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Abstract
Gradient Effects on the Fracture of Inhomogeneous Materials
by
Terrence Lee Becker
Doctor of Philosophy in Engineering — Mechanical Engineering
University of California, Berkeley
Professor Robert O. Ritchie, Co-chair

Professor Panayiotis Papadopoulos, Co-chair

Functionally Graded Materials (FGMs) have a spatial variation in physical properties
that can be tailored to .meet the needs of a specific application and/or to minimize
‘internal stresses arising from thermal and elastic mismatch. Modeling these materials
as inhomogeneous continua allows assessment of the role of the gradient without
requiring detailed knowledge of the microstructure. Motivated by the relative difficulty
of obtaining analytical solutions to boundary value problems for FGMs, an accurate
finite-element code is developed for obtaining numerical planar and axisymmetric linear
thermoelastic sqlutions. In addition an approximate analytical technique for mapping
homogeneous-modulus solutions to those for FGMs is assessed and classes of problems
to which it applies accurately are identified. The fracture mechanics analysis of FGMS
can be characterized by the classic stress intensities, K[ and Kj, but there has been
scarce progress in understanding the role of the modulus gradient in determining
fracture initiation and propagation. To address this question, a statistical fracture model

is used to correlate near-tip stresses with brittle fracture initiation behavior. This



2
describes the behavior of a material experiencing fracture initiation away from the
crack tip. Widely dispersed zones of fracture initiation sites are expected. Finite-length
kinks are analyzed to describe the crack path for continuous crack growth. For kink
lengths much shorter than the gradient dimension, a parallel stress term describes thé
deviation of the kinking angle from that for homogeneous materials. For longer kinks
there is a divergence of the kink angle predicted by the maximum energy release rate

and the pure opening mode criteria.
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Chapter 1: Introduction

1.1 FGMS: DEFINITION AND MOTIVATION

The technological motivation for the development of functionally graded
materials (FGMs) is the same as for any composite material: to obtain properties
unavailable in any one homogeneous material. The ultimate goal of any composite
design is to achieve the best prqperties of the constituent materials with none of the
liabilities. Invariably there are factors that mitigate the success of such a goal. Stress that
arises due to the joining two dissimilar materials is one such factor. A global misfit stress
is evolved when materials with differing coefficients of thermal expansion (CTE) are
mated and experience a change in temperature (from processing or from in-service
conditions). At a free surface of a jQint,. the sharp discontinuity in CTE leads to a
singularity, with the linear elastic stresses approaching infinity at the surface (Muntz &
Yang, 1992). The imposition of mechanical load on a joint between two materials with
differing elastic stiffnesses also results in a singularity (Dunders, 1969.; Bogy, 1971). For
a material withouf layers, where the properties vary continuously with position, these
singularities are eliminated. The remaining residual stresses can be optimizéd (in the
context of a certain geometry and application) by varying the shape of the gradient (e.g.
Tanaka et al., 1996).

A gradient in properties can be designed not only to optimize the stresses, but also
to be functional so that the spatial change in properties is beneficial to the application.

For instance, an FGM comprised of a chemically resistant ceramic and a tough metal



could.be implemented to protect a structure in a chemically aggressive environment.

Although the term “FGM?” is a result of Japanese researph in the 1980°s (Suresh
and Mortensen, 1998), materials that meet that definition are -by no means recent
inventions. Case hardening steel is an ancient practice, first used to increase the strength
of weapons and still used in modern steel making (ASM International, 1991). This
process introduces a chemical (carbon or nitrogen), and thereby mechanical hardness
gradient, from the surface of a part to the in%erior. Furtherrhore, the working of cutlery
blades yields a microstructure that is gradec‘l; yielding a hard cutting edge (with a fine,
highly worked microstructure) on a tough (coarser .milcrostructure) blade (Suresh and
Mortensen, 1998).

Bamboo has been analyzed as a functionally graded material. Amada (1997)
noted a macroscopically graded structure of the fiber in the walls of the bamboo plant.
' _There is a higher volume-fraction of the stiff fibers in the outer part of the wall, where the
bending étress from wind loading is the greatest.

A major motivation for the use of advanced ceramics and intermetallics is high-
temperature service in transportation and power generation. This has also been the focus
of FGM research. The development of modern nickel-based superalloys allows for the
increased operating temperature and efficiency of turbines in military and civilian aircraﬁ
and electric power turbines (Sims et al., 1987). Monolithic ceramics and intermetallics
have not yet achieved their promise as replacement materials, mainly because of their low
fracture toughness, extensive research and relative improvement notwithstanding. The
coating of a high-toughness superalloy with a high melting point ceramic, typically ZrO,,

(Suresh and Mortensen, 1998) has allowed for yet higher combustor operating



temperatures.

The implantation of foreign objects into the human body (knee and hip implants,
artificial teeth, etc) is an example of the need for a bio-compatibility as well as the
previously mentioned structure properties (Tomsia, 2000). For applications that endure
wear, FGM coatings are also used to improve tribological behavior by suppressing

surface cracking (Jitcharoen ef al., 1998).

1.2 STATE OF FGM FRACTURE MECHANICS RESEARCH

The most useful developments in linear elastic fracture mechanics (LEFM) for
FGMs can be credited to Erdogan and coauthors (1985, 1995). The primary results are:

1) the form and strength of the stress singularity near the sharp tip of a linear

elastic crack is the same in an FGM as in a homogeneous material, and

2) the magnitude and phase of the stress intensity factors are determined not only

by the crack geometry and loading, but also by gradients in elastic modulus.

The first of these results admits a large body of LEFM literature to the study of
FGMs, although under tighter restrictions than for homogeneous materials (Jin and Noda,
1996). The second result comi)licates study of the fracture behavidr of a specific
geometry, but the shielding/amplification of the stress intensity factor will not change any
of the fundamental mechanics of crack growth (the effects of higher order terms on crack
path stability may be greater).

The work on the toughness of FGMs has been limited. Examples include a

simple rule-of-mixtures and a crack bridging model (Jin and Bata, 1996). Study of
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contour integrals results in a conservation J-integral (Rice, 1966) analogue for FGMS
with varying elastic modulus (Honein and Hermann, 1997). The toughness of an elastic-
perfectly plastic FGM with varying yield strength has been established by a similar

formulation (Kolednik, 2000).

1.3 OVERVIEW OF THIS WORK

This project seeks to quantify the effect of gradients in elastic ”pr'operties on the
fracture behavior of brittle FGMs. To address the computational need for efficient
mechanics analysis, a finite element routiné that ié capable of varying the material
parameters within each finite element is developed. This program is validated and
compared to using discrete inter-elerrlent ¢hanges in Chapter 2. In Chapter 3, an
approximation for the stresses in FGMs with a modulus gradient was developed. This
allowed the approximate solution of FGM problems based on-the solution for a
homogeneous material. This methodology was validated for a number of thermal stress
problems, with the approximate solution coinciding to the exact in some cases. .

