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ABSTRACT 

This paper describes a model-based, feedforward control scheme that can detect faults 
in the controlled process and improve control performance over traditional PID control. The 
tool uses static simulation models of the system under control to generate feed-forward 
control action, which acts as a reference of correct operation. Faults that occur in the system 
cause discrepancies between the feedforward models and the controlled process. The scheme 
facilitates detection of faults by monitoring the level of these discrepancies. We present 
results from the first phase of tests on a dual-duct air-handling unit installed in a large office 
building in San Francisco. We demonstrate the ability of the tool to detect a number of pre
existing faults in the system and discuss practical issues related to implementation. 

Introduction 

Heating, ventilating, and air-conditioning (HV AC) systems are typically controlled 
using proportional plus integral (and sometimes plus derivative) PI(D) control law. In 
practice, HVAC systems exhibit non-linear operating characteristics, which cause control 
performance to vary when operating conditions change. Poor control performance can lead 
to occupant discomfort in the treated building, greater energy consumption, and increased 
wear on controlled elements, such as actuators, valves, and dampers. 

In a conventional PI(D) feedback loop, the controller does not contain much 
information about the process it is controlling. Faults that lead to performance deterioration, 
or a change in system behavior, are often masked within a feedback loop. The control 
scheme described in this paper uses a model of the correctly operating system to supplement 
a conventional PI(D) feedback loop. The model is part of a feedforward control regime and 
acts as a reference of correct behavior, which facilitates the detection of faults that develop in 
the controlled system. Incorporation of a system model in the feedforward control scheme 
facilitates more consistent control performance as operating conditions change. 

Several researchers (e.g. Gertler, 1998; Glass et ai., 1994; Isermann, 1995; Patton et 
aI., 1995) have proposed fault detection and diagnosis schemes based on the use of models. 
The main trade-off with model-based schemes is configuration effort versus model accuracy. 
Generally, the greater the potential accuracy of the models, the greater the effort required to 
configure the models for operation. In the proposed control scheme, we selected models that 
are configurable from design and commissioning information in order to reduce 
configuration effort. Previous work has shown that despite resultant loss of accuracy through 
model simplification, the scheme is capable of detecting a number of important faults and of 
improving control performance (Salsbury, 1999). 



The Control and Fault Detection Scheme 

Figure 1 shows the control and fault detection scheme. A conventional PI(D) 
feedback loop generates control action (un) based on the error between the setpoint and the 
controlled variable. This feedback control action is then supplemented by a control signal 
(UFF) generated by a simulation model(s), which is an inverse representation of the system. 
An inverse model predicts the inputs to a system based on measured outputs. The model is in 
static form and produces a control action appropriate for the current setpoint and measured 
disturbances. The control scheme is similar to one proposed by Hepworth and Dexter 
(1994), who used an adaptive neural network as the inverse system model. 
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Figure 1. The Control and Fault Detection Scheme 

The inverse model acting in isolation of the feedback loop would produce responses 
according to the open-loop dynamics of the system. Note that because the model is steady
state, the predicted control signal, uffi will change instantaneously for a change in any of the 
measured inputs. The feedback loop serves to speed the response time of the controller and 
eliminate offsets resulting from model inaccuracies and unmeasured disturbances. Assuming 
the effect of unmeasured disturbances is small, the (steady-state) feedback control action 
(un) serves as an indication of the model/system mismatch. The control action, Un, thus 
represents an implicit measure of the difference between the predicted and the actual control 
signals for a particular setpoint. By configuring the model to represent a correctly operating 
system, the level of Un acts as an indication of fault development. Faults occurring in the 
system, which change its behavior or performance, thus create a mismatch between the 
model and system, leading to an increase in feedback control action. 



The control scheme incorporates fault detection capabilities by monitoring the 
magnitudes of two indicator variables. The first indictor variable is the output from the PI 
controller (un) - the "control signal error" and the second is the difference between the 
setpoint and the controlled variable - the "setpoint error". The controller generates an alarm 
if either of these variables exceeds a threshold for a sustained period. 

The control signal error reveals changes caused by faults that do not affect the ability 
of the controller to maintain the setpoint, e.g., leakage through a control valve. A prolonged 
setpoint error that is not accompanied by a control signal error indicates a problem at or near 
to the point where the control signal would normally saturate, e.g., a capacity problem when 
full load is demanded. Simultaneous control signal and setpoint errors over a sustained period 
can indicate poor tuning or problems with the control loop. However, if the control loop is 
oscillatory, the errors may periodically return below their respective thresholds within a short 
enough time thereby avoiding alarm generation. Sensor errors are also detectable by the 
control scheme. Those that do not affect the ability of the control scheme to achieve the 
setpoint will be detectable through the control signal error. Large errors in the controlled 
variable sensor that cause the setpoint to become unattainable would also be detectable 
through the setpoint error. 

