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1 QCD AND ITS COUPLING 

Quantum chromodynamics (QCD) is a gauge field theory that describes the strong in
teractions of quarks and gluons [1]. All experimental results to date are consistent with 
QCD predictions to within the experimental and theoretical errors. In this review, we 
discuss the current status of the extraction of the strong interaction coupling constant as 
from the experimental data. 

The QCD Lagrangian describing the interactions of quarks and gluons is 

L= -~F:VFaJN + LWk(.l1-mk)\lfk, (1) 
k 

where 
Fa -a Aa-a Aa+gl'(lbcAbAc JN - J.l"V V J1 J J.l .. V . (2) 

is the gluon field strength tensor, 

(3) 

is the gauge covariant derivative, and Ta are the SU(3) representation matrices nor
malized so that tr TaTb = &ab /2, and the sum on k is over the six different flavors 

. (u,d,s,c,b,t) of quarks. At the classical level, the QCD Lagrangian depends on the 
six quark masses mk> and the strong interaction coupling constant g, or equivalently, the 
strong fine-structure constant as = g2 f 4n. The quantum theory contains an additional 
parameter, the 8-angle, that violates CP. The experimental limit on this parameter is 
8 < w-9 [2], so we will set it to zero for the purposes of this article. 

One can evaluate QCD scattering amplitudes in powers of as using a Feynman dia
gram expansion. As is typical in a quantum field theory, loop graphs are divergent and 
need to be treated using a renormalization scheme. The most commonly used scheme 
is modified minimal subtraction (MS) [3], and we will use this scheme throughout. 
An important consequence of renormalization is that the parameters as and mk of the 
QCD Lagrangian depend in a calculable manner on the MS subtraction-scale Jl· The J.l 

dependence of as is described by the 13-function, 

(4) 

In perturbation theory, 

a2 a3 a4 
13 (as)= -13o 2~ -131 (2;)2 -13z (2:)3 -· · ·' (5) 

where (for nf flavors of quarks) 

(6) 

(7) 

and the next two terms are also known [5]. 
If as is small, the renormalization group equation Eq. (4) can be integrated using only 

the 13o term to give 

(8) 
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Since 13o > 0 for nf < 16.5, <Xs(JL) ~ 0 as J1 ~ oo. The vanishing of the QCD coupling 
for large values of J1 is referred to as asymptotic freedom. One important consequence 
of asymptotic freedom, is that QCD processes at high energies can be reliably computed 
in a perturbation expansion in as. 

A measurable quantity, such as the total cross-section for e+ e- ~ hadrons at high 
energies can be computed as a function of the QCD coupling constant as(JL) and the 
center of mass energy EcM, 

cr ( e+ e- ~ hadrons) = -}-f (as (J.l), ln EcM) . 
. EcM J1 

(9) 

where f is a dimensionless function of its arguments. The form of the cross-section 
given in Eq. (9) follows from dimensional analysis: cr has dimensions of energy-2, and 
J1 has dimensions of energy. In the MS sscheme, any dependence on J1 is logarithmic, so 
f can only depend on lnEcM/J.l. The cross section cr(e+e- ~ hadrons) is a measurable 
quantity and cannot depend on the subtraction scale J.l, so the J1 dependence on the right 
hand side of Eq. (9) must cancel, 

d ( EcM) J1 dJ1f as (J.l), p = 0, (10) 

and any value of J1 can be used on the right hand side of Eq. (9). In practice, one can 
only compute the right hand side of Eq. (9) at some finite order in perturbation theory, 
and the approximate value of f can depend on J1 at higher order in perturbation theory. 
Typically, one finds that the perturbation expansion has terms of the form 

[ 
EcM]n <Xs(J.l)lnp , (11) 

which are referred to as "leading logarithms." Even if as(J.l) is small, the perturbation 
expansion can break down if lnEcM/ J1 is large. For this reason, it is conventional to 
choose the subtraction scale of order the center of mass energy EcM. The exact choice 
of scale (for example, whether J1 = 2EcM or EcM or EcM/2) is arbitrary, and differences 
in choice of scale are formally of higher order in as. Many methods have been proposed 
to determine the optimum scale to use for a given calculation [4]. The only way to 
determine the "best" scale at a given order is to compute the cross-section at next order. 
[Of course, in this case, one might as well use the more accurate formula to determine 

. the cross-section.] The scale dependence of a given quantity can also be used to estimate 
the size of neglected higher order corrections. Scale dependence is a dominant source of 
error in many of the quantities that will be used to determine as. 

Perturbation theory is valid if one chooses J1 to be of order EcM• so that the expansion 
parameter is as(EcM), with no large logarithms. This shows th~t at high-energies, the 
coupling constant is small because of asymptotic freedom, and QCD cross-sections are 
approximately those of free quarks and gluons. At low, energies, non-perturbative effects 
become important. 

The value of as is determined by computing a quantity in terms of as, and comparing 
with its measured value. One might think that it is better to use high-energy processes 
to determine as. since perturbation theory is more reliable. This is not necessarily the 
case. High energy processes can be computed more reliably precisely because they do 



6 

not depend very much on as. This means that errors in the experimental measurement 
or theoretical calculation get amplified when they are converted to an error on as. We 
will see in this article that low-energy extractions of as have comparable errors to those 
at high energy. 

In addition to scale dependence, the coupling constant as is also subtraction scheme 
dependent. The scheme dependence of the coupling constant is compensated for by the 
scheme dependence in the functional form for a measurable quantity, so that the value 
of an observable is scheme independent. The MS scheme will be used in this article, 
but there is still some residual scheme dependence we need to consider. In the MS 
scheme, heavy quarks do not decouple in loop graphs at low-energy. For example, the 
(3-function coefficient f3o = 11- 2nJf3, where nf is the number of quark flavors. This 
expression is true for all energies, irrespective of the mass of the quark. One might 
expect that at energies much smaller than the mass mQ of a heavy quark, the quark does 
not contribute to the (3-function. This cannot happen in the MS scheme, since MS is a 
mass-independent subtraction scheme, which results in a mass-independent (3-function. 
What happens is that there are large logarithms of the form 1nmQ/J1 that compensate 
for the "incorrect" (3-function at low-energies. In practice, one deals with this problem 
using an effective field theory. At energies smaller than mQ, one switches from a QCD 
Lagrangian with n 1 flavors to a QCD Lagrangian with n j - 1 flavors by integrating out 
the heavy quark flavor. The effect of the heavy quark is taken into account by higher 
dimension operators in the QCD Lagrangian, and by shifts in the parameters as and mk. 
Thus it is necessary to specify the effective theory when quoting the value of as. We 

will use the notation a~nJ) to denote the value of as in the nf flavor theory. One can 

compute the relation between a~nJ) and a~nr-I) at the scale J1 = mQ of the heavy quark. 
This relation is known to three loops [6], 

a}"r 1) ( mQ) = a\"1) ( mQ) [I+ 0.1528 (a\"')~ mQ) )' 

+(0.9721- 0.0847n/) ( a\"'~mQ)) 
3 

+ .. .] . (12) 

When quoting the value of as(J1), it is also necessary to specify the number of flavors 
in the effective theory. In most of the as determinations we consider, the appropriate 

effective theory to use is one with n1 = 5, and as will refer to a}5l unless otherwise 
specified. 

Classical QCD is a scale invariant theory, but this scale invariance is broken at the 
quantum level. The quantum theory has a dimensionful parameter A that characterizes 
the scale of the strong interactions. The A parameter is determined in terms of as(J1). 
The solution of the renormalization group equation Eq. (4) including the first three terms 
in the (3-function is 
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This equation can be used to determine A if as is known at some scale p.. The value 
of A depends o!l the number of terms retained in Eq. (13). The expansion parameter in 
Eq. (13) is 

ln[ln(~/A2)] 
ln (p.2 / A2) 

(14) 

which is small as long asp» A. In QCD, A is of order 200 MeV. The lastterm in 
Eq. (13) is often dropped in the definition of A. For a fixed value of as(Mz), the shift in 
A is approximately 15 MeV if the last term in Eq. (13) is dropped. 

