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We present an explicit second-order accurate Godunov finite difference method
for the solution of the equations of solid mechanics in 1, 2, and 3 spatial dimensions.
The solid mechanics equations are solved in non-conservation form, with the novel
application of a diffusion-like correction to enforce the gauge condition that the
deformation tensor be the gradient of a vector. Physically conserved flow variables
(e.g., mass, momentum, and energy) are strictly conserved; only the deformation
gradient field is not. Verification examples demonstrate the accurate capturing of
plastic and elastic shock waves across approximately S computational cells. 2D and
3D results are obtained without spatial operator splitting. '
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1. INTRODUCTION

~In this work, we present a higher-order Godunov method for computing in Eulerian
coordinates the multidimensional dynamics of elastic-plastic solids undergoing large de-
formations. Our approach is based on a new formulation of the equations of solid mechanics
as a first-order system of hyperbolic PDE’s, a modification of that used by Trangenstein
and Colella [24]. In [24], the usual conservation laws for mass, momentum and energy,
plus a constitutive model, are augmented by a form of equality of mixed partial derivatives
that yields conservation equations for the entries of the inverse deformation gradient. This
leads to equations of the form

U
S+ V- FO) =S (1)

Work at the Lawrence Berkeley National Laboratory was sponsored by the US Department of Energy (DOE)
Mathematical, Information, and Computing Sciences Division contract DE-AC03-76SF00098. Other work was
supported by a subcontract from the Caltech Center for the Simulation of Dynamic Response in Materials, which in
turn is supported by the Academic Strategic Alliances Program of the Accelerated Strategic Computing Initiative
(ASCI/ASAP) under subcontract. B341492 of DOE contract W-7405-ENG-48.
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2 MILLER AND COLELLA

Here S(U) contains source terms associated with the treatment of plasticity. These
equations, by themselves, are not sufficient to specify the problem. In addition, we must
impose linear constraints on the solution to guarantee that the inverse.of the deformation
gradient is, in fact a gradient, i.e. that the curl of the rows of the deformation gradient
vanish. These constraints can be written in the following form:

Le(U) =0. 2

Here L¢ is a system of linear differential operators with constant coefficients. The
constraint equation is an initial-value constraint: if (1) is satisfied, and Lo (U) is identically
zero at some initial time, then Lo (U) vanishes identically for all later times. The constraint
(2) plays an essential role in the analysis of the characteristic structure of the system (1). In
order to get the physically correct eigenvectors and eigenvalues from the quasilinear form of
the equations, one must use the constraint to replace replace some of the spatial derivatives
by others. In general, solutions to (1), without imposing (2), give rise to unphysical wave

- propagation properties, even for linearized waves as was observed in [24].

A difficulty arises when one attempts to compute solutions to (1,2) using a conservative
finite difference method. To the extent that a modified equation analysis is valid, we
expect the behavior of the numerical solution to behave very similarly to the solution to the
following system of PDE’s: ,

BUal‘;fod +V. F(UM°d) — S(UM°d) + TU(UMOd) (3)
LC(U.Mod) — Tc(UMOd).

Here 7y and 7¢ are truncation error terms, which are nonzero. In general, these terms, and
in particular 7¢, cannot be eliminated. The practice of enforcing a discretized form of the
constraint (2) at the end of each time step using a Hodge projection would guarantee the
that a discretized form of (2) is satisfied identically. However, that will change the form
of 7¢, but not set it to zero. The observation that the truncation error terms are a small
perturbation to the equations is not sufficient to guarantee that /™°d is close to U. There is
much less known about the well-posedness of systems of equations that are combinations
of evolution equations and constraints than there is about pure evolution equations, and
unexpected pathologies are known to occur [16].

The approach we want to take on this problem starts with an analysis due to Godunov
[8, 9]. Numerical methods based on this approach have been recently investigated for the
MHD equations in [19], the case for which Godunov first applied this analysis. Godunov
modifies (1) in the following way:

ou

5t—+V‘F(U)=S(U)+£LC(U). )]
Here £ = £(U) can be chosen so that the system has the physically correct linearized
eigenstructure, independent of whether Lo vanishes. In addition, L satisfies a transport
equation such that if Lo (U) is identically zero at some time, then it remains so for all later
times.

The numerical method we present here is based on the form of the equations given
by (4). -Thus we are discretizing a well-posed initial value problem without constraints,
independent of the whether or not the constraint (2) is satisfied. This gives us a high degree
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of confidence that a stable and consistent method can be developed. Of course, the extent
to which we compute a solution to the original physical problem (1,2) depends strongly
on whether the constraint is satisfied, but now that is purely an accuracy issue, without
any impact on the stability of the method. In fact, we will investigate the use of various
methods of limiting discrete measures of L, similar to filtering methods developed for
incompressible flow [20, 11].

v 2. GOVERNING EQUATIONS

The mechanical behavior of solids is described by observable variables (e.g., density
p, momentum pv, internal energy £, and the deformation F with respect to a chosen
reference state), and also unobservable internal parameters which describe the response
of the material to deviatoric stress. One constitutive representation of this behavior is
through the multiplicative decomposition of the total deformation into elastic and inelastic
components, ‘

F = FeFP. )

Here F is the Lagrangian coordinate deformation which relates the spatial coordinate frame
z = z(a,t) to the material coordinate frame a: i

Fop = 220, - ©

Oag :

We refer to FP as the plastic deformation tensor, although the numerical scheme we will
present applies to more general inelastic deformations. According to (5), FP? is a fictitious
state of total deformation in which there is no elastic deformation: given an initial total
deformation F, and a purely elastic relaxation path 7¢ — I, the total observable deformation
will evolve to FP, F — FP. The state FP? is a function of the deformation history of the
material. We represent this history through a single scalar parameter &, a work hardening
measure, and constitutive flow rules

h(p,9, F?,E,K) %)
K(p,9,F?,E,K) (8

77

K

i

which depend on the state variables but not their gradients.
The equations of solid mechanics are then given by

p PUa 0
( pu ( PUVa — O€q pf
pE pEva — vpoga p(®+v-f)
ges gV0z0 (v x (VxgT))le,
2 gey A+ _6_ g'uéya — (U X (v X gT))Tey (9)
ot | ge, 0z V8,0 (v x (VxgT)Te, :
pFPe, : pFPervy pheg
pFPey pFPeyvy phey
pFPe, ‘ pFPe v, ' phe,
pK : \ PKV pK ,

where ez, ey, and e, are the Cartesian unit vectors, and E is the sum of internal energy and
kinetic energy, (E = £ + %v-v). For generality, we include a heat source term ®, and a
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body force vector f. The system of equations (9) is abbreviated

oU | 9Fa(U)

5t oo = SO, (10

where U is the vector of quasi-conservation-form variables (p, pv, pE, etc ...), Fo(U) is
the flux in direction e,, and where S(U) is the vector of source terms. Here we follow the
treatment in [24] and use the inverse deformation gradient g = F~! as dependent variables.
However, we introduce additional nonconservative terms in the evolution equations of g.
We will show below that the addition of these terms leads to a well behaved hyperbolic
structure for the equatxons independent of whether the curl of g7 vanishes. However, we
note here that G = V x g7 satisfies the followmg evolution equation:

oG . , ‘
3t+v (vG — Guv) = 0. (11

In particular, if G vanishes identically at time ¢ = 0, it vanishes at all later times.

To solve these equations we adopt a predictor-corrector strategy. For each time step, we
first solve the conservative flux differencing left-hand side of (10) using fluxes derived (by
solution to Riemann problems) from edge- and time-centered variables that include time-
centered contributions from the source terms. The solution obtained by flux differencing
is then modified by addition of the source terms, evaluated using time-centered and cell-
centered variables, and acting over the full time step At.

