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Osmotic Second Virial Cross Coefficients 

for Star and Linear Polystyrenes 

Abstract 
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Experimental osmotic second virial cross coefficients are reported for linear and 8-

arm star polystyrenes in three solvents: toluene, cyclohexane and methylcyclohexane. The 

osmotic second virial cross coefficient for 8-arm star and linear polystyrene is always 

positive and within the osmotic second virial coefficients measured for the single 

polymers. The positive cross coefficient indicates net repulsion between the two different 

polymers in dilute solution. The extent of repulsion is greatest in toluene and least in 

cyclohexane. 

To relate the macroscopic second virial coefficient to microscopic interactions, the 

potential of mean force between linear and 6-arm star polymers was computed by 

molecular simulation. The interaction between non-bonded polymer segments is given by 

a square-well potential. Well width was set equal to one half of the segment diameter. 

Different solvent conditions were investigated by using different well depths. Potentials 

of mean force were then used to compute the osmotic second virial cross coefficients. 

Key Words: Osmotic Second Virial Coefficient; Monte Carlo Simulation; Potenti~l of 

Mean Force; Radial Distribution Function. 
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Introduction 

The osmotic second virial coefficient is useful for describing interactions between 

a pair of large solute molecules in dilute solution. Light scattering and osmometry are 

commonly used to measure the osmotic second virial coefficient at different solvent 

conditions. Numerous articles have reported osmotic second virial coefficients for 

dissolved single polymers14 and for aqueous proteins5
-
7

. Only few reports have appeared 

for two-solute systems (see, for example, reports on the interaction between polymer and 

protein 8' 
9

, between different proteins 10
, and between different polymers8

' 
9
). 

This work reports osmotic second virial coefficients for pairs of polymers that are 

chemically similar but have different architectures. 

Second osmotic virial coefficients for linear and star polymers have been 

reported11
' 

12
). Applications of mixtures of star and linear polymers are under 

development (see, for example, Guo et al. 13 and references therein). For example, star

linear polymer mixtures are suitable for coatings and paints14
. 

Star polymers with many low-molecular-weight arms can be considered as 

spherical, colloidal particles15
; colloidal dispersions are used in paints, inks, electronics, 

ceramics, oil recovery and bioseparations (for a detailed discussion, see Hiemenz and 

Rajagopalan16
). In many ofthese dispersions, polymers are also present, either to enhance 

the stability of the dispersion (e.g. manufacture of inks and paints) or to promote 

separation of the colloids (e.g. protein precipitation by nonionic polymers). Efforts are in 

progress to understand the potential of mean force between colloidal particles in a 

polymer-containing solution, by theoretical calculations (for a discussion, see Yethiraj et 

al. 17
) or by computer simulation 18

' 
19

. Experimental osmotic virial cross coefficients are 

needed to test theoretical results. 

In this work, we studied experimentally solutions of 8-arm-star and linear 

polystyrenes at different conditions. Solvents used were toluene, cyclohexane and 

m:ethylcyclohexane. At normal experimental temperatures, toluene is a good solvent for 

both · polymers; cyclohexane and methylcyclohexane are good solvents for star 

polystyrene, but they are theta and poor solvents for the linear homologue20
. 

The experimental second virial coefficients provide information on overall 

interactions between linear and star polymer in dilute solutions. However, they do not 
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provide insights concerning microscopic interactions between the different pol)'mers. 

Monte Carlo simulation calculations were therefore used to compute the potential of mean 

force for a simple model of linear and star polymers that roughly mimics the systems 

studied experimentally. 

Materials and Experimental Method 

Linear and 8-arm star polystyrenes of comparable molecular weight were used. 

Table 1 shows polymer properties. Polymers were kept under vacuum for a few days 

before use. Table 2 shows solvents characteristics; solvents were used as received. A 

membrane osmometer, model 231, from Jupiter Instrument Co., was used to measure the 

osmotic pressures of polymer solutions of different composition. The temperature was 

kept constant at ±0.2°C over a 12-hour period with an electric-resistance heater. 

