 
stress for 3 different classes of materials. 
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Figure 1.4: Plots of bulk hardness as a function of shear modulus and Hunting­
ton Peierlsstress for TiC, TiN, ZrC & ZrN. 

The simplest possible extension to the Huntington model of Peierls stress is 
to incorporate a more accurate periodic restoring force along the slip plane. The 
sinusoidal form of the restoring force was originally chosen because it made the 
problem mathematically tractable and because there were few physical mea­
surements of non-linear elastic constants available at the time. Foreman [29] 
first treated this problem analytically in 1951, and Bullough [30] offers a more 
recent formulations. 

Because this research was done in collaboration with the condensed matter 
theory research groups of Professors Marvin Cohen and Steven Louie, we tried 
to identify a method of calculating the restoring force on a dislocation using ab 
initio atomistic computational techniques. The Peierls formulation requires only 
the force-displacement curve obtained when two rigid half planes of material 
are given a relative displacement along the slip direction. This curve can be 
calculated from first-principles by taking two blocks of atoms and calculating 
the total energy and internal stresses for a series of rigid displacements. In order 
to avoid surface effects, one will actually calculate the energy and stress for an 
array of slabs. As the slab thickness is increased, the force energy curve will 
converge quickly to the solution of two infinite half planes. 

Unfortunately, there is no natural way to constrain the deformation to be 
localized between two specific planes. It is computationally simple to fix all 
of the atom positions, but this technique is physically unrealistic because the 
elasticity solution for a straight edge dislocation has displacements both in the 
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direction of slip and normal to the slip plane. However, if you allow freedom 
for the slabs to relax in the direction of slip, your crystal will relax all the way 
back to the unstrained configuration. Any type of intermediate constrain would 
require a priori knowledge of the deformation field. 

A more natural measure of a crystal's resistance to shear is to perform a 
stress controlled experiment and to allow all strains orthogonal to the applied 
stress to relax. To calculate the Peierls stress in this manner would require a 
simulation cell with a dislocation inside of it. Since dislocations actually move 
by kink migration, a full three-dimensional calculation of 1000 atoms or more 
is needed. This is currently at the upper limit of what can be done using ab 
initio techniques with the best computers in the world. A much easier, but 
still non-trivial, computation is to measure a crystal's resistance to fully relaxed 
simple shear. The maximum stress that a crystal can resist is the ideal shear 
strength of the crystal, and this strength sets an upper bound on the mechanical 
strength a material can have. 

Ideal strengths are of interest in their own right, and may be sufficient to 
explain the differences in hardness between TiC and TiN. The stress-strain 
curves from the ideal strength experiments also can be incorporated into a more 
general Peierls stress formulation. 

1.4 Conclusion 

A two-parameter curve fit or a simple Peierls-stress model describes the room 
temperature hardness of a wide variety of materials. However, these models 
do not account for the differences in hardness between the transition metal 
carbides and nitrides. Accurate electronic structure calculations of the nonlinear 
elastic behavior of TiC and TiN are proposed in an attempt to explain the high 
hardnesses of the transition metal carbides. 



Chapter 2 

The Ideal Shear Strengths 
of Al and Cut 

2.1 Introduction 

Let a hypothetical, defect-free crystal be loaded until the lattice itself becomes 
unstable and the crystal spontaneously deforms or breaks. The stress at elas­
tic instability is the "ideal strength" [34]. The ideal strength is scientifically 
interesting for at least four reasons [35]. 

First, the ideal strength sets an upper bound on the s'trength the material 
can have. While it may not be possible to achieve the ideal strength in practice, 
it is not possible to exceed it. There is both scientific and engineering value in 
knowing the limits on what can be done. 

Second, the ideal strength can be calculated ab initio for elemental solids 
and ordered compounds. The upper limit of strength is, therefore, one of a small 
number of problems in the mechanical behavior of materials that can actually 
be solved from first principles. 

Third., the ideal strength is approached in situations that are technologically 
relevant. These include the low-temperature deformation of "inherently strong" 
materials, such as diamond, Si, Ge, and, possibly, some of the transition-metal 
carbonitrides, and also includes the nanoindentation of materials with low defect 
densities. 

Fourth, the ideal strength is an inherent material property. Understand­
ing its source and characteristics can help identify those aspects of mechanical 
behavior that are fundamental consequences of crystal structure and bonding. 
. Since the ideal strength is determined by elastic instability, the possibil­
ity of calculating it has, in theory, been available since the development of 
the pseudopotential theory made ab initio elasticity calculations practical [36]. 
However, substantial computational resources are required, and, until recently, 

tThe material in this chapt~r is a combination of the research in Refs. [31-33]. 

13 
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the calquations that were done were limited to tensile deformation along axes 
of high symmetry [37-39] or shear deformation in simple (unrelaxed) shear [40-
42]. These constraints are unphysical, will always increase the predicted shear 
strength, and may produce significant overestimates. It is now practical to find 
the elastic limits for shear as well as for tensile deformation under fully rel"axed 
conditions [31, 32]. 

This chapter presents ab initio calculations of the ideal shear strengths of 
Al and Cu. We also discuss the similarities and differences in the large-strain 
elastic behavior of Al and Cu. In the fully relaxed case, the two have very 
similar strengths (When these are expressed in dimensionless form), but very 
different relaxation strains. 

2.2 Method of Calculation 

The total energies of Al and Cu are computed as a function of strain using the 
LDA pseudopotential total-energy scheme with a plane-wave basis set [36, 43-
46]. The pseudopotential for Cu was generated including semi-relativistic correc­
tions [47], while the pseudopotential for Al was constructed without relativistic 
corrections [48]. We used a cut-off energy of 40 Ry for Al and 70 Ry for Cu. A 
grid of 2400 k points was used for AI. A grid of 1300 k points was used for Cu. 
These choices ensure convergence to less than 1 mRy (0.013 eV) per atom. 

The shear stress is found by straining the crystal in a series of incremental 
simple shears, calculating the ener"gy and volume as functions of the strain, 
and taking the derivative of the energy with respect to the strain. The ideal 
shear strength (in the low-temperature limit) is the maximum value of this 
stress. In both Al and Cu the shear strength is minimum for shear on a {Ill} 
plane in a (112) direction. It is, therefore, useful to refer the displacements 
to a Cartesian coordinate system with a unit vector, es, perpendicular to the 
(111) plane and unit vectors el and e2 parallel to the [112] and [110] directions, 
respectively (Fig. 2.1a). With this notation, an incremental simple shear in the 
[112J direction on (111) takes the form 

(2.1) 

To increment the strain under fully relaxed conditions, we impose E13 (= (31), 

and adjust the other components of the strain tensor until their associated 
stresses vanish (specifically, until the calculated Hellman-Feynman stresses are 
< 0.05 GPa). Since E12 = E23 = 0 -by symmetry, the relaxation strains are 
stretches along the coordinate axes. 

While there is no unique definition of finite strain [49], the three lattice 
parameters, a Cl , are defined at each step of the deformation and can be described 
by the three functions, aCl(n), where n is the number ofincremental strain steps 
in the simulation. aCl(O) represents the unstrained lattice. If D(n, m) is the 
Cartesian tensor that describes the deformation between steps m and n, 

af(n) = af(m) + Dij(n,m)aj(m). (2.2) 
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Al Cu 

Figure 2.1: Illustration of the atomic arrangement before and after .unrelaxed 
shear in Al and Cu. The cages give the original atom positions in the fcc 
lattice, the solid spheres show atom positions at the point of shear instabil­
ity. . The Cartesian coordinate system is illustrated at left: { el, e2, e3} 
{[ll2J, [110], [lll]} 

Given D(n, m), the true strain, 1', and the engineering strain, EE, are defined by 

1 n . 

Eij(n) = 2" L [Di;(m, m - 1) + Dji(m, m - 1)] 
m=l 

(2.3) 

and 

(2.4) 

The derivatives of the energy. with· respect to the true strain define the stresses 
that drive incremental deformation, and, therefore, the true strain is used to 
calculate the stress. 

The energy is a unique function of the strain,. 1'13, when either: (1) the 
crystal is unrelaxed, so 1'13 is the only non-zero strain, or (2) the crystal is fully 
relaxed, so setting' the value of 1'13 fixes all the other strains. In either case, the 
conjugate shear stress is -

1 oE 1 oE 
T = 0"13 = - -- = ---

V 01'13 V 0,13 ' 
(2.5) . 

where ,ij = Eij + Eji = 2Eij is the shear, and V is the atomic volume at the 
applied strain. The relevant shear moduh,ts, G', is determined by the secorid 
derivative, 02Ejo,2. For shear in the [ll2] direction on the (ll1) plane offcc, 
the shear moduli are 

G' u 

G' r = 

C~5 = ~[cn + C44 - C12] and 

1 3C44(Cn - C12) 

S~5 4 C44 + Cn - C12 ' 

(2.6) 

(2.7) 
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Table 2.1: Calculated and experimental lattice parameters and elastic modUli 
for Al and Cu. 

Al Cu 
calc. expo calc. expo 

lattice constant (A)a 4.12 4.05 3.57 3.61 
G~ (GPab 22 ± 3 24.5 30 ± 4 30.5 
G~ (GPa)b 27 ± 3 24.8 40 ± 4 40.8 

aExperimental values from Ref. [11]. 
bShear moduli are defined by Equations (2.6) and (2.7). Experimental Voigt 
elastic constants are from Ref. [10]. 

where G~ governs the unrelaxed case, where Eij = 0 unless ij = 13 or 31 (=5 
in the Voigt notation), G~ governs the relaxed case, O"ij = 0 unless ij = 13 or 
31, the Cij are the Voigt elastic constants for the cubic crystal, and c' and s' 
are, respectively, the Voigt elastic constants and compliances in the coordinate 
system shown in Fig. 2.1. 'The moduli govern incremental displacements from 
the current state and are, hence, functions of the strain. 

2.3 Results 

The results of the calculations are summarized in Tables 2.1-2.3 and in Figs. 2.2 
and 2.3. Table 2.1 compares the calculated and experimental values for the 
lattice constants and shear moduli at zero applied strain. The close agreement 
indicates the relative accuracy of the calculations. 

However, the fact that the computed lattice constant of Al is larger than the 
experimental value indicates a slight problem with the pseudopotential chosen. 
For metals, the local density approximation to density functional theory should 
always results in some degree of "overbinding": lattice constants are smaller and 
bulk moduli are higher than experiment. [50] The computed lattice constants in 
other LDA ab initio studies of Al at 0 K range from 3.97 A to 4.01 A [39, 51, 52]. 
All are smaller than the experimental value. 

Fortunately, the small error in the pseudopotential is not likely to affect the 
conclusions of this chapter significantly. The error does produce systematic "un­
derbinding" in AI. The calculated bulk modulus (71 GPa) is 10% smaller than 
the experimental value (77 GPa [10]). Errors in the computed ideal strength will 
be significantly smaller than the error in elastic moduli because the strength is 
determined from the first derivative with respect to strain, while the moduli are 
determined from the second derivative of energy with respect to strain. Errors in 
the slope of a smooth function are always smaller than errors in curvature. The 
magnitude and direction of the atomic relaxation also should not be affected 
greatly by the error in the pseudopotentiaI. 

Figure 2.2 shows the energy of Al and Cu as a function of the shear strain, 
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Figure 2.2: a) Aluminum and b) copper energy versus engineering strain for 
both the unrelaxed (A'S and smooth fit) and relaxed (. 's and dashed fit) cases. 

E(-y), computed both with and without relaxation, and figure 2.3 plots the 
stress-strain curves, T(-y), for the two materials studied in the fully relaxed case .. 
The stresses and strains at instability are tabulated in Tables 2.2 and 2.3. The 
results show the importance of elastic relaxation, which decreases the shear 
strength some 40% from the unrelaxed value. Interestingly, the normalized 
shear strengths of Al and Cu in the fully relaxed state are essentially identical 
(0.085G~)and are much closer to the classic Frenkel estimate (0.1 G) than to 
the more modern estimates that have been preferred in recent years [34]. 

Unfortunately, there are no directly comparable experimental data known 
to us. The calculations relate, strictly, to perfect crystals in the limit of zero 
temperature. There are no data known to us on dislocation-free AI, but Bren­
ner [53] did measure the strength of nominally dislocation-free Cu whiskers. He 
found a tensile yield strength of 2.9 GPa for tension along (111), which trans­
lates into a critical resolved shear stress, T e , of 0.82 GPa (0.027 G~) for slip on 
the {111} plane in the (112) direction. Brenner's measurements were done at 
room temperature, so the strength must be corrected to 0 K. While there is 
no exact way to do this, a crude model described by Kelly and Macmillan [34] 
suggests that Te(O) ~ 2.5Te(273) is not a bad estimate. Using this approxima­
tion, we project Te ~ 1.1 GPa at 273 K, which is not unreasonable in light of 
the Brenner result. A better test can be made by computing the strength of 
high-melting-point materials, which should show a much smaller thermal effect. 
This is done in Chapter 4. 

The elastic strain at shear instability is tabulated in Table 2.3. The imposed 
shear is 713, a displacement of the (111) planes in the [112] direction. The 
relaxation strains are the stretches, Ell and E22 in the (111) plane, and E33 

perpendicular to it. The" primary shear strain (-y~ ) at instability is nearly the 
same for Al and Cu (Table 2.3), and is significantly below the value (17.8%) 
that a rigid-ball model would produce .. 