The solution to the flux differencing equations is based upon the standard hlgh -order
Godunov strategy. This strategy begins with a characteristic analysis of the equations,
which makes use of the linearized 1D equations in direction e4: ~

p p 0

v \ ( v f

& £ @

gex géx 0
gey . gey 0 -

—6% ge, |+ Aé% ge; = 0 (12)

FPey > Fre, heg
FPey FPe, hey
FPe, FPe, he,
K K - K

\ ceq _ o€y be

where

13)




EULERIAN GODUNOV METHOD FOR SOLID MECHANICS 5

Vo pel 0 0 0 0 0 0 0 o0 0 \
0 vl 0 0 0 0 0 0 0 0 -I/p
0 —(oea)T/p v« O O O O O 0 O 0
0 90za 0 v O 0 0 0 0 O 0
0 90ya 0 0 wI O 0 0 0 o0 0
A=1]0 © 9620 0 0 0 w I O 0 0 o0 0
0 0 0 0 0 0 wol O 0 0 0
0 0 0 0 0 0 0 w,I 0 O 0
0 0 0 O 0 0 0 0 w,I O 0
0 .0 0 0 0 0 0 0 0 wo 0
0 — Ao 0 O 0 0 0 0 0 0 I
with
doe,
Aop = =523 (14)
and
_ Ooe, doey Ooeq .
b"‘ap'“ £ K+ 9 . (15)

The eigenvalue decomposition of A uses the technique of eigenvalue deflation, and
hinges upon recognition of the matrices A, as being acoustic wave propagation tensors
for waves traveling in direction e,

. 5?
piia = (Asa)ri 5=, (16)
v

where u is the displacement vector. The matrices A, are positive definite as a requirement
of thermodynamic stability. This is made clear by writing Aq. in terms of gradients of the
spatial displacements ¢ defined relative to the current configuration,

%€

i Y

Aac)gy = P
(Aaa)py =P %
Here, g, is related to the deformation tensor Fp, with the reference coordinate frame
{a} chosen to correspond to the current spatial frame {z}:

liga = FRa 530. (18)

{a}={=}
Auq is therefore a component of the Hessian of £, which is positive definite for a thermo-
dynamically stable material, and consequently A, has positive real eigenvalues and three
linearly-independent eigenvectors. ' _

Recognizing A, as being the acoustic wave propagation tensor suggests the wave
equation solution

-AaaXac = PXacAZc (19)

where A, is the diagonal matrix of acoustic wave speeds ¢, A;. = diag(c1, ¢a,¢3), and
X are the acoustic displacement vectors.



6 MILLER AND COLELLA

The linearized 1D matrix A then has eigenvalue decomposition
A=XAXx"1 (20)

with X, the matrix of right eigenvectors, given by

100000000 —pelXy —pelXac

0 0 0 0 0 0 O O 0 XacAac '_XacAac

01 000GOCO0 0 0 (0e)TXac/p (0€a)TXaclp

0 0I 00 0 O0OUO0OO —gXac5m _gXaca:ca

0 00T 00000 —9Xsdya ~gXaclya
X = 000 0TI O0O0UO0OCO —gXacéza “gXac(Sza y (21)

0 00 0011 O0O0OGO 0 0

0 00 0O0OOTI OO 0 0

0 00000 O0TIO. 0 0

0 000 O0O0O0CO01 0 0

0 00 0 0O0O0O0OTDO XacAZ.p XacAZ.p

and A, the diagonal matrix of eigenvalues, given by
v 0 0 0 0 0 0 0 0 0 0
0 vo O 0 0 0 0 0 0 0 0
0 0 vl O 0 0 0 © 0 0 0
0 0 0 wv,I O 0 0 0 0 0 0
0 0 0 0 w,I O 0 0 0 0 0
A= 0 .0 0 0 0 wvoI O 0 0 0 0

0 0 0 0 0 0 w,I O 0 0 0
0 0 0 0 0 0 0 wlI O 0 0
0 0 0 0 0 0 0 0 vy 0 0
0 0 0 O 0 0 0 0 0 wol — Ay 0
0 O 0 0 0 0 0 + Aqc

0 0 0 Vol
' (22)

The wave speeds are Galilean invariant, and properly analogous to the Lagrangian repre-
sentation, with three — waves with velocities v, —c, three + waves with velocities va+cy,
and 21 material waves with speeds v4.

X1, the inverse of X, is given by

-0 eZXacA;cha—cl
_(Uea)TXacA;cha_cl /,02
gXacA;fXa_cl dzalp
gXacA;czxa—cl‘sya/P
gXacA;fXg,—cl(sza/P

—
o

X1=

[N e B an T e BN e B w0 BN wo

1Aa—1y-1

EAachc
_lpa-1y-—1
2Aachc

S OO OO0 OO

O OO OO0 OO

O OO OO OO O~NOO
O OO OO OO ~NOOO
O OO OO O ~NO O OO
O O OO0 O~NOOO OO
O OO0 O NOOOO OO
O OO NMNOOOO O OO
O O~NMNOOOO0O OO0 OO

o
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3. NUMERICAL METHOD: 1D

In 1D we discretize space into cells, indexed with subscript ¢, with width Az;. Time
is discretized in steps of At with integer superscript index n; t"*! — " = At. The
generalization to 2D and 3D is similar, with indices j and k used for the second and third
dimensions respectively. Half-integral subscript indices represent edge-centered quantities.
Lower case Greek subscripts are used to denote vector and tensor indices.

We begin by evaluation of the equation of state in each cell to determine the Cauchy
stress o, the acoustic wave propagation tensor 4,4, and the thermodynamic derlvatlves
00 [0E\g,Fr .k, 00 [09g|e, Fr k» O0 |OFP|g g, and 80 [Ok|g g, Fe.

Next, we evaluate the 1D slopes dg/dz of the 27 primitive cell-centered variables g,

q=(p,v,€,9,FP,k,0€,). (24)

We construct these slopes beginning with the van Leer slope in cell ¢ which uses the
monotonized limiter [25]:

aq\"r . . 2|gir1 — gi-1| 2 — gim1]  2lgir1 — il
(%) - Slgn(Ql—f—l — gi—1) min Az +2Az; + Az ’ AEI ! Azx; )
(25)

i

A 4 order accurate slope is then constructed as [5]:

<@>L.1th _ ([Qi+1 - §AT (%)j.:] [ql L A 1.(%)5111]), (26)

oz %Al'i—l + Al‘i + ZAzi+1

To prevent overshoot and ringing, dissipatiori at strong shocks may be introduced via a
“flattening parameter” x, 0 < x < 1, whence {5, 7, 6]

80\ 80\ 1
(55) =X (55) . @n
The determination of this flattening parameter is described in a later section.

These limited slopes are used to construct time-centered edge-valued estimates of the
primitive variables. The exact solution of the linearized equations, which we abbreviate as

Oq 9q

at BT @8)

gives time-centered edge values

n Ag; At 1 (0 At
qR-,‘;l—/lz/z =g - . X <_~—A1, + I) Xt (_q_) s (29a)

2 AIL‘i 6.’12 2

Az; At ) At
n+1/2 i - q
QL,i+/1/2 = ‘1? - 2_X1, <A—$1Az - I) Xz ! ((9—1:-)% + ?Si- (29b)

However, this construction uses both upwind and downwind characteristics. We make the
method strictly upwind by filtering out the downwind characteristics:

n n Ax; At 16} At
qR";l/12/2 = q; — ) —X;P_ <A A+ I) X (3;1:) ' + —z——si (30a)
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n+1/2 Aib‘z At _1 [ 0q At -
qr,iv1/2 = ¢ — —XiPy ( -'L'zA -1 X; 3z i + -—2——si (30b)
with projection operators P+ defined as:
At (82740 +1)0ap Aga <O
P_|—A+I = Az ox af  Hao > 31
(- (5=2+1)),, - {6* i o
At (A_ ) Ao >0
Pl —A-1T = A ef Haa Z 31b
(e (52-1)),, = {6 mz o ow

Ateachcell edge (+1/2),time-centered values are thus obtained from the left (¢) and right
(i+1) neighboring cells. These edge values are then used to pose a Riemann problem: an
initial value problem with constant left and right initial states given by qzti/lzﬂ and qgti/f/z

respectively. We approximate the solution to the Riemann problem by decomposing the

jump ¢ R': +/12/2 qzti/lz/z in terms of the eigenvectors X of the linearized coefficients A.
Specifically,
nt+1/2 n+1 /2
Ri+1/2 ~dLit1/2 = Z Py Xy it1/2 (32)

~ where eigenvector column X, ;1 /; is evaluated with certain L or cell-i properties if A
is a member of the — family (i.e., of the form ve, —c), or with certain R or cell-(i + 1)
properties if A, is a member of the + family (of the form ve, +c), as given by the
discretization:

100000000 —pelXa —pit16g Xac,it1

( 0 0 0 0 0 0 0 0 0 -Xac,iAac,‘i "'-Xa,c',i+l Aac,i+1

010000000 (o'i+1/2,Le'a)TXac.i (a'i+1/2,R:a)T'Xac,:'+l

0071 00O0O0OO0OTO _gi+1/2,LXac,i6za _gi+1/2,R‘j€ac,i+l‘Sza

0001 0O0O0OO0ODTPO _gi+1/2,LXac,i6ya _gi+1/2,RXac,i+16ya
Xi+1/2 = 000 O0CI. .0 O0O00O _gi+1/2,LXac,i52a _gi+1/2,RXac,i+162a

0 00 0O0GCTI OCOTPO 0 0

0 0000O0TI OO0 0 0

0 00 00OO0O0TIO 0 0

00 00O0OUOTZ 01 0 0

00 0 0O0OTO0ODTUO0ODPO Xac,iAg,c,ipi ' Xzzc,i+1 Aic,i—*—lpi'i‘l

(33)

In this expression, the density p, and the components (X, Aqc) of the acoustic propagation
tensor, are evaluated at the cell centers in order to avoid multiple evaluations of the equation

of state.

