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Abstract

We propose a new form for the small x effective action in QCD. This form of the effective
action is motivated by Wong’s equations for classical, colored particles in non–Abelian
background fields. We show that the BFKL equation, which sums leading logarithms in x,
is efficiently reproduced with this form of the action. We argue that this form of the action
may be particularly useful in computing next-to- leading-order results in QCD at small x.
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1 Introduction

One of the more interesting open questions in QCD is the behavior of cross–sections at

very high energies [1]. In the last decade, a kinematic window has opened up at colliders

where Q2 ≫ Λ2
QCD but x = Q2/s ≪ 1. The physics in this regime is non–perturbative

because the field strengths at small x are large. However, it is also weak coupling physics

since αS(Q2) ≪ 1. Further, since the density of partons is large at small x, classical field

methods are applicable [2].

An effective field theory approach can be used to study the physics of small x modes

in QCD [3, 4, 5] 1 . The small x effective action is obtained by successively integrating out

the more static modes at larger values of x. The measure for this action is represented by a

weight corresponding to the color charge density of the higher x modes. As one integrates

out higher x modes, the form of the action is maintained, while the weight satisfies a

Wilsonian non–linear renormalization group (RG) equation [5]. If the parton density is

not too large, the RG equation can be linearized, and the resulting equation is the well

known BFKL equation. The BFKL equation is a renormalization group equation that

sums the leading logarithms in αS ln(1/x) [8]. In the double log limit of small x and large

Q2, the Wilson RG can be simplified, and one obtains a series in inverse powers of Q2,

where the leading term is the small x DGLAP equation [9] and the first sub–leading term

agrees with the expression derived by Gribov, Levin and Ryskin [10], and by Mueller and

Qiu [11].

The effective action approach therefore reproduces the standard linear evolution equa-

tions of perturbative QCD in the limit of low parton densities. The truly interesting and

unknown regime however is the non–linear regime of high parton densities where one might

hope to predict novel phenomena [12, 13, 14]. What the correct effective action is in the

high density regime should therefore be a matter of some interest.

In this paper, we will discuss an alternative gauge invariant form to the gauge invariant

action discussed in Ref. [5]. The motivation for this form of the effective action came from
1For alternative approaches, see for example, Ref. [6] and references therein, and Ref. [7] and references

therein. These will not be discussed in this paper.
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our recent work in formulating a many body world line formalism for the one loop effective

action in QCD [15]. Briefly, the difference between the two actions is in the term describing

the coupling of the small x gauge field modes to the large x modes represented by a color

charge density ρ. In the work of Jalilian–Marian, Kovner, Leonidov, and Weigert (JKLW),

this term is expressed as

SJKLW
int ∼ Tr (ρ W∞,−∞) ,

where W is an adjoint matrix corresponding to a path ordered exponential of the gauge

field A− in the light cone direction x+. We propose instead that this term be

Sint ∼ Tr (ρ ln W∞,−∞) ,

replacing W → ln W in the effective action.

The earlier form of Sint was chosen primarily because it is a gauge invariant generaliza-

tion of the coupling between hard and soft modes. The motivation for the latter form comes

from the background field method and the eikonal approximation. The one loop effective

action, in the background field method, can be expressed as ln[det(D2)] → Tr ln[D2], where

D is the usual covariant derivative. If, for instance, one integrated out hard fermions in

the soft background gauge field, the eigenvalues of the determinant would correspond to

solutions of the Dirac equation in the eikonal approximation. These correspond to path

ordered phases of the component of the soft gauge field, conjugate to the hard current, in

the fundamental representation [16]. Similarly, performing an eikonal separation of hard

and soft gauge fields, one obtains path ordered exponentials (in the adjoint representation)

of the soft gauge fields (see, for example, appendix B of the first paper in Ref. [5]). Since

the effective action is the logarithm of the determinant, one can thus anticipate the ap-

pearance of the logarithm of the path ordered phase in the effective action. This form of