However, the relaxation strains in the two cases (Fig. 2.1) are dramatically 
different. Cu is relaxed by a shear in the (111) plane in which a contraction in the 
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Figure 2.3: Stress versus engineering strain for eu (.'s and smooth fit) and 
Al (-'s· and dashed fit). The data points are the calculated Hellman-Feynman 
stresses and the smooth curves ate the derivatives of the smooth fits to the 
energies. 

Table 2.2: Ideal shear strengths with and without structural relaxations. 

failure stress 
r:;'ax (GPa) r:;'axlG~ r::'ax (GPa) 

Al 1.85 ± 0.1 0.084 3.4 ± 0.1 
eu 2.65 ± 0.2 0.088 4.0 ± 0.1 

Table 2.3: Engineering strains at shear instability 

failure strain (%) 
,f1 Efl Ef2 Ef3 .6. V/V 

Al 14.5 1 -3 3 1.4 
eu 13 -3 3 0.2 . 0.4 
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direction of shear displacement (Ell) is balanced by a perpendicular expansion 
(E22)' The separation between (HI) planes is almost unchanged (E33 small), so 
the volume is almost constant. AI, on the other hand, is relaxed primarily by a 
shear in the (H2) plane, with E33 s:! -E22 > Ell' The (Ill) interplanar spacing 
increalies by::::::: 3%, and the volume increases by 1.4%. 

2.4 Discussion 

Both the similarities and differences in the behavior of Al and eu merit discus­
sion. The most striking similarities are the crystallography of the shear that 
produces minimum strength (the weak direction in both Al and eu is in the 
(li2) direction in a {Ill} plane) and the virtual identity of the normalized 
shear strengths. The most striking dissimilarity is the qualitative difference in 
the relaxation strain. 

2.4.1 The soft direction in shear 

A shear in a (112) direction in a {HI} plane in a material with the fcc crystal 
structure is a shear that is associated with twinning in {Ill } and with the 
partial slip at the boundary of a stacking fault in {1l1}. Hence one would 
expect this shear to be the soft shear in materials like eu that twin and form 
stacking faults. However, Al has a high stacking fault energy, and one might 
expect some other shear to be preferred. The reason that (1l2){lll} is the soft 
shear in Al can be explained by the fact that the applied shear is uniform and 
the local atomic coordination near the instability resembles that of the relaxed 
crystal more than that of a twinned or faulted one. 

If a perfect crystal of Al were strained beyond its shear instability, the in­
stability would necessarily resolve itself in a shower of dislocations, twins or 
stacking faults, whichever were easier to achieve. It is at this point that the 
choice between total dislocations, partial dislocations or twins would be made. 
SiiIce even a small shear carries elastic energy equivalent to that of a high density 
of dislocations, the elastic energy of a crystal strained to instability is sufficient 
to carry it into whatever defect state is preferred. 

, 

2.4.2 The normalized shear strength 

The close similarity between the normalized shear strengths of Al and eu is 
probably fortuitous. The unrelaxed shear strengths are not that close (::::::: O.13G~ 
for Al versus ::::::: O.IG~ for eu) and the relaxation patterns are very differ­
ent. Nonetheless, since our preliminary calculations for W also produce a shear 
strength near O.085G~, this appears to be a common value for the ideal shear 
strength of a metal. 
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2.4.3 The relaxation strain 

Detailed electronic structure calculations will be conducted in the near future 
to examine the effects of the d electron core on the bonding of Cu and to 
determine whether the presence of a d core can explain the dramatic differences 
in the relaxation behaviors of Al and Cu. However, these differences. can be 
explained, qualitatively, from their elastic behavior. To phrase this discussion, 
we first present the Voigt compliance tensors (Eq. (2.8) and (2.9)) for Al and 
Cu in the form they take after transformation into the coordinate system shown 
in Fig. 2.1: 

0.0139 -0.0051 -0.0045 0 -0.0019 , I -0.0051 0.0139 -0.0045 0 0.0019 0 

S~l(E = 0) = 
-0.0045 -0.0045 0.0132 0 0 o -1 

0 0 0 0.0408 0 0.Og38 GPa 
-0.0019 0.0019 0 0 0.0408 

0 0 0 0.0038 0 0.0380 

(2.8) 

,~"(,~O)~ [ 

0.0077 -0.0038 -0.0014 0 -0.0069 , I -0.0038 0.0077 -0.0014 0 0.0069 0 
~0.0014 -0.0014 0.0052 0 0 o -1 

0 0 0 0.0328 0 0.0~38 GPa 
-0.0069 0.0069 0 0 0.0328 

0 0 0 0.0138 0 0.0230 

(2.9) 

Since the [Ill] direction is a three-fold symmetry axis in fcc, the compliance 
tensor has a superficially trigonal symmetry; the non-diagonal elements S~5 and 
S~5 do not ordinarily vanish. However, S~5 = -S~5 and, since S~5 = 0, the 
imposition of a shear stress in the [112] direction on (111), which is 713 (or t5 

in the Voigt notation) produces a shear of type [112](111) that is relaxed by a 
shear in the (Ill) plane, Ell = -E22, of precisely the type that is dominant in Cu 
(Table 2.3). However, the value of s~5 is determined by the elastic anisotropy 
factor, 6. (= (Cll - C12 - 2 C44) / C44), according to the relation 

(2.10) 

It follows that S~5 increases with 6., and vanishes when D. = O. The strong 
elastic anisotropy of Cu has the consequence that its elastic, in-plane relaxation 
is much greater than that in the more isotropic AI. 

A shear of type [112](111) breaks the symmetry of the fcc crystal. The 
symmetry of the strained crystal allows s~5 'I -S~5 and s~5 'I 0, so there can 
be a relaxation strain, E33, perpendicular to the (111) plane and a net volume 
change. The symmetry change is exploited very quickly in the almost isotropic 
Al crystal, which rapidly develops significant values of E33, Ell + E22, and D. V. 
In the anisotropic Cu crystal, in contrast, the finite-strain effect is small, and 
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the relaxation strain is only slightly perturbed from its symmetry in the relaxed 
state. 

The qualitative difference between the relaxation strains of Al and Cu is 
also observed experimentally. Approximate compliance tensors of Al and Cu at 
the shear instability are presented below (Eq. (2.11) and (2.12)), as estimated 
from the third-order elastic constants tabulated in [10]. Even though the exper­
imental data were taken at strains of only a fraction of a percent, the measured 
third order elastic constants do predict that the S~5 and S~5 compliances of Al 
will change sign. The compliances also predict the relative magnitudes and sign 
of the relaxations in AI, and the signs of the relaxations in Cu. Finally, one 
can extract estimates of the sign and magnitude of the volume change with 
applied shear by summing s~5' S~5 and s~5' For AI, the volumetric compliance 
is 1.4% and for Cu, 0.8%. These figures are again qualitatively consistent with 
the theoretical results given in Table 2.3. 

,~,(, ~ 0.15) ~ [ 

0.0135 -0.0055 -0.0027 0 0.0026 

o I -0.0055 0.0154 -0.0072 0 -0.0063 0 
-0.0027 -0.0072 0.0176 0 0.0177 o -1 

0 0 0 0.0353 0 O.og92 GPa 
0.0026 -0.0063 0.0177 0 0.0730 

0 0 0 0.0092 0 0.0394 

(2.11) 

,~"(, ~ 0.13) ~ [ 

0.0087 -0.0046 -0.0027 0 -0.0128 

00109] GPa-' 
-0.0046 0.0083 -0.0004 0 0.0109 
-0.0027 -0.0004 0.0067 0 0.0097 

0 0 0 0.0239 0 
-0.0128 0.0109 0.0097 0 0.0680 

0 0 0 0.0109 0 0.0217 

(2.12) 

2.5 Conclusion 

We have calculated the ideal shear strengths of aluminum and copper using 
pseudopotential density functional theory. Structural relaxations orthogonal to 
the applied shear significantly reduce the values of ideal shear strength, resulting 
in strengths of 8-9 percent of the shear modulus for both Al and Cu. However, 
the geometry of the relaxations in Al and Cu is very different. To some de-
gree, this can be explained using experimentally measured third order elastic 
constants. 



Chapter 3 

The Internal Stability 
of an Elastic Solid t 

3.1 Introduction 

Chapter 2 presented, to this author's knowledge, the first fully relaxed ab initio 
calculations of ideal shear strength in any material and showed the importance 
of structural relaxations orthogonal to the applied shear. Our calculations also 
revealed that the values of ideal strength were sensitive to the finite strain mea­
sure used to determine the stresses by differentiation. Before continuing our 
computational research, we decided to rigorously examine how the thermody­
namic conditions of elastic stability apply to calculations of ideal strength. 

It is sometimes useful to think of ordinary plastic deformation as a structural 
instability, in which elastic stress drives a locally stable parent "phase" into an 
instability that can only be resolved by creating or reconfiguring defects such as 
dislocations, or by transforming to a new crystal structure. This perspective is 
most natural when the parent phase contains no mobile defects and the defor­
mation is triggered by a stress so large that the lattice itself becomes unstable. 
This elastic limit sets an upper bound on the mechanical strength a material can 
have. Given recent advances in theoretical methods and computing machines 
it is possible to calculate the elastic limits of real materials with considerable 
accuracy, including both the theoretical stress and the detailed nature of the 
atomic rearrangements as the elastic limit is approached [31, 32, 37, 39-41] .. 

Despite periodic investigations over many years, however, the basic thermo­
dynamic criteria that govern elastic stability are not entirely clear [34, 55-59]. 
This creates an uncertainty in how first-principles calculations or simulations 
ought to be done, and what their results have to say about the true limits of 
strength. Even in the simplest case, homogeneous, quasistatic elastic deforma­
tion to failure, some clarification is needed in at least three separate areas: the 

tThe research presented in this chapter has been accepted for publication in Phil. Mag. A 
(Ref. [54].) 
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thermodynamic conditions for stability, the conditions of stability under load 
control, and the most efficient approach to first-principles calculations. 

The first problem concerns the conditions of stability. The analysis of elastic 
stability is complicated by the fact that the states of interest are subject to finite 
stresses and strains that change their symmetry and affect their mechanics. 
Recent investigations of this.subject [56-59] have begun from the perspective of 
continuum mechanics and used the stability criterion 

JF 2: JW, (3.1) 

which assumes fixed temperature and requires that the increment to the Helm­
holtz free energy in any real or virtual displacement equal or exceed the mechan­
ical work done by the applied stresses. The ambiguity in this approach [56] lies 
in the nature of the mechanical work, which is done by some loading mechanism 
that functions as a thermodynamic reservoir. To apply the stp.bility criterion the 
work must be evaluated to second order. While the various convenient measures 
of the applied stress, for example, the Cauchy stress in real space and the stress 
that is conjugate to the Lagrangian strain, have equivalent first-order effects, 
they differ in the second order. As Hill [56] and Hill and Milstein [57] point out, 
this has the consequence that the limit of strength changes with the nature of 
the stress that is maintained by the reservoir. Recent investigations [39, 58, 59] 
avoid this ambiguity by assuming that the Cauchy stresses are controlled, and 
Wang et al. [59] use this condition to define a path-dependent "Gibbs integral" 
that has the local features of the Gibbs free energy. But it is not completely 
clear why this choice is more fundamental than any of several others, particu­
larly since it is not easy to design mechanisms that control the Cauchy stress 
to second order. 

The second problem concerns the conditions of stability for deformation un­
der mixed stress and strain control. In particular, the limit of strength that is 
ordinarily of greatest interest is the strength under uniaxial stretch or simple 
shear, with all other stresses fully relaxed. In this case the governing thermo­
dynamic potential includes only one strain variable and has only one modulus, 
and one needs to know how the limit of stability determined by that modulus 
relates to those that apply under more general conditions. 

The third problem is the practical problem of finding the relevant limits of 
strength by direct, ab initio calculations. Since these calculations are computa­
tionally expensive, it is important to obtain the desired information in the most 
efficient possible way. In particular, it is critical to know how the instabilities 
that are captured in the calculations relate to those identified by the thermo­
dynamic criteria, and whether the details of the calculations cause important 
instabilities to be miscalculated or missed entirely. 

To investigate these questions we return to Gibbs' original formulation of the 
conditions of stability [60] and apply the method to a homogeneous, elastic solid 
under finite strain. Gibbs' conditions govern internal stability and enforce the 
requirement that the system be stable with respect to arbitrary reconfigurations 
that do not alter its boundaries. They are, therefore, independent of the nature 
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of the external loads or the mechanisms that hold the boundaries in place. 
As we shall see, the conditions of internal elastic stability are identical to those 
derived from Eq. (3.1) when the loading mechanism fixes the Cauchy stress [59]. 
Hence, the conditions of stability based on the Cauchy stress always apply. 
Other loading mechanisms may introduce other conditions, whieh may be more 
stringent, but cannot obviate these conditions of internal stability. 

We then consider the conditions of stability under uniaxial deformation or 
simple shear. In this case the conditions of stability relate to the single surviving 
modulus. No new conditions of stability are added, but the conditions of internal 
stability must still be obeyed, and instabilities that result from deformations 
orthogonal to the chosen deformation may be missed. 

Finally, we consider how to calculate the limits of stability and, in particular, 
whether it is possible to obtain reasonable answers without computing the full 
matrix of elastic moduli after each increment of elastic deformation. 

