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SUPERSYMMETRY PHENOMENOLOGY 

HITOSHI MURAYAMA 
Department of Physics, University of California, Berkeley, CA 94720, USA 

Lawrence Berkeley National Laboratory, Berkeley, CA 94720 
E-mail: murayama@lbl.gov 

This is a very pedagogical review of supetsymmetry phenomenology, given at ICTP 
Summer School in 1999, aimed mostly at students who had never studied super­
symmetry before. It starts with an analogy that the reason why supersymmetry 
is·needed is similar to the reason why the positron exists. It introduces the con­
struction of supersymmetric Lagrangians in a practical way. The low-energy con­
straints, renormalization-group analyses, collider phenomenology, and frameworks 
of mediating supersymmetry breaking are briefly discussed. 

1 Motivation 

1.1 Problems in the Standard Model 

The Standard Model of particle physics, albeit extremely successful phe­
nomenologically, has been regarded only as a low-energy effective theory of 
the yet-more-fundamental theory. One can list many reasons why we think 
this way, but a few are named below. 

First of all, the quantum number assignments of the fermions under the 

Table 1. The fermionic particle content of the Standard Model. Here we've put primes 
on the neutrinos in the same spirit of putting primes on the down-quarks in the quark 
doublets, indicating that the mass eigenstates are rotated by the MNS and CKM matrices, 
respectively. The subscripts g, r, b refer to colors. 
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Table 2. The bosonic particle content of the Standard Model. 

W1 , W2,H+,H- --t w+, w­
W3,B,Im(H0) --t 7,Z 

gx8 
ReH0 --t H 

standard SU(3)c x SU(2)L x U(1)y gauge group (Table 1) appear utterly 
bizarre. Probably the hypercharges are the weirdest of all. These assignments, 
however, are crucial to guarantee the cancellation of anomalies which could 
jeopardize the gauge invariance .at the quantum level, rendering the the_ory 
inconsistent. Another related puzzle is why th~ hypercharges are quantized 
in the unit of 1/6. In principle, the hypercharges can be any numbers, even 
irrational. However, the quantized hypercharges are responsible for neutrality 
of bulk matter Q(e) + 2Q(u) + Q(d) = Q(u) + 2Q(d) = 0 at a precision of 
10-21_1 

The gauge group itself poses a question as well. Why are there seemingly 
unrelated three independent gauge groups, which somehow conspire together 
to have anomaly-free particle content in a non-trivial way? Why is "the strong 
interaction" strong and "the weak interaction" weaker? 

The essential ingredient in the Standard Model which appears the ugliest 
to most people is the electroweak symmetry breaking. In the list of bosons in 
the Standard Model Table 2, the gauge multiplets are necessary consequences 
of the gauge theories, and they appear natural. They of course all carry spin 
1. However, there is only one spinless multiplet in the Standard Model: the 
Higgs doublet 

(1) 

which condenses in the vacuum due to the Mexican-hat potential. It 
is introduced just for the purpose of breaking the electroweak symmetry 
SU(2)L x U(1)y -+ U(1)QED· The potential has to be arranged in a way 
to break the symmetry without any microscopic explanations. 

Why is there a seemingly unnecessary three-fold repetition of "genera­
tions"? Even the second generation led the Nobel Laureate I.I. Rabi to ask 
"who ordered muon?" Now we face even more puzzling question of having 
three generations. And why do the fermions have a mass spectrum which 
stretches over almost six orders of magnitude between the. electron and the 
top quark? This question becomes even more serious once we consider the 
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recent evidence for neutrino oscillations which suggest the mass of the third­
generation neutrino v~ of about 0.05 eV.2 This makes the mass spectrum 
stretching over thirteen orders of magnitude. We have no concrete under­
standing of the mass spectrum nor the mixing patterns. 

1.2 Drive to go to Shorter Distances 

All the puzzles raised in the previous section (and more) cry out for a more 
fundamental theory underlying the Standard Model. What history suggests is 
that the fundamental theory lies always at shorter distances than the distance 
scale of the problem. For instance, the equation of state of the ideal gas 
was found to be a simple consequence of the statistical mechanics of free 
molecules. The van der Waals equation, which describes the deviation from 
the ideal one, was the consequence of the finite size of molecules and their 
interactions. Mendeleev's periodic table of chemical elements was understood 
in terms of the bound electronic states, Pauli exclusion principle and spin. 
The existence of varieties of nuclide was due to the composite nature of nuclei 
made of protons and neutrons. The list would go on and on. Indeed, seeking 
answers at more and more fundamental level is the heart of the physical 
science, namely the reductionist approach. 

The distance scale of the Standard Model is given by the size of the Higgs 
boson condensate v = 250 Ge V. In natural units, it gives the distance scale 
of d = licfv = 0.8 X w-Hi em. We therefore would like to study physics at 
distance scales shorter than this eventually, and· try to answer puzzles whose 
partial list was given in the previous section .. 

Then the idea must be that we imagine the Standard Model to be valid 
down to a distance scale shorter than d, and then new physics will appear 
which will take over the Standard Model. But applying the Standard Model 
to a distance scale shorter than d poses a serious theoretical problem. In order 
to make this point clear, we first describe a related problem in the classical 
electromagnetism, and then discuss the case of the Standard Model later along 
the same line. 3 

1.3 Positron Analogue 

In the classical electromagnetism, the only dynamical degrees of freedom are 
electrons, electric fields, and magnetic fields. When an electron is present in 
the vaauum, there is a Coulomb electriefield around it, which has the energy 
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of 

1 e2 

~Ecoulomb = -
4
--. 
'll"eo Te 

(2) 

Here, re is the "size" of the electron introduced to cutoff the divergent 
Coulomb self-energy. Since this Coulomb self-energy is there for every elec­
tron, it has to be considered to be a part of the electron rest energy. There­
fore, the mass of the electron receives an additional contribution due to the 
Coulomb self-energy: 

(3) 

Experimentally, we know that the "size" of the electron is small, r e ;S 
10-17 em. This implies that the self-energy ~E is greater than 10 GeV or so, 
and hence the "bare" electron mass must be negative to obtain the observed 
mass of the electron, with a fine cancellation like 

0.511 = -9999.489 + 10000.000MeV. (4) 

Even setting a conceptual problem with a negative mass electron aside, such 
a fine-cancellation between the "bare" mass of the electron and the Coulomb 
self-energy appears ridiculous. In order for such a cancellation to be absent, 
we conclude that the classical electromagnetism cannot be applied to distance 
scales shorter than e2 /(47reomec2) = 2.8 x 10-13 em. This is a long distance 
in the present-day particle physics' standard. 

The resolution to the problem came from the discovery of the anti-particle 
of the electron, the positron, or in other words by doubling the degrees of 
freedom in the theory. The Coulomb self-energy discussed above can be 
depicted by a diagram where the electron emits the Coulomb field (a vir­
tual photon} which is absorbed later by the electron (the electron "feels" its 
own Coulomb field}. But now that the positron exists (thanks to Ander­
son back in 1932}, and we also know that the world is quantum mechanical, 
one should think about the fluctuation of the "vacuum" where the vacuum 
produces a pair of an electron and a positron out of nothing together with 
a photon, within the time allowed by the energy-time uncertainty principle 
D..t "' 1if ~E ,...., 1i/(2mec2). This is a new phenomenon which didn't exist in 
the classical electrodynamics, and modifies physics below the distance scale 
d "' c~t "' 1ic/(2mec2

) = 200 X w-13 em. Therefore, the classical electro­
dynamics actually did have a finite applicability only down to this distance 
scale, much earlier than 2.8 x 10-13 em as exhibited by the problem of the 
fine cancellation above. Given this vacuum fluctuation process, one should 
also consider a process where the electron sitting in the vacuum by chance 

4 



annihilates with the positron and the photon in the vacuum fluctuation, and 
the electron which used to be a part of the fluctuation remains instead as a 
real electron. V. Weisskop£4 calculated this contribution to the electron self­
energy for the first time, and found that it is negative and cancels the leading 
piece in the Coulomb self-energy exactly: 

1 e2 

~Epair = --
4
--. 
7rco re 

(5) 

After the linearly divergent piece 1/re is canceled, the leading contribution in 
the r e -+ 0 limit is given by 

3a 2 1i 
~E = ~Ecoulomb + ~Epair = -

4 
mec log--. 