the effective action is also gauge invariant. We will show later that the ln(W ) action has

the nice feature that one can derive the BFKL equation from it efficiently–certain terms

that one needs to argue to be zero in the W form of the effective action are absent in the

ln(W ) action.
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The subsequent discussion is organized as follows. In section 2, we will discuss the

form of the small x effective action discussed in Ref. [5]. In section 3, we will discuss Wong’s

equations and motivate an alternative form for the small x effective action. We will show

that the form of the action that we propose is also consistent with Wong’s equations

and that the two different currents arising from the two actions correspond to different

boundary conditions for solving Wong’s equations. In section 4, we will show that our

form of the effective action also reproduces the BFKL equation. We end this paper with a

brief summary in section 5. Some technical details are contained in three appendices.

2 The Small x Effective Action

In this section, we will review the effective action and Wilson renormalization group ap-

proach to small x QCD as developed in Refs. [3, 4, 5]. We refer the reader to these papers

for more details.

We start with the following action [5] which is the gauge invariant generalization of

McLerran-Venugopalan effective action first proposed in [3]. In the infinite momentum

frame, and in Light Cone gauge A+ = 0, one can write

S = −
1

4

∫

d4xGµν
a Ga

µν + i
∫

d2x⊥F [ρa(x⊥)]

+
i

Nc

∫

d2x⊥dx−δ(x−) Tr
(

ρ(x⊥)W∞,−∞[A−](x−, x⊥)
)

, (1)

where W is the Wilson line in the adjoint representation along the x+ axis

W∞,−∞[A−](x−, x⊥) = P̂ exp
[

ig
∫ ∞

−∞
dx+A−

a (x+, x−, x⊥) Ta

]

. (2)

and the label P̂ denotes the path-ordered exponential.

Taking the saddle point of the effective action, we obtain the Yang–Mills equations

DµGµν
a = δν+J+

a , (3)

with the current

J+
a (x) =

g

Nc

δ(x−)Tr

[

TaWx+,−∞[A−]ρ(x⊥)W∞,x+[A−]

]

(4)
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satisfying the boundary condition

J+
a (x+ = −∞) =

g

Nc

δ(x−)Tr

[

Taρ(x⊥)W∞,−∞[A−]

]

(5)

The first term in the expansion of the Wilson line in the action is

Sint = −g
∫

d4xA−ρ(x⊥)δ(x−) (6)

used in [3].

To derive the general evolution equation, one first solves the classical equations of

motion, computes quantum fluctuations in the background of the classical field (semi-

classical approximation), and separates these fluctuations according to their longitudinal

momentum as

Aa
µ(x) = ba

µ(x) + δAa
µ(x) + aa

µ(x) , (7)

where ba
µ(x) is the solution of the classical equations of motion, δAa

µ(x) is the fluctuation

field containing longitudinal momentum modes k+ that are constrained to be p+ < k+ <

P+. The upper cutoff P+ is the longitudinal momentum of the fast moving charges while

the lower cutoff p+ is the momentum scale of the soft fluctuations. These cut-offs are

chosen to be such that αS ln(P+/p+) ≪ 1 since quantum fluctuations give rise to such

logarithms [4]. This constraint thus requires that the fluctuations with momentum modes

p+ < k+ < P+ are small, and can therefore be integrated out to obtain the effective action

for the soft (in longitudinal momenta alone!) fields aµ. This procedure can be iterated as

one goes to smaller x leading to a Wilsonian RG equation [5].

The physics underlying this procedure is simple. One starts with some initial color

charge density at large x represented by ρ. In order to compute a quantity with this action,

one averages over all color configurations represented by the statistical weight

Z = exp{−F [ρ]} .