3.2 The Conditions of Internal Equilihriumt 

We use the notation employed by Eringen [61], with minor variations that should 
be clear from context. A strained solid is described by the relations 

(3.2) 

where the Xk are coordinates in the current state (the "spatial" or "Eulerian" 
frame), the X K are coordinates in a convenient reference state (the "material" 
or "Lagrangian" frame), and both sets of coordinates are Cartesian. The differ­
entials of Eq. (3.2) are the "deformation gradients" , Xk,K and XK,k: 

(3.3) 

~ 

Defining the displacement vector, u, such that x = X + u, 

(3.4) 

where UK and Uk are, respectively, the components of u in the material and 
spatial frames, UL,K and Ul,k are the displacement gradients in the two frames, 
and the OkK(= ek· eK) are the "shifters" that relate unit vectors along the ma­
terial and spatial coordinates axes (they are Kronecker ()'s when the coordinate 
axes coincide). 

The strain is ordinarily measured by the Lagrangian (Green's) strain, a 
tensor in the material frame whose elements are 

tThis derivation is the work of J. W. Morris Jr., but it is included here to provide context 
for the following discussion and the following chapter. 
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or by the Eulerian strain, the complementary strain measure in the current 
frame: 

ekl = ~[Okl - XK,kXK,d = ~[Uk,l + Ul,k + up,kup,d = elk· (3.6) 

The two strain measures are connected by the relation 

(3.7) 

When the displacement gradients are small (Uk,l = OUk,t) both strain measures 
reduce to the linear strain, 

(3.8) 

However, when the displacement gradients are finite, both the strain measures 
and their increments differ. In particular, if the material points are given the 
small displacements, 8u, from their present positions [62], 

oEKL = Xk,KXl,L [~(~Uk'l + OUl,k)] = Xk,KX1,LOEkl' (3.9) 

We seek the conditions that are necessary for internal equilibrium. Let the 
solid have a fixed temperature and composition, and a homogeneous mechanical 
state that is controlled by its external surface ("strain control"). Its mechanical 
equilibrium is, then, governed by the Helmholtz free energy, which must have 
at least a local minimum value with respect to reconfigurations that keep the 
boundary fixed. To phrase this condition mathematically, let the material parti­
cle, X, that is currently located at the position, x, within the volume, V, of the 
body be given the small displacement, 8u( x), whose values form a differentiable 
field over V. Equilibrium requires that 

of[8u(x)] 2: 0, (3.10) 

where the variation is taken at constant temperature and composition and the 
only displacements that are permitted are those that leave the boundary un­
changed. 

The boundary constraint can be incorporated into the condition (3.10) by 
the method of Lagrange multipliers, giving the equivalent condition [63], 

of[8u(x')]- Is tijOUinjdS 2: 0, (3.11) 

where the tij are constant Lagrange multipliers, 8u is the variational displace­
ment of the boundary element, dS, whose normal is n, and ou(x) can now be 
any differentiable vector field over V. Via the divergence theorem, 

of[8u(x)] - Is tijOUinjdS = OF[8u(x)]-1 tijOUi,jdV 

= of[8u(x)]- Is tij(OEij + bWij)dV 2: 0, 
(3.12) 



3.2. THE CONDITIONS OF INTERNAL EQUILIBRIUM 27 

where 8€·· = 1(8u· . +8u· .) is the incremental strain and 8w·· = 1(8u· . -8u· .) tJ 2 t,J J,t 'tJ 2 t,J J,t 

is the incremental rotation. 
The variation in the Helmholtz free energy is most easily evaluated in the 

reference state, X, which has the fixed volume, Va: 

= Iv ~ [::::] Xk,KXl,L8€kl dV, 

(3.13) 

where 8E is the increment to the Lagrangian strain, and we'have used Eq. (3.9) 
and the identity pdV = PodVo to transform the integral into the current frame. 
Inserting (3.12) into (3.9), the condition of mechanical equilibrium can be writ-
ten 

Iv {[;o [::::] Xk,KXI,L - tkl] €kl - t kl 8Wkl } dV ~ O. (3.14) 

The condition (3.14) holds for arbitrary 8Ui,j only if 

(3.15) 

and 

(3.16) 

Equation (3.16) is, in fact, the thermodynamic definition of the Cauchy stress 
[61], and establishes that our mUltipliers are precisely the elements of the Cauchy 
stress tensor (as they must be [63]). 

To find the conditions of mechanical stability we need to develop the vari­
ation of the free energy to the second order. The Helmholtz free energy of an 
elastic solid is usually and conveniently written as a function of the Lagrangian 
strain. For fixed composition the free energy density in the reference state is, 
to second order .~ . 

(3.17) 

where VO is the volume in the reference state, 

[ 
{)Fvo 1 

TKL= 8E 
KL E=O 

(3.18) 

is the conjugate stress in the reference state, and 

{) Fvo 

[ 
2 - 1 (3.19) 
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are the elastic moduli. 
To first order in E, Xk,K ~ DkK + DkPEpK . The variation of Ft in an 

incremental strain is then, to second order, 

DFvo ~ [TKLXk,KXI,L + CKLMNEMNDkKDld DEkl 

= [TKL + (TMLDKN + TKMDLN + CKLMN)EMN ] DkKDILDEkl 

={ TKL+ [~(TML<>KN + TKMDLN 

+TNLDKM +TKNDLM) +CKLMN]EMN }DkKDILDEkl' 

(3.20) 

where we have used the symmetry of the Lagrangian strain tensor, EKL, and 
have also used the Voigt symmetry of the tensor of elastic moduli, CKLMN. If 
we now multiply by the density ratio then, to second order, 

[;0] DFvo = [1- Epp]DFvo 

~ {TKL + BKLMNEMN }DkKD1LDEkl, 

where the elements of the tensor 
. 1 

BKLMN = 2 (TMLDKN + TKMDLN 

+ TNL6KM + TKNDLM - 2TKL6MN) + CKLMN 

(3.21 ) 

(3.22) 

are the moduli that govern the variation of the Cauchy stress with strain from a 
stressed reference state [64] (the form in Hill [56] is for the special case, P = po): 

(3.23) 

Note that BKLMN =I- B MNKL ; the BKLMN do not have full Voigt symmetry. 
We are here concerned with the necessary conditions for stability on incre­

mental strain from a stressed reference state. In this case, 

so, to second order, 

[;0 ] DFvo = ~6F e:! TklDEkl + AklmnDEklDEmn' 

where V is the volume in the current configuration, 

Tkl = TKLDkKDIL, 

and 
1 

Aklmn = 2[BKLMN,+ B MN KL]6kK<>IL<>mMDn N 

(3.24) 

(3.25) 

(3.26) 

1 
= Cklmn + 2 [Tkm 61n + TknDlm + TlmDkn + TlnDkm - TklDmn - Tmn 6 kl], 

(3.27) 



3.2. THE CONDITIONS OF INTERNAL EQUILIBRIUM 29 

where Cklmn = CKLMN8kK8IL8mM8nN' The tensor, A, is the symmetric part of 
the tensor, B, and has full Voigt symmetry: 

(3.28) 

Substituting Eq. (3.25) into the inequality (3.14) yields necessary conditions for 
a stable internal equilibrium. The first-order term gives 

(3.29) 

which requires that the applied (Cauchy) stresses be equal to the thermody­
namic stresses that are obtained by differentiating the free energy density with 
the current configuration as reference state. The second-order term provides the 
necessary conditions of internal stability. These are embedded in the quadratic 
form 

(3.30) 

which must be non-negative for'arbitrary values of the incremental strains. Since 
the Aijkl have Voigt symmetry the stresses, strains and moduli can be written in 
the usual Voigt notation. Setting tll = tl, t22 = t2, t33 == t3, t 23 = t4, tl3 = t5, 

tr2 = t6, and making the same replacements for 8Ei j and Aijkl, the condition of 
stability is 

(3.31) 

where 

(3.32) 

where the subscript means that all other fk are to be held constant. Internal 
stability requires that the 6 x 6 matrix of moduli, Aij, be positive semi-definite. 
The moduli, Aij, depend on both the stresses (Ti = ti) and the elastic moduli, 
Cij' Since A is a symmetric matrix, it can be brought into diagonal form with 
eigenvalues, A"" and eigenvectors, 8",,,,, so that 

Aij8fi 8fj = L A",8",,,, 8",,,, ~ O. (3.33) 

'" 
Since the eigenvectors, 8",,,,, are orthogonal (or can be made so), stability requires 
that all of the eigenvalues be positive. Internal stability is necessarily lost when 
the least eigenvalue (Amin) first falls to a negative value; the limit of elastic 
stability is, therefore, reached when 

Amin = O. (3.34) 

Note, finally, that when the elastic strains are small, the stresses are small 
compared to the elastic moduli. Then the equations of linear elasticity apply 
and 

(3.35) 
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In the linear elastic limit the conditions of internal stability reduce to the fa­
miliar condition that the 6 x 6 matrix of elastic moduli, Cij, have no negative 
eigenvalues. 

3.3 Discussion 

We began this chapter with a list of three problems: the conditions of stability, 
. stability when some of the loads are controlled, and the proper computation 

of the limiting strength. We are now in a position to discuss each of them. 
We shall also discuss three specific cases of particular interest: the cubic solid 
under hydrostatic pressure, the tetragonal solid under tension along (100), and 
the monoclinic solid under shear in (112){ 111}. 

3.3.1 The conditions of stability. 

The necessary conditions for internal stability are contained in Eq. (3.31) and 
are given succinctly in Eq. (3.34). These conditions govern internal stability and 
are, therefore, independent of the nature or behavior of the loading mechanisms. 
However, Eq. (3.31) is derived from Eq. (3.11), which is the form Eq. (3.1) 
takes when the loading mechanism fixes the Cauchy stress. It follows that 
the conditions of internal stability are identical to the conditions of mechanical 
stability that pertain when the Cauchy stress is controlled [59J. If the loading 
mechanism that is actually used or supposed in a particular case fixes a set 
of stresses other than the Cauchy stress, it may impose additional conditions 
of stability, which may be more stringent than those presented here (see, for 
example, Hill's discussion of rotational instabilities under dead loading [56]). 
Still, the conditions of internal stability always apply and are, in this sense, the 
fundamental conditions. It is appropriate to use them to define the ultimate 
strength, since the strength cannot exceed the values they allow. 

The conditions of stability (3.31) differ from those used in recent work [39, 65J 
in that only the symmetric part, A, of the Wallace tensor, B, appears. This 
happens because the asymmetric part of B does no work in an infinitesimal 
deformation from the reference state (Wang et al. [59J recognize this but use 
the asymmetric tensor to set the conditions of stability, for reasons that are 
unclear to the present authors). The difference is small in the cases we have 
examined. 

The identity of the internal conditions of stability with those based on the 
Cauchy stress shows that the same conditions pertain when the boundary con­
ditions fix the displacement, the Cauchy stress or any combination of displace­
ments and stresses on different parts of the boundary. Many of the most impor­
tant practical cases fall in the mixed regime. The simplest are uniaxial tension, 
in which the material is stretched along a particular axis, and simple shear, in 
which the material is sheared on a particular plane under conditions that are 
otherwise relaxed. 
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When the loading mechanism fixes a stress other than the Cauchy stress the 
internal conditions derived here remain necessary, but may no longer be suffi­
cient to guarantee elastic stability. The second-order response of the loading 
mechanism may lead to instability before the internal limits are reached. A 
simple example is a sample under a fixed, uniaxial compressive load; its con­
figuration is unstable with respect to rotations off the axis. Hill [56] poses the 
problem and treats the conditions of stability under dead loading in some detail. 
A comprehensive investigation of this issue is needed, but is beyond the scope 
of the present chapter. 

3.3.2 Loading in tension and shear 

The simplest cases to picture or analyze are those in which we increment a single" 
strain, Ee" while fixing the other five E{3 ("unrelaxed uniaxial strain") or relaxing 
the stresses, t{3, conjugate to the five E{3 ("relaxed uniaxial strain" or "uniaxial 
stress"). In each of these cases there is only one effective elastic modulus. In 
the unrelaxed case this modulus is 

(3.36) 

while in the relaxed case it is 

(3.37) 

where Greek letters label indices that are not summed if repeated. The relaxed 
modulus, 13M, is the reciprocal of the compliance, Sac" the aa component of the 
tensor, s, that is inverse to A and governs the change of the infinitesimal strains 
with the Cauchy stresses. It is, therefore, equal to IAII Aaa, the determinant of 
A divided by the cofactor of AM. By LeChatelier's Principle [66], for changes 
emanating from any given state, 

(3.38) 

so the relaxed deformation sets the more stringent limit and leads to a lower 
ultimate strength. (The equality holds for an isotropic material, as is confirmed 
by direct calculation for W, which is nearly so. See Chapter 4.) It follows 
from the final form of Eq. (3.37) that a zero of (Jaa always corresponds to a 
zero of the determinant IAI, and, hence, to a zero of one of its eigenvalues. 
Relaxed strp,in does not add any new condition of stability. However, it is well 
known that the use of Eq. (3.37) can overestimate the limit of strength since 
other instabilities may intrude prior to its first zero [55]. These instabilities are 
necessarily associated with simultaneous eigenvalues of A and Aaa that divide 
out on the right-hand side of (3.37). Any such eigenvalue must be associated 
with an eigenvector that is orthogonal to Ea. As we shall see below, in the cases 
of interest there are eigenvectors that are orthogonal to the direction of load, lOa, 
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by symmetry, while others are accidental, and due to the specific values of the 
>"ij in a particular state. A well-known physical example of the intrusion of an 
instability is the deformation or failure in shear of a sample pulled in uniaxial 
tension. Similar instabilities have been seen in simulated cases of deformation 
under uniaxial loading [39, 58, 67, 68]. 