The proposed control scheme triggers an alarm if the control signal error or setpoint 
error continuously exceed a threshold for a predetermined period. Figure 2 shows the fault 
detection algorithm. Tu is the threshold for the control signal error, Te is the threshold for the 
setpoint error, and P is the maximum transgression period before generating an alarm. The 
fault detection part of the control scheme thus requires three parameters to configure it for 
operation: Tu, Te, and P. 

Figure 2. Fault Detection Logic 

IF IUPII>Tu OR lerrorl>Te, 

P=P+f1t 
ELSE 

P=O 
ENDIF 
IF P>Pmax 

FAULT=i 
ELSE 

FAULT=O 
ENDIF 

Under a PI control regime, the setpoint error is supposed to reach zero in steady-state. 
Te, can thus be selected heuristically based only on considerations of typical sensor noise and 
tolerable tracking errors. The parameter, P max, relates to the maximum time between periods 
of steady-state. For HV AC applications, it is reasonable to assume that transience does not 
normally persist for more than 30 minutes between periods of (quasi) steady-state. We thus 
selected a value of 30 minutes for P. Selection of the threshold Tu is more difficult and 
relates to the accuracy of the models and the degree of detection sensitivity required. Ideally, 
Tu should be established through tests on the correctly operating system. However, as is 



shown later, Tu may be also be set heuristically for preliminary testing in order to detect gross 
faults in the system. 

Test System 

Figure 3 depicts a schematic of the air-handling unit used in the tests, which is a dual
duct type having three thermal subsystems: mixing box, cooling coil, and heating coil. The 
air-handling unit has the capacity to deliver 74kg/s of air and provide 850kW of heating and 
1260kW of cooling. The unit is installed in a large federal office building in San Francisco. 
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Figure 3. Schematic of the Dual-Duct Air-Handling Unit 
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Each thermal subsystem has its own controller. The mixing box controller modulates 
three sets of dampers in sequence to maintain mixed air conditions. There is a minimum 
outside-air requirement based on damper position (20% minimum outside-air) and a 
temperature-based economizer. The hot duct houses a steam-to-air heating coil regulated by 
a two-way valve, and there is a water-to-air cooling coil having a three-way valve in the cold 
duct. The fan speed varies according to load changes in the zones in a conventional V A V 
arrangement to maintain a constant static pressure in the supply ducts. 

Simulation Models Used in the Control Scheme 

The controller incorporates three separate models; one in each of the three separate 
control-loops in the air-handler: mixing box, heating coil, and cooling coil. Details of the 



model equations can be found in (Salsbury, 1998). We simplified the models used in the 
feedforward controller in several respects. In particular, the models do not treat: 

• Variations in coil thermal conductance with fluid flow rates; 
• Dehumidification in the cooling process; 
• Valve/damper non-linearity. 

We make the latter simplification because characterization of this non-linearity requires 
parameters that are not easily obtainable or reliable, such as the inherent and installed 
characteristics of the valves and dampers. The simplification is reasonable, as one of the 
goals of the design and commissioning processes is to linearize the relationship between the 
control signal and controlled variable, e.g., by canceling coil non-linearity with valve non
linearity. Although the model simplifications reduce potential accuracy and performance of 
the scheme, a major advantage is that the parameter values may be obtained from typically 
available information, rather than requiring calibration data and additional tuning effort. 

Table 1. Configuration Parameters 

P ARAMETERIDESIGN SPECIFICATIONS UNITS 
HEATING/COOLING COIL 
Heat transfer rate kW 
Cold fluid inlet air temperature °C 
Cold fluid mass flow rate kgs- I 

Hot fluid inlet temperature °C 
Hot fluid mass flow rate kgs- I 

MIXING Box 
Minimum fractional outside air flow % 

Table 1 lists the parameters required by the models in the feedforward controller and 
Table 2 lists the required sensor measurements/variables. Note that in the dual-duct air 
handling unit, air temperatures and flow rates are required before the coils in both the hot and 
cold ducts. 