From the coefficients ., of the jump decomposition, the material velocity v*-e,, at the
cell edge is determined by adding to the L state the contributions of the — family, or by
subtracting from the R state the contributions of the + family:

* —
Viii/2 €a =0

(34a)

*L =vi1/2,1 - €a + e Xop,itr1/2 + 01 X7p,i101/2 + 08 Xsp,ir1/2
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or
(35b)

R _ .
Vipi2 €a =V S Uip19,R  €a — Yo Xopit1/2 — P10X108,i+1/2 — P11 X118,i41/2

where 8 = 2, 3, 4 for directions e, equal to e, ey, e, respectively. We average the results
of these calculations to determine the normal-direction edge velocity v*-e,,

(vt +v*F). (36)

[N

* —
Vig1/2 " €a =

For other properties to be evaluated at the cell edge as solutions to the Riemann problem
we do not average the values evaluated from the L and the R states as above. Instead, we
evaluate from the L state if v*-e, is positive, or from the R state if v*-e, is negative. Only
if v*-e, is approximately zero do we average these estimates. The evaluations include only

upwind characteristics by writing

(37)
Qit1/2,L + Loy WLyPr Xy ' Vit1/z " Ca > €
Girrj2 = Gi+1/2,R + 2oy wR,’Y(ZO‘YX’Y VirijzCa < €
5 (‘1¢+1/2,L + @iv1/2,R + 2, (wry + wR’"’)(’O"’X") Vs - eal <€
with
1’A77i~Uz"ea+Uf ceq < —€
w — . i+1/2 " Ce 38a
Lo {0 otherwise oo
wry = 1 Apyirr = Vg1 -eq + UZ+1/2 "y > € (38b)
’ 0 otherwise

wy, o is 1 when eigenvalue v, estimated using the * value of the material velocity together
with the i cell-centered acoustic wave speeds, is negative; and 0 otherwise. wg  is 1 when
the approximated value of eigenvalue «y is positive; and O otherwise. In our computations
presented below, we use a value of € = 1079,

By this procedure, we obtain the edge * value solutions of the Riemann problem, p*,
v*, &%, g%, FP*, k*, and (oe;)*. These are then used to compute edge-valued fluxes (cf,

(9,10)). For example, in direction e,

( oz \

PU; — Ozz
PUyUz — Oyz
PUVz — Oz
PEV; — V2050 = VyOys — V0,4
Fiv12= Uzges + Uygey +vz9€. | 39
0
puzFPe,
pv:FPe,
pv FPe,
PUz K /

i+1/2
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In 1D we obtain a preliminary update U of the variables U by conservatively differencing
the fluxes:

urtt = ( ir1/2 — Fiyye) (40)

the final time-(n+1) value of the variables U is obtained from the preliminary values U by
addition of the source terms S

Urtt = gt 4 ALS; (41)

We discretize this in the general 3D (Cartesian) case as

0
n+1/2 pn+1/2
1 1
p?+1/2(¢n+1/2 + v;zy-::-l/2fn+1/2 + Un+1/2fn+1/2 + vn+l/2fn+1/2)

T,1 Y.t Y, 2, 2,4
- - - -
ntl/2 (9it1/2,;,48 " di-1/2,5,k8 _ Jij41/2,k€2 917268 | _
y,ijk Az; Ay;
n+1/2 97 gka1/28= 97 5 k—1/28=  9iy1/2.4, kez_-‘?: 1/2,5,k6
v, ,ijk Az
n+1/2 9% 541/2, kez_g, -1/2,682 9%, k+l/2€y-gx jk—1/26
v, i3k Az
n+l _ frn+l n+1/2 9; +1(2,,,key 9: 1/2,5,k% 9! i+1/2, ke=_9: G—1/2,k 6=
Ui - Ui + At Uz Jijk Az,
n+1/2 973, 1e+1/2'30c 9. g k—1726= 91+1/2 i kez“g- 1/2,5,k%2
Uz Tk
n+1/2 954172, kez_g, i—1/2.682 _ 9i5k11/2% 9: g k—1/2%y
Vy.ijk Az
n+1/2 n+1/2
ik hijk €z

n+1/2, n+1/2
ik ijk Gy
n+1/2; nt+1/2
ik Tk €z

n+1/2 p-n+1/2
\ ik Kijk

(42)

In 1D we use the 3D discretization above, but retain only terms in 8/8z and 82 /8z2, and
omit derivatives in all transverse directions.
In the above expression, time-centered terms (e.g., pz y kll ) are estimated with

—

1/2
a5 gk + T, (43)
except for the g*s appearing in the (v x G) terms. These are obtained at the half time step

and cell edges as components of the Riemann problem solutions.

4. NUMERICAL METHOD: 2D AND 3D
-To extend the 1D method described above to multiple spatial dimensions, we use a
spatially-unsplit fully corner-coupled 2°4-order accurate scheme after [6} and [21]. In 2D,
this predictor-corrector approach begins by estimating the 1D x— and y— fluxes at each
cell edge, using the hlgher order 1D approach described in the previous section. These
predictor fluxes, F, and Fy, are given schematically as solutions to the Riemann problem
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R as
e = +1/2 +1/2
Frapg = FRg Ji+1/2, y’q:R i+1/24)) (44a)
i — n+1/2 +1/2
F?’Ij"'l/z = Fy(R(q Y, 1,J+1/2’qZR 2,]+1/2))' (44b)

The predictor fluxes are used to pose a corrector problem, wherein the edge values are
augmented by transverse predictor fluxes. Schematically,

1/2 +1/2
Fz,i+1/2‘j = Fz(R(q,:Z,i{Hﬂ,J’ IZRz{I-l/ZJ)) : (453)
. . +1/2 +1/2
Fyijrie = Fy(R(qI:L,i,/j+1/2;qI:R,i,/]~+1/2)) (45b)

with, for example,

n+1/2 _ nt1/2 At - -
Tzrivi/2,j = YzrLiv1/2,5 2Ay; (Fiy,j+1/2 - Fi?{j—l/Z

At n y I mT s
+2ij .,Z,, (vi’j X &y X (9,-,]-+1/2 - gi,j—l/z.) )75 (7,9).

(46)

T is a vector introduced to align the elements of the matrix (v x V x gT)T with the
appropriate elements of the vector g:

F(Ta 'S) = (O) 01 0) 01 0; 6‘716513 5’72651) 6’)‘3661) ‘5'11652; 6’725627 5’73652) (47)
571‘563: 672563; 5‘73653; 07 0; 07 01 07 Oa O, 01‘03 O; 0) 0: O)T

In 2D there are therefore 4 Riemann problems solved per cell: 2 in the predictor and 2
in corrector steps.

In setting up the corrector step, the components p, v, £, g, FP, and « of the vectors ¢’
are updated as indicated above (Eq. (46)). Our 1D Riemann solver also requires time-
centered edge values of the stresses, (0ey)r /g in direction e,, and these components
of ¢ are calculated by updating the (oe,)r/r components of g,/ with the change in
stress accompanying the changes ¢ /R~ UL/R in &, g, FP, and & using cell-centered
thermodynamic derivatives. For example,

8oe

(0'ec)riv1725 =  (0€z)Liv1/2,; + (—af‘
+ (o

doeg
+ 2’75 ( 395

n v
! ——— . .
g’]_-,,,n)ij ( Lyi+1/2,j 5L,z+1/2,]) (48)

n
!
Ky : — KL,i+1,2,5
( L,i+1/2,5 1, ,J)
9:-7:?»5> ij /

. n
! po— ’ . .
9#Gs ,f-r,n,s) y ((g76)Lvi+1/2'f (976)1,,1+1/2,])

n
rrnone), (Faliirsrng = Ensians)
)

+ 276 ( Baez

By employing this approximation we require only one equation of state evaluation per time
step per cell for problems involving only elasticity. In problems that also include plasticity,
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additional equation of state evaluations are required for the computation of plastic source

terms.

In 3D there are 2 corrector steps: first,

F.-ﬁq/z,j,k = F?(R(q:j;-,lifl/z,j,k’q:;;lifl/%j, )
Flipn = FiR@E oo Gy o)
Fi:fj,k+l./2 = F, Z(R(q:;;/j?k+1/2’q:;}i,/ik+1/2))
then
Eﬂﬁ/mi,k = F(R(¢™ :lefl/zd,k,q :;11{51/2,] k)
Fiﬁi/z,j,k = FZ(R(‘Z’(Z)::lifl/z,j,k:q z :;,lifl/z,], )
ﬁﬂ'ﬁ—l/z,k = Fy(R(ql(z :2-1/]24-1/2 k4 ;;12,/_12+1/2k )
F:Jl'iuz,k = Fy(R(q’( );zrlz,/12+1/2 34 ZZ.IZ'{;H/?JC))
ey = F(REE ):E,/;zkﬂ/m k1))
BBy = FREOS 9T ),
with, e.g.,
'( ):2-11{{-21/2 gk = Z;iﬁ/z,j,k - 3_?!7]' (Fil,/j+1/2,/g - Ffj—l/ﬂvk)

(49a)
(49b)
(49c¢)

(50a)
(50b)
(50c)
(50d)
(50e)
(501)

619

At : oy _y T s
+3ij A}‘ ( ik X €y X (gi,j+1/2,k _gi,j—1/2,k) )'yd (7, 9).