3.3.3 Instability in compression, tension or shear 

The deformation modes that are most commonly studied are hydrostatic com­
pression, uniaxial tension, and simple shear of initially cubic solids. It is useful 
to take a moment to summarize the results for these cases. 

Hydrostatic compression 

Cubic crystals under hydrostatic compression (or tension) were studied in some 
detail by Wang et al. [58, 59]. The crystal retains cubic symmetry, so the>"ij 
have only three independent values: 

>"11= >"22 = >"33 = Cll - P 

>"12 = >"13 = >"23 = C12 + P 

>"44 = >"55 = >"66 = C44 - P 

with all other >"ij = O. The determinant 

is easily factored, yielding three independent conditions of stability: 

C44 - p ? 0 

Cll - C12 - 2 P ? 0 

Cll + 2C12 + p? O. 

(3.39) 

(3.40) 

(3.41) 

The third condition relates to the bulk mod~lus. The first two concern the 
shear moduli and reveal a tendency toward instability in shear when a material 
is compressed. Note that in the fluid limit, C44 -+ 0, Cll - C12 -+ 0, and 
the material is unstable in shear when it is compressed but is stabilized by a 
hydrostatic tension. The "tensile strength" of a fluid in tension is due to Van 
der Waals' spinodal instability when the bulk modulus is no longer sufficient to 
support the tensile pressure. 

Tetragonal extension 

Let an initially cubic crystal be stretched to instability along [100], a situation 
of obvious interest that has been studied by a number of investigators [37, 39, 
41, 55, 68]. The crystal becomes tetragonal as soon as a tensile strain is applied 
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with the consequence that the modulus tensor (A or c) takes the form shown in 
Eq. (3.42), with five independent components: 

>'11 >'12 >'12 0 0 0 
>'12 >'22 >'23 0 0 0 

A= >'12 >'23 >'22 0 0 0 
(3.42) 

0 0 0' >'44 0 0 
0 0 0 0 >'55 0 
0 0 0 0 0 >'55 

The applied stress, 0", affects only the components of A that involve the [100] 
axis: 

>'11 = Cll + (J 

>'12 = C12 - (J /2 

>'55 = C55 + (J /2 
>'ij = Cij 

The determinant of A is given by 

(all others). 

(3.43) 

(3.44) 

Its zeros determine four conditions of stability; two of which explicitly involve 
the applied stress: 

>'11 (>'22 + >'23) ::::: 2 >'12 
2 

=* (Cll + (J)(C22 + C33) ::::: 2(C12 - (J/2)2 (3.45) 

>'22 ::::: >'23 =* C22 ::::: C23 (3.46) 

>'44 ::::: 0 =* C44 ::::: 0 (3.47) 

>'55 ::::: 0 =* C55 ::::: -(J /2. (3.48) 

Eq. (3.45) differs slightly from the forms presented by Wang et al. [59] and by 
Li and Wang [39]. The difference is due to the symmetry of A, which makes a 
correction of order ((J / C12) to the right-hand side, slightly delaying instability. 
This term is, ordinarily, small. The modulus that governs a fully relaxed stretch 
along [100] is 

(3 - ( )-1 _ >'11 (>'22 + >'23) - 2 >'12
2 

11 - 811 - , 
>'22 + >'23 

(3.49) 

where (311 :::::>'11, for an unrelaxed stretch in the same direction. The crystal is 
unstable with respect to a relaxed stretch on [100] when the condition (3.45) is 
violated. Since the stretch is tensile, the elastic instability can be accommodated 
by cleavage on (100). Because a relaxed stretch in any (100) direction in a bcc 
crystal produces the fcc structure after a strain of about 0.26 (the Bain strain), 
the strain of instability will also be approximately 0.13 or less. This (100) 
stretch instability strain is significantly smaller than the instability strain for 
'shear in a (11) direction ( ...... 0.18) (see Chapter 4) and is much smaller than 
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the instability strains for stretches along (111) or (110) [68]. This fact that bcc 
crystals necessarily become unstable after a relatively small stretch along (100) 
is presumably responsible for their tendency to cleave on {100}. 

The conditions (3.46)-(3.48) relate to shear strains whose eigenvectors are 
orthogonal to E1 by symmetry. The shear instabilities do not produce zeros of (311 

and may intrude prior to elastic failure by stretch. Shear instabilities of the type 
(3.46) have been found to intrude in model studies of fcc crystals prior to the 
zero of (311 [68] and appear to be the characteristic strength-determining feature 
for fcc materials stretched on (100). This is expected on physical grounds; fcc 
crystals stretched in tension on (100) usually fail in shear, via slip on {1l1}. 

Simple shear 

Let an initially cubic crystal be sheared in one of the common slip systems: 
(1l2){lll} in fcc, or (111){110}, (lll){1l2} or (1l1){123} in bcc. In each of 
these cases we can refer the cubic crystal to an orthorhombic cell whose edges 
parallel the slip direction (for example, [112] in fcc), the normal to the slip 
plane ([Ill] in fcc) and a direction perpendicular to both ([110] in fcc). Shear 
on the slip plane in the slip direction distorts this cell into one with monoclinic 
symmetry. If E6 is taken to be the shear in the slip plane, the tensor moduli 
then take the form (3.50), with 13 independent terms: 

All A12 A13 0 
A12 A22 A23 0 

A= A13 A23 A33 0 
0 0 0 A44 

0 0 0 A45 

A16 A26 A36 0 

Only four of these include the shear stress: 

A16 = C16 +a/2 
A26 = C26 + a/2 

0 A16 

0 A26 

0 A36 

A45 0 
(3.50) 

A55 0 
0 A66 

A36 = C36 - a /2 (3.51) 

A45 = C45 + a/2 
Aij = Cij (aU others). 

The determinant of A can be written 

(3.52) 

where A4 is the 4 x 4 matrix obtained from (3.50) by removing the elements 
associated with E4 and E5. A4 contains the maximum possible number of inde­
pendent elements (10) and cannot be factored in any particularly useful way. 
The modulus for relaxed shear along E6 is 

(3.53) 
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where As(= cs) is the 3 x 3 matrix of terms associated with E1, E2 and E3. 

/366 is independent of the factor [>'44A55 - A45
2

], which governs stability with 
respect to shear in two perpendicular planes. However, since neither I A41 nor 
I A31 can be factored, any other instability prior to the zero of /366 would be 
fortuitous. Instabilities along E4 and E5 can be relevant. For example, in Al and 
in (presumably) most other fcc materials, any finite shear in the [101], direction 
on the (111) plane is unstable with respect to rotation toward [112] or [II2] The 
relaxations that accomplish this rotation are shears along E4 and E5. 

3.3.4 Ab initio calculations of the elastic limits 

Recent advances in theoretical methods and computing machines make it pos­
sible to calculate the energies of distorted crystal lattices to very high accuracy. 
The computations are tedious, however, particularly when the distorted solid 
has low symmetry. For this reason most first-principles calculations ofthe elastic 
limits have studied the behavior of materials with primitive lattices in uniaxial 
stretch along axes of high symmetry [37, 39], or simple shear in one of the pre­
ferred slip systems [31,32,40,41]. Simpler models have been used to clarify the 
symmetry rules that locate extrema in simple crystal structures under various 
types ofloading (Ref. [68] and references cited therein), or to conduct molecular 
dynamic studies of the approach to elastic instability [58, 59, 65]. 

The most straightforward way to calculate elastic limits from first principles 
is to simply stretch, compress or shear the crystal in the desired direction, 
compute the elastic energy and the relevant Cauchy stress as a function of 
strain, and look for the maximum of the stress. In the relaxed case, which is 
dearly the most informative, the crystal must be reconfigured at every step to 
relax the lateral stresses. This can be done in a straightforward manner by 
computing the stresses via the Hellman-Feynman method and reconfiguring the 
atoms until the lateral stresses relax to zero (see Chapter 2). In the general 
case, the Cauchy stress is found by computing the energy increment in a small 
incremental strain. When the total strain is small, however, as it is to a fair 
approximation in structural metals under simple loading even at the elastic limit 
(see Chapter 2), linear elasticity applies and the Cauchy stress is given by the 
slope of a plot of the free energy as a function of strain. 'In that case elastic 
instabilities are identified by inflection points in the free energy curve. 

This uniaxial procedure has the disadvantage that it yields only an upper 
bound on the theoretical strength. As discussed above, instabilities along eigen­
vectors perpendicular to the direction of stretch are not seen, and may intrude 
at lower values of the stress. The only mathematically rigorous way to ensure 
that all of these are found is to compute the full set of elastic constants after 
each strain increment and test ~or zeros of IAI. Practically, however, it is only 
necessary to apply a set of small triclinic distortions and to allow relaxation 
from the distorted states. Only if all of these triclinic distortions are fortu­
itously parallel to the minimal eigenvector of A will any instability be missed. 
Unfortunately, since a triclinic crystal has no symmetry other than the inversion 
operation, these computations are still difficult to do. 
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By combining the uniaxial procedure with a few low symmetry distortions 
and a bit of physical insight, one can obtain answers that are very likely to 
be right. If one has computed both the strength in tension along the obvious 
symmetry axes and the strength in shear in the common slip systems then one 
can test the probability that slip intrudes prior to tensile failure by computing 
the resolved shear stress under a tensile load that approaches the theoretical 
strength. If the shear stress is well below the relevant shear strength, shear 
instabilities are unlikely. A similar method can test the likelihood that tensile 
failure intrudes during deformation in shear. If these or other orthogonal in­
stabilities are possible, they will almost certainly pertain over a range of strain 
prior to instability in uniaxial load. It should ordinarily be sufficient to test the 
crystal with small triclinic distortions at a few isolated points prior to insta­
bility. This is particularly the case in relaxed shear (see Chapter 2) since the 
reconfigurations that are necessary to relax the stresses sample all deformations 
but E4 and E5. 

3.4 Conclusion 

The internal conditions of stability are found by applying Gibbs' criterion that 
the material be stable to all reconfigurations that do not alter its boundary. The 
conditions of stability are contained in the requirement that Aijkl6Eij6Eki :::: 0 
for all infinitesimal strains, where Aijkl = 1/2(Bij kl + Bklij), and B is the tensor 
that governs the change in the Cauchy stress (t) during incremental strain from 
a stressed state (r): tij = Tij + Bijkl6Ekl. Since A has full Voigt symmetry, 
it can be written as the 6 x 6 matrix, Aij, with eigenvalues, At>. Stability is 
lost when the least of these vanishes. The conditions of internal stability are 
shown to be equivalent to those derived previously for it solid in contact with a 
reservoir that fixes and maintains the Cauchy stress. Mechanisms that control 
stresses other than the Cauchy stress may add additional conditions of stabil­
ity, which may be more stringent, but cannot obviate these. The conditions of 
stability are exhibited for cubic (hydrostatic), tetragonal (tensile) and mono­
clinic (shear) distortions of a cubic crystal and some of their implications are 
discussed. Elastic stability and the limits of strength are now being explored 
through first-principles calculations that increment uniaxial stretch or shear to 
find the maximum stress. This method produces an upper bound, but it may 
not be the least upper bound since orthogonal instabilities may intrude before 
it is reached. This possibility can often be recognized or dismissed on the basis 
of a few supplementary calculations. 



Chapter 4 

The Ideal Strength of 
Tungstent 

4.1 Introduction 

4.1.1 Tungsten as an further example 

Chapter 2 looked at the ideal shear strengths of the fcc metals Al and Cu. In 
this chapter, we examine the ideal shear anq tensile strengths of bcc tungsten. 
Tungsten was chosen for three reasons. First, it is a good example of the bcc 
transition metals, which provide technologically important structural materials. 
The most important of all, of course, is Fe, but the ferromagnetic interaction in 
bcc Fe makes it a very difficult subject for fundamental study [69]. Tungsten is 
a more tractable example. 

Second, bcc transition metals like tungsten have complex and interesting me­
chanical properties [70]. They commonly shear on at least three different crystal­
lographic slip systems, (1l1){1l0}, (lll){1l2} and (1l1){123}, and sometimes 
exhibit such a mixture of these (and, possibly, others) that their deformation is 
described as "pencil glide" on arbitrary planes that contain (111) [71f Despite 
this multiplicity of slip systems, bcc crystals are characteristically brittle at low 
temperature, a behavior that, in the case of Fe, is responsible for a good many 
of the better-known engineering disasters of the industrial age. It is of interest 
to know whether these characteristic behaviors of bcc crystals are reflected in 
their ideal strength. 

Third, tungsten was chosen because there has been an ab initio study of its 
tensile behavior [38], which provides a cross-check on the accuracy of the results. 

tThe research presented in this chapter has been submitted for publication (Ref. [33].) 
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4.1.2 Choice of strain paths 

The ideal strengths of all· crystalline solids vary with the geometry of the applied 
strain. For example, the strength of a model fcc crystal stressed in shear on a 
{Ill} plane in a (112) direction will always be lower than the strength for shear 
in a (110) direction on the same plane. Fortunately, principles of symmetry and 
exploratory calculations have shown that highly symmetric loading geometries 
set the upper and lower bounds of strength. Most important are the lower 
bounds, and it follows that we must calculate separate strengths for shear and 
tension in only a small number of high-symmetry loading configurations. 