We then integrate out the hard fluctuations with the constraint discussed above. This

changes the color charge density and the statistical weight for their configurations. The
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soft fluctuations, with logarithmic accuracy, “see” the induced charge density as a part of

the color charge density to which they are coupled. As one goes to smaller and smaller

x (longer and longer wavelength gluons) one correspondingly includes more of the hard

fluctuations in the color charge density. One obtains the following renormalization group

equation for the change of the statistical weight Z with x [5]:

dZ

d ln(1/x)
= αS

[

1

2

δ2

δρµδρν

(Zχµν) −
δ

δρµ

(Zσµ)

]

, (8)

where σ[ρ] and χ[ρ] are respectively one and two point functions obtained by integrating

over δA for fixed ρ. The one point function σ includes the virtual corrections to F [ρ] while

the two point function χ includes the real contributions to F [ρ]. Both of these can be

computed explicitly from the small fluctuations propagator in the classical background field.

In the weak field limit, the functions σ and χ simplify, and the resulting renormalization

group equation is the BFKL equation.

In the following section, we will interpret the color charge density ρ of the hard (large

k+) modes as the density of classical color charges moving in the field of the soft modes.

Such an interpretation arises naturally when one computes the one loop effective action in

QCD for soft modes using the background field method [15, 18, 19]. One expects therefore

that these classical charges must satisfy Wong’s equation for the motion of color charges

in a non–Abelian background field. These equations are discussed below where a new form

of the effective action is proposed.

3 Wong’s equations and an alternative effective action

In Ref. [15], we developed a many body formalism for the one loop effective action in QCD.

We employed the world line formalism [18, 20] to re–write the path ordered exponential

as a quantum mechanical path integral over world lines. The equations of motion for the

corresponding point particle Lagrangian satisfies Wong’s equations for the motion of a

classical charged particle in a non–Abelian background field [17]. These are

pµ = m
dxµ

dτ
= mvµ (9)
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dpµ

dτ
= vν Qa Gµν

a (10)

DνGνµ = jµ (11)

where

jµ(x) =
∫

dτ Q(τ) vµ(τ) δ4 [x − z(τ)] . (12)

and

Q̇ = −ig [Q, vµAµ] (13)

The generalization to a system of particles is straightforward.

Without explicitly going over to the world line approach, one can write down the

following many-body classical action

SWong = −
1

4

∫

d4xGa
µνG

µν
a −

K
∑

I=1

∫

dτ mI
0

√

vI
µv

µ
I +

i

Nc

K
∑

I=1

Tr {QI ln WI} ,

(14)

where K is the number of Wong’s particles and I is the particle label. Also

WI = P̂ exp
(

ig
∫ ∞

−∞
dτ vI

µ Aµ
a(xµ

I (τ)) T I
a

)

. (15)

This action is gauge invariant under gauge transforms U that satisfy the constraint U(∞) =

U(−∞). We will define “lnW” shortly. As shown in appendix A, the Wong equations in

Eq. (11) can be derived from Eq. (14) above.

In an infinite momentum frame (relevant for the small x problem), the momenta of

the particles are not dynamical. They are static light cone sources–vµ = δµ+. The kinetic

part of the action in SWong therefore drops out to yield

SWong = −
1

4

∫

d4xGa
µνG

µν
a +

i

Nc

K
∑

I=1

Tr {QI ln WI} . (16)

We assume now that the initial x−
I = 0 is the same for all particles. In the infinite

momentum frame, P+ → ∞, this assumption is justified because the particles can be
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viewed as being confined to a Lorentz contracted sheet in the transverse plane of width

1/P+. This implies that the particles can be labeled using their transverse positions xI
⊥

only. Using

ρa(x⊥) =
K
∑

I=1

δ(x⊥ − xI
⊥)QI

a , (17)

one can assume ρa(x⊥) to be continuous (and large). One can therefore make an educated

guess that the coarse grained effective action of the wee parton modes will be

Sln W = −
1

4

∫

d4xGa
µνG

µν
a +

i

Nc

∫

d2x⊥ Tr {ρ(x⊥) ln W (x⊥)}

(18)

where now

W (x⊥) = P̂ exp
(

ig
∫ ∞

−∞
dx+ A−

a (x+, 0, x⊥) Ta

)

. (19)

Just as in Eq. (1), the action SlnW should contain an identical functional F [ρ] representing

the likelihood of different ρ configurations. This term will only be implicit in what follows

since it is not relevant to the concerns of this paper.