The final fluxes, which enter the conservative differencing step of the integration, are

then computed as:

_ n+1/2 m+1/2
Foivi72.56 = Fo(R(g zL,i+1/2,5.k 9 :cR,i+1/2,j,k))
— II‘"-+1/2 un+1/2
Fyijripn = Fy(Rig yL,i,j+1/2,k0 9 yR,i,j+1/2,k))
_ /[TL+1/2 ,,n+1/2
Frijre12 = F2(R(q 2Li5k+1/29 zR,i,j,k+1/2))
with, e.g.,
nn+1/2 _ . n+l/2
eL,i+1/2,5.k = 9sLit1/2.4.k
_ At =ylz Fylz ‘ At [ =ly
2ij i,5+1/2,k 15— —-1/2,k 2A2k 4,5,k+1/2

At (
+ v
2Ay; ; Ak

=ylz
X ey X (gi,j+1/2,

#Y
I?i,j,k—l/Z

(52a)
(52b)
(52¢)

(53)

)

| s
I’ gg,j—l/%k) ) F(ry’ 6)
~é

At - | | T T :
~2|Y ~zly
+2Az,c 216: (UZJ'”“ X ?2 X (gi,j,k+1/2 - gi,j,k.—l/2) )75 ['(v,4)
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There are a total of 12 Riemann solves per unit cell in 3D: 9 in the predictor steps, and
3 in the corrector step. The ¢ components of the vectors ¢’ and ¢" are computed as in the
2D case.

5. PLASTIC SOURCE TERMS

We present here an associated plasticity evolution equation for the rate of change of the
plastic deformation tensor F? with time. The more common approach (e.g., [22, 18]) is to
consider evolution equations for the plastic strain 7P = $(FPT F? —I), the plastic Green
tensor CP = FPT FP or the plastic Finger tensor b” = 7P FPT, We choose instead to evolve
the full 9-component plastic deformation tensor F?. This choice is necessary to be capable
of modeling arbitrary crystal systems (see e.g., [23]). For example, the elastic response of
the lowest symmetry crystal system (triclinic) depends upon all 6 components of the elastic
Green tensor. If one were to specify the total inverse deformation g, and either ?, C?,
or bP, then all 6 components.of C'® could not be determined. Although our examples will
make use of isotropic equation of state models (whose elastic invariants may be determined
using g and C?), our goal is to construct a framework of more general applicability.

To motivate our choice of evolution equations for 77 we begin by postulating the
existence of a hyperelastic equation of state,

£ =£&(g,F?,k,8), ‘ (54)

where S is the specific entropy. The material derivative of £ is

. o€ . OF . 1 .
-7:25 +v5;’§ + 53'8 = _;Uﬁ'y}-'yagaﬁ + @a - (55)

o¢ 4 o0&

£=

where the second equality equates energy change with the sum of work and heat. Solving
for entropy production (dissipation) we have '

; 1 (o4 Fra ot ., . 1 08 -, 196, 0S8
L8 = — (=2 7 S - —
0<$ T( P +ag,,ﬂ 9ob T oFh,;" °F Ton" T asq’
1 .
= ;1_-. (‘I}pla.st + \Ptherm) . ‘ (56)

Here 3 /OS =T is the temperature, and we have introduced the specific power of thermal
dissipation,

Wiherm = ,O‘I’, )

and the specific power of plastic dissipation,

Dplast = —p%fﬁﬂ —pg%’s
= ggn,aw]:;a}"gﬁ — 9k
= 951045 Fsv e Fhg — Vs
= X:LP -9k (58)
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with & = pOE /8x being the work hardening modulus. L2, = gb,Fh, = (FP); 177,
is the plastic distortion rate [13), and £p, = gg,0,6Fs, is the thermodynamic force
conjugate to LP. The dependence of S on g, vanishes because

Oap = _P'é'g:‘ﬁ'g’ya- (59

In evaluating (58) we have assumed that £ depends on g and F? only through the elastic
deformation F¢=FgP =(FPg)~1, eg.,

E=E(F¢,S,k), (60)
whence
o€ 1
— =—= . : 61
877, N P B0~ F 5 (61)

Thermodynamics requires that the internal energy depends upon the volume, and we assume
by (60) that this energy dependence is carried by the tensor 7%, e.g., V =V} det F¢. For this
to be true, itis necessary that det 7P = 1 atall times (i.e., V =V det F =V, det F© det FP;
V = Vpdet F* iff det FP = 1.) Therefore, (60) assumes that plastic flow is volume-
preserving. ,

We postulate a plastic yield surface f =0, which we represent for illustrative purposes
with a Mises-Huber constitutive model written in terms of the Cauchy stress o, a constant
yield stress parameter oy, and the work hardening modulus ¥:

fo, 19). = |v[deva|| - \/g(ay +9). ' (62)

Here, devo = o — 3 (tro)[ is the stress deviator, and || A|| is the Schur norm of 4, ||A4||* =
AapAap = tr(AT A). _ '

The flow model we adopt is derived from (62) by the postulate of maximum plastic
dissipation [ 10, 12]. The plastic dissipation (58) is considered as a function of the variables
I and ¥, with fixed parameters L? and %; ¥plast = Tplast(X,?; LP, k). The plastic
dissipation is then maximized with respect to ¥ and o, subject to the constraint that f = 0
during plastic flow. The resulting flow laws are: :

. dev(o
FP = C]:pgmvi(;ﬁf (63)

Eoo=G/f2 (64)

with ¢ a parameter chosen to satisfy the Kuhn-Tucker complementarity conditions and the
“consistency condition” [22]

f=0 (65)
¢2>0 (66)
¢f=0 (67)
¢f =0 (ff=0). , (68)
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The flow model (63) is consistent with the assumption that plastic flow is volume-
preserving,

(det FP) = (det FP)gh, FE,

(devo)p
— FPYgP | FP Y
. C(det )gu5 ( aagaﬁ ||dev0|| -7:'111

_ (devo)aa
= ((det P)————Ildevall

= 0 because tr(deve) =0, ' (69) .

and is therefore compatible with the assumption made in evaluating ¥ a5 (58).
As an example, we use a modified Mooney-Rivlin equation of state:

po&(Ce,S8) = %g—);(ln\/det Ce)? + @trcf’. - /—L%S—)logdet Ct+

p"j" (n + le‘"l“) : 70)

1

where C° is the elastic_Green tensor,
Ce = FTFe. : @y

This equation of state gives a work hardening modulus,
a .
(k) = péé =9 (1 - e™"1%), (72)

in terms of two parameters: Jq is the ultimate, asymptotic value of the work hardening
modulus, and ¥; dictates the rate of approach of the asymptotic limit. :

The combined elastic-plastic evolution problem is solved with a predictor-corrector
strategy. The inverse total deformation g is advanced in accordance with the equations
of motion, with the plastic deformation F* being conservatively advected. This step may
predict a coordinate in state space that lies outside the convex manifold of permissible
states f(o, ) <0, in which case a plastic corrector step is used to bring state back to the
yield surface. The algorithmic approach is a return mapping algorithm [22], modified to
require only one equation of state evaluation.

Begin the iteration sequence with iteration index m = 0,

- PO = Fentl (73)
KI(Q) n+l
0,(0) — o_(gn+1’]_-p,n+l7 H'n—i—l)

9O = I("H)

K

There is one equation of state evaluation at the beginning of the iteration in which
the Cauchy stress o, work hardening modulus ¥, and the derivatives 80 /0FP|¢ g k-
00 [0k|¢ g, 77, and 89 /Ok, are calculated. Next, evaluate the yield criterion

fim = f(a(m) , 19(m))_ (74)
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If m=0and f(™ <§, then the state point is interior to the yield surface, and no plastic
flow occurs. If (%) > ¢ and | f(™)| <¢, then

Frotl o pr(m) (75)
kML (M)

and stop. Otherwise, calculate AC(™) = ¢(m+1) _ ¢(m) ysing Newton’s method

df(m) -1
Actm) = —ptm) [(F
¢ =-f ( dc) (76)

with df /d( estimated from

L~ ()" (%,

(g: Fr E,g) (a%)(m)] +

)™ sﬂ d—z)"f" W

o) (
(3%

Next, calculate revised estimates

FP o= P<m>+( ) ACt™ (78)
FPmHL) = (det FP)Y/3FP
(m)
WmAD) = (m) %Z_) A¢(m)
do
(m+1) — 40 4 (99 p(m+1) _ £p(0)
. o +(a“ L) F0)

() -

19(m+1) — 19(’§(m+1)),

set < m+1, and retest the stopping criterion.