The QCD ~-function depends on nf. and so changes across quark thresholds. This 
in turn implies that A changes across quark thresholds, so that A(nJ) is the value of A 
with n1 dynamical quark flavors. The matching conditions for A(nJ) -+ A(nrl) can be 
computed using the matching condition Eq. (12) for as. The differences between A(3), 

A(4), and A(5) are numerically very significant. 
In addition to the perturbative effects discussed so far, non-perturbative effects play 

an important role in strong interaction processes. The size of non-perturbative _effects 
is governed by the ratio of the strong interaction scale A to the typical energy EcM of 
a given. process. In many cases, non-perturbative effects are estimated using a model 
analysis, or by a phenomenological fit to the experimental data. A few processes can be 
analyzed rigorously using the operator product expansion (OPE) [7]; in this case, one 
can calculate the size of non-perturbative effects in terms of matrix elements of gauge 
invariant local operators. Two classic examples of this type are deep inelastic scattering, 
and the total cross-section for e+ e- -+ hadrons. 

It is convenient to calculate R(s), the ratio of the total cross-sections for e+e- -+ 
hadrons and e+ e- -+ p+ Jl- at center of mass-energy EcM = ..jS. One can show that 

(FJNFJN) 
R(s) = fo (as(s)) + fdas(s)) 2 + · · ·, 

s 
(15) 

where the first non-perturbative correction depends on the vacuum expectation value of 
the square of the gluon field-strength tensor. By dimensional analysis, this quantity is 
of order A 4, so the non-perturbative corrections are of order A 4/ s2• The existence of 
an OPE provides some crucial information on the size of non-perturbative corrections. 
For R( s), we know that the corrections vanish at least as fast as A 4 f s2 for large values 
of s, because FJNFJN is the lowest dimension operator that can contribute in the OPE. 
Similarly, it is known in deep inelastic scattering that the first non-perturbative correc
tions arise from twist-four operators, and are of order A2 jQ2, where Q is the momentum 
transfer. One can estimate the size of non-perturbative corrections for processes with an 
OPE, by estimating the value of operator matrix elements. In some cases, one is for
tunate enough that the relevant matrix element can actually be determined from some 
other measurement, or computed from first principles. The size of non-perturbative cor
rections is much less certain if the process does not have an OPE. Non-perturbative 
effects can fall off like a fractional power of A/ s, or could have some more compli
cated dependence on s. Typically, one uses some model estimate of the non-perturbative 
corrections. 

Perturbative and non-perturbative corrections to scattering cross-sections are interre
lated, because the QCD perturbation series is an asymptotic expansion, rather than a 
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convergent expansion. A dimensionless quantity f( as) has an expansion of the form 

(16) 

Typically, the coefficients en grow as n!, so that the series has zero radius of convergence. 
The large-order behavior of the perturbation series can be computed in certain limiting 
cases [8, 9, 10, 11, 12, 13]. If one studies QCD in the limit of a large number of flavors, 
n1-+ oo, with asnf fixed, one can sum all terms of the form (asnf )n. This is sometimes 
referred to as the ''bubble chain" approximation, because the graphs one sums are of the 
type show in Fig. 1. QCD is not asymptotically free as n f-+ oo. Nevertheless, one can 
try and apply the bubble chain results to QCD. The bubble chain graphs contribute to 
the QCD 13-function. In the large n1 limit, the coefficient 13o = 11- 2l3nf-+ -2l3n1. 

One therefore computes the bubble chain sum, makes the replacement n1 -+ -313ol2, 
and uses the resultant expression for. QCD with 13o > 0. This seemingly unjustified 
procedure has provided some useful insights into the nature of the QCD perturbation 
series. A detailed discussion of this method is beyond the scope of the present article. It 
is typically found that the coefficients en in the perturbation expansion have a factorial 
divergence in the bubble chain approximation. One can try ~d sum a series of this type 
using a Borel transformation. One defines the Borel transform off by 

fB(t) = cocS(t) + Ct + Czt + ... + Cn+I tn + .... 
n! 

Then the original function can be obtained by the inverse Borel transform, 

J(as) = fooo dt fB(t)e-tfa,. 

Suppose the coefficients off( as) have the form 

Cn+I = tfn!, n > 0. 

Then 
00 1 

fB(t) = cocS(t) + L tftn = cocS(t) + -
1 
-, 

n=O -at 

and the inverse Borel transform gives 

• 00 1 
f(as) =co+ [ dt e-rfa, __ . 

lo 1- at 

(17) 

(18) 

(19) 

(20) 

(21) 

The behavior of the integral is governed by the singularities in the complex t plane, 
which are referred to as renormalons. If a < 0, the integral is well-defined, since the 
singularity at t = 1 I a is not along the path of integration. If a > 0, the singularity is along 
the contour of integration. One can regulate the integral by deforming the contour around 
the singularity. The integral depends on the precise prescription used. The prescription 
dependence is related to the pole at t = 1 I a, which gives a contribution to the integral of 
the form 

exp [--1 ] =exp [-13oln(.uiA)] = (A)~;zna 
aas 2na p 

(22) 

The value of p is chosen to be the typical energy in the process, such as the momen
tum transfer· Q for deep inelastic scattering. The perturbative series then has the same 
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structure as a typical non-perturbative correction, a power law correction of the form 

(23) 

where uo = J3ol(4na) is the renormalon singularity in the variable u = J3otl(4n). [It is 
conventional to refer to the location of the renormalon singularity in u rather than in t.] 
Contributions of the form Eq. (23) are called renormalon ambiguities, since their value 
depends on the way in which one performs the inverse Borel transform. 

Renormalon ambiguities have the same structure as non-perturbative corrections. It 
has been suggested in the literature [13] that renormalons can be used as a guide to 
the size of non-perturbative corrections. There is one non-trivial check to this idea. A 
renormalon singularity at uo corresponds to a non-perturbative ambiguity of the form 
Eq. (23). In processes that have an OPE, all non-perturbative effects should be given 
by the matrix elements of gauge invariant local operators. To every renormalon ambi
guity in the perturbation expansion, there should be a corresponding ambiguity in the 
operator matrix element, such that the sum is well-defined [10]. This can only happen 
provided that there is a gauge invariant local operator corresponding to every renormalon 
singularity. For example, the first gauge invariant operator corrections to deep inelastic 
scattering are of the form A 2 I Q2, and it is known that the first renormalon ambiguity is 
at u = 1. Similarly, for R, the first non-perturbative corrections are of the form A41Q4, 

and the first renormalon ambiguity is at u = 2. The matching between renormalon sin
gularities and the OPE occurs in all examples that have been computed so far. For this 
reason, renormalon singularities have also been taken as an indication of the size of non
perturbative effects in processes without an OPE. Non-perturbative effects are expected 
to fall off faster if the renormalons are at larger values of u. 

Infrared sensitivity is also used to estimate the size of non-perturbative corrections to · 
a measurable quantity [15]. One computes the quantity in the presence of an infrared 
cutoff momentum "A. For example, one can imagine working in a box of size 111... or 
using a gluon mass of order "A. Cross-sections can have infrared divergences of the form 
ln"A. If one computes measurable cross-sections for color singlet states to scatter into 
color singlet states, one finds that the ln"A terms cancel, and the cross-section is infrared 
finite, a result known as the KLN [ 14] theorem. It is important to include finite detector 
resolution to get a finite cross-section, as for QED. For example, the Bhabha scattering 
cross-section for e+ e- --+ e+ e- has an infrared divergence at one-loop order. However, 
it is impossible to distinguish e+ e- --+ e+ e- from e+ e- --+ e+ e-y if the photon energy 
Ey is smaller than the detector resolution .S. The· measurable quantity is the sum of the 
e+ e- --+ e+ e- cross-section and the e+ e- --+ e+ e-y cross-section for Ey < .S, which is 
free of infrared singularities. While the ln"A term must cancel, terms of order "A, "A2 ln"A, 
etc. which vanish as "A--+ 0 need not cancel. The first non-vanishing term is an indication 
of the infrared-sensitivity of a given quantity. In QCD, one can imagine that the scale 
"A represents the confinement scale A. A process that is infrared sensitive at order "An 
would then be expected to have non-perturbative corrections of order An I Qn, where Q 

is the typical momentum transfer. In a few cases, one can analyze the problem using 
renormalon methods, and by using the criterion of infrared sensitivity. It is found in 
these cases that both methods give the same estimate for the size of non-perturbative 
corrections. 
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2 a.s FROM Z DECAYS AND e+ e- TOTAL RATES 

The total cross section fore+ e- -+ hadrons is obtained (at low values of .,fi) by multi
plying the muon-pair cross section by the factor R. At lowest order in QCD perturbation 
theory R = R0 = 3~qe~ where eq is the electric charge of the quark of flavor q. The 
higher-order QCD corrections to this are known, and th~ results can be expressed in 
terms of the factor: 

R = R(O) [ 1 + ; + C2 (;) 
2 
+ C3 ( :s y~ + .. · ] (24) 

where c2 = 1.411 and c3 = -12.8 [16]. 
This result is only correct in the zero-quark-mass limit. The 0( as) corrections are also 

known for massive quarks [17]. Theprincipal advantages of determining as from R in 
e+ e- annihilation are that the measurement is inclusive, that there is no dependence on 
the details of the hadronic final state and that non-perturbative corrections are suppressed 
by 1/s2 . 