We will now show explicitly that the charge obtained from the action SlnW is Her-

mitean and traceless, and therefore an element of the Lie algebra.

We first define the log of an operator as the power series

ln W = ln(1 − (1 − W )) ≡ −
∞
∑

k=1

1

k
(1 − W )k. (20)

Taking the functional derivative of ln W with respect to A gives

δ

δAa
µ

ln W =
∞
∑

k=1

1

k

k−1
∑

s=0

(1 − W )s δW

δAa
µ

(1 − W )k−s−1 (21)

After some straightforward algebra, this can be written as

δ

δAa
µ

ln W =
∫ 1

0
dλ

1

1 − (1 − W )λ

δW

δAa
µ

1

1 − (1 − W )λ
(22)

Then from the relation

Jµ
a = −

i

Nc

Tr

(

ρ
δ

δAa
µ

lnW

)

, (23)
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we find that the color charge is given by

Q(x+) =
∫

d3x J+(x)

=
∫

d3xW (x+,−∞)

[

∫ 1

0
dλ

1

B(λ)
ρ

1

B(λ)

]

W (∞, x+) (24)

where we used the shorthand

B(λ) ≡ 1 − (1 − W )λ (25)

and

W (x+
f , x+

i ) = P̂ exp

(

ig
∫ x+

f

x+

i

dx+ A−
a (x+, x−, x⊥) Ta

)

(26)

We also defined W ≡ W (∞,−∞).

It is easy to check that the current density J+ satisfies

∂J+

∂x+
= −ig

[

J+, A−
]

, (27)

and hence is a solution of the Wong’s equation with a “boundary” condition given by

J+(x+ = −∞) =
∫ 1

0
dλ B−1(λ) ρ B−1(λ)W (28)

Note that 1/B(λ) = B−1(λ).

To confirm that J+(x) is an element of the Lie-Algebra, first consider the trace. We

have

Tr
(

J+(x)
)

= ρb Tr
(

W
[
∫ 1

0
dλ
(

B−1(λ)
)2

Tb

])

, (29)

since W and B commute. One can show that

d

dλ
B−1(λ) = (−1)

(

B−1(λ)
)2

(W − 1) . (30)

Consequently,

Tr
(

J+(x)
)

= ρbTr
(

W
[
∫ 1

0
dλ (B−1(λ))2 Tb

])

= ρb Tr
(

W (1 − W )−1
(

B−1(1) − B−1(0)
)

Tb

)

= ρb Tr
(

W (1 − W )−1(W−1 − 1) Tb

)

= ρb Tr (Tb) = 0. (31)
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We shall now show that J is also Hermitean. Consider

(J+(x))† = ρb

(

W (x+,−∞)
[
∫ 1

0
dλ B−1(λ) Tb B−1(λ)

]

W (∞, x+)
)†

= ρb W (x+,∞)
[
∫ 1

0
dλ (B−1(λ))† Tb (B−1(λ))†

]

W (−∞, x+)

= ρb W (x+,−∞)
[
∫ 1

0
dλ W † (B−1(λ))† Tb W † (B−1(λ))†

]

W (∞, x+) . (32)

Let us now focus on the term in the square brackets. Since

W † = W (−∞,∞) = W−1 , (33)

this term can be re-written as
∫ 1

0
dλ (B−1(λ) W )† Tb (B−1(λ) W )† . (34)

Here one has used the relation W B−1 = B−1 W . Performing the change of variable

λ → 1 − λ, one can show that

(B−1 W ) = (B−1)† . (35)

Thus,

(J+(x))† = ρb W (x+,−∞)
∫ 1

0
dλ

[

(B−1(λ) W )† Tb (B−1(λ) W )†
]

W (∞, x+) ,

= ρb W (x+,−∞)
∫ 1

0
dλ

[

B−1(λ) Tb B−1(λ)
]

W (∞, x+) ,

= J+(x) . (36)

We have now explicitly shown above that J+ (and hence Q) is both Hermitean and traceless.