Table 2. Required Sensor SignalsN ariables 

SENSOR SIGNAL UNITS 
Return air temperature °C 
Outside air temperature °C 
Air flow rates (hot and cold ducts) kgs- I 

Pre-coil air temperatures (mixed air) °C 
Setpoints (mixed, hot-air, cold-air) °C 



Implementation 

We developed the control and diagnostics algorithms into a stand-alone software 
program for testing with the test unit described earlier. We initially deployed the tool in a 
passive mode with the intention of validating the models and establishing thresholds. 
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Figure 4. Interaction of Control Software with PI-Loop When in Passive Mode 

Figure 4 depicts how the controller software was set up to interact with a PI loop in 
passive mode. In this mode, the feedforward control signals generated by the models do not 
affect the control operation and the system remains under PI-only control. In terms of fault 
detection, instead of using the PI control signal (up!) as a measure of the difference between 
the predicted and actual control signals, the difference is calculated explicitly, i.e., Up! - UFF. 

Software Architecture and Connection to the EMCS 

We developed the software based on three separate modules, as shown in Figure 5. 
The user interface provides diagnostic information to the user and allows the user to change 
parameters of the feedforward models, and other configuration information. The central 
module contains the control and diagnostics algorithms that function according to 
configuration information set by the user and data obtained from the energy management and 
control system (EMCS) network. The third module (control system interface) handles 
acquisition of data from the EMCS. The building in which we performed the tests was the 
subject of a recent large scale EMCS retrofit, which included replacing a large part of the 
system with BACnet (ASHRAE, 1995) compliant control devices. We thus developed the 
control system interface to use the BACnet communication protocol. Use of this 
communication protocol opens the way for testing the control software on any other BACnet 
compliant system regardless of the manufacturer. 



control software 

user interface 
feedforward control 

and diagnostic 
algorithms 

control system 
interface (BACnet) 

Figure 5. Software Module Interaction and Connection to the Control System 

Figure 6 shows the user interface, which depicts the dual-duct air-handler used for 
the tests. Note that the two fans in the return duct have their speeds tracked to the speed of 
the supply fan, which is regulated in order to maintain the average of the hot- and cold-duct 
static pressures at a setpoint. 
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Figure 6. User Interface Showing the Dual-Duct Test Unit 



Obtaining a Points List 

Before we could carry out the tests, we had to obtain a point list of the sensors and 
control signals required by the software tool. This task is unavoidable for any application 
that needs to poll data from an EMCS network. The devices on the network that relate to the 
physical sensor and control-signal measurements required by the application require 
identification so they can be mapped onto the variables in the application program. The 
process of acquiring the necessary information can be both time consuming and subject to 
human error. 

Sensor Availability and Accuracy 

One problem encountered during the testing of the feedforward controller concerned 
sensor availability. In the test system, direct measurements of airflow in the hot and cold 
ducts were not available. The feedforward models use these measurements to calculate 
temperature rises/drops across the coils and the model predictions are quite sensitive to these 
variables. We therefore had to proxy the air flow rates using other sensor measurements that 
were available. We applied mass balances and pressure-flow relationships in addition to 
simple models to calculate airflow from the supply fan VPD control signal and static pressure 
measurements in the hot and cold ducts. The proxy was difficult to assess for accuracy, as 
we were only able to obtain point measurements of actual airflow at sporadic operating 
points. In addition, assumptions made in the proxy calculations introduced uncertainty into 
the predictions of airflow. Uncertainties in any of the measurements affect the performance 
of the control scheme and its fault detection sensitivity. 

Test Results 

The original aim of the first phase of testing was to validate the models in order to be 
able to establish the threshold values, Tu. However, it became apparent in the early stages of 
testing that blindly using data from the system in its "normal operation" state to set 
thresholds was inappropriate. We found that normal operation did not necessarily mean 
"correct operation". The initial test described in this section therefore entailed detecting pre
existing faults in the system. We discovered that the tool was useful as are-commissioning 
aid and could be used in this way by setting Tu heuristically before carrying out the tests. 

As explained earlier, the software operated in passive mode and maintained its fault 
detection capability by calculating the difference between the feedforward control signal and 
the measured PI control signal explicitly. During the test, the supply fan-speed and static 
pressures remained relatively constant, which reduced the potential errors stemming from the 
airflow proxy. In addition, the return and ambient air temperatures did not vary significantly 
during the tests. The effect on the AHU behavior from variations in measured disturbances 
was therefore small during the test period. Figure 7 shows the return and ambient air 
temperatures and the airflow rate proxy in the hot and cold ducts. 
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Figure 7. Measured Disturbances Affecting AHU Performance During Initial Test 

Figure 8 and Figure 9 show the test results. The top graph in Figure 8 shows the 
controlled temperatures and their setpoints and the lower graph shows the control signals to 
each of the three subsystems. Figure 9 shows the control signal errors and the setpoint 
tracking errors in the upper two graphs and the fault detector indicators in the three lower 
graphs. The first feature to note from Figure 8 is that the controllers are unable to regulate at 
the setpoints very well, despite relatively constant measured disturbances and constant 
setpoints. The source of much of the instability appears to be the mixing box, which is 
cycling about its setpoint. This causes the mixed air temperature to vary, which in tum 
affects the load on the heating and cooling coils in their respective ducts downstream of the 
mixing process. The cooling coil reacts to the cycling in the mixing process with more 
extreme variations, causing the cooling valve to vary across its entire range. The 
disturbances in the mixing process influence the heating process to a lessor degree. However, 
the heating coil controller is still unable to regulate very well the controlled variable at the 
setpoint. 