A measurement by CLEO [18] at .,fS = 10.52 GeV yields as(10.52 GeV) = 0.20 ± 
0.01 ± 0.06 which corresponds to as(Mz) = 0.13 ± 0.005 ± 0.03. A comparison of the 
theoretical prediction of Eqn. 24 (corrected for the b-quark mass), with all the available 
data at values of .,fS between 20 and 65 GeV, gives [19] as(35 GeV) = 0.146±0.030. It 
should be noted that the size of the order a~ term is of order 40% of that of the order a; 
and 3% of the order as. If the order a~ term is not included, the extracted value decreases 
to as (35 GeV) = 0.142 ± 0.03, a difference smaller than the experimental error. 

Measurements of the ratio of the hadronic to leptonic width of the Z at LEP and 
SLC, rh;rJJ probe the same quantity as R. Using the average of rh;rJJ = 20.783 ± 
0.029 gives as(Mz) = 0.123 ± 0.004 [20]. The prediction depends upon the couplings 
of the quarks and leptons to the Z. The precision is such that higher order electroweak 
corrections to these couplings must be included. There are theoretical errors arising from 
the values of top-quark and Higgs masses which enter in these radiative corrections. 
Hence, while this method has small theoretical uncertainties from QCD itself, it relies 
sensitively on the electroweak couplings of the Z to quarks [21] and on the ability of the 
Standard Model of electroweak interactions to predict these correctly. The presence of 
new physics which changes these couplings via electroweak radiative corrections would 
invalidate the extracted value of as(Mz). Since the Standard Model fits the measured Z 
properties well, this concern is ameliorated and more precise value of as can be obtained 
by using a global fit to the many precisely measured properties of the Z boson and the 
measured Wand top masses. This gives [22] 

as(Mz) = 0.1192±0.0028 

This error is larger than the shift in the value of as(Mz) ("" 0.002) that would result if the 
order as(Mz)3 term were omitted and hence one can conclude that it is very unlikely that 
the uncertainty due to the unknown as(Mz)4 terms will dominate over the experimental 
uncertainty. 
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3 DETERMINATION OF as FROM DEEP INELASTIC SCATTERING 

The original ana still one of the most powerful quantitative tests of perturbative QCD is 
the breaking of Bjorken scaling in deep-inelastic lepton-hadron scattering. Consider the 
case of electron-proton scattering (ep-+ eX), where the cross-section can be written as 

da 4na;ms [1+(1-y)2 
2 2 2 ] 

dxdy = Q4 2 
2xFJ(x,Q )+(l-y)(F2(x,Q )-2xF1(x,Q )) (25) 

The variables are defined as follows (see Figure 2): q is the momentum of the exchanged 
photon, P is the momentum of the target proton, k is that of the incoming electron, and 

v 

X =JL 2mpv 
y -'LE. 

- k·p 

s = 2p·k+m~ 
(26) 

For charged current scattering, which proceeds via the exchange of a virtual W boson 
between the lepton and target nucleus, there is an additional parity violating structure 
function F3 

d(JvN G2M4 
F ws 2FvN( 2) 

dxdy = 2n(Q2 + Ma, )2 (xy 1 x, Q 

+(1-y-xZlM2/Q2)FzvN(x,Q2) 

-~x((l- y)2- l)F3vN.(x, Q2)) 

For vN scattering the sign of the last (xF3) term is reversed. 

(27) 

In the leading-logarithm approximation, the measured structure functions Fi(x, Q2) are 
related to the quark distribution functions q;(x, Q2 ) according to the naive parton model, 
for example 

(28) 

Here qi(x, Q2) is the probability for a parton of type ito carry a fraction x of the nucleon's 
momentum. The Q2 dependence of the parton distribution functions is predicted by 
perturbative QCD, hence a measurement of the Q2 dependence ("scaling violation") can 
by used to measure as. In describing the way in which scaling is broken in QCD, it is 
convenient to define nonsinglet and singlet quark distributions: 

Fs = Z,(qi+qJ 
i 

The nonsinglet structure functions have nonzero values of flavor quantum numbers such 
as isospin or baryon number. The variation with Q2 of these is described by the so-called 
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DGLAP equations [23] [24]: 

where * denotes a convolution integral: 

{1 dy (X) 
J * g = lx Y J(y) g Y 

The leading-order Altarelli-Parisi [24] splitting functions are 

pqq =1[ I+x2 ]+2B{1-x) 3 (1-x)+ 

pqg 

pgq = 1 [1+(~-x)2] 
pgg = 6 [1

-x +x{1-x) + x + llB(1-x)J x {1-x)+ 12 

_n{B(1-x) 

Here the gluon distribution G{x,Q2) has been introduced and 1/{1-x)+ means 

{1 dx J(x) = {1 dx J(x)- /(1) 
lo (1-x)+ lo {1-x) 

Measurement of the structure functions over a large range of x and Q2 allows both as and 
the parton distributions to be determined. Notice that as and the gluon distribution can 
only be obtained by measuring the Q2 dependence. The precision of contemporary ex
perimental data demands that higher-order corrections also be included [25]. The above 
results are for massless quarks. Algorithms exist for the inclusion of nonzero quark 
masses [26]. These are particularly important for neutrino scattering near the charm 
threshold. At low Q2 values, there are also important "higher-twist" (HT) contributions 
of the-form: 

(HT)( 2) 
Fi(x,Q2)=F';(LT)(x,Q2)+Fj Q:,Q +··· 

Leading twist (LT) terms· are those whose behavior can be predicted using the parton 
model, and are related to the parton distribution functions. Higher-twist corrections 
depend on matrix elements of higher dimension operators. These corrections are numer
ically important only for Q2< O(few GeV2) except for x very close to 1. At very large 
values of x corrections proportional to log( 1 - x) can become important [27]. 

From Eqn. 3, it is clear that a nonsinglet structure function offers in principle the most 
precise test of the theory, since the Q2 evolution is independent of the unmeasured gluon 
distribution. The CCFR collaboration fit to the Gross-Llewellyn Smith sum rule [28] 
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which is known to order a.~ [29] [30] (Estimates of the order a.: term are available [31]) 

JJ dx { F3vp (x, Q2) + F;P (x, Q2)} = 

3 (1- ~(1 +3.58~ + 19.0(~)2 )] -MIT 

where the higher-twist contribution MIT is estimated to be (0.09 ± 0.045) j Q2 in [29] [32] 
and to be somewhat smaller by [33]. The CCFR collaboration [34], combines their data 
with that from other experiments [35] and gives a.s ( J3 GeV) = 0.28 ± 0.035 ( expt.) ± 
0.05 (sys)~g:g~s (theory). The error from higher-twist terms (assumed to be MIT=. 
0.05 ± 0.05) dominates the theoretical error. If the higher twist result of [33] is used, the 
central value increases to 0.31 in agreement with the fit of [36]. This value extrapolates 
toa.s (Mz) =0.118±0.011. 

Measurements involving singlet-dominated structure functions, such as F2, result in 
correlated measurements of a.s and the gluon structure function. A full next to leading 

· order fit combining data from SLAC [37], BCDMS [38], E665 [39] and HERA [40]has 
been performed [41]. These authors extend the analysis to next to next to leading or
der (NNLO). In this case the full theoretical calculation is not available as not all the 
three-loop anomalous dimensions are known; their analysis uses moments of structure 
functions1 and is restricted to those moments where the full calculation is available 
[25, 42, 36]. The NNLO result is a.s (Mz) = 0.1172 ±0.0017 (expt.) ±0.0017 (sys). 
Here the first error is a combination of statistical and systematic experimental errors, 
and the second error is due to the uncertainties, quark masses, higher twist and target 
mass corrections, and errors from the gluon distribution. If only a next to leading order 
fit is performed then the value decreases to a.s (Mz) = 0.116 indicating that the theo
retical results are stable. No error is included from the choice of p; J1 = Q is assumed. 
We use a total error of ±0.0045 to take into account an estimate of the scale uncertainty. 
This result is consistent with earlier determinations [43], [44], and [45]. 

