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Abstract 

We calculate the one-loop quantum contributions to soft supersymmetry breaking terms in 
the scalar potential in supergravity theories regulated a Ia Pauli-Villars. We find "universal" 
contributions, independent of the regulator masses and tree level soft supersymmetry breaking, 
that contribute gaugino masses and A-terms equal to the "anomaly mediated" contributions 
found in analyses using spurion techniques, as well as a scalar mass term not identified in those 
analyses. The universal terms are in general modified - and in some cases canceled - by model

dependent terms. Under .certain restrictions on the couplings we recover the one-loop results 
of previous "anomaly mediated" supersymmetry breaking scenarios. We emphasize the model 

dependence of loop-iJ?-duced soft terms in the potential, which are much more sensitive to the 
details of Planck scale physics then are the one-loop contributions to gaugino masses. We discuss 
the relation of our results to previous analyses. 
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Department of Energy under Contract DE-AC03-76SF00098 and in part by the National Science Foundation . 
grant PHY-95-14797. 





There has been considerable interest recently in soft supersymmetry breaking induced by quan

tum corrections, starting with the observation [1, 2] that there are several "anomaly mediated" 

contributions: a gaugino mass term proportional to the ,8-function, an A-term proportional to the 

chiral multiplet (matrix-valued) ")'-function, and a scalar mass term proportion to the derivative of 

the ")'-function, arising first at two-loop level. This contribution to the gaugino masses has been 

confirmed in subsequent calculations [3, 4]. The result in [3] was found by an analysis of the 

relevant loop-induced superfield operator in Kahler U(1) superspace [5], and also by an explicit 

Pauli-Villars (PV) calculation. The "anomaly mediated" A-term contribution has also been con

firmed by a Pauli-Villars calculation given in [6] as an illustrative application of PV regularization 

of supergravity. Here we extend the PV calculation to obtain the one-loop contribution to scalar 
• I 

masses. We also display our result in the form of a superfield operator, and indicate the origin of 

this operator as a superspace integral. We work with the standard chiral formulation of supergravi

ty in Kahler U(1) superspace, with the Einstein term canonically normalized. The full contribution 

to gaugino masses in string-derived supergravity models with the dilaton in a linear supermultiplet, 

and including a Green-Schwarz term and string threshold effects, was presented in [3]. A general 

parameterization of all the soft supersymmetry breaking terms in the context of superstring-derived 

supergravity will be given elsewhere [7). 

The points we wish to emphasize in the PV calculation given here are 1) the presence in general 

of O(m0 ) contributions to the scalar masses that are proportional to the chiral supermultiplet 

gamma-function (rather t~an its derivative, which is a two-loop effect), and 2) the difference between 

gaugino masses and soft terms in the scalar potential with respect to dependence on the details of 

Planck-scale physics. To this end we will present our calculations under the simplifying assumption 

that the Pauli-Villars squared-mass matrix commutes with other operators that are relevant to 

quantum corrections. The full PV mass-dependence in the general case will be indicated in the 

final result. We further restrict our analysis to one-loop order and retain only terms of lowest order 

in m 0 fmp, where m 0 and mp are the gravitino mass and the reduced Planck mass, respectively. We 

then use our results to address the issue of anomaly-mediated supersymmetry breaking [1, 2, 8, 9). 

The one-loop logarithmic divergences of standard chiral supergravity were determined in [10), 

and it was shown in [6, 11] that they can be regulated1 by a set of Pauli-Villars chiral superfields 

~A. As in these references we denote the light superfields by zi, and introduce covariant derivatives 
1The full regulation of gravity loops requires the introduction of Abelian gauge superfields as well; these play no 

role here and we ignore them. 
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of the superpotential W(Zi) as follows: 

A - eKW, Ai = DiA = oiA, Aii = DiDiA =GioiA- r~iAk, 

.Ji - Kim Am., etc., Kim. = oiom.K(zi, zm), oi = o~i, (1) 

where rfj is the affine connection associated with the Kahler metric Kim and its inverse Kim. In the 

regulated theory, the one-loop correction to the chiral multiplet Kahler potential is given by [6] the 

superfi.eld operator (up to a Weyl transformation necessary to put the Einstein term in canonical 

form2) 

fl.L = - 32~2 I d40Ee:-K ~ 1JA.JAB AAB ln(m~/ p.2) = I ~()E8K(zi, zm), (2) 

where AAs(zi,zm.) is defined as in (1), with the light field indices i,j replaced by PV indices 

A, B, TJA = ±1 is the PV signature, mA is the (supersymmetric) PV mass, and p. is the (scheme

dependent) normalization point. The wave function renormalization matrix is given by 

'Y{ = (KinDnDif)l:p.2 oK) = 32~2 (niDit;TJA(e-K.JABAAs)) 

= 32~2 ( e-K ~ TJA.JiAB AiAB) + · · · , 

where here and through~ut ellipses represent terms of higher dimension. 