Chapter 4 develops a statistical formulation for the fracture of brittle materials in
which the modeling describes the onset of brittle fracture in terms of the material state in
the neighborhood of a crack. Therefore, the influence of the gradient can be assessed via
these statistical methods. The extension of the existing fracture models to mixed-mode
loading yields new results for both homogeneous and inhomogeneous materials.
Gradient-dominated effects are evident in both infinite bodies (formulated using the FGM

approximation of Ch. 3) and finite bodies (_calculated via Ch. 2’s FEA). The angle of



cfack initiation is drastically affected by gradients perpendicular to the crack plane.

In Chapter 5 the kink angle for continuous crack extension in a FGM is
determined. The angle is determined by two criteria: that which minimizes the
mechanical potential of the system and that which leads to a shear-free (mode-I) kink.
For homogeneous materials and infinitely short crack lengths, these two criteria are
virtually equivalent. For kink lengths smaller than the scale of the gradient, the angles

- determined by these two criteria are ﬁearly the same. But, the kink angle is not entirely
determined by the mode-mixity. There is as much as 10° disagreement from the angle
predicted for an asymptotic kink. This can be attributed to a 7-stress like term caused by

the modulus gradient.
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Chapter 2: Fracture and Computational Mechanics for FGMs

2.1 INTRODUCTION

This chapter briefly reviews the meéhanics of functionally graded materials.
Micromephanical approaches for modeling the mechanical. behavior of composite
materials are diséussed. These formulations do not contain an explicit reference to the
microstructure of the FGM, but assume that the behavior of the éomposite can be
calculated solely from the properties and volume fractions of the constituents. Using the
effective properties of the FGM and tracking the changes in the composition though the
- effective properties, continuum mechanics solutions are obtainable without specific
microstructural modeling. A limited number of analytical solutions exist to boundary
value problems for inhomogeneous linear éléstic materials. The sharp crack problem is
one such solution and its key features are discussed. The implementation of an FGM

finite element code is validated with two example problems.

2.2 MICROMECHANICAL ANALYSIS OF COMPOSITE STRUCTURES

The microstructure of an FGM is in large part determined by the method of
processing. In general, statistically isotropic materials can be characterized as particles of
material A in material B, particles of material B in material A, or an interconnected
network of both A and B. In any of these cases the modeling of a composite on the
microstructural level would be dominated by the particular local geometry and interface
conditions. Results with more generality are obtéined by analyses that study the effective

properties of the composite material. The effect of the gradient in composition of an



FGM is modeled though the gradient in these effective properties.

The problem of determining the effective properties of a mixture of two materials
has been long studied, with pioneering work by Maxwell, Rayleigh, and Einstien
(Hashin, 1983). For simple elastic composites, modeling the structure as two springs
provides wide bounds for the aggregate behavior of the composite. For two springs in
parallel, the total stiffness in is the sum of the stiffnesses of the two springs, k=k+k;.
Likewise, the linear rule of mixtures uses a volume-fraction weighted sum of the Young’s
moduli to predict the Young’s modulus of the composite

E, =Vv,E +V,E, (2.'1)
where v; and v, are the volume fraction of phases 1 and 2, respectively, and v;+v,=1.
For two springs in series, the inverse of the total stiffness is the sum of the inverse

stiffnesses, 1/k=1/k+1/k,. The inverse rule of mixtures

-1
E, = (L + ! ] . 2.2)
viE V,E,

yields a nonlinear relation which is dominated by the more compliant material. For
specific morphologies, e.g. unidirectional fiber composites loaded along the fiber
direction, the linear rule of mixtures provides the appropriate behavior. However, for
more general, isotropic composites, these bounds are too wide to be considered useful
predictors of composite behavior.

More stringent bounds can be found in the work of Hashin and Shtrikman (1963),
which provides a set of upper and lower bounds, more narrow than the linear and inverse
rules of mixture, for both bulk and shear moduli, K and p. The “effective” elastic

constants for all isotropic composites fall within these bounds. Important to this type of
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analysis is the notion of ba representative volume element (RVE). This is a volume of
material within which, it is expected that all of the important microstructural features are
found. Using the example of a composite with non-periodic spherical inclusions, the
RVE Would have to be large enough that, on average, a number of inclusions will be
contained within it. |

A wide variety of analysis schemes attempt to reproduce the effective elastic (or
elastic-plastic) behavior of an isotropic composite. Most assume some type of geometric
model (e.g., a spherical inclusion of material 1 in a matrix of material 2) aﬁd vsatisfy some
simplified set of boundary and compatibility conditions for an RVE. An RVE of the
effectively homogenized material would respond the same as the original composite.
Different analyses require different combinations of the elastic constants of the
constituents and/or ﬁtting parameters. Reviews of a number of these methods is given in
Christensen (1990) and Zuiker (1995), where the Self Consistent Method (SCM) (Hill,
1965), is determined to be the micromechanical theory with the characteristics most
desirable for analysis of FGMs. To compare the differing predictions by these models,
the effective Young’s modulus for composites of materials with E»/E1=10, are displayed
in Fig 2.1.

The effective coefficient of thermal expansion of a composite has also been
modeled. In addition to a linear rule of mixtures, more advanced models weight the CTE
of the constitﬁents with their elastic properties (Haéhin, 1983; Kingery et al., 1965).

The accuracy of micromechanical methods can be limited when microstructure is
sufficiently coarse compared to the overall geometry. In addition, many models are not

accurate for mixtures of very dissimilar materials, and may result in substantial errors in
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the limit of rigid inclusions, voids, or very high volume fracture of inclusions
(Christensen, 1990). This limits the ability of continuum mechanics to describe the
problem without detailed and expensive modeling of the microstructure. However, it is
proposed that the study of the mechanics of continuously inhomogeneous materials will

be beneficial to the majority of practical FGM material combinations.

2.3 CONTINUUM MECHANICS FOR FGMS

The governing linear thermoelastic constitutive equation for an inhomogeneous
material is

0 =2u(X)e;; + AX)Ey 6y — ATa(X)BAX) +2u(X))o; (2._3)
and reduces to the standard equation when constant properties, p, A, and o, are used. The -

Lamé constants are related to the Young’s modulus, £, and the Poisson’s ratio, v, via:

_E P - vE
T 2(1+v) _(1.—2v)(1+v).‘

7 (2.4ab)

Included in Eq. 2.3 is the effect thermal stress, where AT is the change in temperature
from a stress-free reference temperature and o is the linear coefficient of thermal
expansion (CTE). None of the other fundamental equations of linear elasticity are
affected by the materials inhomogeneity, but almost all derived equations are affected
(such as the Beltrami-Mitphell equations of stress compatibility); thus standard solution

methodologies are not pertinent for FGM problems.

