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Semianalytical Solutions of Radioactive or Reactive
Transport in Variably-Fractured
Layered Media: 1. Solutes

Abstract. In this paper, semianalytical solutions are developed for the problem of
transport of radioactive or reactive sol ute tracers through alayered system of heterogeneous
fractured media with misaligned fractures. The tracer transport equations in the non-
flowing matrix account for (a) diffusion, (b) surface diffusion, (c) masstransfer between the
mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical,
or combined solute sorption or colloid filtration, and (€) radioactive decay or first-order
chemical reactions. The tracer-transport equations in the fractures account for the same
processes, i nadditiontoadvectionandhydrodynamicdispersion.  Anynumberofradioactive

decay daughter products (or products of alinear, first-order reaction chain) can be tracked.
The solutions, which areanalytical inthe Laplace space, are numerically invertedto provide
the solution in time and can accommodate any number of fractured and/or porous layers.
The solutions are verified using analytical solutions for limiting cases of solute and colloid
transport through fractured and porous media. The effect of important parameters on the
transport of 2H, 23”Np and 23°Pu (and its daughters) isinvestigated in several test problems

involving layered geological systems of varying complexity.

1. Introduction

The study of radioactive and/or reactive contaminant transport in complex fractured
geologic systems has become increasingly important in recent years because of the need

to predict the migration and fate of the contaminants. Currently, there are some very
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large contaminated sites (such as Hanford, Washington; Nevada Test Site (NTS), Nevada;
Idaho National Engineering and Environmental Laboratory (INEEL), 1daho) where severe
pollution by radioactive materials extends over large areas within the subsurface rocks.

At YuccaMountain (YM), Nevada, the site of the potential repository for high-level
nuclear waste, the transport of radioactive contaminants must be predicted for tens to
hundreds of thousands of years. Performing reliable radionuclide transport cal culations for
this temporal and spatial scale is obviously very difficult, and furthermore it is impossible
to verify the results. In addition, the complex geology of the site and the unsaturated nature
of asignificant portion of the flow path add to the difficulty in making such predictions.

The potential siteislocated in southern Nevadaabout 120 km northwest of Las Vegas,
and is characterized by athick unsaturated zone (600—700 m) and the presence of rocks onto
which important radionuclides in the wastes tend to sorb strongly. The YM stratigraphy
consists of layers of welded and nonwelded tuffs (with vastly different hydraulic, transport,
and geochemical properties), with the former generally being extensively fractured and the
latter behaving similarly to a porous medium [Montazer and Wilson, 1984; Liu et al., 1998;
Bandurraga and Bodvarsson, 1999].

The varied geological and hydrological characteristics of the different tuff layers at
Y ucca Mountain make the modeling of flow and transport a challenging task. A single
representation for all of the hydrogeologic units is inappropriate, and severa different
approaches and algorithms must be employed for obtaining reliable modeling results.
Analytical and semianalytical models of transport that can account for the site heterogeneity
are important because they allow the validation of complex multidimensional numerical
models, are computationally efficient, and can provide bounding estimates of the possible
solutions of the expected transport at the site.

Previousanal ytical sol utions of solutetransport infractured mediainvolvedexclusively
single semi-infinite domains (layers). Tanget al. [1981] developed aquasi two-dimensional

solution for the transport of solutes in a single saturated fracture (i.e., with a semi-infinite
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matrix) that assumed a constant concentration boundary and accounted for (@) advection
and dispersion in the fractures, (b) diffusion in the matrix, the fractures, and across their
interface, (c) sorption onto the matrix and the fractures, and (d) radioactive decay. The
analytical solution of Sudicky andFrind [1982] accounted forthe sameprocesses inasystem

of parallel fractures (i.e., with afinite matrix block size). The solution of Robinson et al.
[1998] is an extension of the Sudicky and Frind [1982] solution and accounts for the effect
of fracture skin on transport in a system of parallel fractures. By neglecting hydrodynamic
dispersioninthe fracturesand assuming aninstantaneous (Dirac-type) deposition of aparent
radionuclide at the boundary, Sudicky and Frind [1984] obtained analytical solutionsto the
problem of transport of atwo-member radioactive chain in asingle fracture.

In this paper, semianalytical solutions are developed for the problem of transport of
radioactive or reactive solute tracers (i.e., at concentrationsthat do not affect the fluid prop-
erties) through alayered system of heterogeneous fractured mediawith misaligned fractures
(such asthe unsaturated zone at Y M). The solutions allow any number and combination of
fractured and/or porous layers that can vary in hydraulic and transport properties, fracture
frequency, water saturation, fracture flow, and fracture-matrix interaction. The tracer trans-
port equations in the non-flowing matrix account for (a) molecular diffusion, (b) surface
diffusion, (c) mass transfer between the mobile and immobile water fractions, (d) linear
kinetic or equilibrium physical, chemical or combined solute sorption, and (€) radioactive
decay or first-order chemical reactions. The solute transport equations in the fractures ac-
count for the same processes, in addition to advection and hydrodynamic dispersion. Any
number of daughter products of radioactive decay (or of alinear, first-order reaction chain)

can be tracked, and several boundary conditions can be accommodated.

2. Solute Transport Equations
2.1. The PDE of Solute Transport

The one-dimensional (1-D) Partial Differential Equation (PDE) of transport of a
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radi oactiveorreacti vesol utetracersthroughavariablysaturatedporous — orfracturedmedium
(PM or FM) is described by the equation

9°C 0°C; O*F oC
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where
dissolved species concentration in the mobile pore water [M L~3];

intrinsic diffusion coefficient for the mobile pore water [L2T~'];
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dissolved species concentration in the immobile pore water [M L~3];

intrinsic diffusion coefficient in the immobile pore water [L2T~1];
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relative concentration of the physically adsorbed species[(ML~3) /(M L™3)];
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relative concentration of the chemically sorbed species[(M L=3)/(ML™3)];

reacted species mass per unit volumein the mobile fraction [M/ L—3];
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reacted species mass per unit volume in the immobile fraction [M L—3];
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apparent surface diffusion coefficient [M/ L—1T—1];
=V ¢(S—S,),Darcy velocity [LT~1];
pore flow velocity [LT~!];
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water saturation [L3/L3];

o

irreducible water saturation [ L3 /L3];

p PM grain density [M L~3];

o total PM porosity [L3/L3];

A =1n2/T; /,, radioactive decay constant [T71;
T/,  hdf-life of radioactive species[T7.

The parameters §, and §,, are defined as

1 for reactive transport 0  for reactive transport
o = { and 6y = {

0  for radionuclide transport 1 for radionuclide transport



MORIDIS: SOLUTE TRANSPORT IN FRACTURED LAYERED MEDIA

The first three terms on the left-hand side of (1) describe diffusion in the mobile pore
water [Skagius and Neretnieks, 1988] through the immobile thin film in the immediate
vicinity of the PM grains [de Marsily, 1986], and surface diffusion [Jahnke and Radke,
1987; Skagius and Neretnieks, 1988; Cook, 1989; Berry and Bond, 1992], respectively. The
fourth term on the left-hand side (1) describes advectivetransport. The terms on the right-
hand side of equation (1) describe the dissolved species accumul ation and radioactivedecay
in the pore water, in theimmoabile fraction, and on the PM grains due to sorption. Chemical
reactions in the water phase are also accounted for [Cho, 1971]. A detailed discussion of

these terms can be found in Moridis[1999], from where
Dy =¢(S—8:)(1p Do+ V) and D;=7,¢5,.Dqy (2)

where Dy isthe molecular diffusion coefficient of the dissolved speciesin water [L2T 1],
oy, is the longitudinal dispersivity [L], 7, is the tortuosity factor of the pore paths
[dimensionless]|, and 7; is the tortuosity factor in the diffusion paths through the immobile
fraction [dimensionless]. If surfacediffusion cannot beneglected [Jensen and Radke, 1988],

D isgiven by [Jahnke, 1986; Jahnke and Radke, 1987]
Dp =7, (1_¢)sta (3)

where 7, is the tortuosity coefficient of the surface path [dimensionless], and D, is the
surface diffusion coefficient [L27T—!]. For homogeneous PM systems there is theoretical
justification [Cook, 1989] for the relationship 75, = %rp.