Equilibration required anywhere from twenty to sixty minutes for each polymer solution. 

The cellulose acetate membrane had a molecular-weight-cut-off of either 10,000 or 20,000 

g/mole. 

For a solution of a single polymer in a solvent, the osmotic pressure, ll, is related 

to the polymer's number-average molecular weight, M, through: 

I1 1 2 
--=-c+B·c + ... , 
R·T M 

(1) 

where R is the gas constant, T is the absolute temperature, c is the polymer mass 

concentration and B is the osmotic second virial coefficient21
. Osmotic second virial 

coefficients for the single polymers were determined by fitting Equation 1 to the 

experimental osmotic pressures. 

For a solution of two different solutes, for example star and linear polymers, the 

osmotic pressure is given by: 

I1 1 2 1 2 
--=-Cl +Bu·Cl +-cs +Bss ·Cs +2·Bls ·Cl·Cs + .... '(2) 
R·T M 1 Ms 

where Bts is the osmotic second virial cross coefficient for linear and star polymers; 

subscripts l and s refer to linear and to star, respectively. For various ll measurements, 

the relative concentrations of linear and star polymers were not constant to assure that the 

experimental data give a 'composition-independent' osmotic second virial cross 
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coefficient. llwas measured for 10-15 samples ofpolymer solutions in each solvent. The 

results reported for B1s are obtained by fitting to Equation 2 the experimental osmotic 

pressures measured at different polymer concentrations. 

Experimental Results 

Table 3 shows measured osmotic second virial coefficients. The osmotic second 

virial cross coefficient B1s is always positive and lies between the osmotic second virial 

coefficients for the single polymers. B15 is larger in toluene and smaller in cyclohexane. 

Repulsion between non-like polymers in methylcyclohexane is larger than that in 

cyclohexane. Because the polymers have the same chemistry, repulsion is probably due 

to the different architectures of the.interacting polymers. A star polymer has a smaller 

radius of gyration and a higher segment density at small distances from the center of niass 

than those for a linear polymer of the same molecular weight (see, for example, Table 4). 

The star polymer is a more dense and compact molecule, compared to the linear polymer. 

Therefore, a star polymer cannot easily penetrate into another polymer, giving a net 

repulsion between the two at low separations. To understand better details of the 

microscopic interactions, we performed molecular-simulation calculations. 

Molecular Simulation 

The linear polymer is represented as a chain of either 100 (linearJOo) or 200 

(linear200) freely-jointed-hard-spheres, while the star molecule is represented as six chains 

of 17 segments each departing from a central core. The core has the same characteristics 

as those of any other polymer segment. The effect of branching upon thermodynamic 

properties increases with rising number of arms. However, the model star polymer with 

six arms was detailed enough to explain the differences in theta temperature measured 

between linear and 8-arm star polystyrene in methylcyclohexane20
. Therefore, we used 

the 6-arm-star model, for which potentials of mean force and second virial coefficients are 

available20
. Different well depths were used to represent different solvent conditions, 

from good to poor. Dynamic Monte Carlo techniques, such as the widely adopted 

reptation algorithm22
' 

23 are not suitable to generate equilibrium conformations of 

branched structures. Therefore, the Pivot algorithm24
' 

25 was used to generate isolated 
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configurations of both linear and star polymers. To represent different solvent conditions, 

a square-well attraction between non-consecutive polymer segments was used. Well 

width was set equal to one half the segment diameter. Good solvent conditions for both 

polymers are represented using a well depth equal to zero, -0.15 k8 T, and -0.30, while-

0.40 k8 T represents solvents better for the star polymer than for the linear homologs; k8 is 

the Boltzmann's constant and Tis the absolute temperature. The osmotic second virial 

coefficient equals zero (theta condition) for a well depth equal to -0.32 k8 T for a linear 

polymer26
, and for a well depth equal to -0.35±0.02 k8 T for a 6-arm star polymer0

• 

Because the solvent is considered as a continuum, the adopted potential between non

bonded polymer segments is considered as a solvent-mediated potential of mean force. 