It is therefore an element of the Lie Algebra. In general, it is possible, if non–trivial, to

show that ln(W ) itself is a member of the Lie algebra [21]. The charge obtained from

Eq. (4) is also an element of the Lie Algebra. It is easy to see that the color components of

the color charge J+
a are real and therefore, the color charge matrix defined as Jµ = 1

Nc
Ja

µT a

is Hermitean and traceless. Both SW and SlnW lead to Wong’s equations, but with a

different current Jµ. This difference is due to imposing different “boundary” conditions

at τ = −∞ when solving the Wong’s equations (13) as given by (5) and (28). It should

be noted that the boundary condition in (28) is more complicated than (5), and involves

the non–trivial task of inverting the operator B(λ). It is important to realize that the two

different currents may describe different physics.
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4 The ln W action and the BFKL equation

We will now show that the form of the action in Eq. (18) also reproduces the BFKL

equation. Since the two actions differ only by the form of the Wilson line term, we will

focus on the expansion of the Wilson line term in the two actions. To reproduce the

Wilsonian renormalization group evolution, we need to keep terms that are quadratic in

the hard fluctuations (the field δAµ in Eq. (7)). The leading order non-trivial contribution

therefore comes from the cubic terms in the action. (The contribution from quartic terms

to the evolution is sub–leading in DIS.)

The difference between the two actions is

∆S ≡ SW − SlnW = Tr (ρ [W − ln W ]) (37)

where ρ = ρaTa and ln W is defined as in Eq. (20) to be

ln W ≡ ln[1 − (1 − W )] = −Tr
(

ρ [(1 − W ) +
1

2
(1 − W )2 +

1

3
(1 − W )3 + · · ·]

)

. (38)

The integration over the spatial variables x− and x⊥ and the convolution with δ(x−) is

implicit in the trace above. The difference between the two actions is then

∆S = Tr
(

ρ [
1

2
(1 − W )2 +

1

3
(1 − W )3 + · · ·]

)

, (39)

where 1 − W , from Eq. (2) can be expanded as 1 − W = −igA− + (g2/2) P̂ (A−)2 + · · ·.

Again, the integral over x+ is implicit in the expansion, with the symbol P̂ denoting the

time ordering in x+. Potential differences between the two actions will show up at order

A2. At this order 2,

∆S(A2) ∼ Tr
(

ρ (A−)2
)

∼ ρafabc

∫

dx+dy+A−
b (x+)A−

c (y+). (40)

This term is identically zero because the integrand is symmetric under both the color

exchange b ↔ c and the co–ordinate exchange x+ ↔ y+ while multiplying the totally

anti–symmetric structure constant fabc.

2We use the following conventions for the trace of adjoint matrices: Tr(T aT b) = Ncδab and
Tr(T aT bT c) = iNc

2
fabc.
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To investigate terms of order A3, it is convenient to first consider SW and SlnW

separately. The cubic terms in the expansion of Sln W are

Sln W (A3) =
g3

Nc

Tr

(

ρ
[

P̂ (A−)3 −
1

2
A−P̂ (A−)2 −

1

2
P̂ (A−)2A− +

1

3
(A−)3

]

)

=
g3

Nc

Trρ
∫

dx+dy+dz+A−(x+)A−(y+)A−(z+)

×
[

θ(x+ − y+)θ(y+ − z+) −
1

2
θ(x+ − y+) −

1

2
θ(y+ − z+) +

1

3

]

(41)

After some algebra (performed in appendix B) the above can be re-expressed as

SlnW (A3) =
g3

6
ρa

∫

dx+dy+dz+A−
b (x+)A−

c (y+)A−
d (z+)θ(x+ − y+)θ(y+ − z+)