7r mecre 
(6) 

There are two important things to be said about this formula. First, the 
correction ~E is proportional to the electron mass and hence the total mass 
is proportional to the "bare" mass of the electron, 

2 2 [ 3a 1i] (mec )obs = (mec )bare 1 + -
4 

log-- . 
7r mecre 

(7) 

Therefore, we are talking about the "percentage" of the correction, rather than 
a huge additive constant. Second, the correction depends only logarithmically 
on the "size" of the electron. As a result, the correction is only a 9% increase 
in the mass even for an electron as small as the Planck distance re = 1/Mpt = 
1.6 x 10-33 em. 

The fact that the correction is proportional to the "bare" mass is a con­
sequence of a new symmetry present in the theory with the antiparticle (the 
positron): the chiral symmetry. In the limit of the exact chiral symmetry, the 
electron is massless and the symmetry protects the electron from acquiring 
a mass from self-energy corrections. The finite mass of the electron breaks 
the chiral symmetry explicitly, and because the self-energy correction should 
vanish in the chiral symmetric limit (zero mass electron), the correction is 
proportional to the electron mass. Therefore, the doubling of the degrees 
of freedom and the cancellation of the power divergences lead to a sensible 
theory of electron applicable to very short distance scales. 

1.4 Supersymmetry 

In the Standard Model, the Higgs potential is given by 

v = JL21HI2 + .AIHI4' 
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where v2 = (H) 2 = -J.L2 /2>.. = (176 GeV)2 • Because perturbative unitarity 
requires that>..~ 1, -J.L2 is of the order of (100 GeV)2 • However, the mass 
squared parameter J.L2 of the Higgs doublet receives a quadratically divergent 
contribution from its self-energy corrections. For instance, the process where 
the Higgs doublets splits into a pair of top quarks and come back to the Higgs 
boson gives the self-energy correction 

(9) 

where r H is the "size" of the Higgs boson, and ht ~ 1 is the top quark Yukawa 
coupling. Based on the same argument in the previous section, this makes 
the Standard Model not applicable below the distance scale of w-17 em. 

The motivation for supersymmetry is to make the Standard Model appli­
cable to much shorter distances so that we can hope that answers to many 
of the puzzles in the Standard Model can be given by physics at shorter dis­
tance scales.5 In order to do so, supersymmetry repeats what history did with 
the positron: doubling the degrees of freedom with an explicitly broken new 
symmetry. Then the top quark would have a superpartner, stop, a whose loop 
diagram gives another contribution to the Higgs boson self energy 

(10) 

The leading piec;:es in 1/rH cancel between the top and stop contributions, 
an~ one obtains the correction to be 

2 2 h~ ( 2 2 1 
f::..J.Ltop + llJ.Ltop = -6-4 2 ml - mt) log 22. 

7r rHml 
(11) 

One important difference from the positron case, however, is that the 
mass of the stop, mf, is unknown. In order for the 11J.L2 to be of the same 
order of magnitude as the tree-level value J.L2 = -2>..v2 , we need m~ to be 
not too far above the electroweak scale. Similar arguments apply to masses 
of other superpartners that couple directly to the Higgs doublet. This is 
the so-called naturalness constraint on the superparticle masses (for more 
quantitative discussions, see papers6

). 

a This is a terrible name, which was originally meant to be "scalar top." If supersymmetry 
will be discovered by the next generation collider experiments, we should seriously look for 
better names for the superparticles. 
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1. 5 Other Directions 

Of course, supersymmetry is not the only solution discussed in the litera­
ture to avoid miraculously fine cancellations in the Higgs boson mass-squared 
term. Technicolor (see a review7

) is a beautiful idea which replaces the Higgs 
doublet by a composite techni-quark condensate. Then rn "'1 TeVis a truly 
physical size of the Higgs doublet and there is no need for fine cancellations. 
Despite the beauty of the idea, this direction has had problems with generat­
ing fermion masses, especially the top quark mass, in a way consistent with 
the constraints from the flavor-changing neutral currents. The difficulties in 
the model building, however, do not necessarily mean that the idea itself is 
wrong; indeed still efforts are being devoted to construct realistic models. 

Another recent idea is to lower the Planck scale down to the Te V scale by 
employing large extra spatial dimensions.8 This is a new direction which has 
just started, and there is an intensive activity to find constraints on the idea 
as well as on model building. Since the field is still new, there is no "standard" 
framework one can discuss at this point, but this is no surprise given the fact 
that supersymmetry is still evolving even after almost two decades of intense 
research. 

One important remark about all these ideas is that they inevitably predict 
interesting signals at TeV-scale collider experiments. While we only discuss 
supersymmetry in this lecture, it is likely that nature has a surprise ready for 
us; maybe none of the ideas discussed so far is right. Still we know that there 
is something out there to be uncovered at Te V scale energies. 

2 Supersymmetric Lagrangian 

We do not go into full-fledged formalism of supersymmetric Lagrangians in 
this lecture but rather confine ourselves to a practical introduction of how 
to write down Lagrangians with explicitly broken supersymmetry which still 
fulfill the motivation for supersymmetry discussed in the previous section. 
One can find useful discussions as well as an extensive list of references in a 
nice review by Steve Martin. 9 

2.1 Supermultiplets 

Supersymmetry is a symmetry between bosons and fermions, and hence nec­
essarily relates particles with different spins. All particles in supersymmet­
ric theories fall into supermultiplets, which have both bosonic and fermionic 
components. There are two types of supermultiplets which appear in renor­
malizable field theories: chiral and vector supermultiplets. 
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Chiral supermultiplets are often denoted by the symbol cp, which can be 
(for the purpose of this lecture) regarded as a short-handed notation for the 
three fields: a complex scalar field A, a Weyl fermion 17 5 1/J = '1/J, and a 
non-dynamical (auxiliary) complex field F. Lagrangians for chiral supermul­
tiplets consist of two parts, Kahler potential and superpotential. The Kahler 
potential is nothing but the kinetic terms for the fields, usually written with 
a short-hand notation I d4 Bcp* cp, which can be explicitly written down as 

c ::J I ~Bc/J'ic/Ji = a"Aia" Ai + ifiih"a"'l/Ji + Fi* Fi. (12} 

Note that the field F does not have derivatives in the Lagrangian and hence is 
not a propagating field. One can solve for Fi explicitly and eliminate it from 
the Lagrangian completely. 

The superpotential is defined by a holomorphic function W ( cp) of the chi­
ral supermultiplets c/Ji· A short-hand notation I tPBW(cp) gives the following 
terms in the Lagrangian, 

(13) 

The first term describes Yukawa couplings between fermionic and bosonic 
components of the chiral supermultiplets. Using both Eqs. (12) and (13), we 
can solve for F and find 

F~ =_awl • 8"' . 
'l'i tf>;=A; 

(14) 

Substituting it back to the Lagrangian, we eliminate F and instead find a 
potential term 

C ::J -Vp = -~~~~2 . 
cp, tf>;=A; 

(15) 

Vector supermultiplets Wa (o: is a spinor index, but never mind), which 
are supersymmetric generalization of the gauge fields, consist also of three 
components, a Weyl fermion (gaugino) .A, a vector (gauge) field Ap, and a 
non-dynamical (auxiliary) real scalar field D, all in the adjoint representation 
of the gauge group with the index a. A short-hand notation of their kinetic 
terms is 

C ::J I d2()W~Waa = -~Fpv +Xai.Ii'.Aa +~DaDa. (16) 
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Note that the field D does not have derivatives in the Lagrangian and hence 
is not a propagating field. One can solve for Da explicitly and eliminate it -
from the Lagrangian completely. 