The spin-dependent structure functions, measured in polarized lepton nucleon scat
tering, can also be used to determine a.s. The spin structure functions G1 and G2 are 
defined in terms of the asymmetry in polarized lepton nucleon scattering 

aae_N daeN 
( ) p ap (29) 

a x,y = dxdy- dxdy 

where the subscript p (ap) refers to the state where the nucleon spin is parallel (anti
parallel) to its direction of motion in the center of mass frame of the lepton-nucleon 
system. In both cases the lepton has its spin aligned along its direction of motion. 

8na.2 y 
MQ~ ((1- 2/y2 +~iM2 /Q2

)G1 (x, Q2
) a(x,y) = 

(30) 

+4r M2G 2(x, Q2) 1 Q2) 

The Q2 evolution of the spin structure functions G 1 (x, Q2) and Gz (x, Q2) is similar to 
that of the unpolarized ones and is known at next to leading order [51].Here the val
ues of Q2 "' 2.5 GeV2 are small particularly for the E143 data [46] and higher-twist 

1The moments are defined by Mn = JJ X'F(x,Q2 )dx. 
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corrections are important. A fit [47] using the measured spin dependent structure func
tions measured by themselves and by other experiments [48] [46] gives a-s{Mz) = 
0.121 ± 0.002(expt.) ± 0.006(theory and syst.). Data from HERMES [49] are not in
cluded in this fit; they are consistent with the older data. 

as can also be determined from the Bjorken sum rule [50]. 

{I 1 
Ssj = lo dx ( Gf- G'l) = 6a3 (31) 

At lowest order in QCD a3 = 8A = g: = 1.2573 ± 0.0028. A fit gives [52] as(Mz) = 
O.lls~g:g~~; a significant contribution to the error being due to the extrapolation into 
the (unmeasured) small x region. Theoretically, the sum rule is preferable as the per
turbative QCD result is known to higher order, and these terms are important at the 
low Q2 involved. It has been shown that the theoretical errors associated with the 
choice of scale are considerably reduced by the use ofPade approximants [53] which re
sults in as(1.7 GeV) = 0.328±0.03(expt.) ±0.025(theory) corresponding to as(Mz) = 
0.116~g:gg~(expt.) ±0.003(theory). No error is included from the extrapolation into the 
region of x that is unmeasured. Should data become available at smaller values of x so 
that this extrapolation could be more tightly constrained, the sum rule method could pro
vide a better determination of as than that from the spin structure functions themselves. 

At very small val~es of x and Q2, both the x and Q2 dependence of the structure 
functions is predicted by perturbative QCD [54]. Here terms to all orders in asln(1/x) 
are summed. The data from HERA [40] on F{P(x,Q2 ) can be fitted to this form [55], 
including the NLO terms which are required to fix the Q2 scale. The data are dominated 
by 4 GeV2 < Q2 < 100 GeV2

. The fit [56] using H1 data [57] gives as(Mz) = 0.122± 
0.004 (expt.) ±0.009 (theory). (The theoretical error is taken from [55].) The dominant 
part of the theoretical error is from the scale dependence; errors from terms that are 
suppressed by 1/log(1/x) in the quark sector are included [58] while those from the 
gluon sector are not. 

Typically, A is extracted from the deep inelastic scattering data by parameterizing the 
parton densities in a simple analytic way at some Q5, evolving to higher Q2 using the 
next-to-leading-order evolution equations, and fitting globally to the measured structure 
functions. Thus, an important by-product of such studies is the extraction of parton 
densities at a fixed-reference value of Q5. These can then be evolved in Q2 and used 
as input for phenomenological studies in hadron-hadron collisions (see below). These 
densities will have errors associated with the that value of a5 • A next-to-leading order 
fit must be used if the process being calculated is known to next-to-leading order in 
QCD perturbation theory. In such a case, there is an additional scheme dependence; 
this scheme dependence is reflected in the 0( as) corrections that appear in the relations 
between the structure functions and the quark distribution functions. There are two 
common schemes: a deep-inelastic scheme where there are no order as corrections in 
the formula for F2(x, Q2) and the minimal subtraction scheme. It is important when these 
next-to-leading order fits are used in other processes (see below), that the same scheme 
is used in the calculation of the partonic rates. Most current sets of parton distributions 
are obtained using fits to all relevant data [59]. In particular, data from purely hadronic 
initial states are used as they can provide important constraints on the gluon distributions. 
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3.0.1 PHOTON STRUCTURE FUNCTIONS 

Experiments in e+ e- collisions can be used to study photon-photon interactions and to 
measure the structure function of a photon [60], by selecting events of the type e+ e- --7 

e+ e- + hadrons which proceeds via two photon scattering. If events are selected where 
one of the photons is almost on mass shell and the other has a large invariant mass Q, 
then the latter probes the photon structure function at scale Q; the process is analogous 
to deep inelastic scattering where a highly virtual photon is used to probe the proton 
structure. The Q2 variation of this structure function follows that shown above (see Eq 
3). 

A review of the data can be found in [61]. Data have become available from LEP [62] 
and from TRISTAN [ 63] [ 64] which extend the range of Q2 to of order 300 Ge V2 and x as 
low as 2 x w-3and show Q2 dependence of the structure function that is consistent with 
QCD expectations. Experiments at HERA can also probe the photon structure function 
by looking at jet production in yp collisions; this is analogous to the jet production in 
hadron-hadron collisions which is sensitive to hadron structure functions. The data [65] 
are consistent with theoretical models [66]. 

4 as FROM FRAGMENTATION FUNCTIONS 

Measurements of the fragmentation function d;(z,E), the probability that a hadron of 
type i be produced with energy zEin e+e- collisions at .jS = 2E, can be used to deter
mine as. As in the case of scaling violations in structure functions, QCD predicts only 
theE dependence in a form similar to the Q2 dependence ofEq 3. Hence, measurements 
at different energies are needed to extract a value of as. Because the QCD evolution 
mixes the fragmentation functions for each quark flavor with the gluon fragmentation 

' function, it is necessary . to determine each of these before as can be extracted. The 
ALEPH collaboration has used data in the energy range .jS = 22 GeV to Vi= 91 GeV. 
A flavor tag is used to discriminate between different quark species, and the longitudinal 
and transverse cross sections are used to extract the gluon fragmentation function [67]. 
The result obtained is as(Mz) = 0.126±0.007 (expt.) ±0.006 (theory) [68]. The theory 
error is due mainly to the choice of scale at which as is evaluated. The OPAL collabora
tion [69] has also extracted the separate fragmentation functions. DELPID [70] has per
formed a similar analysis using data from other experiments at center of mass energies 
between 14 and 91 GeV with the result as(Mz) = 0.124±0.007 ±0.009 (theory). The 
larger theoretical error is because the value of Jl was allowed to vary between 0.5.Ji and 
2.JS. These results can be combined to give as(Mz) = 0.125 ±0.005 ±0.008 (theory). 

5 as FROM EVENT SHAPES AND JET COUNTING 

An alternative method of determining as in e+ e- annihilation involves measuring the 
the topology of the hadronic final states. There are many possible choices of inclusive 
event shape variables: thrust [71], energy-energy correlations [72], average jet mass, 
etc .. These quantities must be infrared safe, which means that they are insensitive to the 
low energy properties of QCD and can therefore be reliably calculated in perturbation 
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theory. For example, the thrust distribution is defined by 

T = max(L IPtnl / L I Pi I), (32) 

where the sum runs over all hadrons in the final state and the unit vector n is varied. 
At lowest order in QCD the process e+ e- --+ qq results in a final state with back to 
back quarks i.e. "pencil-like" event with T = 1. Alternatively, the event can be divided 
by a plane normal to the thrust axis and the invariant mass of the particles in the two 
hemispheres is computed, the larger (smaller) of these is Mh (Ml)· At lowest order in 
QCDMh =M1 =0. 

The observed final state consists of hadrons rather than the quarks and gluons of per
turbation theory. The hadronization of the partonic final state has an energy scale of order 
A. The resulting hadrons acquire momentum components perpendicular to the original 
quark direction of order A. This effect induces corrections to the shape variables of or
der A/ ..JS. A model is needed to describe the detailed evolution of a partonic final state 
into one involving hadrons, so that detector corrections can be applied. Furthermore if 
the QCD matrix elements are combined with a parton-fragmentation model, this model 
can then be used to correct the data for a direct comparison with the perturbative QCD 
calculation. The different hadronization models that are used [73] model the dynamics 
that are controlled by non-perturbative QCD effects which we cannot yet calculate. The 
fragmentation parameters of these Monte Carlo simulations are tuned to get agreement 
with the observed data. The differences between these models can be used to estimate 
systematic errors. 