×
[

fadnf bcn − fabnf cdn

]

(42)

The cubic term in SW is

SW (A3) =
g3

Nc

Trρ P̂ (A−)3

=
g3

Nc

ρa

∫

dx+dy+dz+A−
b (x+)A−

c (y+)A−
c (z+)θ(x+ − y+)θ(y+ − z+)

×
[

I2

6
(fadnfbcn − fabnfcdn) + dabcd

]

. (43)

Here, we have used an identity for the trace of four SU(3) adjoint matrices [22]. For an

adjoint representation, I2 = Nc. Also, the totally symmetric tensor dabcd is defined as the

symmetrized trace of four SU(3) adjoint matrices. For an explicit form, see Ref. [23]. Note

that the f-terms above are identical to those derived from Sln W in Eq. (42). However, this

action also contains the dabcd term that was absent in the Sln W action.

In appendix C, we show that, within the approximations made in the derivation of

the small x evolution equation in Ref. [5], the dabcd term does not contribute. Therefore

∆S = 0 to cubic order. One may therefore conclude that BFKL equation can also be

obtained from the Sln W action.

The reason the dabcd term in the SW action vanishes is because the propagator of the

hard modes (and the color sources to which it couples) is static. The static nature of the

sources is due to the fact that one ignores the recoil of the color sources as they emit softer
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partons. As one goes to a next-to-leading-order calculation, one will have to take recoil

effects into account. These would cause the color sources to be time dependent, giving rise

to a finite contribution from the dabcd terms in the W action. Conversely, note that the

dabcd terms are naturally absent in lnW action.

The fact that the SlnW action does not have the dabcd term suggests that the underlying

symmetry of the small x dynamics is manifest in this action. The agreement between the

two actions is even more remarkable when one considers that the factor 1/6 in Eq. (43)

comes directly from the trace of four adjoint generators, while in the “ln W” action it arises

as a consequence of extensive algebraic manipulations.

5 Summary

In this paper, we proposed an alternative form of the small x effective action to the one

discussed in Ref. [5]. We showed explicitly that both forms of the effective action are

compatible with Wong’s equations, albeit with currents that satisfy different boundary

conditions. We showed that the the two effective actions agreed up to cubic order in the

fields. Consequently, both of them give rise to the BFKL equation. However, in the case

of the effective action of Ref. [5], one had to explicitly invoke the kinematic constraint

imposed by the static sources–no such constraint was necessary for the action we propose.

Differences between the two actions will show up at higher orders when one considers

sub–leading corrections to the small x effective action.
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Appendix A

The equation of motion for color charges in the action (18) has already been derived in

Section 3. The derivation is the same for the point particle action Eq. (14). Further, the

Euler-Lagrange equation for the position

pI
µ = m

dxI
µ

dτ
(44)

follows trivially from Eq. (14). Hence, we will only derive here the other remaining equation

of motion, namely, that for the momentum pµ.

The Euler-Lagrange equation for the momentum in Eq. (14) is

ṗI
µ = −

δ

δxµ
I

SWong . (45)

The right hand side is given by

δSWong

δxµ
I (τ)

=
i

Nc

δ

δxµ
I (τ)

K
∑

J=1

Tr
{

QJ
0 ln WJ

}

=
i

Nc

∫

dτ ′
K
∑

J=1

δAν
a(xJ (τ ′))

δxµ
I (τ)

δ

δAν
a(xJ (τ ′))

Tr
{

QJ
0 ln WJ

}

+
i

Nc

∫

dτ ′
K
∑

J=1

δvν
J(τ ′)

δxµ
I (τ)

δ

δvν
J(τ ′)

Tr
{

QJ
0 ln WJ

}

(46)

Using Eqs.(23) and (24), we get

δSWong

δxµ
I (τ)