The species concentration in the mobile and immobile water fractions are related

through the linear equilibrium relationship [de Marsily, 1986],
C:=K,C, Ri=K;R, (4)

where K; is adimensionless mass transfer coefficient. Equation (1) then becomes

2 2
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where

DTIQb{DO [Tp(S—ST)—l—TiSTKZ‘]—l—(S—Sr)OéLV} (6)

and

h=(S—5,)+5 K. (7)

2.2. The Equations of Solute Sorption and
First-Order Chemical Reaction

Consideringthat sorption occursasthedissolvedspecies diffusesthrough theimmobile
water fraction, and assuming linear equilibrium (LE) sorption, the following relationship
applies:

F,=K;K;,C, (8)

where K, isthe distribution coefficient [A/ —1 L3].
Linear kinetic physical (LKP) and linear irreversible physical (LIP) sorption are
described by the equation [Moridis, 1999]

OF
i TAFp =y (KaKiC =6, F), (9)

where k, is the kinetic constant of linear adsorption [7~'], and

1 for LKP sorption;
51) = { (10)

0  forlinear LIP sorption.

Inthecase of LIP sorption, K ; doesnot represent the distribution coefficient of LE sorption,
but is rather a proportionality factor.
Thefirst-order reversiblechemical sorptionisrepresentedbythelinearkineticchemical

(LKC) model
OF,
ot

+AF. =kl K;C —k_ F., (11)

C

where k' [M~1L3T~'] and k_ [T~!] are the forward and backward kinetic constants,

respectively. Note that equation (11) can be used in conjunction with the physical sorption
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equations to describe combined sorption [Cameron and Klute, 1977], e.g., physical and
chemical sorption. Combined sorption accounts for the different rates at which a species
is sorbed onto different PM constituents. Thus, sorption onto organic components may be
instantaneous(L E),whilesorptionontomi neral surfacesmaybemuchsl owerandkinetically
controlled [Cameron and Klute, 1977].

The equations of a seriesof V.. first-order chemical reaction are given by [Cho, 1971]

ORy
W — ,Cl Cl )
R Ky Cy— K Cy
OR
aé\fc =Kn.Cn, —Kn.—1Cn.—1,
where K; (j = 1,...,N,) is the chemical reaction rate constant [7~'], and N, is the

number of chemical reactions in the series.

2.3. The Solute Transport ODE in the Laplace Space

2.3.1. Parent or Stable Species. After incorporating the sorption terms, the Laplace
transform (L T) of the solute transport equation (5) yieldsthefollowing Ordinary Differential

Equation (ODE)
2C __dC 4
D— _U—_FEC= 1
77 U T C=0, (13)

where C' = £{C?}, £{} denotes the LT of the quantity in the brackets,

E=¢[(s+d A\ R+6-hK], (14)
(h+w for LE sorption;
h+uvy for LKP or LIP sorption,
h+vy for LKC sorption,
R= (15)

h+ (w+u)y for combined LE and LKP/LIP sorption,

h+ (w+wv)y for combined LE and LKC sorption,

L h+ (u+wv)y for combined LKP/LIP and LKC sorption,
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( Dr +¢pr1swp Dy for LE sorption;
Dpr+ ¢1sut) Dy for LKP or LIP sorption,
Dr+¢rsv1p Dy for LKC sorption,
D = (16)

Dy + ¢1s (w+u)p Dy for combined LE and LKP/LIP sorption,

Dr+¢71s(w+v)y Ds for combined LE and LKC sorption,

\ Dy + ¢ 715 (u+v)y Dy for combined LKP/LIP and LKC sorption,

k, K, K; kK, (1-9)
:K Kfi, - P 9 - £ 9 = Y 17
W= R R L e g U

and s isthe Laplace space parameter. Theterm R isan expanded retardation factor, which

can account for kinetic behavior [Moridis, 1999]. Its development involvesthe LT of the

sorption from equations (8) through (11). It isstraightforward to show that [Moridis, 1998]

~ ~

F=pC (18)
where F = £{F} and
(W for LE sorption;
U for LKP or LIP sorption,
v for LKC sorption,
p= (19)

w + u for combined LE and LKP/LIP sorption,

w + v for combined LE and LKC sorption,

\ v+ v for combined LKP/LIP and LKC sorption.
Equation (13), subject to equations (14) through (19), is the Laplace space equation

of solute transport in its most general form. Implicit in (13) are the assumptions that (a)
C(z,t =0) =0, (b) F(z,t =0) =0, (c) R(z,t = 0) = 0, and (d) in combined sorption,
different sites are involvedin each of the constituent types of sorption.

2.3.2. Daughter Species of Radioactive Decay. If the species is radioactive, the

right-hand side of equation (5) is augmented by the term

—Ap—1 My [gthy_l + (1 — ¢) pr—l] s where my, =

)
Mz/—l
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M., isthe molecular weight of the v-th daughter (1 < v < Ny, Ny being the total number
of radioactivedecay or reaction products), and v — 1 refersto the decaying parent. Then, the
L aplace space transport equation for any daughter product v of the decay chain following a

LE isotherm is given by

d2C, dC, . _
D, —2 — ~E,C,=— _ 2
v dIz U dr v Cl/ GV Cu 1> ( 0)
where
GV == gbmr /\V—l Ru—l (21)

If the daughter sorptioniskinetically controlled, equations (9) and (11) need to account
for the generation of daughter mass due to the decay of the sorbed parent, and become

%+>\VFI/_AV1mT€yFV1:kaCV —k‘ﬁFy, (22)

where F),_; isthe sorbed mass of the parent,

kT K; for LKC sorption, k- for LKC sorption,

C

{ k, Kq K; for LKP/LIP sorption, { ky 6, for LKP/LIP sorption,
ko = kg =

and ¢, is the fraction of the mass of the decayed sorbed parent that remains sorbed as
a daughter (0 < ¢, < 1). Theterm (, is introduced to account for the possibility that
daughters can be gjected from grain surfaces due to recoil, e.g., the gjection of 234Th from

grain surfaces during the alphadecay of 233U [Faure, 1977]. The LT of (22) returns

~ ~ ~

Fl/ :pcy+mrprcy—1a (23)

where p is obtained from equation (19), and

A . .
vo1 Gy U for (@) LKP/LIP or (b) combined LE-LKP/LIP sorption
oy = s+ A, +kpdp (24)
M for (a) LKC sorption or (b) combined LE-LKC sorption
s+ A, + ke

For combined LKC and LKP/LIP sorption, p, is the sum of the two components in (24).
Using (23) and (24), it is easy to show that equation (20) applies, but with

G,=¢mp N1 Ry—1—(s+\)pr]- (25)
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All other terms in (20) remain unchanged. Equations (20) through (25) are valid in any
layer n. For acomplete daughter gection [Faure 1977], ¢, = 0, p, = 0, and (21) and (25)
become identical.

2.3.3. Products of Chemical Reactions. If the speciesis aproduct of the v-th first-
order chemical reaction in the reaction chain (12), the right-hand side of equation (5) is

augmented by theterm —¢ h IC,,_1 C,,_1. Then, equation (20) applies unchanged, but with

Gy1=dhKy 1. (26)

3. Transportin Layered Fractured Media

The development of the equations for transport in a layered fractured media expands
on the analysis of Tang et al. [1981] and Sudicky and Frind [1982]. A schematic of the

fracture-matrix systemisshowninFigure 1, inwhichthe NV layershavedifferent properties.

3.1. Transportin the Matrix

3.1.1. The ODE of Parent or Stable Species Transport in the Matrix. Advection
in the matrix is neglected, that is U,* = 0. Then the Laplace space ODE of the species
transport in the matrix layer n isgiven by

o A2

D
"o dx?

—E"C™ =0, (27)

where the superscript m denotes the matrix. The diffusiveflux across the fracture-matrix
interface is given by

Gn = —1p D" n (28)
Ty =

and differsfrom the analogous expression of Tanget al. [1981] in theinclusion of the active

interface area reduction factor r,,. Theterm r,, (1 > r,, > 0) isdefined as the ratio of the
average interface area between mobile water in afracture and its surrounding matrix to the
averageinterface area between afracture and the surrounding matrix. A detailed discussion

on the subject can befound in Liu et al. [1998]. For afully saturated fracture, r,, = 1.
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3.1.2. The ODE of Daughter Transport in the Matrix. From equation (20), the

L aplace space ODE of transport of the daughter v in the matrix of layer n is given by

d>Crm _ .
DT”Z‘?V dm%’ - E’qu CZ,LV = _GT ;LT,LV—l ) (29)

where the term G is computed from (21) to (26). The diffusive flux of the daughter v

across the fracture-matrix interface is given by equation (28).