In this procedure we evaluate the equation of state once to determine o and the ther-
modynamic derivatives do /0FP - and do/ 8/9' . re The stress o(™), for m > 0, is
approximated by first-order Taylogr’ e‘xpansion aboug’th’e initial m =0 value. The method
convergesin 1 or 2 iterations, with e = 107, in each of the test problems involving plasticity
described below.

The framework described by Eq. (9) calls for rates of plastic deformation A and rates of

work hardening K. In the example above, which is rate-independent, we use

Th = F? (79a)
7K = &k (79b).

where 7 = At/2 in the predictor step of the method (Egs. (30a,30b)), and 7 = At in
the corrector (Eq. (41)). A generalization of this approach to rate-dependent plasticity is
described in [18].
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6. DISSIPATION
" In certain problems in hydrodynamics it has been found that the higher-order Godunov
strategy we adapted here will give rise to spurious post-shock oscillations (e.g., [5]). A
solution that rectifies this problem is the addition of a small amount of additional dissipation
at strong shocks. This dissipation is added by introducing an additional slope limiter via a
“flattening” parameter x (see Eq. (27)).

A variety of flattening strategies have been proposed. Perhaps the simplest variant,
employed by Miller and Puckett [14], uses the divergence of the velocity to detect potential
shocks, and uses a simple measure of shock strength, the ratio of pressure jump across a
cell to the isentropic bulk modulus, |AP|/Ks where Ks = 0P/8log p|s, to compute a
flattening measure. This introduces additional dissipation in regions where the pressure
change is large compared to the bulk modulus — where linearization of the equation of state
is expected to become error-prone. This strategy may introduce extra dissipation in regions
that do not require it, however, as when a shock is spread overa large (> 5 or 6) number of
grid cells. It is therefore desirable to also include measures of the shock structure in order
to minimize application of this dissipation mechanism.

Elaborate strategies for computing x are described by Colella and Woodward [7]. One
of their strategies is to restrict the use of this dissipative mechanism to regions where the
detected shock is steep. In our solid mechanics computations we found this strategy to be
useful, and in conjunction with a measure of shock strength provides judicious, adequate
additional dissipation. '

We detect a strong shock by measuring in 1D the divergence of the velocity field, and
calculating a normalized jump in stress. We define

_ l(eea)itr — (0€a)i-1lloo o
“= (det Anq,:)}/3 80)

as a measure of shock strength in the neighborhood of cell ¢ in direction e,. The numerator
is the maximum of the absolute value of the jump in those stress components that may
_ change in direction e, 1D purely elastic flow, and the denominator is a mean modulus of
the acoustic propagation tensor in direction e, .

Following Colella and Woodward, we discriminate between steep and broad shocks by
the ratio

_ |l(oea)it1 — (g€a)i-1]loo :
b= [(oea)ive — (0ea)i-2lloo (81)

In the limit 3; = % stress is approximately linear across 5 grid cells, and so a shock
discontinuity is not being captured. When 3; = 1 the discontinuity is captured in 3 cells:
the shock may be overly steep, and post-shock oscillations are expected. Accordingly, the
minimum value that our flattening parameter x should have, based upon shock steepness,

is
Xmin i = Nax (O, min (1, o Sl s} B )) (82)
a; — Qg

where ap and a; are numerical constants. We use the values ag =0.75 and a; =0.85 in the
computations presented here. ' '
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A local shock-strength-sensitive flattening parameter x;, Xmin: < X: < 1, is thus
Xi = { min (1’ max (;1:‘:0 ) Xmil"li)) ('U : ej)i+1 < ('U . ej)i_l (83)
1 otherwise
In our example calculations we use the numerical values zg = 0.25 and z; = 0.75.
In 1D we limit the slopes by the minimum over nearest neighbor cells of the local
flattening parameter,

xi = min(Xi—1, Xi, Xi+1)- (84)

In higher diménsions, we employ the same 1D local flattening parameters — measured
separately in each direction. All slopes (Oq/0z, Oq/8y, and 8q/0z) are limited by the
same cell-valued flattening parameter, which is given by the minimum of the directional
local measures. In 2D,

Xij = min(Xz,i-1,5 Xo,i,5> Xz,i+1,5> Xysii—10 Xg,i,> Xu,iri+1)s (85)
and in 3D,

Xijk = MiN( Xz i-1,5,ks Xa,i,.k Xz,it 1,5,k Xyrini—1,k» Xy isj ks

Xy, iij+1,ks Xz k=11 Xz.d,j.k» Xzvinjk+1)- (86)

7. ACCURACY

The term (v x V x gT)T was introduced to the evolution equations of the inverse
deformation gradient g to make the system of equations stable and well-posed when the
gauge constraint V x g7 = 0 fails to be satisfied. Although the partial differential equations
show that when satisfied initially, it will be satisfied for all times, numerical errors cause
the constraint to be violated to some degree. ’

We propose a modification of (9) to control inaccuracy that may arise from violation
of the gauge constraint. The conservation law (11) indicates that G will be created by
numerical errors as dipoles. Thus, a numerical strategy that will control this truncation
error is to diffuse G, '

% + V-G~ gv) =D(V*G) 87
or, equivalently,
dgea _{3_ _ T, _ T .
7 + P (gv) = (wvxGY ey —D(VxG) ey (88)

g is also related to the density via
p=ppdetg.- (89)

where pg is the mass density in the reference state 7 = g = I. Multiplying the g equations
by po det(g)g~7, and summing over the 9 components of g, gives a conservation law for
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P = po det(g):

0p L
o+ () =0, (90)

thus the continuity equation is embodied in the g equations as well. However, because of
discretization errors the equivalence of § and the mass density p cannot be assured. To
_make the method strictly conservative, we keep p as a redundant variable, and we invoke
a relaxation mechanism on g to enforce the condition p = p. This relaxation alone (not
including the diffusion modification) is accomplished by wfiting

dgeq 0

_ T P _ '
5t + Ban (gv) = (v x g) ea t+7 (ﬁ 1) géq- 91)

The “continuity” equation for p is then

Dp _ . Dgop
—D_t_ - pfﬂa Dt . -
= —~pV v+ pFpa(v X G)ga + 3n(p — ) (92)
8p : .
5§+v-(pv) = 3n(p—p) whenG =0. 93)

Including the diffusion and relaxation terms, the system of equations we will solve is:

p . Pl ( 0
pU pUVy — Oeq pf
pE PEv, — g0, p(@+v-f)
g€z gvdza ('U X g)Tel
91 ge + 9 guéya _ | x G)Tes +
ot ge, OZo gud,q (vxG)Tes
pFPe, pFPezuy phe;
pFPey pFPeyvy A phey
pFPe, pFPe vy ' phe,
pK PV, pK )
0 )
0
0

—D(V xG)Tes +1 (Eé’—e;;—; - 1) ges
~D(V % )Ty +1 (5ksz — 1) gey

94)
-D(VxG)Te, +7 (pTé?é'tG - 1) ge:

o o
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Our discretization of the diffusion and relaxation terms takes the form

n41l
géz

géy

ge: ijk

n+1

ijk

—D(V x G)Te, + 17 (
+ At | -D(Vx G)Tre, +1 (
~D(V x G)Tme, + 1 (

=n-4+1
podet gntt
=n+1

L _
po det gn+1 1
=n+4+1

— 1) g"+1e,

) gn-{—ley
) gn—}-lez.

ijk

(95)

where g"t! denotes g after flux differencing and evaluation of source terms in (10) (cf,

(40)).

The second derivatives of g appearing in the G diffusion term,

(96)

(V x G)T =

[ a2 2 2 2 [ 92 2

a 9=z — g > g T 24 g= g G2y —_ a Tz

| Bzdz — Bz T [Fyez Dzt | B0y Byt
9ey _ 82902 ] 8% _ 8% %90z __ 8%ges
8z 0y 3y? | 8ybz 8z 820z 8z

[ 82, 8%gye 829, 82g [ 52 82g,.

| B2z ~ B2 T |Teoy T et T | Byor ~ oyt T
629 32y b 829 82g 6292 629
9oy 90y S G 9yz O 9y
Oz0y By ] yOz 8z 8x20z 8z

[ A2 2 2 2 [ A2 2
0%9:2 _ 8°g.x 52::_8gzy 39:!4_3 zz
| 8262 — @22 T [azay “5a? | Byoz — Byt T
aZgL! 62911- 62922 azgl!l 62922 6__9_2 172_
Bx8y ~ Oy? ] dybz 022 8zdz Oz

are computed using time-n cell-centered values of g, with a standard 3 point stencil for
homogeneous second derivatives, e.g.,

(

8%g

1

ik Az

2(9F+1.jk - Q?jk) _ 2(9?_7‘[: - 9?—1,;'/:)

(

A:I:H.] + Az; )

AI«,‘ + A.’Ei_l

and heterogeneous derivatives are computed with a 4 point stencil, e.g.,

8%g
0zdy

(

) ijk

A von Neumann stability analysis of the diffusion update in (94), considered indepen-

)

n n o n
Git1,i+1,k " i1, -1k ~ Ji1,j+1,k T Jim1,5-1.k

= (A(Ei_1 + 2Az; + A:IIH_l)(ij_l + 2ij + ij+1) )

on

(98)

dently of other source terms or the basic solid mechanics equations, gives a bound on the
diffusion coefficient:

o

B2
24t
I%;

4At

in 1D,

in 2D or 3D.