= −vν∂µA
a
ν(xI(τ)) QI

a(τ) +
i

Nc

∫

dτ ′ δ̇(τ ′ − τ)
δ

δvI
µ(τ ′)

Tr
{

QI
0 ln WI

}

(47)

For simplicity, we’ll omit the particle label I from now on. We’ll also omit any argument

labels (everything should be considered as a function of τ via x(τ)). Applying the method

14



developed in Section 3, we see that

δSWong

δxµ
= −Qav

ν∂µAa
ν −

i

Nc

d

dτ
Tr

{

Q0

δ

δvµ

ln W

}

= −Qav
ν∂µAa

ν +
d

dτ

{

Aa
µ Qa

I

}

= −Qav
ν∂µAa

ν + Qav
ν∂νA

a
µ + Aa

µ

d

dτ
Qa

= −Qav
ν∂µAa

ν + Qav
ν∂νA

a
µ − igAa

µ [Q, vνAν ]a

= −QaG
a
µνv

ν (48)

where

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + g fabc Ab

µA
c
ν (49)

This yields the desired result:

ṗµ = Qa Ga
µνv

ν . (50)

Appendix B

We will show here how one gets equation (42) from equation (41). We start with Eq. (41):

Sln W (A3) =
g3

Nc

Tr

(

ρ
∫

dx+dy+dz+A−(x+)A−(y+)A−(z+)

[

θ(x+ − y+)θ(y+ − z+) −
1

2
θ(x+ − y+) −

1

2
θ(y+ − z+) +

1

3

]

)

.

To save space, we will use the following shorthand notation. We shall represent the Light

Cone times x+, y+, z+ by 1, 2, 3, and shall not write the Light Cone Lorentz index ‘−’ and

the integrations over the Light Cone times explicitly. For example,

θ123 ≡ θ(x+ − y+)θ(y+ − z+) .

We shall also neglect the overall coefficient g3/Nc, including it only at the very last step.

With these notations, equation (41) becomes

Sln W (A3) = Tr
(

ρA1A2A3

[

θ123 −
1

2
θ12 −

1

2
θ23 +

1

3

])

. (51)

15



We will now use identities like θ12 + θ21 = 1 to write Eq. (51) as

Sln W (A3) = Tr ρA1A2A3

[

θ123 −
1

2
θ12(θ23 + θ32) −

1

2
θ23(θ12 + θ21)

+
1

3
(θ123 + θ132 + θ231 + θ213 + θ312 + θ321)

]

= Tr ρA1A2A3

[

−
1

2
(θ12θ32 + θ21θ23) +

1

3
(θ123 + θ132 + θ231 + θ213 + θ312 + θ321)

]

= Tr ρA1A2A3

[

−
1

2
θ12θ32(θ13 + θ31) −

1

2
θ21θ23(θ13 + θ31)

+
1

3
(θ123 + θ132 + θ231 + θ213 + θ312 + θ321)

]

= Tr ρA1A2A3

[

−
1

2
(θ132 + θ312 + θ213 + θ231)

+
1

3
(θ123 + θ132 + θ231 + θ213 + θ312 + θ321)

]

=
1

6
Tr ρA1A2A3

[

θ123 − θ213 + θ321 − θ312 + θ123 − θ132 + θ321 − θ231

]

=
1

6
Tr ρ (θ123[A1, A2]A3 + θ321[A1, A2], A3 + θ123A1[A2, A3] + θ321A1[A2, A3])

which, after change of variables, can be re–written as

SlnW (A3) =
1

6
θ123 Tr (ρ ([[A1, A2], A3] + [[A3, A2], A1])) . (52)

Using [T a, T b] = ifabcT c, and restoring all the indices, coefficients, and integration vari-

ables, we obtain finally

SlnW (A3) =
g3

6
ρa

∫

dx+dy+dz+[A−
b (x+)A−

c (y+)A−
d (z+)θ(x+ − y+)θ(y+ − z+)

×
[

fadnfbcn − fabnfcdn

]

, (53)

which is Eq. (42).