3.2. Transportin the Fractures

3.2.1. Adjustments to Concepts and Equations. In fracture transport, the Darcy

velocity U, in any layer n iscomputed from the basic mass balance equation as

Qu
Un = ;
M,, b,

where @), isthe water influx rate per unit fracture thickness (in the y direction, not shown
in Figure 1) at the z; = 0 boundary [L2T~!], and 2b,, is the fracture aperture [L]. The
parameter M,, [L/L] istherelativefracture density, and is determined from the number of
fracturesin an arbitrary length L, (seeFigure1). Theterm L, isrelated to the matrix block

half-width X,, [ L] and b,, (see Figures 2a and 2b) through the relationship

L,
Mn: T~ 1 W :1,...,N.
2(X,, +bn) "

There are two different ways to treat the fractures. If the fractures are open, we
have surface-based rather than volume-based sorption in the fractures of any layer n
(n=1,..., N). Thefollowing changes are then made:

(a) F isnow the mass of solute adsorbed per unit surface of the fracture [M L—2].
(b) From the mass balance equations, theterm (1 — ¢) p in(17) isreplaced by 1/b,,, where

b,, i1sthe fracture half-width or half-aperture [L] in layer n.

(c) The distribution coefficient of the fracture K j is now defined as the mass of solute
adsorbed per unit area of surface divided by the concentration of solute in solution

[Tanget al., 1981], with units[L].

11
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(d) Thekinetic constants k£ of chemical sorption in (11) have units [LT~']; k. in (11)
have units[M L=2T71].
If the fractures are filled (a rather common occurrence), they are treated as a porous
medium. Then, there is no need for the conceptual or mathematical adjustments in (1)
through(4). Inbothopenandfilledfractures, theright-handsideofequation(5)isaugmented

by the term

1/b,, for open fractures
Qn = flqn, where fI= { (30)

1 for filled fractures,
and g,, is described by (28).
3.2.2. The ODE of Parent or Stable Species Transport in the Fractures. The

L aplacespaceequation forfracture transport alongthe z-coordinate(Figure 1)then becomes

d2C/f dCt
n . Un n

_gfof = An 1

D}

where the f superscript denotes the fracture, the n subscripts denotes the layer, and
Qn = L£{Q,}. Equation (31) iswritten in terms of the local coordinate z,, in each layer n.
3.2.3. The ODE of Daughter Transportin the Fractures. The Laplace space ODE

of transport for the daughter  in the matrix of layer n is given by

d>CY dci _ ~ .
D}, —* —Un—* — B[, Cl, = Qn -G}, 1. (32)

All thetermsin (32) are as previously defined.

3.3. Initial and Boundary Conditions
Theinitial and boundary conditions corresponding to the fracture equation are
Cl(zn,t =0) =0,
Cf (21 = 0,t) = C.o(t),
(33)
Cl(2p = Zp,t) = CL 1 (20g1 = 0,8), n=1,...,N—1,

C’}:,(zN — 00,t) =0,
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where Z,, denotes the thickness of the n-th segment (layer). The time dependence of C.
allows investigation of systems with time-variable upper boundaries. Some of the more

common forms of C((t) are
( Co constant concentration

Coexp[—A (t + ta)] decaying radionuclide concentration

N
ZC{‘ Ut —t;_y)—U(t—t;)] variablepulse concentration

\ =1

(34)
where Cy isaconstant, t; isthe release delay (the time between radionuclide generation or
storage, and the beginning of release), U (¢t — ¢*) denotes the unit step function at time ¢*,
and N* isthe number of the different pulses with concentration C*. Note that ¢; = 0 and
that, for N* = 1, we obtain the unit pulse of duration ¢7.

The initial and boundary conditions corresponding to the matrix equation are

C™(xz =0,t) = Cf (2, 1),

acm . (35)
5 (x=X,t) =0 forCasel (Figure 2a),
xr

C"(x — oo,t) =0  for Case 2 (Figure 2b),

where X is the half-width of the matrix block (Figure 2). Case 1 in Figure 2a describes a
finite system with a Neuman-type boundary at = = X. If dry fractures (i.e., fracturesin
which the water phase is discontinuous) occur in the rock matrix of Case 1, the half-width
X isreplacedby X* = 2X/(nq+ 1), wheren, isthe number of dry fracturesevenly spaced
along x inthe matrix block(Figure 2b). Case2in Figure 2b describes asemi-infinitesystem.

The Laplace transforms of equations (33) through (35) are trivial.

13
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4. The Laplace Space Equations
4.1. General Matrix Solutionsin Each Layer

4.1.1. Parent or Stable Species. Omitting for ssimplicity the n subscript, and
expanding on Tang et al. [1981] and Sudicky and Frind [1982], the solutionsto (27) are

R Hecoshf (X —x)] forCasel
cm = (36)
Heexp(—0x) for Case 2
respectively, where H¢ and H¢ are parameters to be determined, and
Em
From (36) and the Laplace transform of (35),
Hecosh(§ X) =C/ = H® o for Case 1
M (z = 0) = cosh(f X) = C7 = H* = —qx) (o Ca® (38)
=t for Case 2
from which
SO coshlf (X = )] &7 for Case 1
C™ = C™(z,s) = cosh(6 X) (39)

exp(—6 ) C7 for Case 2
The equations in (39) are applicableinany layern (n =1, ..., N).
4.1.2. Daughter or Reaction Products. Following the same approach, it is
straightforward to show that the L aplace space solution of the ODE in (32) for any daughter

or reaction product v is given by

( 1
H¢ cosh[f, (X — z)] + Z (HA )chosh[e,,v(X—x)] for Case 1
A

v 1 K
Hexp(—0, )+ Y (H f;) HE exp(—0, ) for Case 2
\ r=v—1 \i=v
(40)
where
VL (41)

"D - B
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The coefficients H,, are given by the general expression

H, = EV: T,.CI, (42)

k=1
where T, ., are appropriate coefficients. Expressions for H, and T, ,, (the derivation of
which istedious but straightforward) are provided in Appendix A. Equation (40) showsthat
the solution of the matrix transport equation of the daughter or reaction product v requires

knowledge of the fracture solutions of all previous members of the decay or reaction chain.

4.2. General Fracture Solutionsin Each Layer

4.2.1. Parent or Stable Species. From the Laplace transform of the diffusiveflux in

(30), and omitting for simplicity the subscript n,

Q=yric/, (43)
where
rD™@tanh(f X) for Casel
v = (44)
r D™ 6 for Case 2
Substituting in (31) and collecting terms,
d2CfdCt ~
f = _pxf —
D 7. U 7 E*C’ =0, (45)
where E* = Ef + + f9. The general solution to (45) is given by
Cf = C(w,5) = aexp(n®™ 2) + fexp(n™ z), (46)
where o and 3 are parameters to be determined, and
U+VU?+4Df E*
nt = : (47)

2Df
Equations (43)—47) apply in any layer n.
4.2.2. Daughter or Reaction Products. From equations (30)—(32) and (40)—42), for

adaughter v

~

Qu=rf1rDIW, =f1> 4,.CL. (48)
k=1

15
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Equation (48) is general and applies to both Case 1 and Case 2. Expressions for W, and
Vv, are provided in Appendix B.

Substituting in (32) and collecting terms,

2CH dcf 4 . ot S
D/ U —E;Cf=-G,Cl_ + > v.CL, (49)
k=1

where E% = Ef + v, f%.
Following the same approach, it is straightforward to show that the Laplace space

solution of any daughter or reaction product v is given by

Cf = v exp(n 2) + B, exp(ny 2) + Y., (50)
where
1 1
Vo= > Al cwexpinfz)+ Y. Ay, Beexpln; z), (51)
k=r—1 r=r—1
and
. By

(52)

V,K

T DL Ut - By
Expressions for Bﬁfn and for v < 5 aregivenin Appendix C. Equations (50) and (51) show
that the solution of the fracture transport equation of the daughter or reaction product v
requires knowledge of al previous«,, and 3, i.e., the solutions of al previous members of

the chain.

5. The Solution Approach
5.1. Determination of the « and s Parameters

Equation (46) defines atotal of 2V unknowns, i.e., the o and (§ parameters in each of the
N subdomains. These are obtained from the solution of the following equations.
5.1.1. Boundary Equations. Theseapply tothe z; = 0 pointinthefirstlayer (n = 1).

From (46) and the Laplace transform of (33), for a known boundary concentration we have

~

a1 + B1 = Cho, (53)
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while for known flux boundary conditions
ar(Uy — DI gt + 81 (U — DI ™) = U Cyp (54)

where C.o = L{Co}. For the common boundary conditionsin (34),

( CO
s
Co exp(—Ata)
C.o = s+ A
N~ C*
Z?Z [exp(—st;_,) — exp(—st;)] piecewise constant concentration.