Since the vector supermultiplets contain gauge fields, chiral supermulti­
plets which transform non-trivially under the gauge group should also couple 
to the vector multiplets to make the Lagrangian gauge invariant. This requires 
the modification of the Kahler potential I d4 9r/J*r/J to I d4 ()r!Jfe2uv r/J, where V 
is another short-hand notation of the vector multiplet. Then the kinetic terms 
in Eq. (12) are then modified to 

C ::> j ~9r/Jl e29v rPi 

= DJ.IA!DJ.I Ai + ifiii'YJ.I DJ.&'I/Ji + Fl Fi- J2g(AfTa ..xa'lj;)- gAtTa Da A. 

(17) 

Using Eqs. (16,17), one can solve for na and eliminate it from the Lagrangian, 
finding a potential term 

2 

C ::> -VD = -!L(AfTa A)2 (18) 
2 

General supersymmetric Lagrangians are given by Eqs. (17,15,18).b 
Even though we do not go into formal discussions of supersymmetric field 

theories, one important theorem must be quoted: the non-renormalization 
theorem of the superpotential. Under the renormalization of the theories, the 
superpotential does not receive renormalization at all orders in perturbation 
theory. c We will come back to the virtues of this theorem later on. 

Finally, let us study a very simple example of superpotential to gain some 
intuition. Consider two chiral supermultiplets 4J1 and r/J2, with a superpoten­
tial 

(19) 

Following the above prescription, the fermionic components have the La­
grangian 

(20) 

bWe dropped one possible term called Fayet-Illiopoulos D-term possible for vector super­
multiplets of Abelian gauge groups. They are often not useful in phenomenological models, 
but there are exceptions.ll,l2 
cThere are non-perturbative corrections to the superpotential, however. See, e.g., a 
review.10 
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while the scalar potential term Eq. (15) gives 

lawl2 
2
1 

2 2 2 £ :::>- 0.-~.. = -m A1l - m IA2I . 
'f'• t/>;=A; 

(21) 

Obviously, the terms Eqs. (20,21) are mass terms for the fermionic (Dirac 
fermion) and scalar components (two complex scalars) of the chiral supermul­
tiplets, with the same mass m. In general, fermionic and bosonic components 
in the same supermultiplets are degenerate in supersymmetric theories. 

3 Softly Broken Supersymmetry 

We've discussed supersymmetric Lagrangians in the previous section, which 
always give degenerate bosons and fermions. In the real world, we do not 
see such degenerate particles with the opposite statistics. Therefore super­
symmetry must be broken. We will come back later to briefly discuss various 
mechanisms which break supersymmetry spontaneously· in manifestly super­
symmetric theories. In the low-energy effective theories, however, we can just 
add terms to supersymmetric Lagrangians which break supersymmetry explic­
itly. The important constraint is that such explicit breaking terms should not 
spoil the motivation discussed earlier, namely to keep the Higgs mass-squared 
only logarithmically divergent. Such explicit breaking terms of supersymme­
try are called "soft" breakings. 

The possible soft breaking terms have been classified.13 In a theory with 
a renormalizable superpotential 

1 1 
w = 2J.tiitPitPi + "f,>'iiktPitPitPk, (22) 

the possible soft supersymmetry breaking terms have the following forms: 

M .. U, (23) 

The first one is the masses for scalar components in the chiral supermultiplets, 
which remove degeneracy between the scalar and spinor components. The 
next one is the masses for gauginoswhich remove degeneracy between gauginos 
and gauge bosons. Finally the last two ones are usually called bilinear and 
trilinear soft breaking terms with parameters bii and aiik with mass dimension 
one. 

In principle, any terms with couplings with positive mass dimensions are 
candidates of soft supersymmetry breaking terms.14 Possibilities in theories 
without gauge singlets are 

'lj;i'lj;i, A£A;Ak, .,Pi>.a (24) 
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Obviously, the first term is possible only in theories with multiplets with 
vector-like gauge quantum numbers, and the last term with chiral supermul­
tiplets in the adjoint representation. In the presence of gauge singlet chiral 
supermultiplets, however, such terms cause power divergences and instabil­
ities, and hence are not soft in general. On the other hand, the Minimal 
Supersymmetric Standard Model, for instance, does not contain any gauge 
singlet chiral supermultiplets and hence does admit first two possible terms in 
Eq. (24). There has been some revived interest in these general soft terms.15 

We will not consider these additional terms in the rest of the discussions. It is 
also useful to know that terms in Eq. (23) can also induce power divergences 
in the presence of light gauge singlets and heavy multiplets.16 

It is instructive to carry out some explicit calculations of Higgs boson self­
energy in supersymmetric theories with explicit soft supersymmetry breaking 
terms. Let us consider the coupling of the Higgs doublet chiral supermultiplet 
H to left-handed Q and right-handed T chiral supermultiplets,d given by the 
superpotential term 

(25) 

This superpotential term gives rise to terms in the Lagrangiane 

£ :::> -htQTHu-h~lt:;?JZIHul2 -h~ITI2 IHul 2 -m~IQI2 -m}ITI2 -htAtQTHu, 
(26) 

where m~, m}, and At are soft parameters. Note that the fields Q, T are 
spinor and Q, T, Hu are scalar components of the chiral supermultiplets (an 
unfortunate but common notation in the literature). This explicit Lagrangian 
allows us to easily work out the one-loop self-energy diagrams for the Higgs 
doublet Hu, after shifting the field Hu around its vacuum expectation value 
(this also generates mass terms for the top quark and the scalars which have 
to be consistently included). The diagram with top quark loop from the 
first term in Eq. (26) is quadratically divergent (negative). The contractions 
of Q or T in the next two terms also generate (positive) contributions to 
the Higgs self-energy. In the absence of soft parameters m~ = m} = 0, 
these two contributions precisely cancel with each other, consistent with the 
non-renormalization theorem which states that no mass terms (superpotential 
terms) can be generated by renormalizations. However, the explicit breaking 

d As will be explained in the next section, the right-handed spinors all need to be charged­
conjugated to the left-handed ones in order to be part of the chiral supermultiplets. There­
fore the chiral supermultiplet T actually contains the left-handed Weyl spinor (tn)<. The 
Higgs multiplet here will be denoted H" in later sections. 
•we dropped terms which do not contribute to the Higgs boson self-energy at the one-loop 
level. 
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terms m~, mt make the cancellation inexact. With a simplifying assumption 
m~ = m} = m2

, we find 

(27) 

Here, A is the ultraviolet cutoff of the one-loop diagrams. Therefore, these 
mass-squared parameters are indeed "soft" in the sense that they do not 
produce power divergences. Similarly, the diagrams with two htAt couplings 
with scalar top loop produce only a logarithmic divergent contribution. 

4 The Minimal Supersymmetric Standard Model 

Encouraged by the discussion in the previous section that the supersymmetry 
can be explicitly broken while retaining the absence of power divergences, 
we now try to promote the Standard Model to a supersymmetric theory. 
The Minimal Supersymmetric Standard Model (MSSM) is a supersymmetric 
version of the Standard Model with the minimal particle content. 

4.1 Particle Content 

The first task is to promote all fields in the Standard Model to appropri­
ate supermultiplets. This is obvious for the gauge bosons: they all become 
vector multiplets. For the quarks and leptons, we normally have left-handed 
and right-handed fields in the Standard Model. In order to promote them 
to chiral supermultiplets, however, we need to make all fields left-handed 
Weyl spinors. This can be done by charge-conjugating all right-handed fields. 
Therefore, when we refer to supermultiplets of the right-handed down quark, 
say, we are actually talking about chiral supermultiplets whose left-handed 
spinor component is the left-handed anti-down quark field. As for the Higgs 
boson, the field Eq. (1) in the Standard Model can be embedded into a chiral 
supermultiplet Hu. It can couple to the up-type quarks and generate their 
masses upon the symmetry breaking. In order to generate down-type quark 
masses, however, we normally use 

(28) 

Unfortunately, this trick does not work in a supersymmetric fashion because 
the superpotential W must be a holomorphic function of the chiral super­
multiplets and one is not allowed to take a complex conjugation of this sort. 