Appendix C

In this appendix, we will show that, within the approximations made in the Wilson renor-

malization group approach, the totally symmetric dabcd–term in Eq. (43) vanishes. Using

the field decomposition Eq. (7), we get

Ssym
cubic =

g3

Nc

dabcdρa

∫

dx+dy+dz+θ(x+ − y+)θ(y+ − z+)
[

a−
b (x+)A−

c (y+)A−
d (z+) + A−

b (x+)a−
c (y+)A−

d (z+) + A−
b (x+)A−

c (y+)a−
d (z+)

]

.
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Renaming the variables in the second and third terms above gives

Ssym
cubic =

g3

Nc

dabcdρa

∫

dx+dy+dz+a−
b (x+)A−

c (y+)A−
d (z+)

[

θ(x+ − y+)θ(y+ − z+) + θ(y+ − x+)θ(x+ − z+) + θ(z+ − y+)θ(y+ − x+)
]

.

Re–write the sum of θ–functions above as follows:

θ(x+ − y+)θ(y+ − z+) + θ(y+ − x+)θ(x+ − z+) + θ(z+ − y+)θ(y+ − x+) =

θ(x+ − y+)θ(y+ − z+)θ(x+ − z+) + θ(y+ − x+)θ(x+ − z+)θ(y+ − z+) +

θ(z+ − y+)θ(y+ − x+) =

θ(y+ − z+)θ(x+ − z+) + θ(z+ − y+)θ(y+ − x+) =

θ(y+ − z+)θ(x+ − z+) − θ(z+ − y+)θ(x+ − y+) + θ(z+ − y+)

The first two terms in the last line are anti–symmetric with respect to change of y+ → z+,

and multiply the product dabcdA−
c (y+)A−

d (z+) which is totally symmetric. They therefore

vanish, and the expression in Ssym
cubic reduces to

Ssym
cubic =

g3

Nc

dabcd ρa

∫

dx+dy+dz+ θ(z+ − y+)a−
b (x+)A−

c (y+)A−
d (z+) . (54)

This term can further be written as

∫

dx+dy+dz+θ(z+ − y+)a−
b (x+)A−

c (y+)A−
d (z+) =

∫

dx+dy+dz+

[

1 − θ(y+ − z+)
]

a−
b (x+)A−

c (y+)A−
d (z+) . (55)

Consider the “1” term on the right hand side:

∫

dx+dy+dz+a−
b (x+)A−

c (y+)A−
d (z+) =

∫

dx+a−
b (x+)dy+dz+A−

c (y+)A−
d (z+) ∼

∫

dx+a−
b (x+)d(y+ − z+)d(y+ + z+)A−

c (y+)A−
d (z+) . (56)

When we integrate over hard fluctuations, the term A−
c (y+)A−

d (z+) will become the hard

fluctuations propagator G−−(y+−z+). After integrating this propagator over the d(y+−z+)

variable, it will give an overall factor p−. Since ρ ∼ δ(p−) (this would break down when

17



considering NLO corrections), the “1” term vanishes because p−δ(p−) = 0. The integrand

of Eq. (54) is then

∫

dx+dy+dz+θ(z+ − y+)a−
b (x+)A−

c (y+)A−
d (z+) =

−
∫

dx+dy+dz+θ(y+ − z+)a−
b (x+)A−

c (y+)A−
d (z+) . (57)

Since the LHS of the above is invariant under z+ ↔ y+, c ↔ d, the above identity would

require it to be ‘−’ of itself, and therefore equal to zero. Thus the dabcd–term in the cubic

piece of the action vanishes, and we are left with

Scubic =
g3

Nc

ρa

∫

dx+dy+dz+A−
b (x+)A−

c (y+)A−
d (z+)

×
I2

6
θ(x+ − y+)θ(y+ − z+)

[

fadnf bcn − fabnf cdn

]

, (58)

which is identical to cubic term in the expansion of Sln W .
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