We shall specifically consider five simple configurations: uniaxial tension 
along (100), shear on the three common slip systems, and shear on the un­
common system (110){110}. We justify these choices on the following grounds, 
which we shall discuss in further detail in the body of the chapter. 

The tensile calculation is done along (100) because symmetry arguments [72], 
prior computations [38] and empirical testing [73] all identify the (100) axes 
as the weak directions in tension and the {100} planes as the cleavage planes. 
Similarly, experimental data [70] and symmetry considerations (that were found 
in the course of this work) all identify slip in (111) directions on {110}, {112} 
and {123} planes as comparable candidate systems for the minimum strength 
in shear. The (110){110} system is treated as an example of an unfavorable 
shear. 

We have not specifically treated multi axial stresses. However, both prior 
pseudopotential calculations by Soderlind and Moriarty [42] and our own ex­
ploratory calculations with "embedded atom" (EAM) methods [74] suggest that, 
excepting very high hydrostatic pressure, secondary stresses do not have an im­
portant effect on the ideal strength. 

4.1.3 Definition of the ideal strength 

Even when the stress is uniaxial there is some ambiguity in the definition of the 
ideal strength (see Chapter 3). In a laboratory test, elastic stability is a joint 
property of the material and the loading mechanism [56, 57]. The maximum 
value of the measured strength depends on the response of the loading mecha­
nism to second-order displacements [56]. We use the analysis of ideal strength 
developed in Chapter 3 and define the ideal strength by the limit of internal 
stability, the stress at which the crystal first becomes unstable with respect to 
quasi-static distortions that do not displace its boundary. The ideal strength 
that is measured in this way is equal to that which would be measured in a 
test with a load frame that fixed the Cauchy stress (force per unit area in the 
current configuration) to the second order [58]. 

As derived in Section 3.2, if the current state of the crystal is described 
by the Lagrangian strain, E, and the Cauchy stress, u, its internal stability is 
governed by the fourth-order tensor oX: 
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where c is the tensor of elastic moduli at strain, E . . Stability requires that A 
(or, more simply, its 6 x 6 Voigt form) h~l.Ve no non-zero eigenvalues. Since 
both c and 0' change with strain and A has six independent eigenvalues, testing 
stability can be a formidable task. 

Fortunately, if the deformation is uniaxial and fully relaxed, the strength 
defined by the limit of internal stability (the ideal strength) is ordinarily just 
the maximum value of the conjugate Cauchy stress. This is true unless the 
solid is unstable to perturbations that are orthogonal to the direction of the 
applied load. Orthogonal instabilities are unlikely unless the load is along a 
direction of high symmetry, and can be revealed by periodically perturbing the 
crystal with distortions that create triclinic symmetry (see Chapter 3). When 
the deformation is uniaxial and fully relaxed, the elastic limit is not difficult to 
find in practice. 

Unfortunately, even these techniques miss dynamic instabilities, such as 
those caused by "soft phonons" or anharmonic vibrations. The ideal strengths 
computed here refer to the limit of internal stability under quasi-static defor­
mation in the low-temperature limit. 

In the following we first compute the ideal strength of W in uniaxial tension 
along (100) and compare the results to prior work. Second, we compute the ideal 
strength in shear for the three experimentally observed slip systems, (Ill){110}, 
(I1I){112} and (I1I){I23}, and for the alternate system (110){110}. The re­
markable result of this calculation is the almost identical value of the ideal 
strength for (111) slip on the three different slip planes. Third, we discuss the 
symmetries of the deformations considered. Symmetry considerations let us 
formulate simple models that approximate the ideal strengths to within a few 
percent and explain the degeneracy of the strengths in shear along (111). Fi­
nally, we compare the results to experimental values reported from both tensile 
tests of tungsten whiskers and nanoindentation measurements on tungsten films 
and discuss the differences. 

4.2 Computational Methods 

The computational procedure used here was essentially the same as that of 
Chapter 2. The tungsten unit cell is defined by three lattice vectors, a Q (a = 
1,2,3) and placed in a Cartesian coordinate system with axes ei (i = 1,2,3). 
The lattice vectors a 1 and a 2 are taken to lie in the plane of el and e2. The 
unit cell is deformed by incremental changes in the lattice vector, a 3 . To model 
uniaxial tension along [100], a3 is incremented by ~a3 in the direction of e3, 
which is parallel to [100]. To model shear in the system [abc] (hkl) the coordinate 
vectors el and e2 are taken to lie in the plane (hkl) with el parallel to the 
direction [abc]. The deformation is accomplished by incrementing a 3 by ~a3 in 
the direction of el' 

The deformed lattice vectors, aQ:, define the current shape of the unit cell 
and, hence, the current positions of all the atoms. When the deformation is fi­
nite, there is no unique way to translate this information into a tensor strain [49]. 
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But there is a unique measure of the stress that governs mechanical stability: 
the Cauchy (or "true") stress, which is the applied force per unit area in the 
current configuration of the crystal (Chapter 3). As in Chapter 2 we define 
strains and estimate the Cauchy stresses as follows: 

Let aG:(O) be the a th lattice vector in the unstressed bcc crystal, and let 
aG:(n) be its vector value after the nth incremental step in the deformation. 
The net deformation between steps m and n is defined by the tensor D(n, m): 

af(n) = afCm) + Dij(n,m) aj(m). (4.2) 

The incremental strain in the nth step, ~€(n), is, then 

(4.3) 

and we can define a "true" strain as 

n 

fij(n) = L [~fij(m)l· ( 4.4) 
m=l 

Since the values of fij (n) are sensitive to the number of steps in the simulation, 
it is useful to define a measure of strain independent of this, the engineering 
strain: 

( 4.5) 

Note that the engineering strain eij is just the linear part of the Lagrangian 
strain, Eij : 

The Cauchy stress u in the nth step can be estimated in three ways. First, 
the stresses can be found from the change of the total energy U with the con­
jugate incremental strains: 

( 4.7) 

where V(n) is the current volume of the crystal. However, this definition is 
very sensitive to small errors in U and aG:. Since, in most cases, U and aG: vary 
smoothly and continuously with strain, differentiating a smoothed fit through 
a plot of U versus "true" strain reduces errors in stress at each point: 

(4.8) 

In the limit of small ~E (large number of steps for a finite strain), this will 
converge to the thermodynamic definition of the Cauchy stress. Equation (4.8) 
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offers the most precise estimate of stress from the available data, but we do note 
that, in the cases studied here, the strains are small enough that the stresses 
are also well approximated by the derivative of the energy with respect to the 
engineering strain. The third way to determine the stresses is from the Hellman­
Feynman theorem [75, 76]. The directly calculated stresses have less precision 
than the energy, because the energy is calculated variationally. However, they 
have the advantage that they are independently calculated for each strain, and 
thus provide a check that our strain increments are sufficiently small. 

In the present work, the quasi-static (T=O) energy of the deformed crystal 
and the Hellman-Feynman stresses were calculated using the local density ap­
proximation (LDA) within a pseudopotential total-energy scheme incorporating 
semi-relativistic corrections [36, 43-47]. Using a cut-off energy of 60 Ry with a 
16 x 16 x 16 k point grid generated using the Monkhorst-Pack scheme proved 
sufficient to achieve precision of better than 1 mRy (0.013 eV) in the calculated. 
energies. 

The energy and stress were calculated as a function of strain for both uniaxial 
strain (unrelaxed condition) and uniaxial stress (relaxed condition). In the 
former case, a selected strain was incremented while the other five independent 
strains were fixed at zero. In the latter case, which provides a more meaningful 
measure of the ideal strength, the crystal was relaxed until only the stress, tij, 
conjugate to the selected strain had a non-zero value. This was done by fixing 
the selected strain and adjusting the other five independent strains until their 
conjugate Hellman-Feynman stresses were less than 0.15 GPa. 

4.3 Ideal Strength 

4.3.1 The lattice constant and elastic moduli 

A first test of the accuracy of the computational scheme is its ability to predict 
the lattice constant and the elastic moduli of the crystal. The results are shown 
in Table 4.1, which includes the lattice parameter and bulk modulus, and the 
elastic modulus and compliance for shear in the system (111){1l0}. The lattice 
parameter is accurate to within 1%, the moduli are correct to within 6%. Since 
W is almost isotropic at 0 K (the anisotropy ratio (Cll - C12 - 2 C44)/C44, where 
Cij are the Voigt elastic constants, is less than 0.01 [77]), the shear modulus, 
C(abc){hkl}' and the elastic compliance, s(abc){hkl}' for sh~ar on any slip system, 
(abc){hkl} are given by 

1 
G(abc){hkl} ~ ~ C44· 

S(abc){hkl} 
( 4.9) 

Because tungsten is elastically isotropic, the combination of the bulk and shear 
moduli are sufficient to fully specify its elastic properties. 

However, as in the discussion in Section 2.3 on the lattice constant of AI, it 
is somewhat troubling that our computed lattice constant using LDA is larger 
than the experimental value. It is also unusual that both the lattice constant 
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Table 4.1: Calculated (LDA) and experimental lattice parameters and elastic 
moduli of bcc tungsten. 

experimental present work 
lattice constant (A)U 3.16 3.17 

C(lll){llO} (GPa)b 164 161 ± 1 
1/ s(111){11O} (GPa)b 164 159 ± 1 
bulk modulus (GPa)b 314 331 ± 1 

aExperimental values at 298 K are from Ref. [11]. 
bExperimental 4.2 K data are from Ref. [77]. 

ppe FP-LMToe 
3.13 3.15 

317 319 

cValues are from an ab initio study of tungsten in Ref. [78] and are computed 
using both pseudopotential plane wave (PP) and full-potential, linear muffin­
tin-orbital (FP-LMTO) techniques. 

and the bulk modulus are larger than experiment. Table 4.1 includes results 
from another recent ab initio study of tungsten using both pseudopotential plane 
wave (PP) and full-potential, linear muffin-tin-orbital (FP-LMTO) techniques. 
Because the lattice constants predicted by these calculations are smaller than 
experiment, these results are more believable than our own. As argued in Sec­
tion 2.3, however, any small errors in the pseudopotential will not have a large 
effect on either our computed values of ideal strength or on our analysis of the 
structural relaxations of tungsten under load. 

4.3.2 The ideal strength in tension 

Figure 4.1 shows the variation of energy (Fig. 4.1a) and stress (Fig. 4.1b) with 
engineering strain for a crystal that is pulled in a (100) direction with full 
relaxation along the perpendicular axes. The maximum tensile stress, am, is 
29.5 GPa, in close agreement with the value, 28.9 GPa, reported by Sob et 
al. [38]. Sob et al. also calculated tensile strengths in the (111) <!-nd (110) 
directions. These are substantially higher. 

The reason that bcc crystals are weak in (100) directions (and, therefore, 
cleave on {100} planes) has been known for some time [79]. As illustrated in 
Fig. 4.2, if a bcc crystal is pulled along (100) and allowed to relax in the two per­
pendicular directions its structure eventually becomes fcc. Assuming constant 
volume, the engineering strain, e3, needed to accomplish the transformation 
(the "Bain strain") is eb = 0.26. Since the stress vanishes by symmetry in both 
the bcc and fcc structures, either the fcc structure must be a saddle point, or it 
must pass through a maximum at some intermediate strain. No similar extrema 
are fixed by symmetry for the other possible directions of tensile loading. Hence, 
barring accidental extrema, a bcc crystal has its minimum tensile strength when 
it is loaded on (100). 

The ideal tensile strength can be estimated in the following way (which is 
generally applicable to any bcc crystal whose energy increases monotonically 
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Figure 4.1: Energy (a) and stress (b) as a function of applied tensile strain 
applied along (100) to bee tungsten. The .'s are for the unrelaxed cases and 
the .'s for the relaxed cases. The 8's mark the position of fcc tungsten. 

when it is stretched from bee to fcc along (100)). In the tradition of Frenkel [SO] 
and Orowan [Sl] we approximate the stress-strain curve by a sinusoidal function 
with a period of eb. In this case, 

. [7re] 
(J = (Jm SIn -;: , (4.10) 

where (Jm is the maximum stress. Since (J = E(1oo)e, when e is small (Hooke's 
Law) and E(1oo) is Young's modulus for a (100) stretch, 

(Jm = [~] E(lOO) = O.OSE(1oo)· (4.11) 

The ab initio calculation for W gives 29.5 GPa, which is 0.072 E(1oo), in reason­
ably good agr~ment. 

Figure 4.2: Illustration of the Bain transformation path between bee and fcc. 
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{110} {112} {123} 

Figure 4.3: Geometries of shear for slip on {110}, {112}, and {123} planes along 
a (111) direction. The atoms connected by the arrows are sheared over the plane 
below. The arrowheads indicate the "easy" direction of shear. 

'4.3.3 The ideal strength in shear 

The common bee slip systems, (111){110}, (111){112} and (111){123}, are il­
lustrated in Fig. 4.3. The (111){110} system is symmetric with respect to the 
direction of shear along the· (111) axis. The (111){112} and (111){123} sys­
tems are not; slip in the direction of the arrow shown in the figure (the "easy" 
direction) has a lower shear strength and energetic maximum than slip in the 
opposite direction (the "hard" direction). 