12 



Table 3. The chiral supermultiplets in the Minimal Supersymmetric Standard Model.. The 
numbers in the bold face refer to SU(3)c, SU(2)L representations. The superscripts are 
hypercharges. 

£1 (1, 2)-1/2 
E1(1, 1)+1 
Q1(3, 2)1/6 
U1(3, 1)-213 

D1(3, 1)+113 

£2(1, 2)-1/2 
E2(l, 1)+1 
Q2(3, 2)1/6 
U2(3, 1)-213 

D2(3, 1)+1/ 3 

Hu(1, 2)+1/ 2 

Hd(1, 2)-112 

£3(1, 2)-1/2 
&(1, 1)+1 
Q3(3, 2)1/6 
U3(3, 1)-2/3 
D3(3, 1)+1/3 

Therefore, we need to introduce another chiral supermultiplet Hd which has 
the. same gauge quantum numbers of iu2H* above/ 

In all, the chiral supermultiplets in the Minimal Supersymmetric Standard 
Model are listed in Table 3. 

The particles in the MSSM are referred to as follows.9 First of all, all 
quarks, leptons are called just in the same way as in the Standard Model, 
namely electron, electron-neutrino, muon, muon-neutrino, tau, tau-neutrino, 
up, down, strange, charm, bottom, top. Their superpartners, which have 
spin 0, are named with "s" at the beginning, which stand for "scalar." They 
are denoted by the same symbols as their fermionic counterpart with the 
tilde. Therefore, the superpartner of the electron is called "selectron," and 
is written as e. All these names are funny, but probably the worst one of 
all is the "sstrange" (s), which I cannot pronounce at all. Superpartners of 
quarks are "squarks," and those of leptons are "sleptons." Sometimes all of 
them are called together as "sfermions," which does not make sense at all 
because they are bosons. The Higgs doublets are denoted by capital H, but 
as we will see later, their physical degrees of freedom are h0 , H 0 , A0 and 
H±. Their superpartners are called "higgsinos," written as ii~, ii;;, ii;;, 
ii~. In general, fermionic superpartners of boson in the Standard Model have 
"ino" at the end of the name. Spin 1/2 superpartners of the gauge bosons are 
"gauginos" as mentioned in the previous section, and for each gauge groups: 

f Another reason to need both H,. and Hd chiral supermultiplets is to cancel the gauge 
anomalies arising from their spinor components. 
gWhen I first learned supersymmetry, I didn't believe it at all. Doubling the degrees of 
freedom looked too much to me, until I came up with my own argument at the beginning 
of the lecture. The funny names for the particles were yet another reason not to believe in 
it. It doesn't sound scientific. Once supersymmetry will be discovered, we definitely need 
better sounding names! 
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gluino for gluon, wino for W, bino for U(1)y gauge boson B. As a result of 
the electroweak symmetry breaking, all neutral. "inos", namely two neutral 
higgsinos, the neutral wino W3 and the bino iJ mix with each other to form 
four Majorana fermions. They are called "neutralinos" X.~ for i = 1, 2, 3, 4. 
Similarly, the charged higgsinos fit, if;;, w-, w+ mix and form two massive 
Dirac fermions "charginos" Xf fori = 1, 2. All particles with tilde do not exist 
in. the non-supersymmetric Standard Model. Once we introduce R-parity in 
a later section, the particles with tilde have odd R-parity. 

4.2 Superpotential 

The SU(3)c x SU(2)L x U(1)y gauge invariance allows the following terms 
in the superpotential 

(29) 

The first three terms correspond to the Yukawa couplings in the Standard 
Model (with exactly the same number of parameters). The subscripts i,j, k 
are generation indices. The parameter JL has mass dimension one and gives a 
supersymmetric mass to both fermionic and bosonic components of the chiral 
supermultiplets Hu and Hd. The terms in the second line of Eq. (29) are in 
general problematic as they break the baryon (B) or lepton (L) numbers. 

If the superpotential contains both B- and £-violating terms, such as 
>..~ 12U1D1D2 and >..121 Q1D2L1, one can exchange D2 = s to generate a four­
fermion operator 

(30) 

where the spinor indices are contracted in each parentheses and the color 
indices by the epsilon tensor. Such an operator would contribute to the proton 
decay process p ~ e+1fO at a rate of r "' A'4m!fm~, and hence the partial 
lifetime of the order of 

-13 ( ms )4 1 
Tp "'6 x 10 sec 1 TeV )..'4 • (31) 

Recall that the experimental limit on the proton partial lifetime in this mode 
is Tp > 1.6 x 1033 years.17 Unless the coupling constants are extremely small, 
this is clearly a disaster. 
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4.3 R-parity 

To avoid this problem of too-rapid proton decay, a common assumption is 
a discrete symmetry called R-parity18 (or matter parity19). The Z2 discrete 
charge is given by 

(32) 

where s is the spin of the particle. Under Rp, all standard model particles, 
namely quarks, leptons, gauge bosons, and Higgs bosons, carry even parity, 
while their superpartners odd due to the ( -1 )28 factor. Once this discrete 
symmetry is imposed, all terms in the second line of Eq. (29) will be forbidden, 
and we do not generate a dangerous operator such as that in Eq. (30). Indeed, 
B- and £-numbers are now accidental symmetries of the MSSM Lagrangian 
as a consequence of the supersymmetry, gauge invariance, renormalizability 
and R-parity conservation. 

One immediate consequence of the conserved R-parity is that the lightest 
particle with odd R-parity, i.e., the Lightest Supersymmetric Particle (LSP), 
is stable. Another consequence is that one can produce (or annihilate) super­
particles only pairwise. These two points have important implications on the 
collider phenomenology and cosmology. Since the LSP is stable, its cosmo­
logical relic is a good (and arguably the best) candidate for the Cold Dark 
Matter particles (see, e.g., a review20 on this subject). If so, we do not want 
it to be electrically charged and/or strongly interacting; otherwise we should 
have detected them already. Then the LSP should be a superpartner of Z, 
'Y, or neutral Higgs bosons or their linear combination (called neutralino). h 

On the other hand, the superparticles can be produced only in pairs and 
they decay eventually into the LSP, which escapes detection. This is why 
the typical signature of supersymmetry at collider experiments is the missing 
energy /momentum. 

The phenomenology of R-parity breaking models has been also studied. 
If either B-violating or £-violating terms exist in Eq. (29), but not both, 
they would not induce proton decay.23 However they can still produce n-n 
oscillation and a plethora of flavor-changing phenomena. We refer to a recent 
compilation of phenomenological constraints24 for further details. 

h A sneutrino can in principle be the LSP,12 , but it cannot be the CDM to avoid constraints 
from the direct detection experiment for the CDM particles. 21 It becomes a viable candidate 
again if there is a large lepton number violation. 22 
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4-4 Soft Supersymmetry Breaking Terms 

In addition to the interactions that arise from the superpotential Eq. (29), we 
should add soft supersymmetry breaking terms to the Lagrangian as we have 
not seen any of the superpartners of the Standard Model particles. Following 
the general classifications in Eq. (23), and assuming R-parity conservation, 
they are given by 

Lsojt = £1 + £2, (33) 
2ij - * - 2ij - * - 2ij - * -

£1 = -mq QiQi -mu Ui U; -mD DiDi 
2".- - 2".- - 2 2 2 2 

-mLt3LtL;-m~3EiEi-mHJHul -mHdiHdi, (34) 

£2 = -Aij>..'j{JJj;Hu- At>..t{JJJ;Hd- A;i>..!i{JliiHd + Bp.HuHd + c.c. 
(35) 

The mass-squared parameters for scalar quarks (squarks) and scalar leptons 
(sleptons) are all three-by-three hermitian matrices, while the trilinear cou­
plings A'i and the bilinear coupling B of mass dimension one are general 
complex numbers. i 