(3) 

The regulation of matter and Yang-Mills loop contributions to the matter wave function renor

malization requires the introduction of PV chiral superfields ~A = Z 1, Y1, cpa, which transform 

according to the chiral matter, anti-chiral matter and adjoint representations of the gauge group 

and have signatures TJA = -1, + 1, + 1, respectively. These fields couple to the light fields through · 

the superpotential3 

(4) 

where Ta is a generator of the gauge group, and their Kahler potential takes the form 

(5) 
2This brings in terms with factors of lltree that we neglect since if < Vtree >= 0, they can at most give small 

corrections to the tree level soft terms. 
3 Full regulation ofthe theory requires several copies of fields with the same gauge quantum numbers, and the 

coupling parameters and signatures given here actually represent weighted average values. 
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where 9a is the (possibly field-dependent) gauge coupling constant for the gauge subgroup ga· 

With these choices, the ultraviolet divergences cancel, and, for the leading (lowest dimension) 

contribution, one obtains the standard result for the matter wave function renormalization in the 

supersymmetric gauge [12] 

_j 1 K""' -jAB 1 [ j""' 2 2 i K""' -jkll ·ri = 32 2 e L....J'f/AWiABW = 32 2 4di L....J9a(Ta)i- e L....J WiklW . 
7r AB 7r a kl 

(6) 

The matrix (6) Is diagonal in the approximation in which generation mixing is neglected in the 

Yukawa couplings; in practice only the TcQ3Hu Yukawa coupling is important. We will make this 

approximation in the following, and set 

-d ~ 'Yid{, 'Yi = -r:V + -yf, -rr' = I:-d\ -rf =I: -rf, 
jk a 

-yf 4g~(T:)L "k -1 2. (7) - 'Y/. = -(gi9j9k) lWi;kl , 

where for gauge-charged fields zi the Kahler metric is 

(8) 

with the zn gauge singlets. 

The Lagrangian (2) generally contains soft supersymmetry (SUSY) breaking terms, displayed 

below, that are proportional to those of the tree-level Lagrangian. What are usually referred to as 

"anomaly mediated" soft SUSY-breaking terms are finite contributions that are not remnants, like 

(2), of the ultraviolet divergences. To evaluate such terms in the framework of PV regularization, 

we must retain all contributions that do not vanish in the limit m~ -+ oo. Here we are interested 

in the scalar potential, given by 

(9) 

where H is the effective field-dependent squared mass with the supersymmetric PV mass matrix 

m2 separated out: 

(10) 
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The terms in (9) proportional to ln(m2/J.t2 ) .are the bosonic part of (2). The first term in {9), 

proportional to m2, is the remnant of the quadratically divergent contribution [11]. It is completely 

controlled by Plank scale physics, and can be made to vanish with appropriate conditions on m2 . 

If it is present, it contains A-terms and scalar masses proportional to the tree potential· soft terms, 

with coefficients suppressed by 1/327r2 ; we neglect it in the following. 

The PV loops contribute soft SUSY breaking terms to the light field effective Lagrangian if the 

PV tree Lagrangian contains such terms. In the presence of SUSY breaking one generally expects 

the matrix g in (10) which is linear in m to contain "B-terms". Indeed it is -these B-term8 that 

generate the "anomaly mediated" contributions to the gaugino masses and the A-terms of the light 

theory4 that have been discussed in the literature [1, 2, 8, 9]. As we shall see below, there are 

two contributions to SUSY-breaking scalar masses that arise from a double B-term insertion in a 

Feynman diagram. These two contributions cancel, resulting in the assertion [1, 8, 9] that there is 

no anomaly mediated contribution to scalar masses at one loop. However, there can in general be 

soft masses and A-terms in the matrix h in (10). In leading order in m~/J.£2 , A-terms are present 

in the PV part of h only if there are dimension-three soft SUSY-breaking operators in the tree 

Lagrangian. Soft PV mass terms, which in leading order contribute only to scalar masses, are not 

similarly restricted by the low energy theory. Specifically, if the regulator masses are constant there 

are always soft squared-mass terms in the PV sector. 