Fig. 4.4 includes plots of energy against engineering strain for the three slip 
systems over a full period of shear along (111). The strain periods for the relaxed 
and unrelaxed shears differ because the former includes relaxations orthogonal 
to the applied shear. Fig. 4.5 is the engineering stress-strain relation for slip 
on the (111){112} system. This figure also shows the agreement between the 
calculated Hellman-Feynman stresses and the Cauchy stress estimated from the 
slope of the energy-strain curve. Fig. 4.6 presents the most striking result of 
these calculations: the close similarity of the stress-strain relations for (111) slip 
in the easy directions on the three planes. 

Table 4.2 lists the shear strengths for the three slip systems iIi relaxed and 
unrelaxed strain in both the "easy" and "hard" directions. Table 4.3 lists the 
strains at each instability (the shear strain "Iij = 2eij). Tables 4.2 and 4.3 also 

include data for the (110){110} system. As it is to be expected, the relaxed 
strengths are lower than the unrelaxed in all cases, and the strengths in "easy" 
slip are much below those in the "hard" directions. The relaxed strength in the 
(symmetric) (110){110} system (:::::: 0.12 G) is higher than that for "easy" slip in 
any of the (111) systems studied (:::::: 0.11 G for all three systems). 

The shear of W in the (111){112} system was previously studied by Paxton 
et al. [40] for unrelaxed and partially relaxed shears. They obtained a strength 



4.3. IDEAL STRENGTH 

. 1.6 

;; 
-" 

1.2 

~ 0.8 

~ 
0.4 

, , 
0.0 L..L:-'----'-'=_'-'-----'-'>--.J 

-0.75 ·0.5 -0.25 0 0.25 0.5 0.75 

engineering shellr main 

{lID} 

-I ·0.5 0 0.5 

engineering shear strain 

{112} 

1.6 

1.2 

0.8 

0.4 

-0.5 0 0.5 I 1.5 2 

engineering shear strain 

{123} 

45 

Figure 4.4: Energy as a function of applied shear strain for one period of (111) 
slip on {lID}, {112}, and {123} planes. The .'s are for the unrelaxed cases and 
the .'s for the relaxed cases. 
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Figure 4.5: Absolute values of the stress as a function of strain for (111){112} 
slip. The .'s and the .'s are the calculated unrelaxed and relaxed Hellman­
Feynman stresses. The solid lines represent the stresses calculated from 
smoothed fits to the energies. 
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Figure 4.6: Fitted stresses as a function of strain for (111) slip in the "easy" 
direction on {lID} (O's), {112} (D's), and {123} planes (6's). 
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Table 4.2: Ideal shear strengths (Tmax) with (r) and without (u) structural 
relaxations for five slip systems. G is the experimental shear modulus. 

failure stresses (GPa and %) 
slip system T:nax T;¢"ax T:nax/G T;¢"ax/ G 
(111){110} 18.2 ± 0.4 20.8 ± 0.4 11.2 12.7 
(110){110} 19.3 ± 0.4 21.3 ± 0.4 , 11.8 13.0 

\ 

(111){112}easy 18.1 ± 0.4 19.2 ± 0.4 11.1 11.7 
(111){112hard 26.3 ± 0.8 34.3 ± 0.8 16.1 21.0 
(111){123}easy 17.6 ± 0.8 19.1 ± 0.8 10.8 11.7 
(111){123hard >20 30.6 ± 0.8 >12 18.7 

of 0.13 G for unrelaxed shear in the "easy" direction and 0.27 G in the "hard" 
direction. These values are somewhat higher than ours (Table 4.2), but may 
result from additional approximations used in their total-energy calculations. 

Compared to the results for Al and Cu, in which relaxation decreased ideal 
strengths by 35% to 45%, relaxation has a relatively small effect on the strength 
of W. This is 'primarily due to the elastic isotropy of W, which has the conse­
quence that the second-o~der shear moduli are the same for relaxed and unre­
laxed strain. The two cases differ only to the extent that third- and higher-order 
moduli influence the results. Relaxation does have a significant effect (> 20%) 
on the strength of the (111){112} system in the "hard" (negative) direction. Ta­
ble 4.3 shows that this results from large values of the relaxation strain. These 
large relaxation strains have two sources. First, the primary shear strain at 
instability is large (~ -0.33), so non-linear effects make significant contribu­
tions. Second, as illustrated in Fig. 4.7, in a relaxed shear the lattice becomes 
unstable and deforms discontinuously at a shear of -0.45. While this structural 
instability lies beyond the elastic instability at the maximum shear stress, its 
proximity will soften the lattice, decreasing its strength. 

Table 4.3: Applied ((13) and relaxation engineering strains at shear instability. 

relaxation strains (%) 
instability 113 Ell E22 E33 112 123 AVIV 
(111){110} 17.4 -1.2 0.1 2.5 0.5 -0.8 1.4 
(110){110} 15.8 -0.3 -0.8 2.1 0 0 0.9 
(111){ 112 }easy 16.8 -1.0 0.6 1.5 0 0 1.1 
(111){112hard 32.7 -2.8 2.3 4.9 0 0 4.4 
(111){123}easy 18.2 -1.2 0.5 2.0 -0.8 0.0 1.3 
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Figure 4.7: Normal relaxation strains as a function of applied shear strain for 
(1l1){1l2} slip. (O's: €u, D's: €22, and 6's: €33) A structural shear instability 
is clearly visible at a strain of approximately -0.45. 

4.3.4 Sources of the ideal strength in shear 

The best single measure of the ideal shear strength is the minimum value of the 
relaxed strength for the "easy" direction of slip. This strength sets the maximum 
yield stress of an otherwise ideal polycrystal. Even a single crystal loaded for 
slip in the "hard" direction on {1l2} would exceed the critical stress for slip on 
{1l0} before reaching the "hard" strength on {112}. From this perspective, the 
present calculations give the ideal shear strength of W as 17.6 GPa (.108 G) for 
shea~ in the system (111){123}. Because the shear strengths on (1l1){1l0} and 
(1l1){1l2} are so close to this value, a more exact calculation of an ideal yield 
surface would find the shear strength to be practically isotropic. 

Not only are the ideal strengths in the three common slip systems almost 
identical (~ 18 GPa = 0.11 G), but the failure strains are almost the same as 
well, 17-18%. This contradicts the usual assumption that the ideal strength is 
proportional to (b/h), where h is the interplanar spacing and b, the Burger's 
vector, is the length of the shortest lattice vector in the direction of slip. The 
shear strength on the {110} planes, which are the closest-packed and most 
widely spaced, is essentially the same (in fact, it is a bit higher) than that 
on {123} planes that are much closer together. The insensitivity to (b/h) is 
due to the fact that, for all three planes studied, the elastic instability (the first 
inflection point on the energy curve) falls at only a small fraction of the minimal 
crystallographic translation in the (111) direction. 

The shortened period for slip in the {1l2} plane has been noted before [40, 
82), and can be understood from an inspection of the atom configuration in 
the {1l2} plane (Fig. 4.8). A shear strain of 0.66 in the easy direction is the 
"twinning strain" that creates a mirrored bec lattice. It follows that there must 
be at least one maximum in the energy at a strain below 0.66, and an elastic 
instability (inflection point) before that. If there is a single maximum, symmetry 
dictates that it falls at ,= 0.33, with an inflection near 0.167, which is almost 
exactly the strain h = 0.168) that the ab initio calculation finds for elastic 
instability in shear on {112}. 
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Figure 4.8: Illustrations of the changes in symmetry during relaxed shear on 
{110}, {112}, and {123} planes. A and B atoms are on two adjacent planes. A 
Be position indicates a lattice with cubic symmetry, a Bm position monoclinic 
symmetry, and a Bo position orthorhombic symmetry, Intermediate configura­
tions during shear on the {110} and {123} planes have triclinic symmetry. The 
intermediate configurations during shear on {112} have monoclinic symmetry. 

While the symmetry constraints that govern the shear instability on {112} 
may be obvious, the triple period on {123} was not apparent until the energy 
had been calculated. The shear instability on {110} was also invisible until 
the fully relaxed case had been explored. A closer examination shows that the 
extrema that locate the first instability on each of these paths are associated 
with local configurations of relatively high symmetry. Figure 4,8 illustrates 
this. A (111){110} shear changes the symmetry from cubic to triclinic; the 
first extremum occurs when the deformed path passes through a configuration 
with monoclinic symmetry. In the (111){112} system, the shear deformation 
path moves from cubic to monoclinic to orthorhombic symmetry at the first 
extremum. In the (111){123} system, the sequence is cubic to triclinic to or­
thorhombic. 
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Figure 4.9: Illustration of the stacking sequence for the saddle point of (111)­
{110} slip (ABCDA). 

Although the energies and strains at the first extrema on the three slip 
systems are almost identical, the extremal structures are not. The extremal 
structure on {110} has a monoclinic Bravais lattice 'with three atoms per unit 
cell and ABCDA stacking as shown in Fig. 4.9. The extremal structure along 
{112} is a body-centered orthorhombic lattice formed by the ABgasy A stacking 
shown in Fig. 4.8. This, as we shall show below, is also the extremal structure 
on {123}. 

The similar strengths and instability strains on the three common bcc slip 
systems has a straightforward geometrical explanation. If we locate a bcc atom 
at the center of the bcc cell then, as illustrated in Figs. 4.10 and 4.11a, two of its 
nearest neighbors lie along the cube diagonal while the other twelve nearest and 
next-nearest neighbors sit at the corners of two pairs of equilateral triangles that 
are perpendicular to the cube diagonal. A shear in the (111) direction tilts each 
of these triangles along the (111) axis around an axis in the shear plane. The 

Figure 4.10: Illustration of the stacking sequence of the eight nearest and six 
next-nearest neighbors along the (111) direction in bcc. 
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a = 5.2A 
b = 6.oA 

a) 

a = 5.IA 
a' = 5.3A 
b = 5.7A 
c = 7.oA 

b) 

a = 5.1A 
b = 5.6A 
c = 7.2A 

c) 

Figure 4.11: Illustration of the symmetries of pencil glide in bcc. The tables list 
the distance of each labeled neighboring atom from the central atom. a) shows 
an unstrained tun~sten bcc lattice, b) shows the saddle point after (111){110} 
shear, and c) shows the symmetry of the {112} and {123} saddle point. 

cubic symmetry is broken, and the set of eight nearest neighbors and six next­
nearest neighbors is replaced by seven pairs of near-neighbor atoms at varying 
distances. As the triangles tilt in the (111) direction and relax around the (111) 
axis, their corners approach one another. The energy extrema are reached when 
the corners of the coordination triangles first come into partial registry with one 
another, as illustrated in Fig. 4.11b (the {110} extremum) and Fig. 4.11c (the 
{112} and {123} extremum). 

The spatial registry of the coordination triangles at the extremum changes 
the number of equidistant neighbors and creates a more symmetric configu­
ration. As illustrated in Fig. 4.11b, the {110} extremum has 6 neighbors at 
distances of 5.1-5.3A and 6 neighbors at 5.7A. The extremal configuration for 
{112} and {123} slip is the same (Fig. 4.11c). It has four neighbors at a dis­
tance of 5.1A and eight at 5.6A. As shown in Figs. 4.8 and 4.9, these symmetric 
arrangements have monoclinic and orthorhombic Bravais lattices, respectively. 
The' extrema on {110} and {123} were difficult to identify because they require 
significant structural relaxations (Table 4.3). These relaxations are illustrated 
in Fig. 4.12. 

The similarity in ideal strengths on the three slip systems is due to two 
factors: the similarity in the instability strains and the isotropy of the shear 
modulus. As shown in Table 4.3, the primary strains at instability vary by 
only a few percent, from 0.168 for {112} to 0.182 on {123}. In each case, the 
instability strain is about one-half of the primary strain to the first extremum, 

~ 
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{110} {112} {123} 

Figure 4.12: Illustrations of the relaxations from the applied simple shear strain 
to the saddle points for slip on {110}, {112}, and {123} planes. The cages 
represent the positions of the atoms after simple shear. The spheres represent 
the atoms after relaxation. The relaxed positions of {112} and {123} differ by 
only a rotation of approximately 10 degrees about (111). 

which varies from ~ 0.32 for {110} to ~ 0.35 for {112}. If we approximate the 
stress-strain relation by a sine wave, as in Eq. (4.10), with a period of 0.34, and 
require that Hooke's Law be satisfied at small strains, the relaxed shear stress, 
r, is approximately 

. [7r"Y] 
r ~ Tm

sm 0.34 ' (4.12) 

giving the ideal strength as 

[
0.34] C 

Tm ~ -;- = 0.11 C. (4.13) 

This estimate agrees very well with the results of the ab initio calc~lations 
(Table 4.2). 

Equation (4.13) suggests that the virtual identity of the ideal shear strengths 
on the three bcc slip systems in W is due in large part to its isotropic shear 
modulus. It further suggests that the ideal shear strengths in less isotropic 
bcc crystals will vary systematically with their shear moduli. In fact, this is not 
true. The modulus for shear will, in general, depend on both the shear direction 
and the shear plane, but, because of the threefold symmetry for rotation about 
(111) in bcc, any shear in a (111) direction has a relaxed modulus of 

C T 1 3C44(C11-CI2) 

(Ill) = 8(111) 4 C44 + Cll - C12 . (4.14) 

This means that Eq. (4.13) can be used to predict the shear strength of any bcc 
metal and that the strength on any system (111){ i j k }, where i + j = k, will be 
nearly identical. 
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4.4 Comparison with Experiment 

The experimental observations that may be clarified by these results include 
qualitative observations on the deformation and fracture of tungsten and similar 
bcc metals, and quantitative data on the ultimate strength of W, obtained from 
tensile tests on whisker crystals and nanoindentation tests on W films. 