4-5 Higgs Sector 

It is of considerable interest to look closely at the Higgs sector of the MSSM. 
Following the general form of the supersymmetric Lagrangians Eqs. (17,15,18) 
with the superpotential W = p,H,.Hd in Eq. (29) as well as the soft parameters 
in Eq. (34), the potential for the Higgs bosons is given as 

V= g'
2 (st~H +Ht-1sd)

2 

+
92 

(Ht'!_H +Ht!.sd)
2 

2 u2 u d 2 2 "2 u d2 

+p,2 (1Hul2 + 1Hdl2 ) + mku 1Hul2 + mkd 1Hdl2 
- (Bp,H,.Hd + c.c.) (36) 

It turns out that it is always possible to gauge-rotate the Higgs bosons such 
that 

(37) 

in the vacuum. Since only electrically neutral components have vacuum ex­
pectation values, the vacuum necessarily conserves U(l)QED.i Writing the 

iit is unfortunate that the notation A is used both for the scalar components of chiral 
supermultiplets and the trilinear couplings. Hopefully one can tell them apart from the 
context. 
iThis is not necessarily true in general two-doublet Higgs Models. Consult a review.25 
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potential (36) down using the expectation values (37), we find 

V = g~ (v2- v2)2 + (v v ) (J.£2 + mii.. -Bp. ) (Vu) (38) 
8 u d u d -Bit 1'2 + mii-d Vd , 

where g~ = g2 + g12 • In order for the Higgs bosons to acquire the vacuum 
expectation values, the determinant of the mass matrix at the origin must be 
negative, 

(39) 

However, there is a danger that the direction Vu = vd, which makes the quartic 
term in the potential identically vanish, may be unbounded from below. For 
this not to occur, we need 

1'
2 + mk,. + ~t2 + mhd > 2~tB. (40) 

In order to reproduce the mass of the Z-boson correctly, we need 

Vu = ~ sin/3, Vd = ~ cos/3, v = 250 GeV. (41) 

The vacuum minimization conditions are given by av I 8vu = av I 8vd = 0 
from the potential Eq. (38). Using Eq. (41), we obtain 

m2 m2 - m2 tan2 p 
1'2 = _......£_ + Hd H .. 

2 tan2 P -1 ' 
(42) 

and 

(43) 

Because there are two Higgs doublets, each of which with four real scalar 
fields, the number of degrees of freedom is eight before the symmetry breaking. 
However three of them are eaten by w+, w- and Z bosons, and we are left 
with five physics scalar particles. There are two CP-even scalars h0 , H 0 , one 
CP-odd scalar A0 , and two charged scalars n+ and n-. Their masses can 
be worked out from the potential (38): 

(44) 

and 

m~o, mho = ~ ( m~ +m~ ± J<m~ + m~)2 - 4m~m~ cos2 2/3) . (45) 

A very interesting consequence of the formula Eq. ( 45) is that the lighter CP­
even Higgs mass m~0 is maximized when cos2 2/3 = 1: m~0 = (m~ + m~ -
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lm~ - m~l)/2. When mA < mz, we obtain m~0 = m~ < m~, while when 
mA > mz, m~o = m~. Therefore in any case we find 

{46} 

This is an important prediction in the MSSM. The reason why the masses of 
the Higgs boson are related to the gauge boson masses is that the Higgs quartic 
couplings in Eq. {36} are all determined by the gauge couplings because they 
originate from the elimination of the auxiliary D-fields in Eq. {17}. 

Unfortunately, the prediction Eq. {46} is modified at the one-loop level,26 

approximately as 

2 Nc 4 2 4 (mi mi ) ~(mho)= 41r2 htv sin /3log :n~ 2 
• (47} 

With the scalar top mass of up to 1 Te V, the lightest Higgs mass is pushed up 
to about 130 GeV. (See also the latest analysis including resummed two-loop 
contribution. 27) 

The parameter space of the MSSM Higgs sector can be described by two 
parameters. This is because the potential Eq. (38} has three independent 
parameters, p 2 + m~u, p 2 + m~d, and Bp, while one combination is fixed by 
the Z-mass Eq. (39}. It is customary to pick either (mA, tan/3), or (mho, tan/3) 
to present experimental constraints. The current experimental constraint on 
this parameter space is shown in Fig. 1. k 

The range of the Higgs mass predicted in the MSSM is not necessarily an 
easy range for the LHC experiments, but three-years' running at the high lu­
minosity is supposed to cover the entire MSSM parameter space, by employing 
many different production/ decay modes as seen in Fig. 2. 

4.6 Neutralinos and Charginos 

Once the electroweak symmetry is broken, and since supersymmetry is already 
explicitly broken in the MSSM, there is no quantum number which can distin­
guish two neutral higgsino states if~, if~, and two neutral gaugino states W3 

(neutral wino) and iJ {bino). They have four-by-four Majorana mass matrix 

1 
C:J --X 

2 

kThe large tan f3 region may appear completely excluded in the plot, but this is somewhat 
misleading; it is due to the parameterization (mho, tan {3) which squeezes the mho region 
close to the theoretical upper bound to a very thin one. In the (mA, tanf3) parameterization, 
one can see the allowed region much more clearer. 
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Figure 1. Regions in the (mho, tan {3) plane excluded by the MSSM Higgs boson searches 
at LEP in data up to 189 GeV, and at CDF in run I data. The regions not allowed by the 
MSSM for a top mass of 175 GeV, a SUSY scale of 1 TeV and maximal mixing in the stop 
sector are also indicated. The dotted curve is the LEP expected limit.28 
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Figure 2. Expected coverage of the MSSM Higgs sector parameter space by the LHC ex­
periments, after three years of high-luminosity running. 
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(48) 

Here, sw =sin Ow, cw =cos Ow, sp = sin,B, and cp =cos ,B. Once M17 M2, 
f:.t exceed mz, which is preferred given the current experimental limits, one 
can regard components proportional to mz as small perturbations. Then the 
neutralinos are close to their weak eigenstates, bino, wino, and higgsinos. But 
the higgsinos in this limit are mixed to form symmetric and anti-symmetric 
linear combinations fl~ = (fl~ + fl~)/.../2 and fl~ = (H~- ii~)J.../2. 

Similarly two positively charged inos: fit and w+, and two negatively 
charged inos: Hi and w- mix. The mass matrix is given by 

- _ - _ ( M2 ...timwsp) ("'+) 
£ :J -(W Hd ) ...timwcp It fit + c.c. (49) 

Again once M2, f:.t 2:: mw, the chargino states are close to the weak eigenstates 
winos and higgsinos. 

4. 7 Squarks, Sleptons 

The mass terms of squarks and sleptons are also modified after the elec­
troweak symmetry breaking. There are four different contributions. One is 
the supersymmetric piece coming from the I8Wf8¢il2 terms in Eq. (15) with 
¢i = Q, U, D, L, E. These terms add m} where m1 is the mass of the quarks 
and leptons from their Yukawa couplings to the Higgs boson. Next one is 
combing from the I8Wf8¢Jil 2 terms in Eq. (15) with l/Ji = Hu or Hd in the 
superpotential Eq. (29). Because of the It term, 

aw o .. - -
aHo = -~tHd + .>.::]QiUi, 

U .. 

(50) 

aw 0 .. - - .. - -
aHo = -f:.LHd + >..'jQiDi + >..~3 LiEi· 

d 
(51) 

Taking the absolute square of these two expressions pick the cross terms to­
gether with (H~} = vcos,BJ.../2, (H~} = vsin,BJ.../2 and we obtain mixing 
between Q and U, Q and fJ, and Land E. Similarly, the vacuum expecta­
tion values of the Higgs bosons in the trilinear couplings Eq. (35) also gen­
erate similar mixing terms. Finally, the D-term potential after eliminating 
the auxiliary field D Eq. (18) also give contributions to the scalar masses 
m~(/3 - Q sin2 Ow) cos 2,8. Therefore, the mass matrix of stop, for instance, 
is given as 

£ :J -(ti, f:R) 
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( mbs+m~+m~(!-~s~}c2/3 mt(At-JLCOt/3) ) (h) 
mt(At- p.cotf3) m~8 + m~ + mM-~s~}c213 iR ' 

(52} 

with c213 = cos 2/3. Here, h is the up component of Q3, and iR = T*. For 
first and secmid generation particles, the off-diagonal terms are negligible for 
most purposes. They may, however, be important when their loops in flavor­
changing processes are considered. 