The PV mass for each superfield <PA is generated by coupling it to a field <P0 in the representation 

of the gauge group conjugate to that of <PA through the superpotential term 

Wm = :L: J.tAa<PA<Pa, {11) 
(A,o:) 

I 

where J.tAa = J.tA~(zi) can in general be a holomorphic function of the light superfields. If the 

Kahler potential for the PV fields is 

then the PV masses are 

Kpv = L:gx(z)I<Pxl2
, X= A, a, 

X 

f K -1 -1 
A= e 9A 9a · 

(12) 

(13) 
4There may also be B-terms generated at one loop in the light theory if there are quadratic holomorphic terms in 

its tree-level superpotential or Kahler potential. These contributions were considered in [6]; we ignore them and use 

the expression "B-term" to designate the B-term proportional to the PV mass. 
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The general field-dependent matrix H in (9) has been evaluated in [10]. Denoting by HX and HtP 

the matrices H in (10) for fermions and bosons, respectively, we have, with constant background 

fields, 

H'X r 
(h'X)~ = e-K Asc.AAC, (h'X)~ = 0, - h'X+-

4' 
(h'X)TJ - Kai3 KBC A - a -K f A I-'S CD - 9D = e AI-'Aa AD, 

(h'X)$ -As A Hq, = hx + V + m~ + R, (14) - A I-'S= 9{3' 

where m~ = eKIWI2 , V = e-K A;Ai- 3m~. The last term in (14) depends on the curvature of 

the PV metric: 

R a _ Ra -KAm.A-i _ 1: pip-m!:! ( -1!:1 ) 1: pip-m!:! !:1 l 
b - bifl.ie - -uab Uifl. 9 Ui9a = -uab Uifi.Ui n9a, a=A,a, (15) 

where pi= -e-K/2 .Ji is the auxiliary field of the supermultiplet zi. Terms involving the space-time 

curvature r are replaced by terms proportional to the tree potential V after a Weyl transformation 

that restores the one-loop corrected Einstein term to canonical form. We assume throughout a 

vanishing cosmological constant, < V >= 0, so we can drop them. Similarly, we can drop V if 

D-terms vanish in the vacuum: V = V + 1J, 1J = !92 LaD~, (Taz)i Ki, zi = zil, (Da) = 0. Terms 

containing only powers of h'X cancel in the supertrace, so we get contributions only from scalar 

trace terms that include the scalar mass term m~ + R in (14) or factors of Hxy = Kx.xH9: 

HAs = hAs·= e-K ( _Ai DiAAs -A As .A) , hap = 0, 

HAp- 9Ap=e-K.AiDi(eKWAp)-.AWAp=-d~f31-'Aa(A-Ai8ilnfA)· (16) 

HAa is the B-term mentioned above, and the part of hAs linear in zi- (zi) is the A-term. Neglecting 

B-terms in the tree Lagrangian, the leading contribution to WAs is linear in a gauge nonsinglet 

field zi. Explicitly expanding HAS gives 

(17) 

The second term in (17) is the A-term where (Fn) =F 0 with zn a gauge singlet in the SUSY-breaking 

sector. The tree-level A-terms are given by 

(8i8;8k V} = aiik ( eKI2Wijk), ai;k = ( pnan ln(9i9i9ke-K)), 

and the tree-level gaugino masses are given by 

ma = ~ ( pnan ln(9;2
)). 
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Using the couplings given in (5), we have 

(20) 

Then we obtain 

(21) 

for the leading contribution to the A-term from the second term in (9), i.e., the contribution from 

the shift in the potential due to the shift in the Kahler potential. The leading order contribution 

to the "3.!lomaly-induced" A-term arises from a PV loop diagram with one B-term insertion: 

'l"'r.n hg2 "" 'T/A hA ( f:J I f:J 'Y) h .Lu/22 3 L.J 22 f:J gl 9A + g'Y 9A + .C. 
m AB mA 