\ =1

constant concentration

decaying radionuclide concentration

(55)

For the limiting case of a system consisting of asingle semi-infinitelayer (i.e., N = 1)

with an open fracture and a constant concentration at z; = 0, «; = 0, 81 = Cp/s, and

equation (46) isreduced to the L aplace space solutions obtained by Tanget al. [1981] (Case
2) and Sudicky and Frind [1982] (Case 1).

5.1.2. Concentration Equations. At the layer interfaces we have the equations
a1 &Py Zn1) + Bn1€P(0, 1 Zn1) = an — B =0, (56)

forn =2,...,N. An additional equation is provided by the requirement that @f be finite
for Zny — oo, which dictatesthat oy = 0.

5.1.3. Flux Equations. Theremaining N — 1 equations are provided by the equality
of fluxes across the layer boundariesin the fractures, which dictates that

dCy

n—1 dzn—l

Dfd_Cg;

Mn—l bn—l Un—l C,,J:_l -D " dZn

, (57)

= M, by, [Un cl -

n—1

in which the quantity in the brackets is computed at the value of the local z coordinate
indicated by the bracket subscript. From (46) and (57) we obtain
-1 [Mn—l bn—1(Un—1 — D}, 77211)} exp(n_1 Zn—1)

+ Bn-1 [ n1bn 1(Un1—DJ_, 777?—1)} exp(1,—1 Zn-1) (58)

— an [Mybn (U, — DLIn)] = Bn [My b,(Un — Diny)] =0
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wheren =1,...,N — 1.
5.1.4. Equations for Daughters. For a daughter product v of radioactive decay or
reaction, the following changes are made to equations (53) through (58):
(& In the right-hand side of equations (53) and (54), the term C.o is replaced by a,vzo,
where @mo = L{C, .0 },and C, ., istheconcentration of daughter v at z; = 0. Fora

constant C,, ., C,, .o can be obtained from equation (55). For az; = 0 boundary with

adecaying radionuclide concentration, @l,,zo is computed from the Laplace transform

.00, ,
of the mass balance equation 8157 0 MCyz0—A—1Cy_1 20 8
Cro = = ep(-Ata) +m, (Mg Corg. (59)
’ S+ A, + A\, ’

For areaction chain, equation (59) indicates arecursive reaction.
(b) The zero on the right-hand side of the layer interface equation (56) is replaced by
Yon(zn=0)—Y, n_1(2n_1=2Z,)forn=2,...,N.

(c) Equation (57) applies unchanged. The zero on the right-hand side of equation (58) is

replaced by the known quantity
Mn bn Un Yy,n - Dljjn dY,/’n:|
" odzy |

dY, n—
- n—1 bn—l |:Un—1 Yu,n—l - Df 7 !

v,n—1 danl Z
n—

5.2. The Laplace Space Solutions

The generality and complexity of these equations preclude the devel opment of closed-
form solutions for «;, 6; (i = 1,..., N). Consequently, it is not possible to analytically
invert equations (46) or (50), and to obtain a closed-form equation for concentration in
time. The problem is alleviated by numerically inverting the Laplace space solutions. The

algebraic equations discussed in Section 5.1 may be written in agenera matrix form as:

MX=B, (60)
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where M isthe coefficient matrix, X is the vector of the unknowns, and B is the composite

vector of knowns. Solution of (71) returns the vector

X1

— Xg — 041'

X = . , where X; = 3 ) i=1,...,N (61)
Xy

The solution of the matrix equation (60) necessitates arithmetic values for the s
parameter of the Laplace space. These are provided by the numerical inversion scheme
of DeHoog et al. [1982] that uses complex valuesfor s. The quantitiesM, X and B assume
the complex type of s. A detailed discussion of the application of this method and its
performance can be found in Sudicky [1990] and Moridis [1998].

The a; and 3; computed from the matrix equation (60) are then used to obtain all
the C solutions (i = 1,..., N). The corresponding C™ solutions are obtained from C/f
and equations (39) or (40)—(42). Note that the solutions for daughters or reaction products

require knowledge of the solutions of all the previous members in the chain.

5.3. Numerical Inversionsof the L aplace Space Solutions

The various time-variable concentrations can be determined by numerically inverting

the Laplace space solutions, i.e.,
Cajlc(xat) = 'Cil{aa{(xvs)}v CaT(x7t) = ‘Cil{é\;?(xvs)}v (62)

where £~1{} denotes the inverse L aplace transform of the quantity in the brackets. Details

on the inversion will not be discussed here; they can be found in DeHoog et al. [1982].

6. Treatment of Special Conditions
6.1. Misaligned Fractures

The analysis presented thus far assumesthat the effect of fracture offset on transport is

negligible. Thismay not bethe casefor large fracture spacing or at short observation times.
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The process that accounts for fracture misalignment is described in Figure 3. The
increased travel path of the transporting water caused by the offset fractures is indicated
by the horizontal pathway at the confluence of the n and n + 1 layersin Figure 3a, and its
effect is described by the addition of an “interlayer”, i.e., a pseudo-layer (Figure 3b) with
the following characteristics:

(@ A thickness Z; = max{X,,, X,,11} if M, > M,_1, 0or Z; = min{X,,, X,,.1} if
M, < M.

(b) A relativefrequency M; = M,,.

(c) An open or filled fracture of half-width b;, through which water flows between the n
and n + 1 layers. The properties of the fracture in the interlayer are independent of
those in the layers above and below.

(d) A complex matrix, composed of the matrices of both then and n + 1 layers. In Figure
3b, the matrices of the n and n + 1 layers are positioned on the left and right sides
of the fracture, respectively. The two components of the matrix are assumed to be
semi-infinite, as illustrated by their rotation by 90° (with respect to the original layer
orientation) in Figure 3b. Then, the flux into the composite matrix of the interlayer is

computed from equation (43), but with v = ~;, where

1
WZQWMWmﬁ> (63)

and ~,,, v,+1 are computed from equation (44).

Thus, considerationof misaligned fracturestransformsasystem of NV layerstoasystem
of N + Ny layers, where N7 isthe number of interlayers. The solution of the augmented
system does not pose any particular challenges and proceeds in the manner discussed in
Section 5. Note that this approximation involves the longest possible travel path and the
largest possible amount of tracer diffusion. Thisis because diffusion into the matrix of the
interlayer (see Figure 3Db) is larger than that into the n and n + 1 layers (along the layer
interface) owing to steeper gradients and their semi-infinite nature. Thus, the assumption of

fracture alignment providesthe most conservativesol ution, while the assumption of fracture
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misalignment (as described by the concept of interlayers) reflects the least conservative

scenario. These two solutions provide the limits that bracket the true solution.

6.2. Occasional Unfractured Layers

If the layered system includes unfractured (porous) layers (e.g., Layer 3 in Figure
1), these are treated as a combination of a pseudo-matrix (representing the nonflowing
portion of the layer) and a pseudo-fracture representing the flowing portion of the layer. In
essence, unfractured layers are treated asfilled-fracture systems, and all the equations apply
unchanged. The properties of the unfractured medium are assigned to both the pseudo-
matrix and the pseudo-fracture. The relativesizes of b and X can describe the flowing and
non-flowing portions of the porous medium. If water flows uniformly through the porous
medium, X = 0. This approach maintains water mass and flux balance.

It is obvious that, for unfractured media, L, = 2(b,, + X,), i.e, M,, = 1. Note that
water saturations S must be obtained from the solution of the steady-state flow equation
because the derivation of the transport equations is based on time-invariant flow conditions

and cannot compute changesin S.

6.3. Transportin Layered Unfractured Media

Thisisalimiting case of the scenario discussed in Section 6.2. Setting the non-flowing
portion of the matrix X,, = 0 (n = 1,..., N) transforms the problem into that of 1-D
solute transport in a layered porous (unfractured) system. Then, al the solutions derived

here apply unchanged.

7. Verification

A FORTRAN program was written to obtain the semianalytica (SA) solutions
developed in Sections 4 through 6 by first solving (60), and then performing the numerical

inversion indicated in (62). This code, named FRACL, accounts for al the processes,
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phenomena and conditions discussed in Sections 2 through 6. It can obtain solutions for
a system involving an arbitrary number of layers N of any combination of porous and/or
fractured media, and up to 4 daughters. It is computationally very efficient, and required
less than 10 seconds for any of the problems discussed in Sections 7 or 8.