2.4 SOME BOUNDARY VALUE PROBLEMS FOR FGMS

The scope of solutions available in the technical literature for inhomogeneous
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materials (FGMs) is much narrower than those for homogeneous materials.
Nonetheless, there are a handful of solutions for linear elastic problems. For example,
Lekhnitskii (1981) solved problem of the tension and the torsion of an inhdmogeneous
rod. This later solution was later corrected and expanded to include flexure of an
inhomogenéous bearﬁ (Rooney & Ferrari, 1995). George (1976) performed similar work

on axisymmetric rods. The problem of the rigid indentation a semi-infinite

ihhomogeneous substrate was also solved (Kassir, 1972; Kassir and Chuaprasert, 1974).
Due to the important potential of FGMs for application to high-temperature
service environments (or the importance of minimizing post-processing residual stresses),
é number of thermoelastic solutions have been developed. Most employ simplifying
geometric assumptions, such as beam-like deforrhation, (Ravichandran, 1995) or
spherical symmetry (Luti and Zimmerman, 1996). For infinite bodies, the stress rise due
to the material iﬁhomogeneity was calculated by Munz aﬁd Yang (1992).

Because of the analytic complexity of mechanics problems with spatially varying

E, finite element analysis (FEA) is widely used to solve problems of practical interest like
the sphérical indentations of an FGM (Giannakopoulos and Suresh, 1997abc) and elastic-
plastic thermal stress problems (Giannakopoulos et al., 1995; Rabin and Williamson et

al., 1996).

2.5 LINEAR ELASTIC FRACTURE MECHANICS FOR FGMS

For FGMs with a brittle phase, e.g., ceramic, intermetallic or glass, fracture is an
important design limitation. If the FGM is a brittle/brittle composite (e.g., Mo/SiO,

(Ishibashi et al., 1997); AL0y/SisN; (Gopal, 1997); SiC/TiC (Sand er al., 1999),
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ZrOy/AL 03 (Krell et al., 1999)), linear elastic fracture mechanics (LEFM) can be used
to characterize. such failure, providing that the effects of the gradients in elastic modulus
and strength are taken into account.

FGMs with sharp cracks necessitate new solutions of the elasticity problem. In a
series of papers Erdogan and co-authors (Delale and Erdogan, 198.3; Konda and Erdogan,
1994; Erdogan, 1995) considered Mode-I, -II, and —III cracks in FGMs with con.stant
Poisson’s ratios and Young’s moduli which vary exponentially with distance. FGM
fracture mechanics share features of that for cracks in homogeneous materials and for
cracks in discrete interfaces Between dissimilar elastic materials.

For locations asymptotically close to the tip of the crack, the Williams (1957)
solution for homogeneous materials describes the stress state in an FGM. That is, the
strength of the elastic stress singularity is c—1/Vr és r—>0. Furthermore, the angular
variation of the stresses is identical to that for the homogeneous case. This is referred to
as the K-dominant region.

The form of the stress solution leads to an unambiguous definition of the stress
intensity factors K, Kj, which have the same physical interpretation as in the
homogeneous case. Kj and Kj; characterize the magnitude of the symmetric (opening)
and nonsymmetric (sliding) in-plane deformation modes. (K characterizes out-of-plane
shear and will not be discussed further.) This is in contrast to the case of interface cracks,
where the strength of the stress singularity is a function of the elastic mismatch and the

“distinction between tension- and shear-mode stress intensities is lost (Rice, 1985). Like
the interface case, the determination. of the value of Ky for a given geometry and loading

is influenced by the elastic properties. For cracks running parallel to the direction of the
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gradient, “far field” mode-I loading' results in a pure mode-I crack opening. The value
of K; will be affected by the gradient such that the tip may be shielded (K| reduced)
compared to the same crack geometry in a homogeneous material. However, for cracks
that grow »ét an angle with the gradient, mode-mixity is developed where the crack tip
exhibits both noﬁnal and shear deformations.

The presumed existence of the Williams crack-tip field in a material with varying
modulus would violate the conditions of compatibility in linear elasticity. Therefore, for
distances away from the crack-tip (at locations with mbdulus different from that at the
tip) the stress field must take on a different character. Jin & Batra (1994) performed an
asymptotic analysis on the incompatibility created by using the Williams stress solution
in an inhomogeneous material and estimated the size of the K-dominant region. They

state that the homogeneous equation will govern over a region with near the crack tip

2 .
where VE << 1, VE << iz . Therefore the size of the K-dominant region is limited by
, .

2

the “steepness” of the modulus variation. There is sparse accounting for this effect in the
literature. For a mixed-mode crack in a material with E(x,y)/E(0,0) = ¢®*?), Konda and

Erdogan (1995) describe the stress field near the crack as

JEY)| K Ky cn 2.4
%~ E(Q@[Jﬁ Ly @O+ g =T (9)} @4

where the quantity in brackets is thé Williams (1957) solution. This gives the first-order

'Far field loading refers to loading conditions irrespective of the material gradient. It is determined by

nature of the crack-tip solution for the same geometry in the homogeneous case.
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description of the effect of the modulus gradient on the stress behavior; although it is
not an exact solution for finite r, it is valid over a larger region than the strict K-dominant
region. |

The path independent property of the J-integral (Rice, 1966) is lost when applied
to a material with varying modulus. Honein and Hermann (1997) forﬁulated a path-
independent integral for FGMS, Je, which includes terms relating to the modulus gradient
in the plane of the crack. A J-integral methodology was used to calculate the effect
variation in yield stpength on resistance to crack growth (Kolednik, 2000). The analysis
of the effects of material gradient on the fracture toughness of an FGM has included a
rule of mixtures anaiysis to assess the fracture resistance as a function of location as well

as a crack bridging analysis (Gu & Asaro, 1997).

2.6 A FINITE ELEMENT PROGRAM FOR FGMSs

The spatial variation of the thermoelastic constants in the FGM problem inducés
the substantial complication of non-constant coefﬁcivents in the set of governing
| equations.  The computer program FEAP (Finite Element Analysis Program)
(Zienkiewicz and Taylor, 1989) was used to used to calculate the approximate solutions
to linear thermoelastic boundary value prbblems for FGMs. For an FGM problem, thé
effect of material gradient effects two steps in the finite element algorithm. F irst, the

elasticity matrix Dj; is proportional to E and is used in the calculation of the element

stiffness matrix K ; = _[B,.TDij (x)B;dV . Second, for thermal stress problems the forcing
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vector f je = —J‘B,.T Dy; (x)a(x)ATdV contains variable Dj(x) and o(x). Last, any stress

calculation must also take into account E(x), v(x), and a(x) via Eq 2.3. Each of these
procedures requires calculations based on the location of the Gauss points. For a 9-node
quadrilateral element, a quadratic variation in each in-plane direction can be
accomplished within a single element.