4.8 What We Gained in the MSSM 

It is useful to reView here what we have gained in the MSSM over what we had 
in the Standard Model. The main advantage of the MSSM is of course what 
motivate~ the supersymmetry to begin with: the absence of the quadratic 
divergences as seen in Eq. (27). This fact allows us to apply the MSSM down 
to distance scales much shorter than the electroweak scale, and hence we can 
at least hope that many of the puzzles discussed at the beginning of the lecture 
to be solved by physics at the short distance scales. 

There are a few amusing and welcome by-products of supersymmetry be­
yond this very motivation. First of all, the Higgs doublet in the Standard 
Model appears so unnatural partly because it is the only scalar field intro­
duced just for the sake of the electroweak symmetry breaking. In the MSSM, 
however, there are so many scalar fields: 15 complex scalar fields for each gen­
eration and two in each Higgs doublet. Therefore, the Higgs bosons are just 
"one of them." Then the question about the electroweak symmetry break­
ing is addressed in a completely different fashion: why is it only the Higgs 
bosons that condense? In fact, one can even partially answer this question in 
the renormalization group analysis in the next sections where "typically" (we 
will explain what we mean by this) it is only the Higgs bosons which acquire 
negative mass squared (39} while the masses-squared of all the other scalars 
"naturally" remain positive. Finally, the absolute upper bound on the lightest 
CP-even Higgs boson is falsifiable by experiments. 

However, life is not as good a.S we wish. We will see that there are very 
stringent low-energy constraints on the MSSM in the next section. 

5 Low-Energy Constraints 

Despite the fact that we are interested in superparticles in the 10D-1000 GeV 
range, which we are just starting to explore in collider searches, there are 
many amazingly stringent low-energy constraints on superparticles. 
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Figure 3. A Feynman diagram which gives rise to llmK and EK. 

One of the most stringent constraints comes from the K 0-k0 mixing 
parameters t::.mK and cK· The main reason for the stringent constraints is 
that the scalar masses-squared in the MSSM Lagrangian Eq. (34) can violate 
flavor, i.e., the scalar masses-squared matrices are not necessarily diagonal in 
the basis where the corresponding quark mass matrices are diagonal. 

To simplify the discussion, let us concentrate only on the first and the 
second generations (ignore the third). We also go to the basis where the 
down-type Yukawa matrix >.y is diagonal, such that 

,ij _ (md 0 ) 
"d Vd- 0 . ms 

(53) 

Therefore the states K 0 = ( ds), K 0 = ( sd) are well-defined in this basis. 
In the same basis, however, the squark masses-squared can have off-diagonal 
elements in general, 

z·· ( m~ mb12) m •1- dR ' 
D - 2• 2 · 

mD,l2 mSR 
(54) 

Since their off-diagonal elements will be required to be small (as we will see 
later), it is convenient to treat them as small perturbation. We insert the 
off-diagonal elements as two-point Feynman vertices which change the squark 
flavor dL,R ++ h,R in the diagrams. To simplify the discussion further, we as­
sume that all squarks and gluino the are comparable in their masses m. Then 
the relevant quantities are given in terms of the ratio (~tz)LL = m'iv2fm2 

(and similarly (~tz)RR = mb,12/m2), as depicted in Fig. 3. The operator 
from this Feynman diagram is estimated approximately as 

0005 z(~t2>1,L(d- p. )(d- ) 
• O:s -2 L"f SL L"(p.SL · m 

(55) 
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This operator is further sandwiched between K 0 and K 0 states, and we find 

llmk ""0.005fkmko:~(8f2 )i£ _12 m 

= 12 X w-12 GeV2 ( !K )
2 

(O:s )2 
(8d )2 < 3.5 X w-15 GeV2 

· 160 MeV 0.1 12 LL ' 

(56) 

where the last inequality is the phenomenological constraint in the absence of 
accidental cancellations. This requires 

(8f2)LL ~ 0.05 (500~ev) (57) 

and hence the off-diagonal element m~,12 must be small. It turns out that the 
product (8f2)LL(8f2)RR is more stringently constrained, especially its imagi­
nary part from c: K. Much more careful and detailed analysis than the above 
order-of-magnitude estimate gives29 

There are many other low-energy observables, such as electron and neu­
tron electric dipole moments (EDM), JL -t e'Y, which place important con­
straints on the supersymmetry parameters.30 

There are various ways to avoid such low-energy constraints on super­
symmetry. The first one is called "universality" of soft parameters. 31 It is 
simply assumed that the scalar masses-squared matrices are proportional to 
identity matrices, i.e., m~, m'fi, ml, <X 1. Then no matter what rotation is 
made in order to go to the basis where the quark masses are diagonal, the 
identity matrices stay the same, and hence the off-diagonal elements are never 
produced. There has been many proposals to generate universal scalar masses 
either by the mediation mechanism of the supersymmetry breaking such as the 
gauge mediated (see reviews32 ), anomaly mediated33 , or gaugino mediated34 

· 

supersymmetry breaking, or by non-Abelian flavor symmetries.35 The second 
possibility is called "alignment," where certain flavor symmetries should be 
responsible for "aligning" the quark and squark mass matrices such that the 
squark masses are almost diagonal in· the same basis where the down-quark 
masses are diagonal. 36 Because of the CKM matrix it is impossible to do 
this both for down-quark and up-quark masses. Since the phenomenological 
constraints in the up-quark sector are much weaker than in the down-quark 
sector, this choice would alleviate many of the low-energy constraints (except 
for flavor-diagonal CP-violation such as EDMs). Finally there is a possibility 
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called "decoupling," which assumes first- and second-generation superpart­
ners much heavier than TeV while keeping the third-generation superpart­
ners as well as gauginos in the 100 GeV range to keep the Higgs self-energy 
small enough. 37 Even though this idea suffers from a fine-tuning problem in 
general, 38 many models had been constructed to achieve such a split mass 
spectrum recently. 39 

In short, the low-energy constraints are indeed very stringent, but there 
are many ideas to avoid such constraints naturally within certain model frame­
works. Especially given the fact that we still do not know any of the superpar­
ticle masses experimentally, one cannot make the discussions more clear-cut at 
this stage. On the other hand, important low-energy effects of supersymmetry 
are still being discovered in the literature, such as muon g- 2,40 and direct 
CP-violationY They may be even more possible low-energy manifestations 
of supersymmetry which have been missed so far. 

6 Renormalization Group Analyses 

Once supersymmetry protects the Higgs self-energy against corrections from 
the short distance scales, or equivalently, the high energy cutoff scales, it 
becomes important to connect physics at the electroweak scale where we 
can do measurements to the fundamental parameters defined at high energy 
scales. This can be done by studying the renormalization-group evolution 
of parameters. It also becomes a natural expectation that the supersym­
metry breaking itself originates at some high energy scale. If this is the 
case, the soft supersymmetry breaking parameters should also be studied 
using the renormalization-group equations. We study the renormalization­
group evolution of various parameters in the softly-broken supersymmetric 
Lagrangian at the one-loop level.1 If supersymmetry indeed turns out to be 
the choice of nature, the renormalization-group analysis will be crucial in 
probing physics at high energy scales using the observables at the TeV-scale 
collider experiments.44 

6.1 Gauge Coupling Constants 

The first parameters to be studied are naturally the coupling constants in 
the Standard Model. The running of the gauge couplings constants are de­
scribed in term of the beta functions, and their one-loop solutions in non-

1Recently, there have been developments in obtaining and understanding all-order beta 
functions for gauge coupling constants42 and soft parameters.43 
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supersymmetric theories are given by 

1 1 bo ~ 
g2(~) = g2(~') + 8rr2 log~'' (59) 

with 
11 2 1 

bo = -C2(G) - -81 - -Sb. 
3 3 3 

(60) 

This formula is for Weyl fermions f and complex scalars b. The group theory 
factors are defined by 

sadC2(G) = rbc fdbc (61) 

Jabsf,b = TrTaTb (62) 

and C2(G) = Nc for SU(Nc) groups and St,b = 1/2 for their fundamental 
representations. 