FRACL is verified through comparisons to analytical solutions of radioactive solute
and colloid transport in 1-D porous (unfractured) media and quasi-2-D fractured media. In
all cases, FRACL solutions arefirst obtained in asystem consisting of a single semi-infinite
layer (i.e.,, N = 1). Thedomain isthen subdivided into three layersin the z direction, and
FRACL solutions for this multilayered system (V' = 3) are obtained. Coincidence of the
analytical solutions to the FRACL solutionsfor N = 1 and for N = 3 verifies FRACL.

7.1. TestsFS1 and FS2: Radioactive Solute Transportin Fractures

TestsFS1 and FS2 describe transport with LE sorption in the fracture-matrix system of
Case 1 (parallel fractures, Figures 2a) and Case 2 (single fracture, Figure 2b), respectively.
The corresponding analytical solutions were developed by Sudicky and Frind [1982] and
Tanget al. [1981]. The values of the parameters used for the computation of the analytical
and the SAsolutions areas in Sudickyand Frind[1982], and arelistedin Table1. A constant
concentration (CC) condition isapplied a z; = 0.

Figure 4 shows the distribution of the relative concentration C'r (defined as Cr =
CJ/C.0) in the fractures along the z axis a (a) t = 1,000 days in Test FS1 and (b)
t = 10,000days in Test FS2. In both tests, the analytical solution and the two FRACL

solutions (for N = 1 and N = 3) areidentical in thefirst 5 significant digits.

7.2. TestsPS1to PS4: Radioactive Solute Transportin
Unfractured Porous Media

Tests PS1 to PS4 are designed to confirm the ability of the SA solutions to describe
transport in unfractured media without any modification. The solution to this problem is

provided by Bear [1979], and accounts for LE sorption and radioactive decay.
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The values of the parameters used for the computation of the analytical and the SA
solutions of TestsPS1 to PS4 arelisted in Table2. Inall four tests, aconstant concentration
condition isapplied at z; = 0. The solute is a nondecaying isotope in TestsPS1 and PS2,
and a decaying radionuclide in TestsPS3 and PS4. LE sorption is considered in Tests PS2
and PS3, but isignored in Tests PS1 and PS4.

Figure 5 shows the distribution of the relative concentration C'r along the z axis at
t = 200 days. The SA predictions of C'r distributions for both N = 1 and N = 3 are
identical with the analytical solutions of Bear [1979].

7.3. Test PS5: Transport of a Three-M ember Radioactive
Solute Chain in Unfractured PorousMedia

Thistest isdesigned to verify the ability of the SA solutions to describe the transport of
reactivechainsin unfractured mediawithout any modification. Ananalytical solutiontothis
problem was developed by Harada et al. [1980], and accounts for LE sorption, radioactive
decay, and time-variable boundary conditions.

Test PS5 describes the transport of the radioactive chain 234U —239Th— 226 Rathrough
a sorbing porous medium. The concentration of 234U (i.e., the parent radionuclide) at the
z1 = 0 isnot constant over time, but subject to radioactive decay. Theinitial concentrations
of the 23°Th and ??Radaughter radionuclides at the z; = 0 boundary are zero, but increase
over time because of the decay of their parents.

The values of the parameters used for the computation of the analytical and the SA
solutionsof Test PS5 areasinHarada et al. [1980], and arelistedin Table3. Figure 6shows
that the analytical solutionsat ¢ = 10, 000 years coincide with the SA predictions (for both

N =1and N = 3) of the C§, distributions of the three radioactive chain members.

8. Analysisand Test Problems

In this section the transport of various radionuclides is studied in layered systems
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(involving both fractured and porous layers) of different characteristics and properties. The

D¢ and X of the radionuclides discussed here appear in Table4.

8.1. Problem 1. Importance of Fracture Misalignment

This problem studies the importance of fracture misalignment on transport, as quanti-
fied by the concept of interlayers (discussed in Section 6.1). Thefollowing analysisfocuses
on the effects of the presence of such interlayers, in conjunction with other parameters of
the hydrogeologic layers and of the species. The flow velocity in all cases of Problem 1
was U = 0.1 m/day, the system was saturated (S = 1), and the z = 0 boundary was kept
at a constant concentration (Cr = 1).

8.1.1. Case l-a: Effect of fracture offset (interlayers). This case involves the
transport of the nonsorbing solute species 2H in a layered fractured system with fracture
offsets and variousinterlayer characteristics. Case 1-ainvolvesthree sub-cases. 1-al, 1-a2
and 1-a3. The geometry of the reference Case 1-al of the layered fractured system is
described in Table 5, while the hydraulic properties of the fractured layers are shown in
Table6. The three main layers (identified as Layers # 1,3 and 5 in Table 6) were fractured
media (FM), while the interlayers (identified as Layers # 2 and 4) were considered to be
fracture interlayers (FI, i.e., horizontal open fractures connecting the vertical fractures in
the layers above and below).

The characteristics of Cases 1-a2 and 1-a3 are explained in Table7, which showsonly
the differences from the base Case 1-al. Thus, Cases 1-a2 and 1-a3 differ from Case 1-al
in that the interlayers are porousinterlayers (P1), i.e., the horizontal features connecting the
fractured layers are either fractures filled with porous media or unfractured porous media.
Flow and transport occurs through a porous medium with different transport behavior than
intheFlsof Case 1-al. Thehydraulic propertiesof the porous mediainthe Plsin Cases 1-a2
and 1-a3 are the same as those of the porous matrix in the overlaying and underlying layers.
The connecting Pl in Cases 1-a2 and 1-a3 haveab = 0.025 mand 0.1 m, respectively. Note

that in Pl and PM layersthere are no fractures and b represents the half-width of the flowing



MORIDIS: SOLUTE TRANSPORT IN FRACTURED LAY ERED MEDIA

portion of the matrix.

The results of the three subcases of Case 1-a are shown in Figure 7, which shows the
fracture C'r. The presence of theinterlayersin Figure 7ismarked by thevertical stepsin the
C'r profiles (caused by the fact that Figure 7 indicates the vertical coordinate z and not the
length of the travel path. For the nonsorbing *H and at early times, the retardation caused
by the presence of the FI is measurable, as compared to the case with aligned fractures (no
interlayer, denoted by NI in Figure 7-included for comparison). Thiswas expected because
of the longer travel path in the case of Fls, which increase the amount of 3H diffusing into
the porous matrix and result in lower fracture concentrations. At the same early times, the
retardation caused by the PIs can be substantial and increases with the half-width b of the
Pl. These results also conform with expectations because of the slower flow velocities in
the porous mediaof the Pl (as compared to those in the fractures of the FIs), which increase
the residence time and diffusion into the porous matrix.

Figure 7 also shows that the effect of the interlayers keeps decreasing with time. This
was expected in Case 1-a because the travel path increase caused by the interlayersis small
(as the layer half-width X is only 0.25 m) and ®H is nonsorbing (leaving diffusion into
the matrix as the only mechanism removing the radionuclide from the flowing water). At
t = 10* days, the presence of interlayers of any kind (FI vs. Pl) has no effect on the
concentration profile in the fractures.

8.1.2. Case 1-b: Combined effect of interlayer sand matrix width of thefractured
layers. This case involvesthree subcases: 1-bl, 1-b2 and 1-b3 (see Table 7). Cases 1-b1,
1-b2 and 1-b3 differed from Cases 1-al, 1-a2 and 1-a3 in that X = 2.5 minstead of 0.25
m, thus substantially increasing the travel path and residence time of 3H in the interlayers.
This is expected to increase retardation, especially at early times.

Figure 8 confirms this expectation. At ¢ = 102 days, the presence of the relatively fast
flowing FI is sufficient to reduce C'r inthe fracture by about four orders of magnitude. The

effect ismore pronounced in Case 1-b3 (Pl with b = 0.1 m). The same pattern is observed
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att = 103 days, at which time the retardation in Case 1-b3 remains very substantial. This
is caused by the reduction of the advectiveand dispersive components of transport (because
velocity decreases as b increases) in addition to the reduction of the molecular diffusion
component (due to the smaller ¢ and = values in the filled fracture, see equation (2)).
Remarkably, stronger retardation is observed in Case 1-b1 (FI) than in case 1-b2 (Pl with
b = 0.025 m). Thisis attributed to the larger solute mass in the PI, which is less affected
by diffusioninto the matrix (about the same in both cases). Asin Case 1-a, the effect of the
fracture offset (presence of interlayers) decreases with time.

The conclusion reached from these results is that the effect of fracture offsets
(interlayers) increases with the matrix block size of the fractured layers. Thisis consistent
with expectations because the travel path increases substantially in fractured system with
large X, with a corresponding increase in residence time and diffusion into the matrix.