The solution to the FGM problem could also be acqomplished by assigning a
single set of elastic constants to each element, based on an average location of its nodes,
for instance. However, the variation of the elastic constants within each element yields

superior results. Two test cases are used to verify the accuracy of this formulation.

2.7 CODE VALIDATION PROBLEMS

2.7.1 Elastic graded film on a rigid substrate

Figure 2.2 displays the in-plane stress for a thin film on a rigid substrate subject to
a uniform change in temperature. This is a simplified model of the ‘common problem of
the development- of stresses in a thin metallic film deposited on a thick, stiff, low-CTE
substrate. The CTE is constant, with the Young’s modulus varying sigmoidaly with z.
The analytical solution for this problem is obtained for zero in-plane displacements, with
the corresponding stresé being 6 = -a0 AT E(z). The improved accuracy of the FGM finite

‘element scheme over a multi-layer approximation is apparent.

2.7.2 Arigid indentor in contact with a graded elastic half-space
A rigid punch impinging on a graded material with a shear modulus varying with

depth has been solved analytically (Kassir and Chuapraser, 1974; Kassir,1972) to model
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the effect of varying soil response on structures. To further verify the validity of the
finite element formulation, this problem was analyzed using the mesh displayed in Fig
2.3. To minimize the effects of the boundary conditions, a large disk was modeled, with
the radius being ten times that of the indentor. The axial stress, 6, under the indentor is
displayed in Fig 2.4 for p(z) =po(1+2/c)° with ¢=0.5 and 5=0.75. Also shown for
comparison is the homogeneous solution for p=p,. The finite element solution well
matches thé analytical solution, capturing the strength of the elastic singularity near the

corner of the indentor.

2.8 CONCLUSIONS

The solution to the elastic crack problem has been obtained in the asymptotic
near-tip limit. This allows the interpretation of stresses in terms of the classic fracture
mechanjc parameters. For problems without analytical solutions, finite element analysis
can be used to approximate the stresses. The use of finite elements that allows for
internal property Variation dramatically increases the accuracy of results compared to

element-wise homogeneous solutions.
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2.9 FIGURE CAPTIONS

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Effective modulus for an isotropic composite of two materials with
E»/E=10 under various micromechanical theories, including the Hashin-
Shtrikman bounds and the Self-Consistent Method.

In-plane thermal stresses for a thin FGM film bonded to a rigid substrate.
Analytical solution is o= -a AT E(z). The accuracy of stepwise
homogeneous elements (with internally constant £) is compared to that of
an inhomogeneous element with E(z2).

Mesh used to analyze the impinging of a graded half-space by a rigid flat
indentor. To minimize the effects of the finite geometry, a large mesh was
used, with an outer radius ten times that of the indentor.

Axial stress, 65, under the face of the indentor modeled in Figure 2.3.
Comparison of FEA with FGM element and analytical solution. The
elastic singularity at the corner is captured as the mesh is refined. The
solution for a homogeneous material is included for comparison.
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Figure 2.1 Effective modulus for an isotropic composite of two materials with

E,/E=10 under various micromechanical theories: the Hashin-
Shtrikman bounds, the linear and inverse rules of mixture and the Self-
Consistent Method.
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Figure 2.2 In-plane thermal stresses for a thin FGM film bonded to a rigid
substrate. Analytical solution is 6 = -o. AT E(z). The accuracy of
~ stepwise homogeneous elements (with internally constant E) is
compared to that of an inhomogeneous element with E(z).



Figure 2.3

u, fixed

A

Mesh used to analyze the impinging of a graded half-space by a rigid
flat indentor. To minimize the effects of the finite geometry, a large
mesh was used, with an outer radius ten times that of the indentor.
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2.3. Comparison of FEA with FGM element and analytical solution.
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The elastic singularity at the corner is captured as the mesh is refined.

The solution for a homogeneous material is included for comparison.
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Chapter 3:
An Approximate Method for Residual Stress Calculation in

Functionally Graded Materials

3.1 INTRODUCTION

In many joining and composites problems, residual stresses, arising either from
pfocessing or from in-service temperature variations, are important. The determination
of the optimal thermal stress state needs to incorporate the thermal and mechanical
properties of the constituents as well as their variation. The optimization of such stresses
is a critical design goal and a driving force in FGM research. Indeed, several studies
have focused on the experimental (Delfosse ef al., 1992) and theoretical assessment of
these stresses in FGMs. Simple analyses yield results for which residual stress can be
eliminated (e.g., Giannakopoulos et al, 1995); however, this may not provide the
‘optimum mechanical performance. The generation of surface compressive residual stress
can result in superior strengths and fracture resistance compared to the stress-free
configuration for both ductile and brittle materials (eg, shot-pveened aircraft components
and tempered glass, respectively).

The effect of composition shape on residual thermal stresses has been studied for
both the elastic and elastic-plastic conditions (Rabin et al., 1998, Giannakopoulos et al.,
1995; Grujicic and Zhao, 1998). However, the complicating effect of modulus variation
with position severely limits the scope of problems that can be solved analytically. A

majority of this analytical work has been for FGM films or other simple structures, for
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which geometric assumpﬁons allow fbr much simplified 1-D linear elastic calculations
(Lutz & Zimmerman, 1996; Ravichandran, 1995; Obata & Noda, 1994; Tanaka ef al.,
1996; Tanigawa et al., 1996; Markworth and Saunders, 1995). For a more general 2-D or
3-D problem, nﬁmerical methods such as finite element analysis (FEA) are required.
These are, by comparison, costly, as a full analysis for each material pairing, geometry
and gradient must be performed.

In the present study, a method for estimating the inﬂuence of elastic gradients on
the stress state of an FGM is considered. “Analytical thermal stress solutions as well as
finite element calculations are used. for a variety of problems with varying modulus.
Model material systems, Mo-SiO, and Ni-Al,Os, were used for numerical examples. The
approximate method was found to be very accurate for a number of important problems.
The use of this methodology allows for the application of thermal stress solutions for

homogeneous materials to FGMs.

3.2 PROBLEM FORMULATION

The full description of the thermal stress problem in an FGM must include the
variation in modulus. However, most standard thermoelastic analyses pertain to
. materials with constant £. These equations are recapitulated to provide groundwork for

the discussion of the FGM problem.