In addition to using a shape variable, one can perform a jet counting experiment. At 
order as the partonic final state qqg appears which can manifest itself as a three-jet 
final state after hadronization. Every higher order produce a higher jet multiplicity and 
measuring quantities that are sensitive to the relative rates of two-, three-, and four-jet 
events can lead to a deterrilination of as. There are theoretical ambiguities in the way 
that particles are combined to form jets. Quarks and gluons are massless, whereas the 
observed hadrons are not, so that the massive jets that result from combining them cannot 
be compared directly to the massless jets of perturbative QCD. 

The jet-counting algorithm, originally introduced by the JADE collaboration [74], has 
been used by many other groups. Here, particles of momenta Pi and pi are combined into 
a pseudo-particle of momentum Pi+ pi if the invariant mass of the pair is less than YOVs· 
The process is then iterated until no more pairs of particles or pseudo-particles remain. 
The remaiiling number of pseudo-particles is then defined to be the number of jets in the 
event, and can be compared to the perturbative QCD prediction which depends on Yo· 
The Durham algorithm is slightly different: in computing the mass of a pair of partons, it 
uses M2 = 2min{Ef,Ei)(l-coseij) forpartons of energies Ei and Ej separated by angle 
eii [75]. Different recombination schemes have been tried, for example combining 3-
momenta and then rescaling the energy of the cluster so that it remains massless. These 
varying schemes result in the same data giving slightly different values [76] [77] of as. 
These differences can be used to estimate a systematic error. However, such an error 
may be conservative as it is not based on a systematic approximation. 

The starting point for all these quantities is the multi jet cross section. For example, at 



17 

order aso for the process e+ e- -+ qqg: [81] 

1 d2cr 2as xi+~ ---= 
cr dx1dx2 31t (1-xt)(1-x2) 

where xi= 7sare the center-of-mass energy fractions of the final-state (massless) quarks. 

The order a; corrections to this process have been computed, as well as the 4-jet final 
states such as e+ e- -+ qqgg [82]. A distribution in a "three-jet" variable, such as those 
listed above, is obtained by integrating this differential cross section over an appropriate 
phase space region for a fixed value of the variable. Thus < 1 - T >......, as, < M~ > Is......, 
as and < Mf > Is ......, a;. 

The result of this integration depends explicitly on as but scale J.1 at which as(JJ) is to 
be evaluated is not clear. In the case of jet counting, the invariant mass of a typical jet 
(or JSYo) is probably a more appropriate choice than the e+ e- center-of-mass energy. 
While there is no justification for doing so, if the value of J.1 is allowed to float in the fit 
to the data, the fit improves and the data tend to prefer values of order .,fS I 10 Ge V for 
some variables [77] [83]; the exact value depends on the variable that is fitted. Typically 
experiments assign a systematic error from the choice of J.1 by varying it by a factor of 2 
around the value determined by the fit. The choice of this factor is arbitrary 

Estimates for the non-perturbative corrections to < 1 - T > have been made [84] 
using an operator product expansion. 

(33) 

where A and B known quantities [82], J.1 is the renormalization scale and ao is the non
perturbative parameter (the matrix element of an appropriate operator) to be determined 
from experiment. Note that the corrections are only suppressed by .,fi. This provides 
an alternative to the use of hadronization models for estimating these non-perturbative 
corrections. The DELPID collaboration [85] uses data below the Z mass from many 
experiments and Eq. 33 to determine as(Mz) = 0.119±0.006, the error being dominated 
by the choice of scale. The values of as and the non-perturbative parameter ao are also 
determined by a fit to using the variable < M~ > Is. While the extracted values of 
as(Mz) are consistent with each other, the values of ao are not. The ~alysis is useful 
as one can directly determine the size of the liE corrections; they are approximately 
20% (50%) of the perturbative result at .,fS = 91(11) GeV. Even at .,fS = 91 GeV the 
omission of these perturbative terms will cause a shift on the extracted value of as of 
......, 0.05 which is much larger than the quoted experimental errors. 

The perturbative QCD formulae can break down in special kinematical configura
tions. For example, the first term in Eq. 33 contains a term of the type as ln2 

( 1 - T). 
The higher orders in the perturbation expansion contain terms of order a~ 1nm ( 1 - T). 
For T ......, 1 (the region populated by 2-jet events), the perturbation expansion in as is 
unreliable. The terms with n ::; m can be summed to all orders in as [86]. If the jet 
recombination methods are used, higher-order terms involve a~lnm(y0), these too can 
be resummed [87]. The resummed results give better agreement with the data at large 
values of T. Some caution should be exercised in using these resuinmed results because 
of the possibility of overcounting; the showering Monte Carlos that are used for the 
fragmentation corrections also generate some of these leading-log corrections. Different . 
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schemes for combining the order a.; and the resummations are available [88]. These 
different schemes result in shifts in a.s(Mz) of order ±0.002. The use of the resummed 
results improves the agreement between the data and the theory. 

Studies on event shapes have been undertaken at lower energies at TRISTAN, PEP/PETRA, 
and CLEO. A combined result from various shape parameters by the TOPAZ collabora-
tion gives a.s(58 GeV) = 0.125±0.009, using the fixed order QCDresult, and a.s(58 GeV) = 
0.132 ± 0.008 (corresponding to a.s(Mz) = 0.123 ± 0.007) where the error is domi
nated by scale and fragmentation uncertainties. The CLEO collaboration fits to the 
order a.; results for the two jet fraction at ..,fS = 10.53 GeV, and obtains a.s(10.93) = 
0.164±0.004 (expt.) ±0.014 (theory) [90]. The dominant systematic error arises from 
the choice of scale (j.L), and is determined from the range of a.s that results from fit with 
J1 = 10.53 GeV, and a fit where J1 is allowed to vary to get the lowest x2. The latter 
results in J1 = 1.2 GeV. Since the quoted result corresponds to a.s(1.2) = 0.35, it is by 
no means clear that the perturbative QCD expression is reliable and the resulting error 
should, therefore, be treated with caution. A fit to many different variables as is done in 
the LEP/SLC analyses would give added confidence to the quoted error. 

Recently studies have been carried out at energies between "'130 Ge V [91] and "'189 Ge V 
[92]. These can be combined to give a.s(130 GeV) = 0.114±0.0Q8 and a.s(189 GeV) = 
0.1104±0.005. The dominant errors are theoretical and systematic and, as most of these 
are in common at the different energies, these data, those at the Z resonance and lower 
energy provide very clear confirmation of the expected decrease in a.s as the energy is 
increased. 

A combined analysis of the data between 35 and 189 GeV using data from OPAL 
and JADE [94] using a large set of shape variables shows excellent agreement with 
a.s(Mz) = 0.118T!:8:ggi~· A comparison of this result with those at the Z resonance from 
SLD [77], OPAL [78], L3 [79], ALEPH [80], and DELPHI [95], indicates that they are 
all consistent with this value. The experimental errors are smaller than the theoretical 
ones arising from choice of scale J1 and modeling of non-perturbative effects, which are 
common to all of ~e experiments. The SLD collaboration [77] determines the allowed 
range of J1 by allowing any value that is consistent with the fit. This leads to a larger 
error ("' 0.0056) than that obtained by DELPHI [95] who vary J1 by a factor of 2 around 
the best fit value and obtain ±0.0008. We elect to use a more conservative average of 
a.s(Mz) = 0.119±0.005. 

At lowest order in a.s, the ep -t eX scattering process produces a final state of (1+1) 
jets, one from the proton fragment and the other from the quark knocked out by the un
derlying process e + quark -t e + quark. At next order in a.s, a gluon can be radiated, 
and hence a (2+1) jet final state produced. By comparing the rates for these (1+1) and 
(2+1) jet processes, a value of a.s can be obtained. A NLO QCD calculation is avail
able [96]. The basic methodology is similar to that used in the jet counting experiments 
in e+ e-· annihilation discussed above. Unlike those measurements, the ones in ep scat
tering are not at a fixed value of Q2• In addition to the systematic errors associated 
with the jet definitions, there are additional ones since the structure functions enter into 
the rate calculations. Results from H1 [97] and ZEUS [98] can be combined to give 
a.s(Mz) = 0.118 ± 0.0015 (stat.) ±0.009 (syst.). The contributions to the systematic er
rors from experimental effects (mainly the hadronic energy scale of the calorimeter) are 

· comparable to the theoretical ones arising from scale choice, structure functions, and jet 
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definitions. The theoretical errors are common to the two measurements; therefore, we 
have not reduced the systematic error after forming the average. 

