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Abstract 

In this paper we prove a conjecture regarding the form of the Born

Infeld Lagrangian with a U{1)2n gauge group after the elimination of 

the auxiliary fields. We show that the Lagrangian can be written as a 

symmetrized trace of Lorentz invariant bilinears in the field strength. 

More generally we prove a theorem regarding certain solutions of uni

lateral matrix equations of arbitrary order. For solutions which have 

perturbative expansions in the matrix coefficients, the solution and all 

its positive powers are sums of terms which are symmetrized in all the 

matrix coefficients and of terms which are commutators. 
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1 Duality Invariant Born-Infeld Lagrangians 

In this note we prove the conjecture made in [1, 2] regarding the forin of 

Sp(2n, JR) or U(n, n) duality invariant Born-Infeld Lagrangians. See [2] for 

a more extensive list of references regarding the duality invariance of Born

Infeld theory. In [1, 2], inspired by [3], we exploited the fact that the square 

root in the U(1) gauge group Born-Infeld Lagrangian can be eliminated using 

auxiliary fields. In the auxiliary fiel~ formulation one can generalize the 

theory to a higher rank abelian gauge group U(1)2n such that the duality 

group becomes U(n, n). One complication discussed in [1, 2] is that one has 

to introduce complex gauge fields. However in [2] we also showed that after 

the elimination of the auxiliary fields one can impose a reality condition 

which preserves an Sp(2n, JR) subgroup of the duality group. For higher 

order matrices the elimination of the auxiliary fields is more complicated 

since the algebraic second order equation for the auxiliary field becomes a 

matrix second order equation. 

The Born-Infeld Lagrangian introduced in [1, 2] with auxiliary fields is 

given by 

L = Re Tr [X+ iA(X - ~XXt + a - i,B)] , 

where a and ,Bare given by the following Lorentz invarian~ hermitian matrices 

aab _~Fa pb, ,sab = ~pa pb_ 
2 2 

Here F is the Hodge dual ofF and a bar denotes complex conjugation. The 

auxiliary fields x and A are n dimensional complex matrices. For simplicity 

we have set the field S to the constant value i since as discussed in [2] it can 

be easily reintroduced. With this choice the duality group reduces to the 

maximal compact subgroup U(n) x U(n) of U(n, n). 

The equation of motion obtained by varying A gives an equation for x 

X- ~XXt +a- i,B = 0 , (1)' 

and after solving this equation the Lagrangian reduces to 

L=ReTrx. 
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Let X= XI +iX2 where XI and x2 are hermitian. The anti-hermitian part 

of (1) implies X2 = f3, thus xt = x- 2if3. This can be used to eliminate x 
from (1) and obtain a quadratic equation forxt. Following [2], it is convenient 

to define Q = ~xt which then satisfies 

Q = q + (p- q)Q + Q2' (2) 

where 
1 . 1 . 

p- --(o:- ~(3) ' q --(o: + zf3) . 
2 2 

The Lagrangian is then 

L = 2ReTrQ. (3) 

If the degree of the matrices is one, we can solve for Q in the quadratic 

equation (2) and then (3) reduces to the Born-Infeld Lagrangian. 

For matrices of higher degree, equation (2) can be solved perturbatively 

and by analyzing the first few terms in the expansion we conjectured in [1, 2) 

that the trace of Q can be obtained as follows. First, find the perturbative 

solution of equation (2) assuming p and q commute. Then the trace of Q is 

the trace of the symmetrized expansion 

TrQ=~Tr[1+q-p-S.j1_;_2(p+q)+(p-q)2], (4) 

where the symmetrization operator S will be discussed in the next section. In 

the appendix of [2) we have also guessed an explicit formula for the coefficients 

of the expansion of the trace of Q 

Tr Q = Tr [ q + L _1_ ( r + s - 2 ) ( r + s ) S ( Pr qs ) ] ( S) 
rs>Ir+s r-.1 r 
'-

In the next section we will prove that for a unilateral matrix equation of 

order N, the perturbative solution is a sum of terms which are symmetrized in 

all the matrix coefficients and of terms which are commutators. Since equa

tion (2) is a unilateral matrix equation the trace of Q will be symmetrized in 

the niatrix coefficients q and p- q. Since this is equivalent to symmetrization 

in q and pour conjecture (4) follows. 
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2 Unilateral Matrix Equations 

In this section we prove a theorem regarding certain solutions of unilateral 

matrix equations. These are ~h order matrix equations for the variable ifJ 
with matrix coefficients Ai which are all on one side, e.g. on the left 

(6) 

The matrices are all square and of arbitrary degree. We may equally consider 

the Ai 's as generators of an associative algebra, and ifJ an element of this 

algebra which satisfies the above equation. We will prove that the formal 

perturbative solution of (6) around zero is a sum of symmetrized polynomials 

in the Ai and of terms which are commutatorsa. The same is true for all the 

positive powers of the solution. 