3.2.1 Residual Thermal Stresses in Elastically Homogeneous Bodies
The residual thermal stress state of an elastic body subject to temperature change
AT is considered. This AT is assumed to vary smoothly with position in one arbitrary

direction (with cartesian coordinate x) and will be described by a polynomial function of
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position, AT (x)= Zé,xi . For a homogeneous thermoelastic body with free boundaries
i=0

and constant coefficient of thermal expansion (CTE) a, Young’s modulus E and
Poisson’s ratio v, stresses can be computed from the spatial derivatives of the Goodier
potential (Boley & Winer, 1985). This potential is obtained from a weighted integration
of the temperature field over the body. The stresses are therefore linearly related to each
of the coefficients of the temperature field, ;, or equivalently, to ad;.

A smoothly varying composition in an FGM will result in smoothly varying
effective thermomechanical properties, and the Goodier potential argument can be used
to analyze thevresidual stresses arising from CTE gradients in elastically homogeneous
materials. This is true because temperature change and CTE only appear as the product
oAT in the uncoupled thermoelastic problem and therefore the Goodier framework for
AT(x)*a. solves the identical problem' as fo;a(x)*AT. The problem of variable a(x) and
constant AT is representative of the behavior of an FGM after. processing at high

temperature, e.g. sintering or CVD.

For FGMs, it is natural to formulate the problem in terms of the gradient in the
composition, rather than directly in terms of a(x). Assuming that the volume fraction, v,
of material #2 in a matrix of material #1 varies as a polynomial function in one

dimension:

i 2 3 i
V(x)=v,+ VX +Vv,x* +-+ VX" :Zo:ViX (3.1)
=

! This, of course, does not guarantee that there can exist such a steady-state temperature field, but
rather if one existed, its stress state would be the same as that of the FGM under consideration.

[ :
£
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then with the coefficient of thermal expansion assumed to be a linear function of

composition

a=a +(a,-a,)v=a,+Aav (3.2)
it follows that:

ax)=a, +v,Aa+ Z”:Aozvixi : | (3.3)

i=1
For a material with constant modulus E,, Eq. 3.3 combined with the implications

of the Goodier potential arguments yields

0, = AGATE, Y v,S!, +(a, + Aav,)ATE, S, (3.4)

i 0™ jk
i=1

where Sj.k =0, /AaATE is the nondimensional stress function for the jk component of

stress associated with degree i of the gradient polynomial. Practically, these stress
functions can be obtained via the Goodier potiential, or any other analytical, numerical or
experimental method.

If variation of aAT is linear in each of the cartesian coordinates, then the body

remains stress-free (Boley and Winer, 1985) and S = Sj‘_k =0. Therefore,
o, =AaATE, Y VS, (3.5)
i=2

This equation yields information on how the materials properties and the gradient
shape affect the residual stress state of the FGM with constant modulus. Namely, the
residual stresses are linear in the difference in thermal expansion, total temperature

change, elastic modulus, and in each coefficient of a polynomial gradient shape, v;.
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3.2.2 Approximate Solution for FGMs

Exact analytical solutions to problems with E(x) are rare. To explore the
possibility of constructing an approximate FGM solution from that of a homogeneous
body, the solution to the FGM problem is decomposed into two separate displacements,

u=u’+u | (3.6)

(see Fig 1). The first displacement field, #° represents the solution to the residual stress
problem with aAT (x) and a constant E=E, (Fig 3.1a). The stresses that arise, ¢°, are the
same as in Eq 3.5. Applying the linear strain-displacement equations, it follows that € =

€® +¢'. These strains can be substituted in the stress-strain relation (in indicial notation)

0, =26, 1(x) + A(X)EwS, — GA(X) + 2u(x))ATa(x)s, 3.7)
_ E(x) B v, E(x) :
D=ty 0 a SR

Identifying the stresses for the E, (and therefore A, and p,) case and those associated with

the displacements u':

o] =261, +2,6;0, —(34, +2u,)ATa(x)d, (3.9

0y =26, u(x) + Ax)e S, . (3.10)
yields

0',].=0';]—E§-)+0';- (3.11)

o

For cases in which the stresses caused by the gradient are small,

o, zdg?. (3.12)
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Formally, the analysis in Section 3.2.1 is only applicable to materials with

homogeneous elastic constants. However, it is clear that Eq. 3.12 cah be attained by
substituting E(x) for E, in Eq. 3.5, , ~ AaATE(x)Y_ VS, .
i=2

Comparing Eq. 3.11 and Eq. 3.12, it is clear that ¢'; represents the error in the
approximation, arising from modulus gradient iﬁduced dispiacements, ui.  This
approximate method will be most successful in cases where the gradient in modulus
affects the displacements the least. it is now possible to investigéte the nature of this

error. Enforcing the balance of linear momentum by taking “Ve” on both sides of Eq.

3.11 and noting that Veo = Vec° = 0 leads to

V'O’_'+VE(x)’0'o=0‘ v (313)

o]

These are the equilibrium equations for a material subjected to a body force. Now
the problem of determining the error ¢’ is re-cast to that of the linear elastic problem of a
inhomogeneous body (E=E(x)) with a traction-free surface, subjected not to a temperature

VE®) 5o This, however, is still not a trivial

change, but only to the body force b =

[
problem and can only be used to identify the trends in the error.
Due to the linearity of this body force problem, it follows that the magnitude of

VE(x) .

* the error stress will scale with b, ¢’ c°. More specifically, the error in the

o
approximation enumerated in Eq. 3.12 scales linearly with: 1) the slope of the gradient in
E(x), and 2) with the magnitude of the stress in the homogeneous (E=E,) solution. The

first of these conclusions meets our expectations that at an interface between two
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materials with F#E,, the stresses are known to be singular, which here corresponds to
the fact that VE is not defined.

In lieu of the solution to this body force problem, a number of FMG thermal stress
problems are considered as examples of the application of the approximate method. In
addition to a series of analytical solutions, finite element calculations have been
performed for an FGM cylinder in order to explore a range of material combinations and

gradient shapes and to determine the accuracy of the approximation.

3.3 PROCEDURES

In analyzing the thermal stresses of FGMs, we consider using the full finite
element solution taking into account both CTE a;ld modulus variation. The geometry
chosen for FEA was a “short” cylinder (length to radius ratio, L/R, = 5), with the
compositional gradient lying along the z-direction. Th¢ material composition is taken to
be constant in both the radial and circumferential directions. However, this is a geometry
for which symmetry places no useful (non-trivial) restrictions on the residual stress state
(Hoger, 1986) and is not amenable to approximate methods that rely on Saint-Venant
arguments (e.g., Nikishin, 1966). Two different materiél sets were considered, namely
molybdenum - silica and nickel - alumina. The Mo-SiO; system is used in an arc-lighting
application and the Ni-Al,O3 is a common model system for numerical studies, with
application to thermal barrier coatings. These represent two contrasting types of systems,
with the'higher coefficient of thermal expansion material having higher modulus in the

first, and lower in the second. The room temperature moduli were used; however, the
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CTE that was used was the average between 25 and 1000 °C. The values of the constants
are given in Table 3.1 (Touloukian, 1975; Touloukian, 1977).