~ 

6 as FROM -c DECAY 

The coupling constant as can be determined from an analysis of hadronic 't decays [99, 
100, 101]. The quantity that will be used is the ratio 

Rt = r('t-+ Vt + hadrons + (y)) 
r('t-+ VteVe + (y)) ' 

(34) 

where (y) represents possible electromagnetic radiation, or lepton pairs. In the absence 
of radiative corrections, the ratio Rt is 

(35) 

where 3 is the number of colors. The experimental value Rt = 3.61 ± 0.05 is close to 
three, which is experimental evidence for the existence of three colors in QCD. The 
deviation of Rt from three is used to extract as. 

The weak decay Lagrangian for non-leptonic 't decay is 

L =-~ Ct(Jl) [V~vt'fPL'tdyJ.IPLu+ VU:vt'fPL'tiyJ.IPLu], (36) 

where Vus and Vud are the CKM mixing angles. The Lagrangian Eq. (36) is obtained at 
the scale Jl = Mw by integrating out the W boson to generate a local four-Fermion oper
ator'in the effective theory below Mw, and Cr = 1 at Jl = Mw. The typical momentum 
transfer in 't decays is of order fnt, so it is necessary to scale the Lagrangian Eq. (36) 
from Jl = Mw to Jl = fnt. Electromagnetic interactions renormalize the Lagrangian. At 
one-loop, the renormalization from graphs shown in Fig. (3) produce a multiplicative 
renormalization of the Lagrangian, and give 

( 
· aem Mw 

Ct ~nt) = 1 +-In-:::::: 1.009. 
. 1t 1nt 

(37) 

The 't decay amplitude 't -+ vtX, where X is the final hadronic state, can be written as 

Squaring the amplitude, and computing the decay rate gives 

r = 

where we have retained only the V ud term for simplicity. The sum on X is symbolic for 
the sum over all final states, including phase space factors. The cS function can be written 
as 

(40) 
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and the sum on X can be written as 

L(2n)4o4(q- Px)(OI ztyvPLd IX)(XI dyJ.LPLu I b) = Wv~d)(q). (41) 
X 

The tensor WJ.LV is related to another quantity ITJ.IV, defined by 

(42) 

where jll = dyJ.LPLu· Inserting a complete set of states in the time-ordered product, one 
finds that 

wJvud) = 2 Imrr~) (43) 

The tensor ITJ.IV depends on the only variable, q, and must have the form 

(44) 

by Lorentz invariance. The tensor W J.IV is then given by 

(45) 

where 
,....(ud) - 2 lmiT(ud) 
;:,.:.L - . L ' (46) 

If the light quark mass difference md - mu and ms - mu are neglected, the hadronic 
currents dyuPLu and SVuPLu are conserved. This implies that ifiTJ.LV = 0, so that ITL{q2) = 
0. Inserting Eq. (40) and Eq. (45) into Eq. (47) gives 

r = G} IC-rl
2 I 4 ( I d

3
pv 

2 m-r d qo P-r- Pv- q) (2n)32Ev 

(m;- i) [Qr(m; + 2q2
) + QLm~], (47) 

where 
.Q _ IV: 12 g(ud) +IV: 12 g{us) T,L - ud T,L us T,L (48) 

and we added back the Vus contribution. There is no interference term (at lowest order 
in the weak interactions), because the u -t d and u -t s currents lead to final states 
with different flavor quantum numbers, and the strong interactions conserve flavor. The 
hadronic invariant mass distribution can then be written as 

ar G2 1C 12 

-d = 
8
F 2 1:3 (m~-s)

2 [Qr(s)(m;+2s)+.QL(s)m;] (49) 
s 1t TnT 

The ratio of the hadronic to leptonic decay rate of the 1: is given by [100] 

The hadronic tensors ITL,r(s) are analytic in the complex s plane, except for a branch 
cut along the positive real axis. The discontinuity across the cut is .QL,r(s), and is the 
cross-section for the currents to create hadrons. Clearly, the hadron production rate is 
sensitive to non-perturbative effects, and can not be computed reliably. Far away from 
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the physical cut, there are no infrared singularities, and QCD perturbation theory is valid. 
One can rewrite the integral Eq. (50) as 

RT = 61ti fc ~~ ( 1- :i) 2 

(rrr(s) ( 1 + ~~) +llL(s)], (51) 

where C = C1 is the contour shown in Fig. (4). The difference ofiTL,T above and below 
the cut is QL,T• so this gives back Eq. (50). Since ITL,T have no singularities in the 
complex s plane other than the branch cut, one can deform the contour C1 to the contour 
C2, and use Eq. (51) with C = C2. The advantage of using Eq. (51) with C = C2 rather 
than C = C1 is that one needs to know ITL,T far away from the cut for most of the 
integration contour. The contour approaches the cut at s = m~, but at this point, the 
integrand vanishes as (s- ~)2 , so the contribution of the region nears= m~ to the total 
integral is suppressed [100] . 
. IT(s) can be computed in perturbation theory using an operator product expansion, 

which is valid away from the physical cut. The perturbation theory result for ll(s) is 
then substituted in Eq. (51). In practice, the calculation can be simplified by using the 
perturbation theory value for Q(s) in Eq. (50). We have argued above that perturbation 
theory is not valid for Q(s). Nevertheless, using the perturbation theory value for Q(s) in 
Eq. (50) is justified because ll(s) in perturbation theory has the same analytic structure 
in QCD. Thus using the perturbation theory value of ll(s) in Eq. (51) is equivalent to 
using-the perturbation theory value for Q(s) in Eq. (50), even though the perturbative 
computation of Q(s) is not valid. 

The OPE for ll{s) is closely related to that fore+ e- -+ haqrons, which depends on 
the time-ordered product of two electromagnetic currents. 

(52} 

where Ci are the cqefficient functions, and Oi are the local operators. Since the contour 
C2 is a circle of radius ~ in the complex s plane, one expects that logarithms in the 
uncalculated higher order corrections are minimized if one chooses J1 =~-.The leading 
order operator is the unit operator. In the limit that the light quark masses are neglected, 
ITL vanishes, and we only need to compute llr, giving 

2n0r(s) = 1Crl
2 

(1Vudl
2 + 1Vusl

2
) 

X [1 +ex,~ +F, (ex,~)' +F• ( a,;,vs)) 3 + . ..]. (53) 

The first coefficient is the well-known result that the ratio cr( e+ e- -+ hadrons) I a( e+ e- -+ 

qij) is 3 ( 1 + as ( vs) I 1t). The next two coefficients are 

F3 = 1.9857- 0.1153nf, F4 = -6.6368 -1.2001nf- 0.0052n}. (54) 

Using the 13-function to write as( y's) in terms of as(~). evaluating the s integral, and 
setting nf = 3 gives (100] 

R-r = 3IC-rl
2 (1Vudl 2 + 1Vusl2

) 

X [I+ "•~"'<) + 5.2023 (a,~)) 
2 + 26.366 ( "•~"'<)) 

3 + .. .] (55) 
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Assuming a8 (m,;) ~ 0.35, the series in brackets is 1 + 0.111 + 0.065 + 0.036 + ... , so 
the terms are still numerically decreasing till order a3. One can use the value of the 
last term as an estimate of the theoretical uncertainty in the perturbative value for the 
coefficient of the unit operator. This also tells us that we can neglect corrections from 
higher dimension operator that are smaller than about 3%. · 

The 1 I m; corrections to R-r arise from the quark mass corrections to the coefficient of 
the unit operator in the OPE. At order m2 lm;, the currents are no longer conserved, so 
one needs to compute both nL and nT. The only light quark mass contribution of any 
significance is the s-quark mass correction [100], 

(56). 

Using m8 "' 150 MeV as an estimate for the s-quark mass gives 8R-r"' -0.008, which is 
smaller than the error in the perturbation series. 

The 1Im~ and corrections in the OPE arise from the dimension four. operators FJNFJN 
and m\jnjl, and the 1Im~ corrections from the four-quark operators \jfJWijii'\jl, where r 
is some combination of y matrices. An analysis of these corrections, based on model es
timates of the operator matrix elements indicates that these corrections are smaller than 
the uncertainty in the perturbation series [100]. The size of non-perturbative corrections 
can be determined directly from the experimental data. Instead of considering the in
_tegral Eq. (50) that gives the total hadronic width, one compares the integral of dr Ids 
weighted with 

(1- slm'i)k(slm'i)1 with the corresponding moment of the experimental data. By 
studying the moments for different values of k and l, one finds that the non-perturbative 
corrections are about 3% [103, 104], and so are comparable in size to the uncertainty in 
the perturbation series. 