-32,2 
eK 12w,z' [ 7,m0 + F" a, ( t -yf In J;. + t.= -r{' In /;•)] + b.c., 

JAB = VfAJB, /jk = VfzJ/zK, lia = Vfcpafyll {22) 

which reduces to the "anomaly mediated term" found in [2] provided that (FnonlnfA) = 0. We 

discuss below the circumstances under which this is the case. The full leading-order A-term La

grangian is 

LA - eKI2Wizi [-rimG + ~ -yf ( 2ma ln(m~a/ p.2 ) + Fn8n lnfia) 

+ L -y{k ( aijk ln( m]k/ p 2
) + pn On ln /jk) ] + h.c. + · · · , 

jk 
2 2 ~ 2 

mAB - mAmB, m;k = mzJmzK, mia = mcpamy1 • 

Scalar masses get a contribution from the term quartic in H: 
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which corresponds to two B-term insertions in the PV loop. The contribution from the cubic term 

is 

(26) 

The last term in (25) is a double B-term insertion; it cancels (24) in the Lagrangian (9). The first 

term on the right hand side of (25) corresponds to one B-term and one A-term insertion, and the 

second term corresponds to a PV soft squared-mass insertion. Explicitly, 

F np-mn n lnf 2. _ 2 + 2 unum A- mr;- 1-'A J.to:, (27) 

where 

(28) 

is the soft SUSY-breaking squared mass of the field q,a. For a= A the masses are determined by 

the SUSY-breaking masses of the tree Lagrangian 

,2 - "2 - ll2 
rzi- r-z' = ri' J.t~a = -2m~- m~, (29) 

so these terms giye no contribution if J.ti = ma = 0. However, even if no soft SUSY-breaking masses 

are present in the tree Lagrangian, one cannot a priori exclude such terms in the theory above the 
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effective cut-off, that could he reflected in soft SUSY breaking masses 1-L~ in the PV sector that 

parameterizes the underlying Planck scale physics. Fillany we have 

Trh2 3 2 I: 11A ( H~Hi + HABHAB) 
AB 

3 2e-KI:11A[21-L~WABWAB 
AB 

+zi-zJpnpm (onln(9i9A9Be-K)) (om.ln(9j9A9Be-K)) W:
8

WiAB], {30) 

for the part of the renormalization of the Kahler potential that contributes to scalar masses. Using 

{20) and {27)-{29), the full scalar mass term is 

Cm = - ~ lzil2 
( m~'Yi 

~ { ( 2 2) 2 2 - - - - } - L...J 'Y't ma + 1-Li ln(mia/ 1-L ) + Fn mom. on lnfia + ma [(Fmom. + Fnon) lnfia +me] 
a 

{31) 

In the absence of tree-leyel soft SUSY breaking, this expression reduc~s to the first ("universal") 

term if (Fn pmanom.f A) = 0. 

The above results hold in the general case of a noncommuting squared-mass matrix, with the 

replacements 

Om.ln!AB 

OnOm.lnfAB 

( 2 2 ) m~ ln{m~/ 1-'2) - m~ ln(m~/ 1-'2) 1 - q mA,mB = 2 2 - ' 
mA-mB 

- om.q(m~, m~), 

OnOm.q(m~, m~). {32) 

The soft SUSY-breaking Lagrangian for the canonically normalized scalars </JR is obtained by making 
' 1 

the substitution <Pi= g;,- 2¢k in LA+ Lm. 

The Lagrangian C, A + Cm is the bosonic part of the superfield Lagrangian 

1 ! .4 ~ K 12-AB [ - 6 2 2 l K /2 £1=
32 2 _a-OEL...J17Ae W lnDx-R-R-q(mA,m8 ) e WAB+···, 

1r . AB 0 x 
(33) 
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where (5] R is a superfield constructed from elements of the super-Riemann tensor, {2RI} = ma, 
and 

{34) 

is the chiral superfield propagator given in (13]. Provided the Kii.her metric is defined from the full 

Kahler potential including the PV part, KAB is covariantly constant, and 4J = eKI2WAB is a chiral 

superfield [5] of chiral weight +2: 

{Dx4J} = ( ( D + ~RV2 + 4RR) q,), {35) 

where we used the vacuum condition {26). The superfield f(Dx)4J is also a chiral superfield of chiral 

weight 2, since {V2 - SR) is the weight-zero chiral projection operator. Evaluating {33) with the 

methods of [5]: 