4.4.1 Brittle fracture 

Like other bcc transition metals, polycrystalline tungsten fractures in a brittle 
mode at low temperature by cleavage on {100} planes. As discussed above, the 
{100} cleavage plane is dictated by symmetry. Since a relaxed stretch along 
(110) produces the fcc structure at moderate strain, the crystal is weak in ten­
sion in that direction. The weakness on (100) is confirmed by the ab initio 
calculations of Sob et al. [38], and their result for the ideal strength is confirmed 
in the present work. 

There is at least some evidence that the simple estimate of the cleavage 
strength given in Eq. (4.11) is applicable to other bcc metals. We have completed 
a preliminary calculation of the cleavage strength of bcc Fe, and have found a 
value of 10.5 GPa, which is almost precisely 0.08 E(100). 

Despite its tendency to cleave on {100}, whether an ideal single crystal of W 
fails by fracture or by shear depends on how it is loaded. If any of the common 
slip systems is loaded in simple shear to the elastic limit (~ 18 GPa), the 
maximum tensile strength on any plane is also about 18 GPa. Since this stress 
is well below the minimum tensile strength, 29 GPa in (100), an ideal crystal 
loaded in simple shear should fail in a shear instability that would (probably) 
resolve itself by plastic deformation through twinning or dislocation nucleation 
and glide. If, however, an ideal crystal were loaded in (100) tension to the 
cleavage stress, 29 GPa, the maximum resolved shear stress would only be 14.5 
GPa, which is below the ideal shear strength. It follows that an ideal W crystal 
that is loaded in (100) tension at low temperature will cleave before plastic 
deformation intrudes. 

4.4.2 "Pencil glide" 

The most striking characteristic of the shear strength is its virtual degeneracy 
for (111) slip in the {110}, {112} and {123} planes. At least at moderate to 
high temperature, the deformation of a typical bcc crystal is characterized by 
slip on planes that include the (111) direction, among which these three are 
the most prominent [70, 71, 83]. The identity of the slip plane is sometimes 
so difficult to determine that the deformation is described as "pencil glide" in 
the (111) direction. The choice of slip plane is made by mobile dislocations 
and has no automatic association with the ideal strength. It may, therefore, 
be merely interesting that the ideal shear strength has a very similar crystallo­
graphic degeneracy. On the other hand, the lattice strain becomes large in the 
dislocation core, and that finite strain must be propagated as it moves, so the 
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Table 4.4: Experimental estimates of ideal shear strength: maximum nor­
mal stress (CT max), maximum shear stress (T max) and normalized shear stress 
(Tmax/ G ). 

whiskersa 

nanoindentationb 

CTmax (GPa) 
24.7 ± 3.6 
69.6 ± 3.7 

aFracture of (110) whiskers [84). 

failure stress 
Tmax (GPa) 
12.5 ± 1.8 
21.6 ± 1.1 

Tmax/G (%) 
7.8 ± 1.1 

13.5 ± 0.7 

bNanoindentation of a (100) surface [85). A single observation of Tmax 

28.6 GPa was also noted. 

considerations that lead to degeneracy in the strength also favor degeneracy in 
dislocation slip. 

4.4.3 Experimental values of the ideal strength 

Table 4.4 shows two of the most recently determined values of the ideal shear 
strength of W, one measured on nominally dislocation-free "whiskers" [84] and 
one measured via nanoindentation on lightly oxidized W films [85). 

Whisker data 

Mikhailovskii et al. [84) studied the tensile fracture of microcrystalline tungsten 
"whiskers" with diameters in the range 600-2600A and long axes parallel to 
(110). The maximum strength was 28.3 GPa. 

While we did not calculate strength for a tensile pull along (110), Sob et 
al. [38) found a value of approximately 54 GPa for tensile fracture. Given that 
the load is never precisely along a. (110) axis, the crystal might instead be 
expected to fail at a load close to that which provides a resolved shear stress 
equal to the shear strength on the most favorably oriented plane. This criterion 
suggests failure when the tensile stress along (110) is about 36 GPa, or twice 
the ideal shear strength. 

It follows that the maximum whisker strength is about 0.80 of the theo­
retical value. This is satisfying for two reasons. First, the computed ideal 
strengths should always be slightly greater than any experimental observations. 
Second, prior work [53] suggests a mechanism for this difference: the failure of 
whiskers ordinarily originates from free surfaces. This suggests that the strength 
of whiskers is determined by heterogeneous nucleation of defects at free surfaces 
rather than by the bulk value of the ideal strength. 



54 CHAPTER 4. THE IDEAL STRENGTH OF TUNGSTEN 

N anoindentation measurements 

Nanoindentation tests probe the mechanical response to indentation by an in­
denter that is no more than a few nanometers in diameter [86-88]. If the material 
tested has a low dislocation density then the nanoindenter may probe essentially 
defect-free material. If, in addition, the surface of the crystal is treated to pre­
vent premature failure from the interface, theri failure may be made to originate 
in the region of maximum stress beneath the interface. It follows that nanoin­
dentation studies are a promising method for measuring the bulk value of the 
ideal strength. 

The most extensive study of the nanoindentation of tungsten was by Bahr 
et al. [85]. They inferred the shear stress at yielding by using the depth of 
indentation by the indenter in the familiar Hertz solution for the stress field of 
an elastic indenter. They report a maximum shear stress at yield of 28 GPa, 
and report a number of measurements at about 26 GPa. These values are 
significantly above our calculated value of the ideal shear strength (18 GPa). 

Aside from experimental or theoretical errors, there are at least two possible 
sources for this discrepancy. The first is the triaxiality of the load at yield: the 
material is subject to a hydrostatic stress that is of the same order of magnitude 
as the shear stress. While this issue deserves a specific investigation, the work of 
Soderlind and Moriarty [42] on the behavior of Ta at high pressure suggests that 
pressure has no dramatic effect on the shear strength until pressures significantly 
larger than those encountered here. 

A more immediate concern is the applicability of the Hertz solution for the 
elastic strain field, which assumes a linear elastic stress-strain response and 
elastic isotropy. Neither assumption is true when the strain approaches elastic 
instability. Figure 4.6 shows clearly the non-linear elastic behavior near insta­
bility. The assumption of elastic isotropy no longer holds because, while the 
effective shear modulus in the soft direction vanishes at the point of instability, 
the moduli for shear modes l?erpendicular to the soft direction remain large. 

A rough estimate of the correction needed to account for the softening of 
the modulus near instability can be made as follows. t The displacement at 
the indenter-substrate interface, which is used to compute the Hertzian strain 
field, is set by the net modulus of the whole substrate volume strained by the 
indenter. Since almost all of this volume responds in a linear elastic mode, the 
strain field computed from the indentation should not be all that wrong, even if 
the small volume of material that is under a high shear stress responds in a non­
linear way. Assuming that the estimated shear strain at failure is approximately 
correct, and further assuming a sinusoidal stress~strain relation, we' have 

. [1f'Y] 
T = T m SIn 2'Ym ' (4.15) 

where 'Ym is the strain at failure and Tm is the strength. Since T = G'Y for small 

tThe derivation of this 7r /2 correction is the work of D. Roundy. 
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strains, 

(4.16) 

where T! is the strength computed from the same failure strain on the assump­
tion of linear elasticity. 

Equation (4.16) suggests that the strengths back-calculated from the Hertz­
ian strain field should be multiplied by a factor of about 2/,rr for comparison to 
the ideal strength. This factor corrects the W measurements of Bahr et al. [85] 
from 26-28 GPa to 16.5-18 GPa, in very good agreement with the theoretical 
numbers. The agreement is very likely to be better than the accuracy of this 
simple model, but it does support the notion that nanoindentation experiments 
do measure the ideal strength in shear. 

4.5 Conclusion 

We have used pseudopotential density functional theory within the local density 
approximation to calculate the ideal tensile strength of tungsten pulled in a 
(100) direction and the ideal shear strengths for the (lll){llO}, (1l1){1l2} 
and (1l1){123} slip systems, allowing full structural relaxation of the strains 
orthogonal to the applied shear. We also computed the shear strength in the 
(1l0){110} system for comparison. 

The ideal tensile (100) tensile strength was found to be 29.5 GPa. This 
number (= 0.072 E(1oo)) is in close' agreement with prior calculations. This 
number is also in good agreement wit}1 the value (0.08 E(lOO)) expected for 
a material that has a sinusoidal stress-strain relation and a. tensile strength 
that is determined by the "Bain" instability on (100). The shear strength was 
close to 18 GPa (0.11 G) for all three slip systems. Analysis of the structural 
relaxations that occur during these shears revealed that the ideal shear strengths 
are determined by relatively high-symmetry extrema that are reached in each 
of these systems after a shear of 0.32-0.35. These extrema are related to the 
packing sequenCe along (111) directions in the bcc lattice. The shear strengths 
are also in good agreement with a model that uses a sinusoidal approximation for 
the stress-strain relation. Finally, as expected, the strength in the (110){110} 
system is higher than that in any of the three (111)-based systems commonly 
observed in bcc. 

I' 

The calculated shear strengths are, at least, in the range of the values ob-
tained from tensile tests on tungsten "whiskers" and nanoindentation tests of 
tungsten films. The maximum tensile strengths of whiskers are about 0.8 of the 
expected values. We suspect this reflects early failure of these thin whiskers from 
surface-induced defects. The maximum shear strengths reported from nanoin­
dentation experiments are almost 1.5 times the theoretical value. We believe this 
discrepancy is primarily due to the linear elastic assumption used to extract the 
strength from the experimental data. If we use a sinusoidal stress-strain relation 
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to correct the stress at given strain, the reported measurements are corrected 
by a factor of 2!7r, which reduces them to the theoretical numbers. 



Chapter 5 

Summary and Future Work 

5.1 Summary 

This dissertation has critically examined a number of scaling relationships be­
tween atomic-scale properties and intrinsic mechanical hardness. For the ma­
jority of materials examined, hardness scales linearly with elastic shear modulus 
for a given bonding type (covalent, ionic or metallic). However, we have identi­
fied a technologically important class of materials where this scaling relationship 
does not hold: the group IVa and Va transition metal carbides and nitrides. As 
a class, the group IVa and Va transition metal carbides have higher mechanical 
hardnesses for a given shear modulus than the corresponding nitrides despite 
having the identical crystal structure and very similar bonding. 

In an attempt to understand why and how the scaling of hardness with 
shear modulus can break down, we have developed a detailed theoretical anal­
ysis of "ideal strength," which is defined by the limit of elastic stability of 
a quasi-statically loaded perfect crystal. In general, the conditions of stabil­
ity are contained in the requirement that .AijkI6€ijiSEkl 2: 0 for all infinitesimal 
strains, where .Aijkl = ~(Bijkl + Bklij ), and B is the tensor that governs the 
change in the Cauchy stress (t) during incremental strain from a stressed state 
(T) : tij = Tij + BijkliSEkl. Stability is lost when the minimum eigenvalue of .Amn 

(the 6 x 6 Voigt form) vanishes. 
Ideally, one would hope to use ab initio computations to determine B as 

a function of applied strain, but this is computationally very expensive. In 
Chapter 3, we justify a much more computationally efficient approach that 
calculates only energy and stress as a function of strain. The ideal strength for 
any uniaxial loading direction (including shear) can be determined by allowing 
full atomic relaxation perpendicular to the applied strain. This maps out a 
minimum energy path for the deformation, and the ideal strength is determined 
by locating the maximum of stress along the path. If the axis of applied strain 
is along a high symmetry direction, this procedure may miss instabilities along 
directions perpendicular to the direction of stretch, but these instabilities can 

57 
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engineering shear strain engineering shear strain 

TiC TiN 

Figure 5.1: Schematic illustration of the stress-strain behavior for (IIO){llO} 
shear in TiC and TiN 

be detected by combining the uniaxial procedure with a few low symmetry 
distortions and a bit of physical insight. 

Chapters 2 and 4 present ab initio ideal strength calculations using these 
techniques for AI, Cu and W. These are the first ab initio calculations that 
incorporated full atomic relaxation perpendicular to the applied strain, and they 
show that relaxation can have very important effects. For Al and Cu, relaxation 
reduces the values of ideal shear strength by 35% to 45%, resulting in strengths 
of 8-9 percent of the shear modulus for both Al and Cu. For W, relaxation 
produced the remarkable result that the ideal strengths on {1l0}, {1l2}, and 
{123} planes were nearly identical (::::::: 18 GPa = 0.11 G). Encouragingly, with 
a small correction that accounts for the non-linear stress-strain behavior near 
instability, this strength is very close to the shear strengths determined from 
nano-indentation experiments. The equivaience of the strengths on all three 
common bcc slip planes is explained in terms of bcc's linear elastic isotropy 
for shears in a (111) direction and of the atomic configurations of the energetic 
saddle points reached during shear. Chapter 4 also analyzes the ab initio results 
in terms of a simple Frenkel-Orowan crystallographic model. 