Solvent molecular characteristics may be important, especially for hydrogen-bonding 

solvents. However, the continuous-solvent model offers a reasonable approximation for 

solutions of polymers in nonpolar solvents without preferential interactions. The 

algorithm here employed offers a molecular explanation for thermodynamic differences 

between linear and star polystyrenes in common solvents20
• 

26
. The square-well potential, 

~(d), between non-bonded segments is: 

{

00 d < (j 

¢(d)= < d < 1 5. ' & (j_ -. (j 

(3) 

where cr, E, and d represent the segment diameter, the well depth and the center-to

center distance between two segments, respectively. 

To calculate the potential of mean force as a function of the distance between the 

centers of mass of the polymers, r, we used the algorithm proposed by Hall and 

coworkers26
•
27 and slightly modified by Lue and Prausnitz28

. The potential of mean force, 

as a function of the distance between the polymers' centers of mass, Wij (r), is obtained 

by: 

(4) 

where N is the total number of linear-star configurations used at each distance, and U1 (r) 

is the statistical weight of each polymer pair at given separation r. This quantity is 

obtained by: 

5 



-<I>I(r) 

ul (r) = exp ---;;;;r (5) 

where <l>J (r) is the potential between the two configurations. Subscripts i and j refer to the 

interacting polymers, either linear or star. This quantity is equal to infinity if at least one 

segment of one polymer overlaps with a segment of the interacting polymer. If there are 

no overlaps, it is equal to the number of segment pairs belonging to the two interacting 

polymers distant less than 1.5 times the segment diameter cr, multiplied by the well depth. 

1,000 different conformations for both the linear and the star polymer were used for a 

total of 1,000,000 polymer pairs at each separation. Dautenhahn and Half6 have reported 

calculations of potentials of mean force between linear chains as a function of the center 

of mass separation and of well depth. Here we are concerned with the potentials of mean 

force between linear-linear, star-star and linear-star polymer pairs. The potential of mean 

force, computed as a function of the distance between centers of mass, r, is used to 

determine the osmotic second virial coefficient as a function of solvent conditions 

according to: 

, ""s 2 ( [ wij (r )JJ B ii = 2 · tr · 
0 

r · 1- exp - k s . T · dr 

In Equation 6, B\j is expressed in volume units. Bij and B'ij are related by: 

B' .. ·NA B .. =-"-Y __ 

!J M.·M. 
I J 

(6) 

(7) 

where NA is Avogadro's number. From the potential of mean force, it is also possible to 

compute the radial distribution function, gij (r), as a function of the distance r: 

-wij(r) 

g ii (r) = exp ---;;;;T (8) 

The results shown are the average of at least three different runs. 

Table 4 shows calculated radii of gyration for all polymers at different solvent 

conditions. At each solvent condition, the radius of gyration for the 6-:-arm star polymer is 

smaller than that for the linear chain with the same number of segments. 

Figure 1 shows the radial distribution function as a function of the distance 

between centers of mass for the linear10o-linear100, star-star, and linear10o-star pairs at 

athermal conditions. The radial distribution function for the linear-star pair is always 
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within the radial distribution functions of the linear-linear and star-star pairs. Figure 2 

shows the radial distribution function as a function of the distance between centers of 

mass for the linearwo-linear100, star-star, and linearwo-star pairs for a well-depth equal to-

0.40 kaT. The radial distribution function for the linearwo-star case shows that 

penetration between star and linear polymer is possible, even though less probable than 

that between two linear100 polymers. At distances between 5 and 10 times the segment 

diameter, the attractive potential between two different polymers is weaker than that 

between two like polymers. 

Figure 3 shows the radial distribution function as a function of the distance 

between centers of mass for the linear200-linear100, and linear200-star pairs at athermal 

conditions. The radial distribution function for the linear200-star pair is lower than that for 

the linear2oo-linear10o pair at low separations, but higher between 5 and 10 times the 

segment diameter. This behavior follows from the expanded structure of the linear100 

polymer, compared to that of the more compact star polymer. The two linear polymers 

can relatively easily penetrate into each other, but their repulsive interaction has a longer 

range than that between a star-linear200 polymer pair. Due to the globular structure of the 

star polymer, the penetration into the linear200 polymer is relatively more difficult. 