8.1.4. Case 1-c. Combined effect of interlayers and water saturation S of the
fractured layers. This case involved two subcases. 1-c1 and 1-c2 (see Table 7). Cases
1-c1 differed from Case 1-al in that S™ = 0.8 and S/ = 0.5 instead of S™ = S/ = 1.
Cases 1-c2 differed from Case 1-a3 in that S™ = S/ = 0.8 instead of S™ = S/ = 1. The
effect of S isexhibited through itsimpact on the water velocity: ahigher porevelocity V' is
needed to maintain the same U if S decreases. Thus, faster transport was expected in this
case, with a corresponding decrease in the importance of the increased travel path caused
by the fracture offset.

The results in Figure 9 confirm these expectations. Transport is faster than in Cases
l-aand 1-b, while the importance of the fracture offset (presence of interlayers) decreases

in systems with the same water mass flow rate but with decreasing S, .

8.2. Problem 2. Radioactive Solute Transport
in a Complex Multi-L ayered System

The complex geological system in Problem 2 iscomprised of 14 layers and interlayers

of fractured and porous media. The geometry and configuration of the system are described
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in Table 8, and the rock properties and conditions are listed in Table9. Linear equilibrium
sorptionis assumed, and thesorption coefficientsof thevariousradionuclides inthefractures
and in the matrix of the various layers (K j; and K", respectively) are listed in Table 10.
The water velocity U a z = 0 asin Problem 1.

8.2.1. 3H Transport. Thefracture C'r profiles of the nonsorbing 3H for both constant
concentration (CC) and decaying (radioactively) concentration (DC) at the = = 0 boundary
are shown in Figure 10, which includes observations at the following times: ¢; = 10* days,
to = 5 x 10* days, t3 = 10° days, t4 = 2.5 x 10° daysand t5 = 5 x 10° days.

The various layers can be generaly identified by a change in the C'r Slope, while
the interlayers are indicated by vertical sections of the C'r curves (as the abscissais the 2z
coordinate rather than the travel path). For a CC boundary, the C'r distribution reaches a
steady state for ¢t > t4. As expected, the effect of the DC boundary is a Cr profile that
is progressively lower than the one for a CC boundary, never reaches steady state, and is
outside the Cr, range (< 107?) for t > t,.

8.2.2. 9Tc Transport. ?9Tc (in its pertechnate TcO, speciation) is a non-sorbing
radionuclide with alonger half life than 2H (see Table 4). Two boundary conditions were
considered in this case: a CC boundary and a piece-wise continuous (step) concentration

(PC) boundary, i.e.,

{1 fort <5 x 10 days

0 fort> 5 x 10* days

The Cg profilesin the fractures of the layered geologic system (at the same times as
in the case of 2H in Section 8.2.1) are shown in Figure 11. The effect of the longer half
lifeis evident in the C'r profile for CC boundary, which indicates that ° Tc¢ advances much
further in the formation than 3H at the same times (the difference is due to radioactive
decay), and does not appear to have reached steady state at t = ¢5. The change in the
boundary concentration over timein the PC boundary case resultsin C'i profiles that show

aprogressivelylarger(withtime) °Tc-freezoneneartheboundary, whilethe C' further into
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the formation keeps decreasing and deviating from that for constant boundary concentration
(with which it coincides fully or in part for ¢ < t4).

As indicated in the case of 3H, the various layers and interlayers can be generally
identified from changesin the C'r ope. Transport infast flowing fractures(e.g., in the case
of narrow fractures with large matrix blocks under a layer of wider fractures and narrow
matrix blocks) can aso be identified by a near-horizontal portion of the C'r profile.

8.2.3. 23"Np Transport. The C profile of the moderately sorbing 23"Np for a CC
boundary is shown in Figure 12. The observationtimes are: t; = 5 x 10* days, t, = 10°
days, t3 = 5 x 10° days, t4 = 106 days, t5 = 2.5 x 10° daysand tg = 5 x 10° days.

The slower transport of 23”Np (compared to that of °Tc) is caused by sorption and,
to afar lesser extent, by increased diffusion into the matrix. Despiteitslonger half-life, the
transport of 237Np appears to be about an order of magnitude slower than that of *°Tc, and
does not appear to have reached steady state at ¢ = ;.

The C'r profiles along the x axis in the matrices of the various layersat t = tg are
shown in Figure 13. The different shape of the curvesis afunction of their location (with
respect to the z = 0 boundary and to the solute front) and of the transport properties of the

matrix in the various layers.

8.3. Problem 3. Solute Transport of a Three-M ember Radioactive
Decay Chain in a Complex M ulti-L ayered System

Problem 3 describes the transport of the radioactive chain 23°Pu— 235U— 231pa
through the complex multilayered system described in Problem 2 (Tables8 and 9). The
sorption coefficients K7 and K* of the 23°Pu parent in the various layers are listed in
Table 10. The sorption coefficients of 23°U and 23 Pa in the fractures and in the matrix
were assumed to be 5% and 50% of those for 239Pu, respectively. Cr profiles of the three
radionuclides were obtained at the following observation times: t; = 10° days, t, = 10°
days, t3 = 107 days, t4 = 108 days, t5 = 10° days, and tg = 10'° days. Two boundary

conditions were considered: a CC and a DC boundary.



MORIDIS: SOLUTE TRANSPORT IN FRACTURED LAY ERED MEDIA

8.3.1. 239Pu Transport. Figure 14 shows the C'r profiles of 23°Pu in the fractures
for constant boundary concentration and a decaying boundary concentration. Thereis no
or little deviation of the two curves until ¢ = ¢3. The fracture Cr inDC caseat t = t4
is substantially lower than that of the CC case, and the C'; for a DC boundary is less than
10~9 fort > t5 .

Aninteresting observationisthat, for aCC boundary, the 23° Pu front does not advance
deep into the formation despite observation times orders of magnitude larger than those for
the 23"Np transport. This is due to the very strong sorption of 23?Pu onto the matrix and
fractures of the layers and, to alesser extent, the shorter half life of 23°Pu (compared to that
of 23"Np. Note that the C' profile appearsto have reached steady state at ¢ > ts.

In addition to the transport of the members of the chain, the transport of 239Pu was
studied separately, assuming a CC boundary and a r» < 1 (see Equation (38) and the
corresponding discussion). This describes a situation in which not all the contact area
between fracture and matrix contributesto transport (e.g., because of apartially dry fracture
which constitutes a discontinuity in the water phase). In thiscase, » = S/ in the fractured
layers and interlayers (FM or Fl), and » = 1 elsewhere.

The effect of » < 1 in Figure 15 appears to have a substantial impact on transport,
and results in a 23°Pu front that reaches much further (i.e., about three times deeper) in
the geologic profile than that for » = 1. Thisis a direct consequence of a reduced area
for 239Pu diffusion from the fractures into the matrix, which leaves a larger amount of
239py in the fractures where advection is fast and sorption relatively small (compared to the
matrix). Thus, the transport of strongly sorbing radionuclides in fractured systems may be
substantially influenced (enhanced) by partially dry fractures.

8.3.2. 235U Transport. The fracture Cr profiles of 23°U for CC and DC boundaries
and for t < t4 are shown in Figure 16. The C'r of the DC solution always exceeding that
from the CC solution, and significantly so (as imposed) in the vicinity of z = 0. A very

significant observation is that, in either case, Cr ~ 1 for t > t4 in the top 120 m of the
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domain. Thisis even more the case in Figure 17, which shows the Cr of 23°U for t > 4
and gives a more detailed picture of the C'r distribution near the value of 1. Theresultsin
Figures 16 and 17, in conjunction with the observations from Figure 14, indicate that for
t > t4, practically all of the radionuclide that advances deep into the formation is the 235U
daughter. The transport of 23°U is faster, the front reaches deeper, and Cr ~ 1 because
235U is generally weaker sorbing than 23°Pu and it has an extremely long half life. The
obvious implication is that studies of 23°Pu transport cannot neglect the transport of the
235U daughter, which is the dominant radionuclide at longer times.

Note from Figure 17 that, for ¢ = ¢, and a DC boundary, Cr > 1, i.e, the 23°U
concentration in the fractures exceeds the initial concentration of the 239Pu parent at the
z = 0 boundary. This is possible because the boundary (which introduces a radionuclide
mixture composed of all the members of the 239 Pu decay chain) isnow contributing astream
ofalmost 100% 23°U, whichis addedtothe 23°Uproduced fromthe(almost complete)decay
of 239Pu aready in the fractures and matrix of the system. As expected, the Cr from the
CC solution at ¢t = t4 is lower than that from the DC solution (Figure 16). For t > t4,
the CC solutions exceed the DC sol utions because the decay of the 235U at the boundary is
beginning to have an effect on the fracture distribution of Cz. Thisis particularly evident
att = tg. Notethat steady stateis not reached (in either the CC or the DC boundary cases)
even after t = 10'° days because of the extremely long half life of 235U.