Table 3.1: Physical constants for the materials under study

Molybdenum | SiO; Nickel AlLOs
a (ave) (10° m/m) | 5.72 0.5 16.43 8.8
E (GPa) - 320 72 207 380
v 0.30 (x0.25) |.20(=0.25) |0.33(=0.25) |0.23 (=0.25)

The residual stresses were calculated via the finite element method, using the
computer program FEAP (Zienkiewicz & Taylor, 1989). The problem was analyzed in
axisymmetric mode using a mesh of 400-1100 nine-node quadrilateral FGM elements. E
was varied as a function of domposition as prescribed by the Self Consistent Method
(SCM) (Hill, 1965), which has been determined to be the micromechanical theory with
the characteristics most desirable for analysis of FGMs (Zuiker, 1995). Consideration
was given to other micromechanical methods and differences in the results were
negligible.

The difficulty of implementing the SCM is that it does not, in general, allow
explicit correlation between volume fraction and stiffness. However, this relation can be
inferred via a curve fit of the effective modulus. This resuited in the variation of Young’s
modulus and fitted polynomial coefficients displayed in Fig. 3.2. Poisson’s ratio was
assumed to be constant (v = 0.25) in this analysis. The small magnitude of such variation
is neglected for simplicity. The CTE was assumed to be a linear function of composition

(Eq. 3.2).



33

3.4 RESULTS AND DISCUSSION

3.4.1 Comparison with Analytical Solutions

As. mentioned in Section 3.1, elasticity problems with varying modufus are much
more difficult to solve than those with constant E, and therefore only the simplest one-
dimensional cases can be considered. For the prc;blems that can be solved analytically,
restrictions must usually be placed on the allowable form of modulus variation.
Specifically, a linear variation of modulus will be considered, varying from Emneia to
Eceramic- Similarly, unless specified otherwise the CTE was varied linearly.from Olmetal tO
Oleeramic- This does not necessarily represent the solution to problems for any specific
material gradient, linear or otherwise. These analyses are formulated in terms of £ and «;
in contrast, problems formulated in terms of tﬁe material gradient parameters, v;, will be
addressed in Section 3.4.2.

Several simpLel FGM structures were analyzed and their thermal stress state
computed, some self-constrained, other constrained by bonding to a massive material
with a=0. This exaét solution is compared to that of homogeneous “average modulus”
problem with Eyve = (Emetal + Eceramic)/2 and to the approximate solutioﬁ (Eq. 3.12).

For the ﬁim on a rigid substrate with a=0 (Fig. 3.3) the solution displacement, u,
is independent of the modulus variation, therefore the approximate method yields the
exact solution. These solutions of do not require any specific form of E(z) (although a
linear function was used for the data in Fig. 3.3). The general form for the residual stress

after a temperature change, AT, is

-
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o o = E(2)a(2)AT - '
xx w - ) (3.14a,b)

Also considér the problem of an axially graded peg in a rigid hole. If only radial
contraction is restricted and the ends are free, then Eq. 3.14 represents the solution as
well. If axial motions are also fixed, then for a peg with a small diameter the solution

displacement will tend towards # = 0. Normal stresses will coincided with Eq. 3.14(a)

after scaling by a factor of (1-2v)/(1-v).

Lutz & Zimmerman (1996) solved the problem of an FGM sphere with free
boundaries and W1th modulus and CTE being linear functions of radial posmon The
analytical solution was applied for both material sets for both the full' E(r) and o(r)
problem and fdr homogeneous E,. The homogeneous solution was used to compute the
“average modulus” and approximate (Eq. 3.12) stress states. Fig. 3.4 displays their exact
solution for tangential stress, Gge, With the approximate method and with the
homogeneous Eg. solution. Eq. 3.12. was found to well incdrporaté the modulus effect,
mapping the linear variation of stress _(as seen in the “average E” dashed line) into a
nonlinear distribution more like the full solution. Although at » = 0 the difference
between the exact and the approximate is large (40% in the Mo-SiO; case), at the location
of greatest importance for particle cracking, » = R,, the difference is only 10%. Ignoring
the effect of varying modulus, as in the Ej,. case, leads to ~10 times the error at the
surface.

For the free beam with a linear £ gradient (similar to Giannakopoulos et al.,

1995), a linear o(z)AT will cause the beam to bend, but will result in a stress-free final

configuration.  Therefore, the beam problem was chosen with o(z) = Ometar +
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(Clceramic —Olmetal )(z/H)z, with the resulting stresses displayed in Fig. 3.5. For both the
materials sets, Eq. 3.12 skews the symmetric stress variation (as in the “average E”
dashed line) such that stresses are higher in the region with the stiffér material.

For a film sandwiched between two 'rigid platens (a=0) (Fig. 3.6) the approximate
solution does not yield accurate results. The cause of this is the redistribution of strain
(compared to the homogeneous E case) from stiffer regions to more compliant regions.
A simple case to consider would be that of two springs in series held at constant non-zero
displacement. As the stiffness of one spring increased, its diéplacement would decrease,
requiring an increase in displacement in the other spring.

Highly constrained problems represent the upper bound .for thermal stresses,
which, in the absence of this internal redistribution will tend to the exact #=0 solution
discussed previously. For bodies with ﬁnit_e thickness, however, displacements will be
affected by E(z) such that Eq. 3.12 is inaccurate. In contrast, for bodies that are free to
expand at their boundaries (such as deposited films or ceramics manufaétured by free

sintering), it is clear that Eq. 3.12 can provide accurate (or exact) results.

3.4.2 The Axially Graded Cylinder

The joining of a metal/glass seal is one potential application for FGMs (Ishibashi
et al.,, 1997). FGM parts are manufactured using a free-.sintering method where the
residual stresses arise from the cool-down from the sintering temperature. The
corresponding mecflanics problem is that of a right cylinder with free boundaries and the

gradient along the z-direction. This is a two-dimensional problem, allowing contraction
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in both the radial and axial directions. Lacking an analytical solution to this problem,

FEA is used to compare the approximate method to complete FGM solutions.

3.4.2.1 Stress Functions for an FGM Cylinder

Using methods described in Section 4.3 (with constant modulus), the stress
functions were calculatéd. The stre;s functions S2,S,,,S., andS,,, ie., those
corresponding to the residual cool-down stress for quadratic and cubic gradients, are
shown in Figs. 3.7a and 3.7b, at the qenterline (r = 0) and surface (r = R,). Fig. 3.8
displays the radial variations midway along the cylinder, z = L/2. Note that at the

centerline, the circumferential and radial stress components are equal (S.,=S,, atr =0),

as dictated by equilibrium considerations, and at the free lateral surface, S, = 0.