I a'oq, = 1
1
6 (v2

- 24.R) (v2
--:- sR) q,l + gravitino terms, (36) 

and expanding in inverse powers of the d'Alembertian, {D)= J.L2 , we recover the scalar potential 

given in (23), {31) and {32), up to corrections of order m~/ J.L2 . To understand the origin of the 

expression (33), consider the tree-level superfi.eld Lagrangian for quantum fluctuations Z around 

canonically normalized background superfields Z: 

(37) 

Variation of the action S = f d4x.C0 with respect to the unconstrained superfi.elds p1 , defined by 

(38) 

gives the inverse superfield propagator 

b.!}(y, y') - apr (y)opJ (y')' 

- ( -!¢ (~:- 8R} 
-!¢ (V2 

- 8R}) 68 ( _ ') 
0 y y ' 

X y 

{39) 

where y = xm, Bp., Oft, and 4J = eKI2Wij is a weight-2 chiral superfield. In the flat superspace limit 

with 4J = Wi; = !mi;, (39) reduces to the inverse ofthe Wess-Bagger free superfield propagator [14]. 
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The effective one-loop action is determined by evaluating STr ln !:1 in superspace. Writing 

Ll-1 = Ll.O' (1+ 6)' LlO' (y, y') = ( ~· ~J :•(y - y'), 

1 ( o o~1 (j) (V2 
- s.R) ). 8 , 

o(y,y') - -4 ox-1(i) (152 - BR) · o · Y 8 (y- Y ), 

STr ln !:1 - STr [ln !:10 + ln( 1 + o)], (40) 

we are interested in the term proportional to 82 in the expansion of the log. Consider first the 

flat superspace limit: R = 0, Dx 4- D. Since o(O) = 0, one factor of 84(0 - 0') is removed by 

integration over d40', and the other is removed by the spinorial derivative operators V 2 , 152 • The 

x' integration can be performed by replacing o4(x- x') by its Fourier transform, yielding the flat 

space limit of the first term5 in (33). In the curved superspace generalization of that term, the 

superdeterminant E of the supervielbein appears as the Jacobian relating tangent space to Einstein 

superspace coordinates. Additional spinorial derivatives appear in the expansion of DX"1 in powers 

of o-1 [c.j. (35)]. For example, there is a contribution in which two 0 factors in 82 are removed . 

by V 2 in the numerator, and two others by a 152 in the expansion of the denominator, resulting in 

a term proportional to the second term in (33). Other contributions to this term arise from the 

superspace curvature implicit in the definition [5] of the tangent space spinorial covariant derivative 

V 01 • The last term in (33) is obtained by replacing Dx 4- Dx- m2 in the expression (40) foro and 

dropping terms of order m-2 • 

For completeness and comparison we give the result for the one-loop induced (left-handed) 

gaugino mass [3, 4] under the same assumptions used here to calculate LA+ Cm: 

!:l.ma = -;~~] [(3Ca-C~)m0 + ~1Jxc;F"onlnfx] +··· 

- -;~~] [(3Ca-C~)m0 +CaFn8nK- ~F"C!onlnhl +···, 

fi = Yi2eK, (41) 

where Ca, C{, C! are the quadratic Casimirs in the adjoint of the gauge subgroup ga and in the 

representations of 4?x, zi, respectively, with c;: = Ei c~. The second equality in (41) follows 
5This is obvious for the contribution proportional to -y]"', since W zr zJ = Wii. The contribution proportional to 

Tf does not arise from superpotential couplings, but it must be of the same form since the same result is obtained 
from loops of massless fields with the same superpotential couplings (4) as cp", YJ. 
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from the requirements of finiteness [11] and supersymmetry [15] of the chiral/conformal anomaly 

proportional to the squared gauge field strength. In contrast to the results in (23) and (31), the 

leading one-loop contribution to the gaugino masses is completely determined by the low energy 

theory. In this case all gauge-charged PV fields q,X contribute, their mass matrix is block diagonal 

and commutes with the relevant operators, and the gauge-charge weighted masses are constrained to 

give the second equality in (41). On the other hand, only a subset of charged PV fields contribute 

to the renormalization of the Kahler potential. While the Kahler metrics of the fields q,A that 

appear in W(q,A,zi), Eq. (4), are determined as in (5) by the finiteness requirement, the metrics 

of the fields q,a to which they couple in Wm, Eq. (11), are arbitrary. Since the conformal anomaly 

associated with the renormalization of the Kahler potential is aD-term, it is supersymmetric by 

itself and there is no constraint analogous to the conformal/ chiral anomaly matching in the case of 

gauge field renormalization with an F-term anomaly. As a consequence the "nonuniversal" terms 

appearing in £A + Cm cannot be determined precisely in the absence of a detailed· theory of Planck 

scale physics. 