8.3.3. 22'paTransport. Thefracture C' profiles of 23! Pafor CC and DC boundaries
are shown in Figure 18. The Cr levels of 23! Pa are quite low because of the very long
half life of its 235U parent, its own shorter half life, and its stronger tendency to sorb. The
C'r increases with time for both DC and CC boundaries. The CC profile has always lower
concentrations because there are al derived solely from the decay of 23°U (the boundary
doesnotsupplyanyadditional 23'PainaCCregime). Notethatineither case,concentrations

reach a steady state at about ¢ = t,.
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9. Summary

In this paper, semianalytical solutions are developed for the problem of transport of
radioactive or reactive solute tracers through a layered system of heterogeneous fractured
media with misaligned fractures. The solutions alow any number and combination of
fractured and/or porous layers that can vary in hydraulic and transport properties, fracture
frequency, water saturation, fracture flow, and fracture-matrix interaction.

Thetracer transport equationsin the matrix account for (a) diffusion, (b) solute surface
diffusion, (c) mass transfer between the mobile and immobile water fractions, (d) linear
kinetic or equilibrium physical, chemical or combined solute sorption or colloid filtration,
and (e) radioactivedecay or first order chemical reactions. Any number of radioactivedecay
daughter products (or products of alinear, first-order reaction chain) can be tracked. The
tracer transport equations in the fractures account for the same processes, as well as for
advection and hydrodynamic dispersion. A wide array of boundary conditions (constant or
time-variable, concentration or flux) can be accommodated.

Analytical solutions describing transport in the fracture and the matrix of each layer
are first obtained in the Laplace space. These are impossible to invert analytically, and
are numerically inverted by the method of DeHoog et al. [1982] to yield the solutions in
time. These SA solutions are verified against analytical solutions of limiting cases of solute
transport in fractured media. Additional verification is provided by comparisons against
analytical solutions of transport in porous (unfractured) media.

The SA solutions are then tested in a series of hypothetical problems of increasing
complexity. Theeffectof important parameters on the transport of 2H, 23”Np and 23° Pu (and
itsdaughters) isinvestigated in several test problemsinvolving layered fractured geological
systems. Fracture misalignment appears to significantly affect transport if water flow (and,
consequently, transport) between the fractures of the overlaying and the underlying layers
occurs through a porous connecting pathway .

The semianalytical solutions are computationally very efficient, requiring less than 10
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seconds of execution time for the examples studied in this paper. The results of the test
problemsindicate that the semianalytical solutions can easily solvethe problem of transport
of parent and daughter radioactive species in multilayered heterogeneous systems under
a variety of boundary conditions. Thus, they can provide a simple and effective tool to
predict radionuclide transport in subsurface environments involving saturated/unsaturated
flow through variably fractured media (such as transport from the potential repository
through the fractured rock layers in the UZ of YuccaMountain to the water table). While
such predictions are quasi 2-D and do not account for spatial variability and flow effectsin
the 3-D continuum of the subsurface (such as perched water bodies, flow diversionand flow

focusing), they can provide bounding estimates that bracket the true solution.
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Appendix A: The r, and 7,,. Coefficients

For Case 2 (X — ), the H, = H_ of the first five members of a radioactive or

reactivechain (v =1,...,5) are
Hf =Cf

HS=CJ — Ay CY

HS = Cf — A3y Cf + Ag1(Asgy — Agy) CY
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HE = Cf — Ay O + Agy(Ags — Ago) G
— A [Aso(Ass — Aa) — Az (Ass — An)] Of
HE = C‘g — A5y Cf + Auz(Ass — As) 69{
— As3a[Au3(Ass — Asz) — Ago(Ass — Aso)] 6’5
+ Ao { As2[Aus(Ass — Asz) — Aga(Ass — As2))]

— As1[Asz(Ass — As3) — Aar(Ass — As1)]} 6{

in which the m superscript of the A factors (equation (52)) are omitted for smplicity. The
termsT, ,. inequation (53)can beeasilyidentified byinspection. Byfollowing theemerging
pattern, the development of the expressionsfor H,, for v > 5 istedious but straightforward.

The H,, = HS expressions (corresponding to Case 1) are entirely analogous, and are

derived by dividing H¢ by cosh(6, X'). For example, for v = 2,

e — cf _ Axn cf
27 cosh(f, X) cosh(fy X)

Appendix B: Thew, and -, . Coefficients

For Case2 (X — o00),the W, = W of thefirst 5 members of aradioactiveor reactive

chan(v =1,...,5) are

we=6,¢f

Wy =60, Cf + Az (61 — 62) C

W = 05 CJ + Azz (65 — 03) CJ + An[Az1 01 — Azp 0 + (Ago — Agy) 03] Cf

Wy =04 Q{ + Ayz (03 — 04) é\;{ + Aszo[Aso 09 — Az 03 + (Asg — Aso) 4] 6’5
+ Ag1 { A1 A1 01 — Asp Auo 05 + Ayz(Aso — As1) 63

- [A32 (A43 - A42) - A31 (A43 - A41)] 04} 6{
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Wy = 05 CL + Asa (04 — 05) C + Aus[Ass 03 — Asy 04+ (Asa — As3) 05] Cf
+ Ago{Auz A2 03 — Ayz As3 05 + Asy(Ass — Ag2) 04
— [Aus (Ass — Ass) — Asa(Asy — As2)] 05} CJ
+ A {A31 Agr As1 01 — Azg Agg As2 02 + Auz Asz(Asz2 — Az1) 03
— Asa[Aszz (A4z — Aga) — Az1( Az — A41)] 04
+ [As2[A43(Ass — Ass) — Asa(Ass — Asy)]
— Asg1[A43(Ass — Ass) — Ag1(Ass — As1)]] 95} i,

in which the m superscript of the A factors (equation (52)) are omitted for simplicity.
Weobtain W¢ for Case 1 by replacing 6, by 6, tanh(6, X) in W¢. Thus, for v = 2

and Case 1,

Theterms, ,, areeasy to obtain from (59) and the W7, W expressions by inspection.

Extension for v > 5 followsthe same pattern.

Appendix C: The B, Coefficients

The Bﬁfﬁ coefficients of up to the first 5 members of a radioactive or reactive chain

v=1,...,5,k=1,...,v— 1) aregiven by the following general expressions.

Bui,u—l = Yop—1 f1— GzJj
B;_L,u—z = (Y1 f1— GZ)Af—Lu—Q + Vo2 f4
B;_L,z/—:a = (Vw1 [?— Grjj) Al:/t—l,u—B + (Yw,p—2 A;_L—z,y—?, + Yo,u—3) [4
Bf,u—z; = (Y1 fq_GzJ:) Af—1,u—4+(%,u—2 Af—2,y—4+%,v—3 Af—3,u—4+%,u—4) f1

The coefficients A* needed for the computation of B~ are obtained from equation (63). All

other terms are as discussed in Section 5.2. Extension for v > 5 follows the same pattern.
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Tablel. Input parametersin Test FS1

Parameters Values
Water saturation S 1
PM grain density p 2600 kg/m?

Dy 1.6x1079 m?/s
Fracture aperture 20 104 m
Fracture S 1
Fracture ¢ 1
Fracture 7 1
Fracture K, Om
Longitudinal dispersivity o, inthe fracture 0.1m
Fracture flow velocity V/ 0.1 m/day
Matrix block width 2.X 05m
Matrix S 1
Matrix ¢ 0.01
Matrix 7 0.1
Matrix K, 0 m3/kg

Radionuclide T7 /,

12.35 years (tritium)

L1, Lo, L3 (for N = 3)

Im,9m, co
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Table2. Input parametersin TestsPS1 to PS4

Parameters Values

p 2600 kg/m3
Dy 5 x 10~2 m?/day
S 1

b 0.1

T 1

1% 0.1 m/day

K, (TestsPS1 and PS4) 0m3/kg

K, (TestsPS2 and PS3)

4.2735042x10~5 m?/kg

oo (stable isotopes)

T) ;5 (TestsPS3 and PS4)

100 days

Z1, Loy L3 (forN = 3)

10 m, 10 m, co
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Table3. Input parametersin Test PS5

Parameters Values

P 2600 kg/m?