This suggest an approximate overall Courant-Friedrichs-Lewy stability criterion of

At(|v]+cmex) 2DAL
Az + W mn lD,

CFL

CFL < 1,

|

At(lv|+emax)
Az

ADAL

+ (o)

in 2D or 3D,

99)

(100)

(101)

where here it is assumed that Az = Ay = Az, a constant. The more rigorous CFL

condition CFL = max (At(l"g;ﬁzl

4DAL

' (Ax)2

equations and G diffusion steps were performed sequentially.

) (in 2D or 3D) would hold if the mechanics
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The optimal damping conditions for the diffusion of G is obtained by choosing the
empirical diffusion constant D to satisfy

(102)

where d = 1, 2,'3 is the dimensionality of the problem. Similarly, optimal relaxation is
obtained by choosing the empirical relaxation parameter 7 to satisfy

1
= 5At

for all dimensions. According to the approximate CFL condition (101), the optimal value
‘of D will contribute 1/2 to the CFL value in 1D and 2D, and 1/3 in 3D; limiting the overall
step size At by factors of 1/2 and 2/3 (respectively) relative to the D = 0 value. Thus, in
some of the examples presented below use smaller values of D than indicated by (102). In
some cases, however, we find that values of CFL > 1 provide stable solutions (consistent
with (101) being only an approximation). '

Assumptions underlying our plastic yield model require that det 7? be constant. The
differential equations describing our plastic flow model F? preserves det F?, but again
numerical errors will lead to some violation of this constraint. To remedy this problem we
renormalize the plastic deformation tensor at the end of each time step,

(103)

FP  (det FP)"Y/3FP, (104)

8. EXAMPLES
8.1. Convergence: elasticity
To demonstrate the convergence properties of the algorithm we model in 1D the smooth
flow resulting from an initial Gaussian-shaped disturbance. For these computations we use
a hyperthermoelastic model of the Mooney-Rivlin variety, '

pE(C*,S) = é(z—s)—(logvdet Ce)? + “—(2‘?—)trce - E%S—) log det C° +
2 O:" (n+ %e“’w_) | - (105)

where S is the entropy. Entropy dependence is introduced by supposing

AS) = do+Asf(S) (106a)
w(S) = po +upsf(S) (106b)

I

where f(S) is an unspecified function of the entropy. From this equation we evaluate
a(€,g,FP, k), and other derivatives including the acoustic propagation tensors, by first
solving this equation of state for f(S), then differentiating £ with respect to the elements of
C® while holding f(S) constant. We use values pg =1, 19 = Ao =0.6, and ps =As=0.01,
with initial values go =1.1I, F§ =1, k=0, and v=0. The initial disturbance is generated
by distributing internal energy from £’ to £,

&' = E(go, 75, F(S)=0) (107a)
E" = 10&. , (107b)
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These limiting values are used to construct a Gaussian initial profile, via

&= 6'w,- <+ (1 - wi)S" (108)
with
1 r2 .
Wi = ;—-?Tr- exp [— 2;2] (109)

where a2 = 100 is the variance of the distribution, and where r; is the coordinate of the

* center of cell 4, in the domain [0,40]. Boundary conditions are reflecting at r = 0 and
r=40. We pick the time step At to satisfy the Courant-Friedrichs-Lewy constraint (101),
with CFL = 0.8. .

This problem was chosen to give a nontrivial shockless flow, with initial conditions that
strictly obey G = 0. Plasticity is not incorporated into this test problem, and no flattening
is required.

Figure 1 shows the initial and final conditions of this test problem in Cartesian geometry.
At this scale, the difference between resuits at 40, 80, and 160 Cartesian points is not

‘resolvable.

A comparison of results using 40, 80, and 160 grid points is used to estimate the L, Lo,
and L, (max) norm rates of convergence using the volume-weighted variables (Table 1).
In Cartesian geometry the method exhibits approximately third-order convergence: as the
number of grid cells is doubled, the error diminishes by a factor of 2%. Slightly lower rates
of convergence are seen in cylindrical and spherical geometries, but in all cases the order
exceeds 2.

8.2. Convergence: plasticity
To assess the rate of convergenceina plasticity-dominated flow we pose a model problem
similar to the purely elastic problem presented above. A Gaussian distribution with width
5 is used to vary the g, and g, as functions of coordinate z according to

Gosi = 11 ' (110)
Qyyi = (1+9w1)11
9zz: = 11/(1+9w;)

with homogeneous initial density, internal enérgy, and zero velocity. We use the equation
of state (105) with yield model (62) and flow rates (63,64). The equation of state parameters
are as used in the purely elastic convergence test, and the plastic constitutive parameters
are oy = 0.1, 99 = 0.1, and ¢4; = 10.0.
The flow field in this problem is C°, which lowers the overall order of convergencé.
‘Density converges at greater than 2”4 order (Table 2), but the tangential stress components
converge only at 15 order. : \

8.3. Blake’s problem
Blake [3] presented an analytical solution to the problem of an unbounded solid medium
characterized by an isotropic linear elastic equation of state,

po€ = %/\[tr(Ce —I)]2+i,utr (C{Ce—2Ce—I), (11D
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loaded by a prescribed pressure boundary condition on the interior of a spherical cavity of
initial radius a. We present a numerical solution to this problemin 1D spherical coordinates
(see Appendix), with slight modification of the code to accommodate the moving boundary
with prescribed flux (Neumann) boundary conditions. This problem is selected to verify
the behavior of the elastic algorithm in the weak shock limit.

The cavity wall represents a material interface across which the mass flux will be zero.
Accordingly, the flux at this boundary is given by F(UZ)—sU® where U? is the vector
of conserved quantities at the boundary, s is the velocity of the boundary, and F(U?B)
is the radial flux vector evaluated at the boundary. Blake’s solution provides u(r, t), the
displacement of a mass element in the radial direction. In spherical coordinates, this gives
rise to an inverse deformation tensor

(1 +06ufor)! 0 0
g(r,t) = 0  (1+4ufr)?t 0 . (112)
: 0 -0 (1 +u/r)? '

The velocity of the material interface is s=0u [Ot}r=a.

Celi 1, whose left boundary is r =a at t =0, and whose right boundary is fixed at a+Ar,
has a volume which varies with time. Applying Gauss’s divergence theorem to this cell
gives '

VAU = veUp + At 4t — A Fyp

AL (HEY? - HEH) + AthGrT?, (113)

where F denotes the radial flux component that enters as (1/72)8(r2F)/dr, H denotes

the radial flux component that enters as 8H/Or (see Appendix), 4; is the average area
(r2) over r in [a—u(a, t), a+ Ar], V4 is the time-averaged cell volume, and G7+/% is the
cell-centered vector of (geometric) source terms, which we time-center with a predictor-
corrector strategy. :

In general (see Wilkins’ problem below), algebraic solution of this discretization is unsta-
ble. In the particular case of our discretization of Blake’s problem, however, {u(a, t)| < Ar
and so V; does not vary appreciably with time and in particular is of order a?Ar. Our
solution of Blake’s problem therefore uses (113) as written. It is also necessary to modify
the algorithm to account for the absence of cell values at i—1 and i—2. The gradient 8q/dr
at s = 1 is obtained by 1%*-order forward finite difference with a van Leer limiter. The
flattening parameter  operates on a stencil that requires cell values at 0 and —1. However,
for this weak problem additional flattening is never required, so the algorithm is modified
- by omission of the flattening computation (x =1).

Following Trangenstein and Colella [24] we use parameters (@ = 0.1 m, pp = 3000
kg/m®, A=2.36 x 10'° Pa, 12 =2.78 x 10*° Pa). The pressure inside the spherical cavity is
10° Pa, and the solution is plotted at time 1.6 x 10* s.

We compare in Figs (3-6) our computed results for radial stress,

Orr = (A + 2p)(0u/0r) + 2X(u/7), (114)
hoop stress

Ogs = 0gpg = A(Ou/Or) + 2(X + p)(u/r), (115)
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pressure

N (A ; §u) [(u/0r) +2(u/r)], 16)

and radial velocity v, against Blake’s analytical results.

These results verify the method in the case of weak (linear) waves. The leading shock
is captured in approximately 5 grid cells. A single stress undershoot precedes the shock,
and a corresponding overshoot follows it, but the wave speed and amplitude are correctly
modeled.

8.4. Wilkins’ Problem

Wilkins’ flying plate problem [26] involves a Smm-thick aluminum plate impacting an
initially-stationary aluminum halfspace. The rear (left) surface of the flying plate is a free
surface (vacuum). Initially, left- and right-traveling shocks propagate outward from the
point of contact of the plate with the halfspace. When the left-traveling shock reaches
the free surface, a right-traveling rarefaction is created, which ultimately overtakes the
right-traveling shock. This problem incorporates plasticity.