As a check of our results, consider the "no-scale" model defined by 

K = k(S) + G, G = -3ln(T + T- L lq,il2), w = w(q,i) + W(S), (42) 

which has no soft SUSY breaking in the observable sector q,i at tree level. If we regulate the theory 

so as to preserve the no-scale structure, we have 9a = 9A, and 

(43) 

Then 
(44) 

Vanishing vacuum energy at tree level requires F 8 = 0, so if< 4>i >= 0, 4>i = q,il, the no-scale 

Kahler potential satisfies 

-FnGn = eKI2WGt;KttGt = 3m0 , pnpm.(;nm = eKI2 1WI2Gt;KttGt =3m~, (45) 

and all the soft SUSY-breaking terms, (23), (31) and (41), cancel,6 in agreement with explicit 

calculations [16] and nonrenormalization theorems [17] in the context of this model. In the con

text of string theory however, the "no-scale" regularization is unacceptable, because it leads to a 
6The vanishing ofthe one-loop contribution to the gaugino mass in this model was noted by Randall and Sundrum, 

private communication. 
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loop-corrected Lagrangian that is anomalous under modular transformations, which are known to 

be perturbatively unbroken in string theory. Therefore one must restore modular invariance by 

including, for example, a modular covariant field dependence in the PV mass parameters in (11}, 

J.LAa = J.LAa(T), which might reflect string loop threshold corrections; since these necessarily break 

the no-scale structure of the theory soft SUSY parameters would be generated since pT f. 0 in 

this toy model. Alternatively, as shown in [6], this theory can be regulated with field-independent 

masses for the PV fields that contribute to the renormalization of the Kahler potential: On/ A = 

constant, in which case the A-terms are precisely those found previously [1, 2, 8, 9], and scalar 

masses are also generated at one loop: fl.J.L~ = "Yim~. Gauginos remain massless, since their masses 

are insensitive to the specific choice of PV regulator masses. 

Randall and Sundrum [1] considered a class of models defined by a Kahler potential 

{46) 

where the ~i represent gauge-charged matter, and the zn are in a hidden sector where SUSY is 

broken: (~i) = (Fi) = 0, (Fn)-:/= 0. For these models 

(47} 

from the definitions {18} and {28} and the vacuum condition {26}. In addition there is no dilaton: 

9a = constant, ma = 0, se there is no soft SUSY breaking in the tree Lagrangian. If we assume 

g01 = 9A, there are also no soft SUSY breaking parameters in the PV Lagrangian. Then the scalar 

masses vanish at one loop, and we obtain: 

fl.ma {48) 

To determine the model-dependent contribution proportional to (Fn Kn), we study the vacuum 

conditions (V) = (Vz) = 0 for the potential V(z = Zl) derived from W(Z) and K(Z) = -3ln[1 -

f(Z)], with the gauge-charged fields q> set to zero. This potential is classically invariant under the 

Kahler transformation 
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If one imposes a "separability" condition [1 1 on the superpotential 

(50) 

.the redefinition (49) is not a classical invariance of the full theory with q> i- 0, but rather defines 

a one-parameter family .of models of the general form defined by (46) and (50), with the same 

vacuum, but with different couplings of the hidden sector to gauge-charged matter. 

If f(Z, Z) = /(IZI2 ) and (z) = (ZI) = 0, then (Kz) = (3/'(z)z) = 0, and the "anomaly 

mediated" results are recovered in the dimension-three soft operators (48). An example of this 

type is given in [1 1 for the case of a single hidden sector field Z. For the family of models generated 

from that one by the redefinitions (49), we obtain for the coefficient of the soft terms in (48): 

1 f./ w) Be = ma + 3 ( pz Kf) = ma + 3 \pz ~ = (1 - f.)m{;,. {51) 

since (Fz pz Kzz) = ~ (Fz(KzW + Wz)) = 3m~ is invariant under (49). As a second example, 

consider the simpler Kahler potential, f(Z) = IZI2, with W(Z) = .A(l + Z)3, which for q> = 0 is 

classically equivalent, by a field redefinition and a Kahler transformation, to the no-scale theory 

defined by (42) with f(T) = 1-T- T, T = (1- Z)/[2(1 + Z)1, WT = 0. In this case we find 