The experimentally measured quantity is R~ud) = 3.484 ± 0.024 [102, 103], the ratio 
for 't to decay into non-strange hadrons to the leptonic decay rate. This is given by 
Eq. (55), dropping Vus. and gives 

as(m,;) = 0.34 ± 0.03, (57) 

where we have assumed a theoretical uncertainty of 100% in the a 3 term. This value 
corresponds to 

as(mz) = 0.119 ± 0.003, (58) 

7 as FROM LATTICE GAUGE THEORY COMPUTATIONS 

The strong coupling constant as can be determined from lattice gauge theory calculations 
of the hadronic spectrum. The basic procedure used is to choose a definition of as, and 
measure its value on the lattice. One then has to set the scale at which as takes on 
the measured value. The lattice scale can be normalized using the hadronic spectrum 
measured on the same lattice. Finally, one has to convert the lattice definition of as to 
the value defined in the continuum in a scheme such as MS. 

There are several sources of systematic errors that limit the current accuracy in de
termining as. Typically, as is determined by determining the spectrum of heavy quark 
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bound states on the lattice. There are corrections due to the finite volume and finite 
lattice spacing a. The finite lattice spacing errors can be reduced by using improved 
actions, that are accurate to higher order in a. To some extent, one can estimate the error 
due to finite volume and finite lattice spacing by repeating the simulation on a larger 
lattice. The dominant systematic uncertainty is due to the quenched approximation, in 
which light quark loops are neglected. It is difficult to reliably estimate the systematic 
errors due to this approximation without doing a full simulation including dynamical 
fermions. Simulations with dynamical fermions are just starting to be done, and in a few 
years one should have more reliable estiplates of as. 

There is one important advantage to using a heavy quark system such as the Y to de
termine as. The leading correction to the Y energy levels due to the light quark masses 
is linear in the quark masses, and can only depend on the flavor singlet combination 
mu + md + ms. Thus the light quark mass corrections can be computed to a good ap
proximation using three light quarks of mass (mu + md + ms)/3. This avoids having to 
simulate almost massless dynamical quarks, which is very difficult. 

Lattice calculations can also be used to test theoretical calculations, and determine the 
regime in which perturbation theory is applicable. In the quenched approximation, one 
can study the scale dependence of the coupling constant on the lattice. This provides a 
check on the perturbation theory calculation with n 1 = 0. The result is in remarkable 
agreement with the perturbation theory result in the regime where the coupling constant 
is weak [105, 106]. 

The Fermilab and SCRI groups use the S- P and 1S- 2S splittings in theY system to 
determine as. There are some systematic deviations of the calculated numbers from their 
experimental values in the quenched approximation (n1 = 0), which are dramatically 
reduced if one includes nf = 2 dynamical flavors. The value of as(Mz) in the MS · 
scheme is [107] 

as(Mz) = 0.1159±0.0019±0.0013±0.0019 (59) 

where the first error is due to discretization effects, relativistic corrections, and statis
tical errors, the second is due to dynamical fermions, and the third is from conversion 
uncertainties. 

More recent computations give (in the n1 = 5 scheme) [108] 

as(Mz) = 0.1174±0.0024 (60) 

and [109] 
as(Mz) = 0.1118±0.0017. (61) 

An average of these newer values gives as(Mz) = 0.115 ± 0.004, where we have in
cluded the difference between the two central values as an estimated additional system
atic error. 

8 as FROM HEAVY QUARK SYSTEMS 

Heavy quark bound states such as the Y can also be used to extract a value for as. If the 
bound state is treated using non-relativistic quantum mechanics, the annihilation decays 
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l' -+ p+ 11-, l' -+ ggg and l' -+ ygg can be computed as the product of the probability to 
find the quark-antiquark pair at the origin, times the annihilation rate for QQ at rest to 
decay to the final state. The relevant Feynman graphs are shown in Fig. 5. The decay 
rate l' -+ ggg is the inclusive decay rate for l' -+ hadrons, and the decay rate for r -+ ygg 
is that for l'-+ y+ hadrons. The probability to find QQ at the origin, l\jf{O)I 2

, is sensitive 
to the detailed dynamics of the QQ bound state. If one takes the ratio of decay rates, 
l\jf{O)I 2 drops out, and the ratio of decay rates can be used to determine as. 

The above qualitative discussion can be made precise using NRQCD (non-relativistic 
QCD) to calculate the properties of the l' [110]. NRQCD has an expansion in powers 
of v, the velocity of quarks in the bound state." The as expansion is coupled to the v 
expansion, since v "' as in a Coulombic system. The NRQCD approach allows one to 
systematically factor the decay rate into short distance coefficients that are calculable in 
perturbation theory, and non-perturbative hadronic matrix elements that generalize the 
notion of the wavefunction at the origin. The l' wavefunction in NRQCD has different 
Fock components. The lowest order (in v) component is jQQ) and the first correction 
contains a gluon, jQQg). The jQQg) is referred to as the color-octet component, because 
the two quarks are in a color octet state. The NRQCD velocity counting rules show that 
the probability to find the l' in the octet component is of order v2. 

The decay rate for l'-+ p+ J1- in NRQCD is [110] 

r{l'-+ J1+J1-) = 2Im;psl) (Yj Ot est) jY) + 2Im~pst) (Yj PI est) jr) (62) 
b b 

where Mb is the b-quark pole mass, OI eSt) = \jft crx · xt 0"\j/ and Pte St) = -i/4{\jft crx · 
X t cr( il)2\jf +h. c.), and \jf and X t annihilate quarks and antiquarks, respectively. The 

· first term is the leading order contribution, and the second term is the v2 correction. The 
coefficients fee e s I) and 8ee e s l) can be computed from the first graph in Fig. 5 at lowest 
order in perturbation theory. The values are [110] 

2 2 
3 na eb [ as] Imfee( St) = -

3
- 1 - 16n , (63) 

where eb = -1/3 is the charge of the b-quark, and the radiative correction to ieee St) 
has also been included. 

The decay rate for l'-+ hadrons is [110] 

r{l'-+ hadrons) = Zim~rSI) (rj OteSt) jr) + Zlm~rst) (Yj P1est) jr) 

+r(8l(r-+ hadrons) (64) 

where r(8) is the contribution to the decay rate from the color-octet component of the l' .. 
In NRQCD, the color octet decay rate is v4 suppressed relative to the color singlet decay 
rate. However, the color octet component can decay into two gluons, rather than three, 
so the color octet decay rate of order a;v4 can compete with the relativistic correction to 
the color singlet decay rate of order a;v2. The coefficient functions are [110] 
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(65) 

The a.~ term for lm ft (3 S t) has the given value when the scale of the a.; term is the 
b-quark pole mass. 

The decay rate f'(T -+ y + hadrons) has the form 

3 3 . 

f'(T -+y+hadrons) = 
2lm/y~ St) (TI OtCSt) IT)+ 

2lmgy~ St) (TI PtCSt)IT), (66) 
Mb Mb 

where the coefficient function is [110] 

8 2 2 2 

27 
(n - 9)a.s (Mb)a.eb 

X [ 1 + ( -9.46(2)CF + 2.75(11)CA- 0.774(l)nf) ~)] (67) 

The equations of motion can be used to relate the matrix elements of the S-wave and 
P-wave operators [111], 

(TI Ptest) IT)= Mr-Mb (TI o1Cst) IT) +O(v2
). 

Mb 
(68) 

The matrix element of the S-wave operator is the NRQCD analog of the wavefunction at 
the origin in a potential model calculation. The matrix element is non-perturbative, and 
can be eliminated by considering ratios of decay rates. The matrix element of Pt (3 St) 
can be determined from Eq. (68) using estimates of the b-quark pole mass Mb, and the 
measured T mass, as was done in Ref. [111]. However, one can instead replace (Mr-
2Mb)/Mb by -4/9a.;, the lowest-order result for the binding energy for a Coulomb 
bound state. This reduces somewhat the uncertainty in the extraction of a.s, since it 
eliminates any uncertainty from the pole mass. 