3.4.2.2 Gradients with the Same Material Curvature

Since the constant and linear aspects of a thermal gradient do not con;tribute to the
residual stress state, the deviation from linearity can be considered to be the “driving
force” for residual thermal stresses. As discussed earlier, for problems with constant
modulus, the residual stresses scale exactly linearly with the magnitudes of these
deviations (the coefficients v;, i > 2) . Therefore, for such a material, the three gradients
in the iﬁsert of Fig. 3.9, each with v, = -0.001/mm2, will result in an identical residual
stress state. However, for a Ni-Al,03 FGM, with the moduli of the components differing
by 83%, the'residual stresses will increase with increasing average gradient slope (and, in
this case, average Al,O; volume fraction). This is shown by the symbols in Fig. 3.9,
which represent the centerline stresses per degree of cool-down, calculated via FEA.

This demonstrates that the effect of the gradient in elastic modulus on the residual stress
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state is substantial and that the deviation from linearity does not entirely predict the result
(~20% difference between the cases). However, using the homogeneous stress function
S2 and by ‘empldying the approximation in Eq. 3.12 (solid lines), it is apparent that the
error incurred is slight (less than 1% error between Eq. 3.12 and the full FEA results).
Restated, for problems with variafi‘ons in both thermal and elastic constants, the effect of

modulus mismatch can be captured quife accurately by Eq. 3.12.

'3.4.2.3 Gradients with the Differing Material Curvature

In addition to corﬁparing gradients with the same curvature, the series in Fig. 3.10
can be ﬁonsidered. For each gradient, the composition changes smoothly from 10% to
90% ceramic with the balance being the metal phase. Each gradient is a quadratic
function of axial position with v, = 0.002, 0.001, 0.0, -0.001, and -0.002Amm'2. Both of
the material systems were considered for each of the gradients and the axial residual
stresses per degree of cool-down o, / |AT| are displayed as symbols in Figs. 3.11a,b and
3.12a,b. The strong influence of gradient curvature on residual stress can be seen in both
figures.

Results are broadly similar between the tWo material systems, with a few
noticable differences. For gradients with a positive curvature (v, > 0), the residual stress
is compressive Qn.the surface (r = R,). For brittle materials where the overall strength is
greatly controlled by surface flaws, this can be regarded as a more favorable condition

than stress-free.
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As can be seen in Fig. 3.10, the relation between v, and o postulated in Eq. 3.12
holds well even including the effects of E£(z). For some composites, Eq. 3.2 may not hold
and a nonlinear compostion-CTE relation should be used. In such a case the achievement

of a favorable compressive stress-state upon cool-down would be dependent not on

d’v -~ but on

L] =l
2 dz? dz*

i <0- would be
0z v

dzaz(avjzaz_%a_zvi‘i Both % and 4
o' dz' ov dv av’
determined by the specific micromechanical model used, bﬁt for a typical metal/ceramic
FGM the former would be expected to be negative (ie, Olceramic < Ometat). Therefore, for a
quadric material gradient a positive value of VZAOLAT would stiil be desirable.

The solids lines in Figs. 3.11a,b and 3.12a,b represents the application of Eq.
3.12. The sfress states of the SiO,-Mo system are more asymmetric in the z-direction due
to the greater mismatch in Young’s modulus. It is apparent that this is a good
approximation for either material system, éithough the error incurred is greater for the

larger curvatures. This follows because the coupling effect of elastic gradient change and

residual stress, as described in Section 4.2.2.

3.4.2.4 Sigmoidal Gradients

Previous discussion has been limited to polynomial gradients. For certain

problems a polynomial description of the gradient is advantageous and allows the

superposition of aAT fields. However, Eq. 3.12 is in no way restricted to such gradients.
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Sigmoidal gradient shapes are important since they simulate grading resulting from the
interdiffusion of two materials. |

Hyperbolic tangent gradients are shown in the insert of Fig. 3.13 énd the surface
residual stresses calculated via FEA for the Ni-Al,O3 system are displayed as the symbols
in Fig. 3.13. The approximation (Eq. 3.12) results are shown as solid lines.

For the sigmoidal gradient, areas of positive gradient curvature correspond to a
beneficial compressive stress at the surface. Likewise, areas of negative gradient
curvature correspond to a tensile stress, in agreement with the results fér the quadratic
gradients (Fig. 3.12b).

As in the case of the pure quadratic, the approximation for the residual stresses
works well; however, the error in the steepest of the sigmoidal gradients is indicative of
the limitations of this procedure for.problems with rapid changes in modulus. Still, for
the sharpest gradient studied the error in the approximation of the maximum o, was less
than 15% even though the transition from 10% to 90% Al,Os took place within a distance

of L/5.

3.5 SUMMARY

A method is presented for approximating the residual stress state in an FGM
structure with free surfaces. For FGM films, the results of the approximation coincide
with the exact solution. Numerical solutions for an FGM cylinder have shown this
method to be accurate within 15% for all gradients studied. The method allows the
application of a wide class of homogeneous-modulus residual stress analyses to FGMs.

This allows, at lower cost than a full finite element analysis, the identification of
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favorable and unfavorable aspects of the gradient nonlinearity, for either avoiding

stresses or building desirable compressive stresses.
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3.7 FIGURE CAPTIONS

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10

(a) Motion of a homogeneous body with E=F, under thermal loadmg,
aAT(x), resulting in displacements #° and stresses ¢°

{b) Motion of an inhomogeneous body with E=E(x). The
displacements, u, are decomposed into the homogeneous solution
displacements, u4°, and the displacements due to the modulus gradient,

!

u.

Variation of effective Young’s modulus, E, with composition for Mo-
SiO; and Ni-Al,O; composites according to the self-consistent method
(SCM). ~

FGM film on a rigid substrate undergoing temperature change A7T. For
this geometry the approximate solution coincides with the analytical.

FGM sphere undergoing free expansion. Note the order of the
materials for this case: (a) Mo to SiO; and (b) Al,O; to Ni (from stiffer
to more compliant) is dictated by the restrictions on the analytical
solution (Lutz and Zimmerman, 1996).

FGM beam allowed to bend due to nonlinear CTE variation through its
thickness.

FGM film sandwiched between rigid platens undergoing temperature
change AT. The redistribution of strain as a function of local modulus
leads to a solution that is not amenable to this approximate method.

(a) Quadratic stress functlon S? , along the centerline ( = 0) and

U b
surface (r = 0) for stress components i = 60, zz
(b) Cubic stress function, S , » along the centerline (» = 0) and surface (

= R,,) for stress components ij = 66, zz.
(a) Radial variation of S ,f and (b) of § ; atz=L/2.