To model this problem, we modify our 1D algorithm to allow for the moving free-surface
boundary. This is an example of volume-of-fluid front reconstruction applied to multi-fluid
modeling, and details will be described in a future correspondence. Briefly, we modify
the approach adopted for Blake’s problem using the flux redistribution ideas of Chern
and Colella [4]. Application of this approach to stationary incompressible boundaries is
described in [15], and to reaction front tracking in [1, 17]. Our implementation is similar,
but the free-surface boundary moves at a velocity determined by the solid-vacuum Riemann
problem. This problem is solved as described above for the solid-solid case, but uses only
the 3 x 3 stress component of the eigenvectors. This interface velocity, and the surrounding
material velocities, are used with a volume-pushing algorithm (after [2]) to update the
fractional occupancy of the interface cells.

We construct a hyperelastic model of aluminum in close correspondence to Wilkins’
(rate model) description, with

. , 2/3 ‘
E(g, FP) = (/ P[Eg)dp') + 2%’0- (trce -3 (p—;) ) (117)

where P(p) is the hydrostatic pressure (in GPa)

P(p) = 72(p/po — 1) + 172(p/ po — 1)* + 40(p/po ~ 13, (118) .

with po = 2.7 kg/m®. The shear modulus is po = 24.8 GPa. The problem is perfectly
plastic (no work hardening), and uses the von Mises yield surface function

2
f(o) = ||deval| - \/;oy (119)

with constaht flow stress oy =0.2976 GPa.
Computations with impact velocities of 0.8 km/s and 2.0 km/s were obtained with
CFL =0.80 and 500 Cartesian grid points. At 0.8 km/s, a plastic shock trails a leading
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elastic shock precursor. When the left-facing shocks reach the free surface, right-traveling
" elastic and trailing plastic rarefaction waves begin to overtake the initial right-facing shocks.
The shock stress at 2.0 km/s is above the elastic limit, so only plastic shocks are formed. On
rarefaction from the left free surface, a leading right-facing elastic rarefaction is formed,
followed by the plastic wave. These results are in good quantitative agreement with
Wilkins’.

8.5. A testin2D

This test problem compares a 1D cylindrical coordinate computation against a 2D Carte-
sian result, for a problem with cylindrical symmetry. We use the modified Mooney-Rivlin
model presented in Eq. (70) with initial conditions pg=1, g=1.1I, #? =1, and £ =0.
The plasticity parameters are oy =0.1, 39 =0.1, and 9; =10. All boundary conditions are
reflecting. The material is initially at rest, except for a cylindrical shell r € [5, 15] which
moves toward the axis with a velocity of —1. This generates a diverging rarefaction, and a
_ convergent shock, which reflects off the axis of symmetry.

In Figures (9-12) we.compare results from a 1D cylindrical calculation (500 cells,
CFL = 0.8), and an equivalent 2D Cartesian calculation using 250 x 250 cells, also at
CFL = 0.8. The 2D results are presented as 1D scatter plots in order to demonstrate
the accurate preservation of cylindrical symmetry obtained with the spatially-unsplit 2D
method. The high-resolution 1D results and lower-resolution 2D results are in good
agreement, although there is some discrepancy in x and o, near the axis.

Using this same 2D test we demonstrate the errors associated with the:gauge constraints

p— podet(g) =0 (120)
and
g:ngTzo. » (121)

These conditions are enforced in the computation by way of a relaxation term to satisfy
(120) and a diffusion-like term to satisfy (121). In Figure 13 we plot the left hand side of
(120) comparing results from the computation presented above (in Figs. 9-12), and results
from a similar computation but in which neither a relaxation nor a diffusion correction was
applied. In Figure 14 we plot the L, norm of the tensor V x g7, comparing results from the
computation with relaxation and diffusion with results from a computation using neither
correction. These figures demonstrate over an order of magnitude reduction in density error
is achieved by the relaxation mechanism. Approximately a factor of 2 reduction of ||G||2
is achieved by the diffusion mechanism. '

8.6. A testin3D
This test problem compares a 1D spherical coordinate computation against a 3D Cartesian
result, for a problem with spherical symmetry. The equation of state is identical to the
2D test above, and the initial conditions are similar: a spherical shell » € [5, 15] is given
an initial velocity of —1. This computation, with 100 x 100 x 100 cells at CFL = 0.8 is
underresolved. Nevertheless, there is good agreement between the 3D Cartesian results and
the 1D spherical calculation, and excellent preservation of spherical symmetry (Figé. 15,16).
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9. CONCLUSIONS

We have presented a new method for the solution to equations of solid mechanics in 1,
2, and 3 spatial dimensions on Eulerian grids. Our method addresses the problem of gauge
constraints (V x g7 = 0) by adopting a non-conservation approach first proposed by [8]
for the equations of magnetohydrodynamics. We write the partial differential equations
of solid mechanics in such a way that the constraint, if applicable initially, holds true for
all time. The constraint is violated by the truncation error of the method, and reinforced
with an explicit diffusion term which annihilates the dipolar field of V x g7. Another
constraint of the system, a correspondence between density variation and the deformation
field (p = po det g) is also satisfied for all times by the PDEs, if satisfied in the initial
conditions. Truncation errors of the method are compensated with an explicit relaxation
term. :
The method presented here does not incorporate artificial viscosity, but its solutions are
sensitive to 6 adjustable parameters: D and 7 control accuracy of the gauge constraints, and
ao, 01, 20, and 2; in Egs. (82,83)) govern the introduction of dissipation near strong shocks
to prevent overshoot and ringing by locally reducing the high-order Godunov method to
first-order.

Our strategy for damping modes violating the curl gauge constraint,

g7 = ¢gT - AV xV x g7, (122)
= g A (VT -V(V gD, |
= g7+ (VT - V2Q(e"),
(A = AtD) uses a single central difference operator acting on cell-centered variables.
Here, Q(gT) = V~2V(V - g7) is the projection onto the curl-free part of g7. Defining

P(z) =1 — Q(x) as the projection onto the divergence-free part of z, and noting PQ =
QP = 0, we have '

P(g") := P(¢T) + AV*P(¢7), (123)

thus we are diffusing the divergence-free part of g7 without modifying the curl-free part.
A similar scheme may be used to modify a vector field B subject to a divergence-free
constraint: :

i

B := B+AV(V-B), (124)
Q(B) := Q(B) +AV?Q(B)

with a single matrix-valued central difference operator for the projection V(V - B). This
will directly target odd-even and checkerboard short-wavelength modes of V- Bby diffusing -
the curl-free part of B. The application of this extension to magnetohydrodynamics, where
B is the magnetic field subject to gauge constraint div B =0, is currently being investigated
(R. Crockett, personal communication). » )

APPENDIX: CYLINDRICAL AND SPHERICAL COORDINATES
The equations of solid mechanics in cylindrical and in spherical coordinates (like those
of gas dynamics) differ from the Cartesian equations by the existence of both spatial and
volumetric spatial derivatives, and by the introduction of “geometric source terms”. The
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coordinate transformation is accomplished by rotating the Cartesian basis vectors into the
curved coordinate frame via the rotations matrices

cosf -—sinf O
Reyy= | sin@ cosf O (A1)
0 0 1 '

sinfcos¢ cosfcos¢d —sing
Ry = | sinfsing cosfsing cos¢ (A2)
cos @ —sinf 0

where we adopt the standard curved coordinate notation

T = rcosf (A.3)
y = rsinf
2 = 2
in cylindrical coordinates, and
z = rsinfcosé _ (A4)

y = rsinfsing

z = rcosf

in spherical coordinates. R is the matrix of inner products of unit vectors in the curved
coordinate system, e,,, and the Cartesian system eg; Rog =€, -eg. These rotation matrices
transform the Cartesian tensors F, g, and ¢ transform as o¢y = RTUCartR, etc, and
transform the velocity vector v as vey1 = RT vgart. :

In cylindrical coordinates, the system of transformed equations may be written (cf., Eq.
9):

0
pUr 0
p Orr
pv W pUYr — | Org - 0
pE Orz 0
ger pEv, —vToe, 0
: 0
3 ges 10 F)
o | ge, |Trorm 0 *ar 90” +
pFPe, 0
0
pFPeq pFPe vy 0
pFPe, pFPequr 0
Pk ) pFPe v, 0
)L

(AS)
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This equation does not include the det g relaxation term, whose representation is unaffected
by the change in variables, nor does it include the G diffusion correction, which will be
described separately below.

There is some latitude in the partitioning of terms between the LHS and the RHS
geometric source vector. This is particularly evident in the stress terms appearing in the
momentum equations. The choice of representations described here was chosen in order
that some cancellation between orr and ggg occur in the r-momentum source term.