The experimental value of the ratio r(T-+ hadrons)/r(T-+ £+£-) = 39.11 ±0.4 [112], 
where i = e,p,-r: gives a.s(Mb) = 0.177 ±0.01, using the ratio of the theoretical formula 
for the decay widths. The unknown octet decay rate has been estimated to be less than 
9% in Ref. [111], and this has been included as a theoretical uncertainty. The decay 
rates Eq. (62)-{66) have been written in terms of a.s(Mb)· One can instead rewrite them 
in terms of a.;(p) using Eq. (8), extract a.s(Jl), and convert this into a.s(Mb) using Eq. (8). 
We have include the uncertainty of a scale change by a factor of two in the theoretical 
estimate. The octet and scale uncertainties are comparable in size. 
· The experimental value of the ratio r(T-+ Y+ hadrons)/r(T-+ hadrons) = 2.75 ± 
0.04 ± 0.15 [113] can also be used to extract a.s. It is convenient to use the experimental 
value of r(T -+ hadrons) /i(T -+ £+g-) to convert this to r(T -+ y + hadrons) fr(T -+ 
£+£-) = 1.075 ± 0.06, before comparing with the theoretical results. This eliminates 
the theoretical uncertainty due to the octet component in the hadronic decay rate. The 
extracted value of a.s(Mb) is 0.189±0.01, where we have included a scale uncertainty as 
above. Averaging the two extractions gives a.s(Mb) = 0.183 ± 0.01 which corresponds 
to a.s(Mz) = 0.108 ± 0.004 
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9 as FROM HADRON-HADRON SCATTERING 

There are many process at high-energy hadron-hadron colliders which can constrain the 
value of as. All rely on the QCD improved parton model, and on the factorization 
theorems of QCD [ 114]. The rate for any process is expressed as a convolution of the. 
partonic scattering amplitude crf.j and parton distribution functions discussed in section 
3; see Eq 28 (note that here we use f rather than q as the sum on i, j runs over quarks 
and gluons. 

a=~ j dxtdxzfi(x,M2)/j(x,M2)a~(M) 
1,] 

(69) 

The factorization scale M is arbitrary. As in the case of the scale 11 used in a.s(l1) (see 
Eq 10 and the surrounding discussion), the exact result cannot depend on its choice. 
However as the processes crf,j is only calculated to some finite order in perturbation 
theory, some residual M dependence will remain. As in the case of 11 the sensitivity to 
M will be small if it is chosen to be a characteristic scale of the process; for example, in 
the case of the production of a pair of jets of momentum, PT, transverse to the direction 
defined by the incoming hadrons, M = PT is a reasonable choice. 

The quantitative tests of QCD and the consequent extraction of as which appears 
in crf,j are possible only if the process in question has been calculated beyond leading 
order in QCD perturbation theory. The production of hadrons with large transverse mo
mentum in hadron-hadron collisions provides a direct probe of the scattering of quarks 
and gluons: qq--+ qq, qg--+ qg, gg--+ gg, etc .. Here the leading order term in crf.j 
is of order a; so the rates are sensitive to its value. Higher-order QCD calculations 
of the jet rates [115] and shapes are in impressive agreement with data [116]. This 
agreement has led to the proposal that these data could be used to provide a determi
nation of as [117]. A set of structure functions is assumed and Tevatron collider data 
are fitted over a very large range of transverse momenta, to the QCD prediction for 
the underlying scattering process that depends on as. The evolution of the coupling 
over this energy range ( 40 to 250 Ge V) is therefore tested in the analysis. CDF obtains 
a.s(Mz) = 0.1129±0.0001 (stat.) ±0.0085 (syst.) [118]. Estimation of the theoretical 
errors is not straightforward. The structure functions used depend implicitly on as and 
an iteration procedure must be used to obtain a consistent result; different sets of struc
ture functions yield different correlations between the two values of as. We estimate 
an uncertainty of ±0.005 from examining the fits. Ref. [117] estimates the error from 
unknown higher order QCD corrections to be ±0.005. Combining these then gives: 
a.s(Mz) = 0.1129 ± 0.011 

QCD corrections to Drell-Yan type cross sections (the production in hadron collisions 
by quark-antiquark annihilation of lepton pairs of invariant mass Q from virtual photons 
or of real W or Z bosons), are known [119]. These processes are not very sensitive 
to as as the leading piece in crf,j is of order a~. The production of W and Z bosons 

and photons at large transverse momentum begins at order a~. The leading-order QCD 
subprocesses are qq--+ yg and qg--+ yq. The next-to-leading-order QCD corrections are 
known [120] [121] for photons, and for W jZ production [122]; ~d so an extraction of 
as is possible in principle. 

Data exist on photon production from the CDF and D0 collaborations [123] [124] 
and from fixed target experiments [125]. Detailed comparisons with QCD predictions 
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[126] may indicate an excess of the data over the theoretical prediction at low value of 
transverse momenta, although other authors [127] find smaller excesses. These differ
ences indicate that while the process may be understood, no meaningful extraction of <X.s 

is possible. 
The UA2 collaboration [128] has extracted a value of <Xs(Mw) = 0.123 ±0.018(stat.) ± 

0.017(syst.) from the measured ratio Rw = cr(W + 1jet)/cr(W +Ojet). The result de
pends on the algorithm used to define a jet, and the dominant systematic errors due to 
fragmentation and corrections for underlying events (the former causes jet energy to be 
lost, the latter causes it to be increased) are connected to the algorithm. The scale at 
which <Xs (M) is to be evaluated is not clear. A change from J1 = Mw to J1 = Mw /2 causes 
a shift of 0.01 in the extracted a.s, and the quoted error should be increased to take this 
into account. There is also dependence on the parton distribution functions, and hence, 
a.s appears explicitly in the formula for Rw, and implicitly in the distribution functions. 
Data from CDF and D0 on theW PT distribution [129] are in agreement with QCD 
but are not able to determine a.s with sufficient precision to have any weight in a global 
average. 

The production rates of b quarks in pp have been used to determine a.s [132]. The 
next to leading order QCD production processes [131] have been used. At order a.s the 
production processes are gg --+ bb and qq --+ bb result in b-hadrons that are back to back 
in azimuth. By selecting events in this region the next-to leading order calculation can 
be used to compare rates to the measured value and a value of a.s extracted. The errors 
are dominated by the measurement errors, the choice of J1 and M, and uncertainties in the 
choice of structure functions. The last were estimated by varying the structure functions 
used. The result is a.s(Mz) = 0.113~8:8?~-

10 CONCLUSION 

The previous sections have illustrated the large number of processes where quantitative 
tests of QCD can be made and a value of a.s extracted. Figure 6 shows the values of 
a.s(Mz) deduced from the various processes shown above. The consistency and precision 
of these results is remarkable. Figure 7 shows the values of a.s(Jl) and the values of J1 
where they are measured. This figure clearly shows the experimental evidence for the 
variation of a.s(Jl) with J1 predicted by Eq.4. 

An average of the values in Figure 6 and in Table 1 gives a.s(Mz) = 0.1173, with a 
total x.Z of 9 for twelve fitted points, showing good consistency among the data. The 
value from heavy quark systems contributes slightly more that one half of the total x2• If 
this result is omitted the average increases to 0.1185. All of the other results are within 
l.lcr of the average value. The error on the average, assuming that all of the errors 
in the contributing results are uncorrelated, is ±0.0014, and may be an underestimate. 
We have seen that in almost all of the cases discussed, the errors are dominated by 
systematic, usually theoretical errors. Only some of these, notably from the choice of 
scale, are correlated. it is important to note that the average is not dominated by a single 
measurement; there are many results with comparable small errors: from 't decay, lattice 
gauge, theory deep inelastic scattering and the zO width. We quote our average value as 
<x.s(Mz) = 0.1173 ±0.002, which corresponds to A(S) = 200~~j MeV using Eq. 13. The 
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reader may wish to consult other recent articles for different opinions [133, 134]. 
Significant improvements in the precision in the near future are not likely. The ac

curacy of data from LEP will not improve. It is possible that a better understanding of 
the jet rates in hadron-hadron colliders and a systematic treatment of the errors from 
the strUcture functions will lead to and improvement in the precision of the value of as 
derived. In many cases where the data are quite precise, such as heavy quark system, 
theoretical uncertainties limit the precision. In the very long term precision at the 1% 
level may be achievable [135]. 
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Figure 1: Graphs that contribute to the propagator correction in the bubble chain approx-

imation. 

Figure 2: Figure showing the kinematics of deep inelastic scattering ep-+ eX 

Figure 3: Electromagnetic corrections to the 't decay vertex. 

Figure 4: Integration contours Ct and Cz in the complex s plane. 

Figure 5: Decay diagrams for Y-+ p+ J.l-, Y-+ ggg andY-+ ygg. 
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Figure 7: Values of a-s(,u) and the values of ,u where they are measured. these results are, 

in increasing value of ,u, 't width, heavy quark decays, deep inelastic at J < Q2 > = 7 

Ge V, e+ e- annihilation rate at 35 Ge V, e+ e- event shapes at 58 Ge V, the hadronic Z 

width, e+ e- event shapes at Z, 130 and at 189 Ge V. The lines show our average and 1 a 

errors. 
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