By repeatedly inserting ifJ from the left hand side of (6) into the right 

hand side we obtain the perturbative expansion of ifJ as a sum 

where each DM is a product of the Ai matrices. Any ordered product of these 

matrices will be referred to as a word. However not every word appears in 

the perturbative expansion of ifJ. We reserve the letter D for words that do 
appearb. 

Next we obtain the condition that a word must satisfy in order to be in 

the expansion. First note that because of (6) any word DM can be written 

as the following product 

(7) 

arr the degree of the matrices is one the perturbative solution is convergent if A0 and 

A1 are sufficiently small. 
bThis notation originated from an earlier version of the proof where the perturbative 

expansion of rp was calculated diagrammatically and the diagrams were denoted by D. 

Although we will not use diagrams here, note that they are very useful in calculating the 
perturbative expansion of the solution. 
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for some value of s, where the DM; 's are also words in the expansion. Con

versely, if all the D M; 's are words in the expansion, D M defined in· equation (7) 

is also a word in the expansion. By iterating (7) we obtain the following 

equivalent statement: for every splitting of DM into two words DM = wl w2 
the second word can be written as a product of terms in the expansion of ¢> 

It is convenient to assign to every matrix a dimension d such that d(¢>) = -1. 

Using (6), the dimension of the matrix Ai is given by d(Ai) = i - 1 and 

d(DM) = -1. Then we obtain the following intrinsic characterization of a 

word in the expansion of ¢>. It is a word D such that for every splitting into 

two words D = W1 W2 , where W2 has at least one letter, we have 

d(W1) 2: 0 and d(D) = -1 . (8) 

Note that (8) is a necessary and sufficient condition for a word to be in the 

expansion. of if> . 
Suppose that W is an arbitrary word such that d(W) = -1. Then, as we 

will show, there is a unique cyclic permutation D of W such that Dis a term 

in the expansion of¢>. Let us write w = DNtDN2 ... DNk wl, where DNt 
is the shortest word starting from the first letter such that' d( D N 1 ) = -1. 

D N; is defined in the same way, except we start from the first letter after the 

word DN;_ 1 • Finally W1 is whatever is left over. We use the notation DN; 

since they correspond to terms in the ¢> expansion. To see this, note that 

the total dimension of a word can increase or decrease when a letter is added 

on the right, but if it decreases it can only do so by one unit. This is when 

the letter added is A0 . Combining this with the fact that DN; is the shortest 

word which satisfies d(DNJ = -1 then implies that if DN; is a product of 

two words the dimension of the first word is greater than or equal to zero. 

This is just the condition (8). Then using the fact that d(W1) = k- 1 one 

can check that the cyclic permutation of W defined as D = W1DN1 ••• DNk 

satisfies (8), thus it belongs to the expansion of¢>. Note that all the other 

cyclic permutations lead to words that are not in the expansion. Assuming 
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the converse implies that two distinct terms in the expansion can be related 

by a cyclic permutation. But this is impossible: if we write D = W1 W2 , then 

d(WI) ~ 0 and thus d(W2 )::::; -1, so that its cyclic permutation W2W1 does 

not satisfy (8). A similar argument can be used to show that all different 

cyclic permutations of a term in the expansion of ifJ lead to distinct words. 

Consider the trace of the sum of all distinct words of dimension d = -1 

and of order ai in Ai. We can group together all words that are cyclic 

permutations of each other, and replace each group by a single word with 

coefficient Ef:o ai· Using the result of the previous paragraph, we can choose 

this word to satisfy ( 8). Thus we have 

( ) ( 

N -1 ( ) 
Tr L DM = L:ai Tr L W , 

m-doc {a;} i=O ) onloc { "'} 
(9) 

where the sum in the right hand side is over all distinct words of some fixed 

order { ai} and of dimension d(W) = -1. 