In Figure 9, operational problems in the AHU are evident with the indicator variables 
exceeding thresholds for sustained periods. Thresholds on the control signals and the 
controlled variables were set arbitrarily for this test and were thus not established empirically 
from training data. The control signal thresholds were set to 0.25 (25% of range) and the 
controlled variable thresholds to 2K. The cycling in the mixing process triggers an alarm due 
to the controlled variable being more than 2K outside of the setpoint for more than the half
hour time limit (P max in Figure 2) set for the tests. Inspection of the mixing process revealed 
that leakage existed through the return-air dampers and this contributes to the control signal 
error exceeding the threshold at certain times, particularly when the controller demanded full 
outside-air (u= 1). 
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Figure 8. Control Performance 
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Figure 9. Fault Indicator Variables 

Whenever the cooling process becomes active (i.e., the control signal is greater than 
zero), the error between the predicted and actual thresholds is large, as shown in Figure 8. 



However, these large errors do not lead to an alarm, due to the cycling of the valve bringing 
the valve back to its closed position, where there is little prediction error before the half-hour 
time limit. The software thus only generates an alarm toward the end of the data when the 
coil valve stays open. The reason for the large error between the cooling control signal and 
the measured value was determined to be due to the chillers being disabled in the building 
during the test period. The cold water inlet temperature to the cooling coil was thus higher 
than expected as the cooling effect came only from the cooling towers. Since the cold-water 
temperature is a parameter in the controller software and not a variable input, the models 
predict a greater degree of cooling than is actually produced. The software therefore 
demonstrates a capability for detecting faults in the primary plant systems. 

There are two periods in the test data when the software generates alarms for the 
heating coil system. The fIrst alarm instance is caused by a sustained error between the 
predicted and actual control signals. Examination of Figure 8 shows that in the period 
before the alarm, the heating valve is near or at its closed position while there is still a large 
difference in temperature across the coil. This behavior is inconsistent with the expectation 
of correct operation. The reason for the behavior is uncertain, but operators have reported 
leakage problems with the pneumatic valves controlling both the heating and cooling coils. 
The discrepancy between the predictions and measurements could thus be due to a large 
leakage through the valve. The second alarm instance is caused by simultaneous threshold 
transgressions in both the control signal and setpoint errors. The error between the controlled 
variable and the setpoint is quite significant as verifIed in Figure 8. It is possible that the 
simultaneous setpoint and control signal errors were due to a de-activation of the control 
loop, although we were unable to confIrm this. The fact that the controller does not start to 
reduce the magnitude of the heating control signal as the setpoint error increases is strong 
evidence for a problem with the controller rather than the heating process. 

Conclusions 

This paper has described how simplified simulation models can be used to improve 
control performance and detect faults. Results from the first phase of tests on an AHU 
installed in a large offIce building demonstrated a fault detection capability and served to 
highlight practical implementation issues. We carried out an initial validation test of the 
controller software with the intention of establishing thresholds for later testing. However, 
we found that we could not reliably determine thresholds due to the existence of faults in the 
system. We therefore used the tool as a "re-commissioning" aid in order to detect the pre
existing faults, using thresholds selected heuristically before the tests. We detected the 
following problems in the test system: 

• Poorly tuned economizer controller 
• Leakage through the return air dampers 
• De-activation of the chillers 
• Valve leakage in the heating coil 
• Heating coil controller deactivation/malfunction 

The tests on the AHU demonstrated the diffIculty in establishing a baseline of "correct 
operation" with which to determine thresholds and validate the models. A decision thus has 
to be made at the time of establishing thresholds whether to accept observed behavior as 



being "correct" or to fix/tune the system to improve its performance. In the initial tests, the 
software proved useful as a re-commissioning tool allowing us to detect faults such as 
leaking valves and dampers. However, if these kind of faults were ignored by setting high 
threshold values the overall sensitivity of the tool would be reduced making new faults more 
difficult to detect. We therefore recommend that installation and tuning of the controller 
software take place following a thorough commissioning of the systems to ensure a fault-free 
starting condition. 
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