Figure 4 shows the radial distribution function as a function of the normalized 

distance between centers of mass for the linear200-linear100, and linear200-star pairs for a 

well-depth equal to -0.40 kaT. Radial distribution functions g11 and g15 appear similar. At 

low separations, for the star polymer it is more difficult to penetrate into the linear200 

polymer than it is for the linearwo polymer, probably because the structure of the star 

polymer is more compact than that of the linear homolog. 

Table 5 shows simulated osmotic second virial coefficients for the linear100-

linearwo, star-star, and linear100-star pairs. At solvent conditions spanning from good 

solvents (a=O or a=-0.15 kaT) to almost theta solvents (a=-0.30 kaT), the osmotic second 

virial cross coefficient is within the osmotic second virial coefficients for the single 

polymers. These simulated results agree with results for linear and 8-arm star 

polystyrenes in toluene and cyclohexane. For a well depth -0.40 kaT, B'1s is less negative 

than either B'n or B'ss· The weaker attraction may follow from difficulty in penetration 

between the two molecules due to steric effects. These simulated results roughly agree 
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with the experimentally measured osmotic second virial cross coefficient for linear and 8-

arm star polystyrenes in methylcyclohexane, which is almost as positive as Bss even 

though B11 is negative. 

Table 6 shows calculated osmotic second virial coefficients for the linear200-

lineariOo, star-star, and linear2oo-star pairs. At good solvent conditions (well depth equal 

to 0 or -0.15 ks T), B 'Is is smaller than B ' 11 . Since the radial distribution functions for the 

linear2oo-linear10o and linear2oo-star pairs are very similar (see Figure 3), the differences 

between B 'n and B 'Is are due to the different radii of gyration, which is smaller for the star 

polymer than for the linear10o polymer. For a well-depth equal to -0.40 k8 T, B'1s is less 

negative than B'n; as suggested by Figure 4, the star polymer cannot penetrate the 

linear2oo polymer as easily as does the linear100 polymer. 

The difference between B 'Is and B '11 at poor solvent conditions is higher for 

interacting polymers of the same molecular weight because for both a flexible or a 

compact structure it is easier to penetrate a linear200 polymer than a linear100 polymer26. 

Concluding Remarks 

Experimental osmotic second virial cross coefficients are reported for linear and 8-

arm star polystyrenes in toluene, cyclohexane, and methylcyclohexane. The osmotic 

second virial cross coefficient is always positive and lies between the osmotic second 

virial coefficients measured for the single polymers at the same solvent conditions. 

Radial distribution functions and second virial coefficients have been obtained by 

standard Monte Carlo simulation techniques for linear-linear, 6-arm-star-star, and for 

linear-6-arm-star polymers at several solvent conditions. 

For polymers of comparable molecular weight at good solvent conditions the 

simulated second virial coefficients for non-like polymers always lie between those 

simulated for like polymers. However, for a well depth equal to -0.40 k8 T, B'1s is less 

negative than either B'11 or B'ss· 

For polymers of different molecular weight at good solvent conditions, B'1s is 

smaller than B '11 due to the different radii of gyration of the star polymers compared to 

those of the linear homologs. At a well depth equal to -0.40 k8 T, B'1s is slightly less 
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negative than B 'n because the star polymer penetrates the linear2oo polymer less easily 

than does the more flexible linear10o polymer. 
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Table 1 Polymer properties 

Polymer Branch molecular 

weight 

glmol 

Linear -
polystyrene 

8-arm star 9,800 

polystyrene 
------

a from size-exclusion chromatography 

b from light-scattering 

---

Total molecular Purchased from 

weight 

glmol 

73,000 8 Polymer Source, Inc. 

74,000 b Polymer Source, Inc. 