In supersymmetric theories, there is always the gaugino multiplet in the 
adjoint representation of the gauge group. They contribute to Eq. (60) with 
S 1 = C2 (G), and therefore the total contribution of the vector supermultiplet 
is 3C2 (G). On the other hand, the chiral supermultiplets have a Weyl spinor 
and a complex scalar, and the last two terms in Eq. (60) are always added 
together to 81 = Sb. Therefore, the beta function coefficients simplify to 

(63) 

Given the beta functions, it is easy to work out how the gauge coupling 
constants measured accurately at LEP /SLC evolve to higher energies; 

One interesting possibility is that the gauge groups in the Standard Model 
SU(3)c x SU(2)L x U(1)y may be embedded into a simple group, such as 
SU(5) or 80(10), at some high energy scale, called "grand unification." The 
gauge coupling constants at~"' mz are approximately o:-1 = 129, sin2 Bw ~ 
0.232, and o:; 1 = 0.119. In the SU(5) normalization, the U(l) coupling 
constant is given by o:1 = ~o:' = ~o:/ cos2 Bw. It turns out that the gauge 
coupling constants become equal at~~ 2x 1016 GeV given the MSSM particle 
content (Fig. 4). On the other hand, the three gauge coupling constants miss 
each other quite badly with the non-supersymmetric Standard Model particle 
content. This observation suggests the possibility of supersymmetric grand 
unification. 

6.2 Yukawa Coupling Constants 

Since first- and second-generation Yukawa couplings are so small, let us ignore 
them and concentrate on the third-generation ones. Their renormalization-
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Figure 4. Running of gauge coupling constants in the Standard Model and in the MSSM. 

group equations are given as 

(64) 

(65) 

(66) 

The important aspect of these equations is that the gauge coupling con­
stants push down the Yukawa coupling constants at higher energies, while 
the Yukawa couplings push them up. This interplay, together with a large top 
Yukawa coupling, allows the possibility that the Yukawa couplings may also 
unify at the same energy scale where the gauge coupling constants appear to 
unify (Fig. 5). It turned out that the actual situation is much more relaxed 
than what this plot suggests. This is because there is a significant correction 
tomb at tan,8 ~ 10 when the superparticles are integrated out 45 . 

6.3 Soft Parameters 

Since we do not know any of the soft parameters at this point, we cannot use 
the renormalization-group equations to probe physics at high energy scales. 
On the other hand, we can use the renormalization-group equations from 
boundary conditions at high energy scales suggested by models to obtain 
useful information on the "typical" superparticle mass spectrum. 
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Figure 5. The regions on (mt, tan .B) plane where hb = hr at the GUT-scale.46 

First of all, the gaugino mass parameters have very simple behavior that 

d Mi 
JL-d 2 =0. 

JL Yi 
(67) 

Therefore, the ratios Mi/ g'f are constants at all energies. If the grand uni­
fication is true, both the gauge coupling constants and the gaugino mass 
parameters must unify at the GUT -scale and hence the ratios are all the same 
at the GUT-scale. Since the ratios do not run, the ratios are all the same at 
any energy scales, and hence the low-energy gaugino mass ratios are predicted 
to be 

(68) 

at the Te V scale. We see the tendency that the colored particle (gluino in this 
case) is much heavier than uncolored particle (wino and bino in this case), 
This turns out to be a relatively model-independent conclusion. 

The running of scalar masses is given by simple equations when all Yukawa 
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couplings other than that of the top quark are neglected. We find 

2 d 2 2 2 62 2 ( 1671" J.L dpmHu = 3Xt- 6g2M2 - 5g1 M1 , 69) 

2d2 22 622 
1671" J.L dpmHd = -6g2 M 2 - Sg1 M1 , (70) 

2 d 2 32 2 2 2 2 2 2 2 
167r J.LdpmQs =Xt-393M3 -6g2M2 - 15g1 M1 , (71) 

2 d 2 32 2 2 32 2 2 
16rr f..L dp mu3 = 2Xt - 3g3 M3 - 15 g1 M1 . (72) 

Here, Xt = 2h~(mhu + m~3 + m~3 ) and the trilinear couplings are also 
neglected. Even within this simplified assumptions, one learns interesting 
lessons. First of all, the gauge interactions push the scalar masses up at lower 
energies due to the gaugino mass squared contributions. Colored particles 
are pushed up even more than uncolored ones, and the right-handed sleptons 
would be the least pushed up. On the other hand, Yukawa couplings push the 
scalar masses down at lower energies. The coefficients of Xt in the Eqs. (69, 
71, 72) are simply the multiplicity factors which correspond to 3 of SU(3)c, 
2 of SU(2)y and 1 of U(1)y. It is extremely amusing that the m1Iu is pushed 
down the most because of the factor of three as well as is pushed up the least 
because of the absence of the gluino mass contribution. Therefore, the fact 
that the Higgs mass squared is negative at the electroweak scale may well be 
just a simple consequence of the renormalization-group equations! Since the 
Higgs boson is just "one of them" in the MSSM, the renormalization-group 
equations provide a very compelling reason why it is only the Higgs boson 
whose mass-squared goes negative and condenses. One can view this as an 
explanation for the electroweak symmetry breaking. 

6.4 Minimal Supergravity 

Of course, nothing quantitative can be said unless one makes some specific 
assumptions for the boundary conditions of the renormalization-group equa­
tions. One common choice called "Minimal Supergravity" is the following set 
of assumptions: 

2ii _ 2ii _ m2ii _ 2ii _ m2ii _ m2 Jdi 
mQ - mu - D - mL - E - ou , 

m 2 -m2 -m2 Hu- Hd- 0> 

A ii - Aii - Aii - A u-d-,-o 

M1 = M2 = M3 = M112 
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at the GUT-scale. The parameter m0 is called the universal scalar mass, Ao 
the universal trilinear coupling, and M 112 the universal gaugino mass. Once 
this assumption is made, there are only five parameters at the GUT-scale, 
(mo,M1; 2 ,Ao,B,JL). This assumption also avoids most of the low-energy 
constraints easily because the scalar mass-squared matrices are proportional 
to the identity matrices and hence there is no flavor violation. Of course this 
is probably an oversimplification of the parameter space, but it still provides 
useful starting point in discussing phenomenology. Especially most of the 
search limits from collider experiments have been reported using this assump­
tion. In general, this choice of the boundary conditions, which actually have 
not much to do with supergravity itself, lead to acceptable and interesting 
phenomenology including the collider signatures, low-energy constraints as 
well as cosmology. 

7 Collider Phenomenology 

We do not go into much details of the collider phenomenology of supersymme­
try in this lecture notes and we refer to reviews.47 Here, we give only a very 
brief summary of collider phenomenology. Supersymmetry is an ideal target 
for current and new future collider searches. As long as they are within the 
mass scale expected by the argument given at the beginning of the lecture, 
we expect supersymmetric particles to be discovered at LEP-II (even though 
the phase space left is quite limited by now), Tevatron Run-II, or the LHC. 

The next two figures Figs. 6, 7 show the discovery reach of supersymmetry 
at LEP-II, Tevatron Run II, LHC. It is fair to say that the mass range of 
superparticles relevant to solve the problem of fine cancellation in the Higgs 
boson self-energy described at the beginning of the lecture is covered by these 
experiments. 