5.2 Preliminary Results in TiC and TiN 

This dissertation began with the problem of identifying why TiC had a micro­
hardness 50% higher than TiN despite having essentially the same value of the 
elastic shear modulus. Preliminary ab initio calculations of the ideal strength 
of TiC and TiN suggest an explanation [89]. Figure 5.1 schematically shows 
the stress-strain behavior for (IIO){llO} shear in both TiC and TiN. While the 
stress-curve for TiC is roughly sinusoidal, there is a discontinuity in the curve 
for TiN. This discontinuity corresponds to an internal structural instability in 
TiN. Figure 5.2a shows the AB stacking sequence along the (001) direction in 
TiC and TiN at small strains. Each C or N atom is surrounded by six neigh-



5.2. PRELIMINARY RESULTS IN TIC AND TIN 59 

flo 

8 

tUN;---------------------'TUN 
,>~ >'~ ~ 

a) 

110 
","!::: • /.:'.&,>. 
f~ii~ --------------------~~~.~T~t.:~ 

b) 

Figure 5.2: Illustration of instability in TiN during (110){1l0} shear: a) Stack­
ing sequence (ABAB) along (001) for both TiC and TiN after a small amount 
of (1I0){1l0} shear. b) Stacking sequence (also ABAB) in TiN after elastic 
instability. 

boring Ti atoms: four in the {001} plane and two above and below the central 
atom. At large strains in TiN however, the nitrogen spontaneously shifts from 
the central six-fold coordinated octahedral void to a five-fold coordinated void 
illustrated in Fig. 5.2b. Because this shift does not occur in TiC, TiC has a 
significantly higher ideal strength than TiN. This may be an explanation why 
TiC also has a significantly higher measured microhardness as well. 
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5.3 Future Work 

5.3.1 Computations 

This dissertation presented ab initio calculations of the ideal shear strength of 
Al and Cu, the ideal shear and tensile strengths of W, and qualitative results of 
the ideal shear strengths of TiC and TiN. Computations of the ideal strengths 
of Mo, Fe, Si and diamond are currently underway [90]. Calculations in a pair 
of hcp metals and a number of representative ionic materials would also be of 
great interest. 

The ab initio calc~lations relate, strictly, to perfect crystals in the limit of 
zero temperature. These calculations also were quasistatic and uniaxial. In or­
der to estimate the effect of phonons at finite temperature and the effect of mul­
tiaxialloading, which may be important for comparison with nano-indentation 
experiments, we have begun a series of embedded-atom method (EAM) calcu­
lations. EAM is much less computationally intensive than ab initio techniques, 
but it can offer an estimate of the magnitude of the phonon and multiaxial 
loading effects. These ongoing EAM studies [74] can also identify situations in 
which further analysis with ab initio techniques is warranted. 

5.3.2 The relaxation strain 

The atomic relaxations at large strain in Al and Cu are consistent with exper­
imental observations of third-order elastic constants. It will be of interest to 
analyze the third-order elastic constants measured for Fe, Mo, Na and Nb [10] 
to determine whether these detect the "pencil glide" saddle point found in our 
calculations. It also may be possible to confirm the relaxations predicted by 
our calculations with high resolution transmission electron microscopy (TEM) 
around dislocation cores or near highly strained coherent phase boundaries. 
Because the lattice instability in TiN occurs at a large applied strain, it is un­
likely to affect measured higher order elastic constants, but TEM observations 
or phonon spectra of highly strained thin films might detect the instability. 

5.3.3 Brittle fracture 

We argued in Section 4.4.1 that the brittleness of bcc metals can be understood 
by the relatively small bain strain (= 0.26) required to produce fcc by tensile 
deformation of bcc along (100). Unfortunately, the same argument seems to 
suggest that the (110) tensile strength of fcc would be even smaller than the 
(100) strength of bcc. A constant volume bain strain of only 0.12 along (110) 
will transform fcc into bcc. From this, Eq. 4.11 predicts an ideal tensile strength 
of only 0.04 E(llO) and suggests that fcc would be more brittle than bcc. 

However, this prediction presumes that the stress-strain curve is sinusoidal 
and that the minimum energy deformation path for (110) uniaxial tension in 
fcc is the bain transformation path. Neither presumption is necessarily true. 
Because of the symmetry of the transformation, a much larger orthogonal re-
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laxation (= 0.21 = 1-1/1.26) is necessary to transform from fcc to bcc. Instead 
of using a uniaxial sinusoidal fit to energy, it may be more appropriate to analyze 
the total stored elastic energy along the deformation path. Symmetry suggests 
that the elastic work required to reach the saddle point between fcc and bcc will 
be comparable whether one starts at fcc or bcc. Energy balance also requires 
that the work done by the applied stress be equal to the internal elastic strain 
energy. Since for the transformation from fcc to bcc this stress is applied over 
half the distance needed for the bcc to fcc transformation, the maximum stress 
required for the fcc to bcc transformation will be approximately twice as large 
as the bcc to fcc case. This suggests that a sinusoidal fit will not work for (110) 
loading in fcc but that the normalized ideal strengths for this loading will be 
twice the normalized ideal strengths for (100) tension in bcc. 

Although calculations of ideal strength for (110) tension using empirical 
EAM potentials found fcc metals to be weak along (110) [72], the ab initio 
calculations of Sob et ai. [91J call into question the presumption that (110) 
loading will follow the bain transformation path. They have calculated the 
strength of Cu for relaxed loading along (110) and found a peak stress of 31 
GPa at a strain of 0.79. This result (~ 0.24 Eavg) suggests that the minimum 
energy deformation path did not pass anywhere near the metastable bcc Cu 
phase. 

It would be of interest to analyze the ab initio stress-strain behavior of Cu 
constrained along the bain deformation path. It would also be useful to analyze 
the atomic relaxations along the minimum energy (110) path. 

5.3.4 "Pencil glide" 

Understanding the atomic relaxations during shear in bcc also could offer a 
much better understanding of the prevalence of the pencil glide of dislocations 
on planes containing a (111) direction in bcc metals. Section 4.3.4 showed that 
the minimum ideal strength in shear on any slip plane containing (111) will be 
nearly constant. However, some experimental observations, particularly careful 
measurement and modeling of crystallographic texture evolution during plastic 
deformation of bcc metals [92J suggest that the critical resolved stresses for 
slip differ for different "pencil glide" systems. It would be of great interest to 
explore whether this can be explained by combining our new knowledge of the 
crystallography of pencil glide with anisotropic elasticity theory of dislocations 
or whether detailed calculations of dislocation core structures are necessary to 
understand these experimental observations. 

5.3.5 Dislocation or lattice control of strength 

In Chapter 1, our working assumption was that dislocation motion governed 
the hardness of all materials. This assumption was made on the basis of a 
number of observations. 1) Since room temperature indentation hardness tests 
of even diamond leave permanent plastic deformation, it is clear that atomic 
shear has to occur. 2) In most materials (excepting Si [93, 94]) no evidence of 
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twinning or phase transformation is observed. 3) At high enough temperature, 
dislocations have observed to multiply and propagate during bulk deformation 
of all crystalline materials that have been examined. 4) Optical micrographs 
of the regions around hardness indentations reveal slip bands consistent with 
the crystallography of experimentally observed high temperature dislocations. 
5) Many electron (TEM) micrographs of the regions around indentations reveal 
dislocations that seem to have initiated· at the indentation and propagated a 
small distance away. 

If the Peierls stress is small relative to the stresses required for other mecha­
nisms of deformation, the circumstantial observations in the previous paragraph 
are sufficient to convince all but the most skeptical that dislocation motion is the 
mechanism of deformation. By comparing the normalized Peierls stress Tp/G to 
the normalized ideal shear strength Tmax/G, we see that this is clearly the case 

. for metals. Table 1.3 shows that our best estimate of Tp/G is 0.01 or less for 
most metals and our calculations in AI, Cu and W give Tmax/G as 0.08-0.11. 
However, for hard materials (Table 1.1), Tp/G can be 0.1 or larger. Prelimi­
nary calculations of the ideal shear strengths of diamond and silicon show that 
Tmax/G is 0.2-0.3 [90]. 

When Tmax is of the same order of magnitude as T p , homogeneous disloca­
tion nucleation becomes almost as easy as dislocation propagation. However, 
a simple energetic argument suggests that the minimum stres's needed to move 
an isolated dislocation or dislocation kink will always be less than the stress 
needed to nucleate a dislocation of the same slip system in a perfect crystal, 
and that Tmax sets an upper bound for Tp: The presence of a dislocation should 
not affect the period of the instability, but it should increase the ground state 
energy more than the saddle point energy. If this is true (Fig. 5.3), then the in­
stability stress (the maximum slope of the energy-strain curve) will be lowered 
by the presence of the dislocation. For this argument to hold in general requires 
that the minimum strength in shear to occur on the same slip system as the slip 
system for easy dislocation glide. This is the case for fcc and bcc metals and 
appears to be the case for the NaCl and diamond cubic structures as well. t 

Even though Tp is theoretically always smaller than Tmax , if Tp is a large 
fraction of Tmax , there can be many situations in which it may be easier. to ho­
mogeneously nucleate new dislocations than it is to move arid multiply existing 
dislocations. The only way to definitely determine the mechanism of deforma­
tion in hard materials is to perform in situ nano-indentation experiments in a 
TEM to directly observe the relative importance of homogeneous dislocation 
nucleation and dislocation propagation. These experiments (using TiC) are on­
going at the National Center for Microscopy (NCEM) at Lawrence Berkeley 
National Lab [95]. 

tNote: There is one additional complication to this argument. Even if the instability stress 
is lowered, it has not yet been proven that the existing dislocation will move when this stress 
is reached. The dislocation may instead catalyze another deformation mode in the crystal. 
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Figure 5.3: Schematic illustration of the effect of a dislocation on the energy­
strain curve. 



Appendix A 

Scaling of Elastic Moduli 

A.I Scaling with Lattice Constant 

Chapter 1 showed that hardness scales very closely with elastic moduli for a 
given class of material but that covalent materials have the highest hardnesses 
for a selected value of the elastic shear or bulk moduli. Given these observations, 
the simplest way to find a material harder than diamond is to look for a covalent 
material with a higher shear or bulk modulus than diamond. One way to begin 
this search is to use a scaling relationship between bulk modulus and lattice 
constant. 

Cohen [96J developed such a relationship by starting with a previous deriva­
tion of the bulk modulus of a free-electron gas. For a free electron gas, the bulk 
modulus K is given as 

2 (6.13)3 K = - nEp = -- GPa, 
3 rs 

(A.l) 

where Ep is the Fermi energy, n is the electron concentration, and rs is the 
electron gas parameter. For covalent materials, however, Cohen determined the 
relevant energy scale to be the homopolar gap Eh and the relevant volume to 
be the volume of the covalent bond. Combining experimental observations and 
ab initio computations of covalent bond geometries and a previously observed 
scaling relation for Eh yields an expression for the bulk modulus of covalent 
materials as follows: 

(A.2) 

where b is the nearest-neighbor distance. This expression predicts the bulk 
moduli of diamon~, Si and Ge to within 2% of the experimental values. It also 
predicts bulk moduli within 3% (except for InP) for III-V semiconductors but is 
less successful for II-VI semiconductors, which have a significantly higher degree 
of ionicity in their bonding. The empirical result [96], 

K = (1971 - 220),)b-3.5 , (A.3) 
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more accurately describes the bulk moduli ofthe group IV (). = 0), group III-V 
(). = 1), and group II-VI (). = 2) semiconductors. Cohen [96J cites the scaling 
behavior of the I-VII alkali halides as having a scaling exponent of -3: 

K = 550b-3 . (A.4) 

Using Eq. (A.2) and tabulated values of ionic and covalent radii, Cohen 
predicted that a tetravalent compound of C and N would have a bulk modulus 
of between 461 and 483 GPa. This modulus would be significantly higher than 
diamond. However, because of the lone pair of electrons on N, it is geometrically 
impossible to construct a completely tetravalent lattice from C and N. The most 
densely packed and stable IV-V structure known, Si3N4 , has only 6 covalent 
bonds for every 7 bonds that would be possible in a fully tetravalent structure. 
First-principles calculations [2J show that the bulk modulus of C3N4 (427 ± 15 
GPa) seems to be slightly smaller than diamond (442 ± 0.7 GPa). 

For reference purposes, I have included plots of bulk modulus as a function of 
nearest-neighbor distance (Figs. A.1-A.3). The data is tabulated in Tables 1.1-
1.3. Power law curve fits to this data yield the following expressions: 

covalent materials K = 2226 X b- 3 .76 R = 0.9992 (A.5) 

ionic oxides K = 1734 X b-3.13 R = 0.996 (A.6) 

ionic alkali halides K = 594 X b- 3 .06 R = 0.95 (A.7) 

These three empirical fits are very close to the expressions theoretically derived 
by Cohen. For the metals in Fig. A.3, bulk modulus scales roughly as b-6 , but 
there is a great deal more scatter. 
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Figure A.I: Log-log plot of bulk modulus as a function of nearest-neighbor 
distance for covalent materials with the diamond cubic (dc), NaCI, and ZnS 
structures. 
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Figure A.2: Log-log plot of bulk modulus as a function of nearest-neighbor 
distance for ionic materials with the NaCI and ZnS structures. 
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Figure A.3: Log-log plot of bulk modulus as a function of nearest-neighbor 
distance for metallic materials with the body-centered cubic (bcc), face-centered 
cubic (fcc), and hexagonal close-packed (hcp) structures. 
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