Be= m~ ( 1- he) , f. ~ he = ( z +f.~ l:l:(l- f.)) ~ 1, (52) 

if 0 ~ f. ~ 1, since (z) is undetermined in this no-scale model, but satisfies lzl ~ 1. For (z) = f. = 0, 

we have (Fz Kz) = 0, giving the standard result [1, 2, 8, 91 Be = ma· For f. = 1, this model is 

precisely the one defined by {42), with Be = 0. Quite generally, if (FnWn) = 0 in the class of 

models defined by the separability conditions {46), {50) and Yo: = 9A for the PV fields, the soft 

SUSY-breaking terms all vanish, since in this case (Fn Kn) = (Fn pm Kim.) fma = -3ma by the 

vacuum condition {26). 

To summarize, we have found that the "anomaly mediated" results for soft SUSY breaking rest 

on the separability assumptions stated above, but also on more specific assumptions on the form 

of the hidden sector potential. We now address the question as to why these same results were 

obtained by spurion analyses. 7 In its original incarnation [81, these techniques of deriving observable 

sector soft SUSY breaking terms were applied solely to models in fiat superspace (such as models 
7The authors of [9] also pointed out that these results are correct only if {Fn Kn) can be neglected. 
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of gauge-mediated SUSY breaking). In these cases the Kahler potential and superpotential obeyed 

the separability conditions between observable and hidden sectors 

Ktat = Kabs (<I>,~)+ Khid (Z, Z), Wtat = Wabs (<I>)+ Whid (Z). (53) 

Furthermore, the observable sector Kahler potential was of a minimal variety: Kabs (<I>, <I>) = 

L:i I<I>il 2 
· 

The key properties of models in which the leading contributions to soft terms arise from the 

conformal anomaly were enumerated by Randall and Sundrum and are encapsulated in the form 

of the Kahler potential ( 46). This Kahler potential was the result of demanding separability in the 
function f2 = -3e-K/3: 

fltat = -3 +nabs (<I>,~)+ nhid (Z, Z), Wtat = Wabs (<I>)+ Whid (Z), (54) 

where the factors -3 ensure the canonical normalization of the Einstein term in the supergravity 

Lagrangian. The separability condition (54) and the requirement that nabs ex: L:i I<I>il2 (necessary 

to ensure vanishing tree level soft SUSY breaking in the visible sector) give rise to (46). Of course 

in the flat space limit Kahler separability (53) and separability inn (54) are equivalent statements. 

Thus the Kahler potential assumed in ( 46) is of precisely the limited class of potentials for which 

the flat-space spurion techniques can be imported into a supergravity context, as in Refs. [1] and [9], 

without complication. This intimate connection between ( 46) and the canonical flat space of the 

spurion technique is not ~urprising as the ansatz of (54) represents a set of models with very special 

conformal properties, as we will elucidate below. 

For dimension-three soft terms the distinction between curved and flat superspace is irrelevant, 

and the dependence of the anomaly-induced soft terms (48) on the auxiliary multiplet of super

gravity is fixed by the conformal properties of the operators involved [2]. The complete anomaly 

contribution for the dimension-two soft terms given in (31) not proportional to the normal logarith

mic running can in fact be obtained from the spurion technique by use of the following construction. 

We promote the wave function renormalization coefficient Z to a spurion superfield Z as in [8]. 

However, this field is not only dependent on the chiral compensator 1J = 1 + FTJ02 and its Hermitian 

conjugate, but also on a real superfield. Using the PV soft term definitions in (20) we can see that 

this spurion is given schematically by 

(55) 

where here a and 2ma generically represent the tree-level A-terms of the Pauli-Villars sector that 

correspond, respectively, to the tree-level A-terms a and gaugino masses ma of the light field sector, 
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and P,a represents the soft scalar masses of the Pauli-Villars sector. The functional dependence of 

the superfield Z on these spurions is given by 

Z= z c~~~2) (56) 

with p, the renormalization point as before, in analogy with Ref. [8]. 