The linearized equations of solid mechanics (cf, (28)), used in the construction of L and

R edge states, also has

a geometric source vector. Expressed in terms of the primitive
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variables ¢, but omitting stress components which are described later,

—pu,
”3 + ”r_r/P —ogs/p
~vpvg + 20.9/p

Or2/P
(vroee — veare)/p
0

0
0
Urgor + V0960 + V2902
—VrGrr — V9gro — Vzgrz
0 .
0 (A.6)

@
Il

|
(=]

The stress evolution equations, used in the predictor steps of the method, are (plastic

source terms omitted):

oer oe, oe, oer
.0, a ol 8 —
51|l o€ | +urgr | oes | tuessg | oes | +vz5; | 00 | = (A7)
oe, oe, oe, oe,
Apr . Ur Arg Ur Arz Ur
a a 2]
Asr | aefve |+ | Ao ) -og | ve |+ | Aoz ) -5 | o
Azr Uz Ao Uz Az Uz
2v90+g + Ur(Arf))ra — Vg (Arﬂ)rr \

"Uﬁ(arr - 0'00) + 'Ur(Aro)oe — Uy (-Are)ﬂr
909z + Ur(Arg)ro — Vo(Aro)zr
—vg(orr — 099) + Ur(Age)re — vo(Aso)rr
+3 —2v90,4 + vr(Asg)ae — vo(Ase)or
—vg0r; + vr(Age)z0 — vo(Asg)zr
V909 + 'Ur(-Aza)rB - 'UG(-AzO)rr

~Vg0Or; + vr(Az0)80 — vo(Az6)or )
+'U1'.(-Az9)29 - v0 (AzG)zr

where the tensors A are defined by (14).
The g relaxation term,—D(V x V x gT)T, transforms in cylindrical coordinates as

-D x

(A.8)
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The transformed system of equations in spherical coordinates may be written:
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Again, the det g source term, not included above, is unaffected by the transformation of
variables. The G diffusion term is described separately below.
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The geometric source terms in the vector s (cf, (28)) corresponding to the primitive
variables g, but omitting the direction-dependent stress terms are:
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The stress evolution equations, used in the predictor steps of the method, are (non-
geometric source terms omitted):

(A.11)
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[—2v¢(ar¢ +cot80g) + vp(Ass) oo — vo(Aps) gr+

(vr + v cot 8)(Apg) e — vo(Agpg)er — cO Q%(Aw)w]

_ The g relaxation term —D(V x V x gT)7 transforms in spherical coordinates as:

d%g 0? o? o2 8 |

T\T _ ¢ Grr gré 9" Grr gro .

((VxVxgh) )”" " rsin@0r8¢  r2sin90¢2  rOrdd 2062 200
20ger  O0ggp _ Ogs0 + 2094+ Ogr¢

280  rOr  rOr  712s5inf0¢ = r2sinfd¢
_cotbOgr,  cotfdgre  gss | 29rr  Gos

- 280 rOr 2 "2 2
+cot029,~o + 2cotggar (A.12a)
0%rr  O%grs &g &g 99
. B e , rd _ ) _ [
(VxVxgh) )r9 = r9rd9  Or2 + r25inf000¢  r2sin2002¢ 286
_28grs _ Oger _ cotfOgrs _ 20gs0  Ogog

ror rOr  rZsinfd¢ = r2sinfd¢  r2sinfde
+g1-9 _ cotfgee " cotfgge

T3 = © (A.12b)
82 82 8? 8? )
T\T . gro _ O Gre grr _0"9r¢ _ ¢
((V.x V>3 s = 5560008 ~ 72067 + rembordg ~ orF 1260

2099y _ Oggr _ 20grs _ cotfdgrs  cotBOgrs
200  ror rdr  r2s5infd¢ 1200
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(VxVvxghh),

(VxV x gT)T)M

(VxVx gT)T)%

((VxVx gT)T)w

((V x V x gT)T)w

(VxVx gT)T‘)MJ

i
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__Og66 | gr¢ , _gré  cotfges
r?sinfd¢ = r?  r25in% 72
1 E0t900 (A12c)
T
6299¢ _ 32901' 82909 _ 62991‘ _ 20g,r
rsinfdrd¢  r2sin®69¢2  rTOrdd 2062 299
+agoo 09ro 2cot069¢r age¢ _ cotfdgg,
r280  rOr = r2sinf0¢ . r2sinfd¢ 256
_cot069¢¢ + cotf3gge + gro + gor cotfggs
ror ror r2 " r25in%0 rZ .
)
+ 58900 (A.12d)
-
0%ger  0%ges 8%gep  %gee
rorod or? r25inf000¢  r2sin’00¢?
0grr _ 20999 | 2cot§0gge  cotdBgey
ror ror r25inf0¢ = r2sinfd¢
_cot@dgee Ogre¢ |, 96 900 oo
r299 r2sinfd¢ = 12 2 r2sn%0
960 cotfgre
(A.12¢
r2sin%0 2 ( v )
8%gs0  Dgos 8gor  Bgoy
r25in8000¢ 12002  rsin@Ordp  Or?
_20gry 20ggy  cotfges  cotBOggs 0Bgro
r290 rOr r25infd¢ 2060 r28inf0¢
”Coteago‘b _ cot669¢,, 948 | 98¢ 90
r200 ror 2  r2 " r25in%g
966 cotlgrge
- A.12
r2sin%@ 2 (.12
g9 094 %990 _ 0°gr
rsin@ord¢  r2sin?9¢4  rordd  r206?
+ag¢9 dgrg _ 2cotfdge, 0949 cotfOgsr
290  rOr  r2%inf0¢ = r2sinfd¢ 200
3 20g,, cotf0g4p + cotf0gse . gre goér
r25infO¢ ror ror 2 r2sin%f
cotfggs = cotfgsy
+= = (A.12g)
8?ggr  0%goe + ®gpe g0
rorol or? r25in0000¢  r2sin®00¢>
Ogry  20ggp  cotddgse  2cotfBgge
7200  rOr = r2sinf0¢  r2sinfd¢ -
_20gre | cotfdges  2gg¢ 9o0 964
r2sinfd¢ 296 72 r2sin®0  r2sin’f
2cotd
1200 gre (A.12h)
r
0’90 gy ,  Ogsr  0°gss . Ogro
r2sinfd00¢ 12002 = rsinddrd¢ or? r290
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20944 + Ogrr cot@gge  cotfdgss , cotfgeg

Tor rdr  r2sinfd¢ 1286 r200
cotfddger 9o 960 )
+ + - A.12
ror r2sin%0  r2sin%6 ( D

We have implemented these equations in 1D, direction r, with only slight modifications
to the strategy described for Cartesian geometry. Schematically, we represent the overall
system of equations in the form

U, DAF(U)  BH(U)
ot v or

Here we distinguish between the area-weighted volumetric flux terms, AF', and the spatial

flux terms H. The geometric source terms are represented by G{q,r), and the plastic

source terms are S(g).- Note that strict 1D-r flow, there is no angular dependence to any
flow variable, and therefore terms proportional to cot § (for example) vanish identically.

" As in the Cartesian case, we solve the time-centered edge Riemann problems to deduce

single-valued time-centered edge states U*_'_TD'; /2. These edge states are then used to

=G(q,r) + S(g) (A.13)

construct the flux terms F' and H, which are used to compute a preliminary update {n+1
via the difference scheme

~n . At At . -
Ui = Ui = — (Ai+1/2F+1/2 - Ai- 1/2F—1/2) A—"'z ( i+1/2 7 Hi—1/2)

7
(A.14)

Next, we modify the preliminary update by inclusion of the geometric source terms. This
is made second-order using a predictor-corrector strategy,

Ol = UP* 4 MG(g o) @)
' _ . n o \" SN |
o =0 +(6q) (q ‘1)

0 = U7+ 2 e, o) + 6@ ')

2

The plastic source terms are then evaluated at the half time step, giving the final result

1
& = 5 +a) (A.16)
Urtt = U+ AtS(@)
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TABLE 1
Convergence test: pure elasticity
geometry field Ly Lo Leoo
Cartesian o 333 3.24 3.06
Uz 3.02 2.97 2.89
Ozz 3.30 3.47 3.80
Oyy, 02z 2.95 2.91 2.69
cylindrical p 2.51 2.68 2.80
Ur 2.84 2.70 2.53
Orr 2.82 2.78 2.68
£ T 3.12 3.24 3.30
02z 3.22 317 297
spherical p 242 2.53 2.66
Uy 2.77 2.64 2.55
Orr 2.85 2.78 2.79
060,044 331 3.34 3.37
TABLE 2
Convergence test: elastic-plastic flow
geometry field L Lo Lo
Cartesian P 2.31 2.26 2.08
Uz 2.61 243 2.20
Oz 2.39 2.40 2.28
Tyy 1.31 113 1.04
Oz2 1.75 1.63 1.51
FE. 334 . 2.86 225
Fly 2.52 231 2.34
FL, 2.62 2.46 2.56
K 2.59 247 2.59 -
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