A future e+ e- linear collider would play a fantastic role in proving that 
new particles are indeed superpartners of the known Standard Model particles 
and in determining their parameters. 50 Once such studies will be done, we will· 
exploit renormalization-group analyses trying to connect physics at Te V scale 
to yet-more-fundamental physics at higher energy scales. Example of such 
possible studies are shown in Fig. 9. The measurements of gaugino masses 
were simulated. At the LHC, the measurements are basically on the gluino 
mass and the LSP mass which is assumed to be the bino state, and their mass 
difference can be measured quite well. By assuming a value of the LSP mass, 
one can extract the gluino mass. At the e+e- linear colliders, one can even 
disentangle the mixing in neutralino and chargino states employing expected 
high beam polarizations and determine M 1 and M 2 in a model-independent 
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Figure 6. Regions in the mo vs.m1; 2 plane explorable by Tevatron and LEP II 
experiments. 47 

matter. Combination of both types of experiments determine all three gaugino 
masses, which would provide a non-trivial test of the grand unification. 

8 Mediation Mechanisms of Supersymmetry Breaking 

One of the most important questions in the supersymmetry phenomenology 
is how supersymmetry is broken and how the particles in the MSSM learn 
the effect of supersymmetry breaking. The first one is the issue of dynamical 
supersymmetry breaking, and the second one is the issue of the "mediation" 
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Figure 7. Regions in the mo vs.m112 plane explorable by LHC experiments with 10 tb- 1 

of integrated luminosity. 48 Different curves correspond to different search modes: 11 (single 
lepton), ItT (missing transverse ~ne_rgy), SS (same sign dilepton), 31 (trilepton), OS (oppo­
site sign dilepton), l (slepton), W1Z2 (charged wino, neutral wino associated production). 

mechanism. 
The problem of the supersymmetry breaking itself has gone through a 

dramatic progress in the last few years thanks to works on the dynamics of 
supersymmetric gauge theories by Seiberg.10 The original idea by Witten5 was 
that the dynamical supersymmetry breaking is ideal to explain the hierarchy. 
Because of the non-renormalization theorem, if supersymmetry is unbroken 
at the tree-level, it remains unbroken at all orders in perturbation theory. 
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Figure 8. Regions in the mo vs.m112 plane explorable by e+e- linear collider experiments 
with 20 fb- 1 of integrated luminosity. 

However, they may be non-perturbative effects suppressed by e-8tr
2
/g

2 
that 

could break supersymmetry. Then the energy scale of the supersymmetry 
breaking can be naturally suppressed exponentially compared to the energy 
scale of the fundamental theory (string?). Even though this idea attracted a 
lot of interest,m the model building was hindered by the lack of understanding 
in dynamics of supersymmetric gauge theories. Only relative few models 
were convincingly shown to break supersymmetry dynamically, such as the 

m1 didn't live through this era, so this is just a guess. 

32 

2000 



150 

> 
Q) 

_e:J_ 
- 100 

50 

0 
0 100 200 300 400 

M2 (GeV) 
s-150 I I I I 
CD 

~ 
~ 
~ 

i!(:< 
E 

100 +/-5%·-

+/-5% 

50 - -
•• l"f\2 measured 

• m
9 

measured (scaled ez/fl.a) 

0 0 
I I I I 

20 40 60 80 100 
assumed "\1 (GeV) 

Figure 9. Experimental tests of gaugino mass unification at· a future e+e- collider 50 and 
the LHC. 51 

SU(5) model with two pairs52 of 5* + 10 and the 3-2 model. 53 After Seiberg's 
works, however, there has been an explosion in the number of models which 
break supersymmetry dynamically (see a review54 and references therein). 
For instance, some of the models which were claimed to break supersymmetry 
dynamically, such as SU(5) with one pair55 of 5* + 10 or 80{10) with one 
spinor56 16, are actually strongly coupled and could not be analyzed reliably 
(called "non-calculable"), but new techniques allowed us to analyze these 
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strongly coupled models reliably.57 Unexpected vector-like models were also 
found58 which proved to be useful for model building. 

There has also been an explosion in the number of mediation mechanisms 
proposed in the literature. The oldest mechanism is that in supergravity the­
ories where interactions suppressed by the Planck scale are responsible for 
communicating the effects of supersymmetry breaking to the particles in the 
MSSM. For instance, see a review.59 Even though the gravity itself may not 
be the only effect for the mediation but there could be many operators sup­
pressed by the Planck-scale responsible for the mediation, this mechanism was 
sometimes called "gravity-mediation." The good thing about this mechanism 
is that this is almost always there. However we basically do not have any con­
trol over the Planck-scale physics and the resulting scalar masses-squared are 
in general highly non-universal. In this situation, the best idea is probably to 
constrain the scalar masses-squared matrix proportional to the identity ma­
trix by non-Abelian flavor symmetries.35 Models were constructed where the 
breaking patterns of the flavor symmetry naturally explain the hierarchical 
quark and lepton mass matrices, while protecting the squark masses-squared 
matrices from deviating too far from the identity matrices. 

A beautiful idea to guarantee the universal scalar masses is to use the 
MSSM gauge interactions for the mediation. Then the supersymmetry break­
ing effects are mediated to the particles in the MSSM in such a way that they 
do not distinguish particles in different generations ( "flavor-blind") because 
they only depend on the gauge quantum numbers of the particles. Such a 
model was regarded difficult to construct in the past.53 However, a break­
through was made by Dine, Nelson and collaborators,60 who started con­
structing models where the MSSM gauge interactions could indeed mediate 
the supersymmetry breaking effects, inducing postive scalar masses-squared 
and large enough gaugino masses (which used to be one of the most difficult 
things to achieve).61 The original models had three independent sectors, one 
for supersymmetry breaking, one (the messenger sector) for mediation alone, 
and the last one the MSSM. Later models eliminated the messenger sector 
entirely62 (see also reviews63 ). 

Difficulty still remained how large enough gaugino masses can be gener­
ated in models where the sector of dynamical supersymmetry breaking couples 
to the MSSM fields only by Planck-scale suppressed interactions. 61 One could 
go around this problem by a clever choice of the quantum numbers for a gauge 
singlet field.64 But it was not realized until recently that the gaugino masses 
are generated by superconformal anomaly. 33 This observation was confirmed 
and further generalized by other groups.65 Randall and Sundrum further real­
ized that one could even have scalar masses entirely from the superconformal 
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anomaly if the sector of dynamical supersymmetry breaking and the MSSM 
particles are physically separated in the extra dimensions. The consequence 
was striking: the soft parameters were determined solely by the low-energy 
theory and did not depend on the physics at high energy scales at all. This 
makes it attractive as a solution to the problem of flavor-changing neutral 
currents, as the low-energy interactions of first and second generations are in­
deed nearly flavor-blind. Even though such models initially suffered from the 
problem that some of the scalars had negative mass-squared, simple fixes were 
proposed.66 One can preserve the virtue of the anomaly mediation, namely 
ultraviolet insensitivity, and construct realistic models. 

Finally a new idea called "gaugino mediation" came out lately. 34 This 
idea employs an extra dimension where the gauge fields propagate in the 
bulk. Supersymmetry is broken on a different brane and the MSSM fields 
learn the supersymmetry breaking effects by the MSSM gauge interactions, 
and hence solving the flavor-changing problem. 

9 Conclusion 

Supersymmetry is a well-motivated candidate for physics beyond the Standard 
Model. It would allow us to extrapolate the (supersymmetric version of the) 
Standard Model down to much shorter distances, giving us hope to connect 
the observables at Te V -scale experiments to parameters of the much more 
fundamental theories. Even though it has been extensively studied over two 
decades, many·new aspects of supersymmetry have been uncovered in the last 
few years. We expect that research along this direction will continue to be 
fruitful. We, however, really need a clear-cut confirmation (or falsification) 
experimentally. The good news is that we expect it to be discovered, if nature 
did choose this direction, at the currently planned experiments. 
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