We can now perform a Taylor series expansion of this expression about 9 = 0 to obtain 

lnZ = lnZ(p,)+ a~~:) [-(a+ 2ma + ~11 ) 92
- (a+ 2ma + ~11 ) 02] 

ainZ(p,) [( 2 (a+ 2ma)Fq (a+ 2ma)F11 IF'112
) 9282] t -1 (57) + a In 1-'a + 2 + 2 + 4 + wo oop. 

I' . 

Now the chiral field redefinition 

1J --+ 11' = z (p,) 1/2 exp (- .!_ a In z (p,) F. 92) 1J 
2 alnp, 11 (58) 

can be performed as usual in the spurion derivation to eliminate the one-loop contribution to soft 

masses arising from the supergravity auxiliary field and generate the one-loop contribution to the 

A-terms. This process is equivalent to the cancellation of the double B-term insertions mentioned 

above (27). Note the importance of the assumptions of ( 46), in particular the fact that the Kahler . 

potential for the observable sector is minimal to lowest order in 1/mp, for the rotation (58) to be 

performed. 

This same chiral rotation cannot be performed on the real super:field contributions of the Paull

Villars soft SUSY breaking terms. This real superfield is not itself the product of a chiral and 

anti-chiral super:field. The terms proportional to ()2 are thus irrelevant provided that there is no 

SUSY breaking in the observable sector. This is a result of the celebrated holomorphy that underlies 

the spurion technique. The scalar masses are then read off from the 9202 component of (57). Use 

of (27) and the equation of motion for the auxiliary field F11 then leads to identification with (31). 

The question remains, why do flat-space spurion techniques imply the vanishing of the Paull

Villars tree-level soft SUSY breaking parameters independent of the specific nature of the Kahler 

potential and superpotential? The answer can again be found in the special class of supergravity 

theories for which these techniques can be applied. Specifically, as mentioned above a "sequestered" 

sector model is really nothing more than a model on an Einstein-Kahler manifold, of which the no

scale models are a particular subset [18]. These spaces are defined by the fact that the curvature 

is proportional to the metric. The constant of proportionality determines the normalization of 
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the Einstein term in the supergravity lagrangian. In flat space these are empty statements, but 

in curved space a properly normalized Einstein term in an Einstein-Kahler manifold will cause 

the scalar mass term R + m~ in (14) to be proportional to V. Hence in a space with vanishing 

cosmological constant. and Kahler potential given by (46) (which is equivalent to using the spurion 

technique in flat space) the PV tree-level soft masses are identically zero. It follows that no one-loop 

scalar masses will be generated in these theories by the conformal ariomaly. 

In conclusion, we have shown that, even in the absence of soft SUSY breaking at tree level, 

the loop-induced soft SUSY breaking operators are not uniquely determined by anomalies. In 

particular, the hidden sector Kahler potential and superpotential must be separately specified. 

This is closely related to the well-known fact8 that Kahler invariance of supergravity is broken 

at the quantum level, as is manifest in the expressions (48); pn is Kahler covariant while Kn is 

not. Once the full low energy Lagrangian is specified, including any hidden sector, the one-loop 

gaugino masses are completely determined by the requirements of finiteness and supersymmetry 

of the Kahler anomaly. However the soft terms in the scalar potential depend on the details of 

Planck scale physics, since the corresponding PV couplings are not sufficiently constrained. In 

particular, scalars can acquire masses at one loop in the absence of tree-level soft SUSY breaking. 

This is the case in the no-scale model when the PV couplings are chosen so that the renormalized 

Kahler potential does not break Kahler invariance. Kahler invariance is necessarily broken by 

gauge coupling renormalization (unless specific constraints are imposed on the low energy theory) 

because there is no simil~ freedom to adjust the relevant PV couplings. In the context of string

'derived supergravity, field theory anomalies for Kahler transformations associated with the exact 

perturbative symmetries of string theory must be canceled, for example by the introduction of a 

Green-Schwarz counterterm [20] in the case of gauge coupling renormalization. This breaks the 

no-scale structure of the untwisted matter sector, and there are generally soft SUSY terms at tree 

level [21], with supersymmetry broken in the dilaton (S) sector. (In fact if modular invariance 

is not broken by string nonperturbative effects, the moduli are stabilized at self-dual points with 

pT = 0.) One-loop effects can nevertheless be important, especially for gaugino masses [22]. A 

general analysis of soft supersymmetry breaking in these models is in progress [7]. 
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