-·-- - ~ ~~------------ -~~ 



Table 2 Solvent properties 

Solvent Purchased from Lot number Purity o/o 
Toluene Fisher Scientific 982728 99.8 

Cyclohexane Fisher Scientific 992006 99.7 
Methylcyclohexane · Aldrich LR08119KR 99 



Tab. 3 Experimental osmotic second virial coefficients<1
) for like and non-like linear and 8-arm star polystyrenes in different 

solvents. The experimental temperature is reported after each osmotic second virial coefficient. In calculating B1s, for a fixed solvent, 

· the small differences in temperature were neglected. 

Solvent Bn T Bss T B1s T 

(10 -7 I mol I g2
) ec> (10 -7 I mol I g2

) ec> (10 -7 I mol I g2
) ec> 

Toluene 3.95±0.20 48.5 3.22±0.03 47.6 3.6±0.5 49.0 

Cyclobexane -0.12±0.01 33.8 1.5±0.3 34.2 0.15±0.3 33.7 

Methylcyclohexane -2.8±0.1 45.7 1.3±0.4 50.0 1.5±2 45.4 

(I) II= linear-linear 

ss =star-star 

ls = linear-star 



Tab. 4 Average reduced radii of gyration squared for linear and 6-arm star polymers for 

different solvent conditions from molecular simulation. The reducing parameter is 

segment size cr. 

Well depth <Rg z;linear200 <R/>tineariOO. <R8z;star 
CksT) 

0 131±4 57±3 25±0.58 

-0.15 113±3 49±1 22±0.6a 

-0.30 80±2 37±2 18.1±0.258 

-0.40 43.3±1.3 24.5±0.5 14.5±0.4a 

a from Striolo et al. 20
. 



Tab. 5 Reduced osmotic second virial coefficients from molecular simulation as a 

function of solvent conditions. The reducing parameter is cr3
, where a· is the segment 

diameter. 

Well depth B'u 

(kBT) 

0 3027±4a 

-0.15 2201±2a 

-0.30 650±20a 

-0.40 -2600±250 

a from Dautenhahn and Hall26
• 

b from Striolo et al. 20
. 

B'1s B'ss 

2730±25 2365±40b 

1980±40 1735±25b 

635±20 635±3b 

-1700±150 -2070±225b 



Tab. 6 Reduced osmotic second virial coefficients from molecular simulation as a 

function of solvent conditions. Results for non~like polymer pairs: linear2oo-linear10o and 

linear200-star. The reducing parameter is cr3
• where cr is the segment diameter. 

Well depth B'n B'1s 

CkBD 
0 5520±10a 4970±150 

-0.15 4065±9a 3580±120 

-0.30 1270±50a 1230±80 

-0.40 -3280±400 -3020±150 

a from Dautenhahn and Hall26. 



Figure captions 

Fig. 1 Radial distribution function as a function of the distance between centers of mass, r, at 

athermal conditions. The distance r is normalized by the diameter of one polymer segment, cr. 

Diamonds represent calculations for linear100-linear100 polymers (from Dautenhahn and Hall26); 

squares are for star-star polymers; triangles are for linearwo-star polymers. Symbols are bigger than 

error bars. 

Fig. 2 Radial distribution function as a function of the distance between centers of mass, r, for well 

depth equal to -0.40 ks T. The distance r is normalized by the diameter of a polymer segment, cr. 

Diamonds represent calculations for linear10o-Iinear10o polymers; squares are for star-star polymers; 

triangles are for linear10o-star polymers. 

Fig. 3 Radial distribution function as a function of the distance between centers of mass, r, at 

athermal conditions. The distance r is normalized by the diameter of a polymer segment, cr. 

Diamonds represent calculations for linear200-linear10o polymers (from Dautenhahn and Hall26); 

triangles are for linear200-star polymers. Symbols are bigger than error bars. 

Fig. 4 Radial distribution function as a function of the distance between centers of mass, r, for a 

well depth equal to -0.40 ks T. The distance r is normalized by the diameter of a polymer segment, 

cr. Diamonds represent calculations for linear2oo-linear1oo polymers; triangles are for linear2oo-star 

polymers. 
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