We define the symmetrization operator S as a linear operator acting on 

monomials as 

(10) 

where the sum is over distinct words of fixed order {ai}· Equivalently, a 

word can be symmetrized by averaging over all permutations of its letters. 

Not all permutations give distinct words and this accounts for the numerator 

on the right side of equation (10). The normalization of S is such that on 

commutative Ai's S acts as the identity. 

Combining (9) and (10), we can obtain the solution for the trace of cpto 
all orders 

{ai} 

(I:!" a· - 1)' ~=o ~ . Tr S(AaoAal AaN) 
1 1 1 0 1 · · · N. ' ao.a1 .... aN. 

(11) TrifJ 

L (i-l}aF-1 

where the sum is over all sets { ai} restricted to words of dimension d = -1. 

More generally, if the Ai 's are considered to be the generators of an associative 
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algebra, we can replace the trace in (11) with the cyclic average operator 

which was defined in [2]. This is true since in the proof we only used the 

cyclic property of the trace which also holds for the cyclic average operator. 

Therefore, the solution ¢ can be written as a sum of symmetric polynomials 

and terms which are commutators. This is the statement we set out to prove. 

Notice that ourderivation implies that the coefficients in (11) are all integers. 

Using the same kind of arguments we used to derive equation (11), we 

can also prove that the trace of positive powers of¢ is given by 

(12) 

Furthermore we can write a generating function for (12) 

N 

Tr log(1- ¢) = Tr log(1- ~ Ai)id<O · (13) 

On the right hand side of (13) one must expand the logarithm and restrict the 

sum to words ofnegative dimension. Since d( ¢r) = -r we can obtain (12) by 

extracting the dimension d = -r terms from the right hand side of (13). Note 

that all the terms in the expansion of Tr log(1- 2::~0 Ai) are automatically 

symmetrized. 

It is possible to give a simple proof of (13) without going through the 

combinatoric arguments above, which however give a construction of the 

solution and its powers themselves, not only their trace. First note that we 

can rewrite equation (6) as 

N 

1 - ¢- L Ak(1 - ¢k) 
k=l 

The right hand side factorizes 

N N k-1 

1-:E~ (1- L L Ak¢Jm)(1- ¢) . 
i=O k=l m=O 
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Under the trace we can use the fundamental property of the logarithm, even 

for noncommutative objects, and obtain 

N N k-1 

Tr log(1- :EAi) = Tr log(1- L :E Ak¢r) + Tr log(1- c/J) . 
i=O k=lm=O 

Using d(Ak) = k-1 and d(cfJ) = -1 we have d(AkcfJm) = k-m-1 and we see 

that all the words in the argument of the first logarithm on the right hand 

side have semi-positive dimension. Since all the words in the expansion of 

the second term have negative dimension we obtain (13). 

If the coefficient AN is unity, we have the following identity for the sym

metrization operator 

S(AaoAal AaN)I S(AaoAa1 AaN-1) 
0 1 · · · N AN=l = 0 1 · · · N-1 · 

This is obviously true up to normalization; the normalization can be checked 

in the commutative case. 

The trace of the solution of (2) can now be obtained from (11) by taking 

N = 2 and setting A2 to unity. The restriction on the sum of (11) in this 

case reads a0 - a2 = 1. The sum can then be rewritten 

Using cjJ = Q, A0 = q, A1 = p- q, the combinatoric identity 

( 
a + b ) = mi~,c) ( a ) ( b ) 

C m=max(O,c-b) m C- m 

and the resummation identities 

r 00 00 

:E :E :E :E 
r?:l a=O a=O r=max(a,l) 

00 00 oo a+b-1 

:E :E :E :E 
r=max(a,l) b=r-a+l b=max(1,2-a) r=max(a,l) 

one can show that (14) reduces to (5). 
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3 Discussion 

After completing the first version of this paper [4], where we only proved 

the symmetrization theorem for the trace of ¢, we learned through private 

communications that A. Schwarz was developing another method [5] of prov

ing the theorem (for a slightly different, but related equation). Using his 

method he was able to show that the theorem is true for arbitrary powers 

of the solution. Inspired by this, we also extended the theorem, using our 

method, to positive powers of¢, see (12). In the process we discovered the 

simpler proof using the generating function (13). 
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