Dy 1000 m?/year

S 1

¢ 0.3

T 1

Vv 100 m/year
K4 for 234U 1.64819 m?/kg
K, for 239Th 8.24159 m?/kg

K, for ??°Ra

8.22528x 102 m?/kg

Ty o of 231U

2.45x10° years

T, /5 of 2°Th 7.54x 10* years
T,/ of **Ra 1.60x 10 years
1, Lo, L3 (fOf N = 3) 50 m, 150 m, co
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Table4. Radionuclide propertiesused in the transport ssmulations of Section 8

Radionudlide Do (M2/3) A= 12 (15
3H 1.60x 109 1.778% 109
9Tc 455x10-10 | 1,031x10'3
287Np 7.12x10710 | 1.026x10~'4
239y 6.08x10°10 | 9114x10'3

235 6.08x10°10 | 3.1023x10~'7

231 pg 6.08x10°10 | 6.7583x10° 13

Table5. Layer geometry in Case 1-a of Problem 1

Layer # Type Parameter Value
1 FM Z 5m
X 0.25m
b 5x107°m
2 FI b 5x107°m
3 FM A 10m
X 0.25m
b 5x107°m
4 FI b 5x107°m
5 FM Z oom
X 0.25m
b 5x107°m
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Table6. Propertiesin Case 1-al of Problem 1

Layer # Parameters Values
1,35 oy, 0.1m
oM 0.01
=T =1" =1 0.1
¢’ 1
Tf_Tg:Tlf:Tf 1
Km =K/ 1
Sm = Sf 1
24 ar, 0.1m
o™ 0.01
Tm:T;”:Tf”L:T:”” 0.1
¢’ 1
Tf_Tf:Tif:Tf 1
K=K/ 1
sm =5/ 1
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Table7. Parameter variationsin the various cases of Problem 1

Case# Layer # Type Parameter Value
1-a2 24 Pl b 0.025 m
1-a3 24 Pl b 0.10 m
1-b1 1,35 FI X 2.0m

24 FI Z 2.50m
1-b2 1,35 FI X 2.50m
24 Pl Z 2.50m
b 0.025 m
1-b3 1,35 Fl X 2.5m
2,4 Pl Z 2.5m
b 0.10 m
1-cl All FM, FI S 0.8
St 0.5
1-c2 All FM, PI Sm = §f 0.8
24 Pl b 0.1m
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Table8. Layer geometry in Problem 2

Layer # Type Z (m) X (m) b (m)
1 FM 10 0.5 10~4
2 PI 5x 1072
3 FM 10 0.25 5x 107°
4 PI 2.5 x 1072
5 FM 10 3 2 x 1074
6 PM 5
7 FM 15 0.1 2 x 10~*
8 PI 10~!
9 FM 10 4 2 x 107°
10 FI 2 x 107°
11 FM 20 1 5x107°
12 PM 5
13 FM 30 6 8 x 107°
14 PM 00
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Table9. Rock propertiesin Problem 2

Layer # ™ ™ Sm ! Tt St
1 0.15 0.5 0.7 1 1 0.2
2 0.3 0.3 1 0.3 0.3 0.4
3 0.1 0.4 0.6 1 1 0.15
4 0.35 0.3 1 0.35 0.3 0.3
5 0.05 0.5 0.8 1 1 0.1
6 0.35 0.8 0.9 0.35 0.8 0.9
7 0.025 0.2 0.9 1 1 0.1
8 0.2 0.3 0.9 0.2 0.3 0.4
9 0.01 0.2 0.95 1 1 0.05
10 0.01 0.2 0.95 1 1 0.05
11 0.05 0.15 0.95 1 1 0.05
12 0.1 0.1 0.9 0.2 0.1 0.9
13 0.05 0.1 1 1 1 1
14 0.1 0.1 1 0.1 0.1 1
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Tablel10. Transfer coefficientsin Problem 2

45

Layer 3Hor Tc 2"Np 239py

# Kp () | Kj() | Kpe) Kj(1) K7'(*) Kj (1)

1 0 0 6 x 104 3x10°8 6 x 102 3x 106
2 0 0 8 x 1074 8 x 1074 8 x 1072 8 x 1072
3 0 0 7x 1074 3.5 x 1078 7 x 1072 3.5 x 1076
4 0 0 8 x 1074 8 x 1074 8 x 1072 8 x 1072
5 0 0 8 x 104 4 %1078 8 x 1072 4 x 1076
6 0 0 10—4 10— 102 102

7 0 0 1073 5x 1077 1071 5x 1075
8 0 0 8 x 104 8 x 1074 8 x 1072 8 x 1072
9 0 0 5x 1074 2.5 x 1078 5x 1072 2.5 x 1076
10 0 0 5x107% | 25x10°8 5% 1072 | 2.5x10°6
11 0 0 9x 104 4.5 x 1078 9x 1072 4.5 x 1076
12 0 0 1073 1073 1071 1071

13 0 0 6 x 10~ 3x1078 6 x 1072 3x 106
14 0 0 7 x10~% 7 x 107* 7 x 1072 7 x 1072

(*): inm3/kg, (1): inm
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Layars 1,2,4,5:  Fractured media
Layar 3 Unfractured media

A fractures

M,=3

'
A !
c 1)

Figure 1. A variably-fractured layered geologic system.
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Layer n

Layer n+1

Interlayer

Figure 3. A graphic representation of the concept of interlayer describing the effects of
fracture misalignment. The properties of layers n and n 4+ 1 are denoted by 1 and 2,

respectively.
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10” 3
i — Analytical i
- O SA, 1 layer -

1 + SA, 3 layers
107 7 3
5 Test FS2 |
% 10" 3 t = 10,000 days 3
. : :
g _ l
T 1073 3
- Test FS1 '
10" 3 t = 1,000 days 3
10 - -

0 20 40 60 80
Distance z (m)

Figure 4. Comparison of the semianalytical (SA) solutions from FRACL to the analytical

solution of radioactive solute transport in fractured mediain Tests FS1 and FS2.
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Figure 5. Comparison of the SA solutions to the analytical solutions of solute transport in

porous mediain TestsPS1 to PS4.
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Figure6. Comparison of the SA solutionsfrom FRACL to the analytical solutions of solute

transport of the radioactive chain 234U — 239Th — 226Rain porous mediain Test PS5.
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100 __L 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 —
10-1 = 4 =
. t=10" days -
10_2 | t=10° days B
S 10° E 3
10* - .
5 _| N
10 - °H transport
] Case 1-a \:
-6 !

10 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1

0 5 10 15 20 25

Vertical coordinate z (m)

Figure 7. Effect of fracture offset (presence of interlayers) on the transport of 2H through
the layered fractured system of Case 1-a (NI: no interlayer, Fl: fracture interlayer, Pl(a):

porous interlayer with b = 0.025 m, PI(b): porousinterlayer with b = 0.1 m).
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Figure 8. Combined effect of increased X and fracture offset (presence of interlayers) on
the transport of 3H through the layered fractured system of Case 1-b (nomenclature asin

Figure 7).
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100 __L 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 —
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] t=10° days| [
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10 = t=10° days 2
J 10° 5 =
°H transport
i Case 1-c i
10" 3 3
1 — NI I
10” = ---FI —
E ......... Ml E
-6
10 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1
0 ) 10 15 20 25

Vertical coordinate z (m)

Figure 9. Combined effect of water saturation S and fracture offset on the transport of *H

through the layered fractured system of Case 1-c (nomenclature asin Figure 7).
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Figure 10. Fracture Cr, profiles of 3H in the complex geological system of Problem 2 (CC:

constant concentration boundary, DC: decaying concentration boundary).
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Figure 11. Fracture Cr profiles of *Tc in the geologica system of Problem 2 (PC: pulse

concentration boundary).
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Figure 12. Fracture C'r profiles of 23”Np in the geological system of Problem 2.
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Figure 13. Matrix Cg profiles of 23”Np at different elevationsin the geological system of

Problem 2.
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Figure 14. Fracture Cr, profiles of 239Pu in the geologica system of Problem 3.
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Figure 15. Effect of » < 1 on thefracture C'r profiles of 23°Puin the geological system of

Problem 3.
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Figure 16. Fracture C'r profiles of 23°U in the geological system of Problem 3for ¢ < 108

days.
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Figure 17. Fracture C'r profiles of 23°U in the geological system of Problem 3for ¢ > 108

days.
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Figure 18. Fracture Cr, profiles of 231Pain the geological system of Problem 3.
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