The axial residual stress component, G, resulting from the three
quadratic gradients (insert), each with the same curvature (v, = -0.001
mm™). The approximation of Eq. 3.12 for each of the gradients (solid
lines) closely matches the finite element results (closed symbols).

A series. of gradients with varying curvatures. The symbol on each
curve indicates the value of the curvature such that the symbols +, A, @,
m, ¢ correspond respectively to v, =-0.002, -0.001, 0.0, 0.001, and
0.002 mm™.,



Figure 3.11
Figure 3.12

Figure 3.13
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Residual stresses along the centerline resulting from the gradients in
Fig 3.10 for the (a) Mo-SiO; and the (b) Ni-Al,O; system. FGM
calculations (symbols) are accurately approximated by Eq. 12 (solid
lines).

Residual stresses along the surface resulting from the gradients in Fig.
3.10 for the (a) Mo-SiO, and the (b) Ni-Al,O3; system. FGM
calculations (symbols) are accurately approximated by Eq. 12 (solid
lines).

The surface residual zz-stresses resulting from the series of sigmodial
gradients (insert). The finite element results (symbols) are
approximated by Eq. 3.12 (lines).
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(b)

Figure 3.1 (a) Motion of a homogeneous body with ~ E=E, under thermal loading,
aAT(x), resulting in displacements u° and stresses ¢°

(b) Motion of an inhomogeneous body with E=E(x). The displacements,
u, are decomposed into the homogeneous solution displacements, u°, and
the displacements due to the modulus gradient, «'.
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Figure 3.3
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FGM film on a rigid substrate ‘undergoing temperature change A7. For
this geometry the approximate solution coincides with the analytical.
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Figure 3.4

Normalized Tangential Stress, o,,/AT (Pa/C)

Normalized Tangential Stress, c,,/AT (Pa/C)
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Figure 3.7
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Figure 3.8
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Figure 3.9 The axial residual stress component, 6,;, resulting from the three
’ quadratic gradients (insert), each with the same curvature (v, =-0.001
mm™). The approximation of Eq. 3.12 for each of the gradients (solid

lines) closely matches the finite element results (closed symbols).
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Figure 3.11  Residual stresses along the centerline resulting from the gradients in Fig
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(symbols) are accurately approximated by Eq. 12 (solid lines).
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Chapter 4
Statistical Fracture Modeling: Crack Path and Fracture Criteria with |

Application to Homogeneous and Functionally Graded Materials

NOMENCLATURE LIST
X,y Cartesian coordinates. Crack lies along y = 0 in the x-direction.
r, 0 Polar coordinates

-

3 Dummy coordinate variable

Oxx> Oxy> Oyy  Components of stress referenced to {X,y} coordinate system
G1, O Maximum principal stress, hoop stress

a Crack length

B Characteristic thickness

Ki, Kn Mode-I and mode-II stress intensity factors

G Strain energy release rate :

W Phase angle of crack tip, y = tan [Ki/Ki] .
7 - Nondimensional functions of 0 for elastic crack stresses

iAd Nondimensional function of 6 and y for elastic crack principal stresses
o Global failure probability

Ko Probable fracture toughness. K to achieve failure probability ®.
p(o) Failure probability in the limit of small volume

p* Volume-weighted failure probability

m Weibull modulus

Oy, Ou . Weibull scaling stress, cut-off stress

g Function that describes property variation with location

b, c Gradient parameter, value at the crack tip

E,v Young's Modulus, Poisson's ratio

J_c,)_z Coordinates of average location of crack initiation site

é - Angle of average crack initiation event, tan'](;;/ x)
f Percentage of fracture initiations occurring between — and 6
O¢ Angle defining the f™-percentile of fracture probability

r Average distance of crack initiation

x Distance of maximum local failure probability

Cutoff radius near crack tip

Outer radius of integration for analysis of infinite bodies
Nondimensional mixed-mode toughness function

Diameter of penny shaped crack

Empirical fitting coefficient for the mixed-mode toughness envelope

O™
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4.1 INTRODUCTION

The earliest report on the relationship between the volume of a brittle matefial and
its measured strength is credited to Leonardo Da Vinci, who observed that the strength of
a wire in tension decreased as its length increased (Parsons, 1939). Since then, extreme-
value Weibull statistics (Weibull, 1951) have been developed to model the dependenée of
probabilistic failure on both applied stress and affected volume of a bulk material. This
dependence can explain phenomena such as the enhanced measured strength of brittle
materials in bending tests‘ versus those in tension. Similarly, the fracturé toughness of
material that undergoes a stress-controlled fracture initiated away from a crack tip can be
predicted by applying Weibull statistical analysis to bodies containing cracks or notches.

One area where Weibull statistics can play a descriptive role is in the fracture of
composites. Weibull stafistical analysis provides a tool for describing the relationship
between the probability of fracture and the distribution of stresses near a crack. Given
that these stresses are affected by modulus gradients in FGMs, an FGM with a
statistically variable fracture response will fracture at a stress intensity, K, different from
that in a homogeneous material. This type of analysis also allows for a description of the
crack path. Far-field tensile loading on materials .With gradients in modulus can cause
mixed-mode (tensile and shear) crack loading. Cracks in materials that grow
continuously from the tip are known to kink when loaded in mixed-mode. Through the
Weibull analysis, the effects on the crack path of the gradient-induced'stresses can be
asselss'ed for materials that initiate fracture at locations away frofn the tip. Effects on
toughness and crack trajectory from gradients. in strength can also be explored though this

framework.
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To describe the mixed-mode crack extenoion of materials governed by Weibull
statistics, relationships for the average distance and angle of fracture initiation near an
elastic crack tip and probable toughness are developed in this work. These relationships
are first applied to infinite, homogeneous bodies and results are compared with classical
detérministic behavior for kinking and extension in response to the stresses exactly at the
tip. The analysis is then applied to infinite FGMs. Although the analysis depends on
failure at locations away from the crack tip, in both these applications, the effects of
conventional higher order terms in the stress field, e.g., the T-stress, are not considered.
Finally to test the dependence on geometry-specific stresses away from the crack tip, two
fracture mechanics specimen geometries with various modulus and strength gradients are

examined using the finite element method.

4.2 FGM FRACTURE MECHANICS

The study of fracture mechanics for FGMs has generated linear-elastic crack-tip
stress field solutions for various elastic gradients and boundary conditions. The
fundamental result of fracture mechanics analyses is that for locations asymptotically
close to the crack tip, the stress field for a homogeneous material and an FGM are
identical (Erdogan, 1985; Jin and Noda, 1994). In this limit, the stresses near the crack

tip are described by the classical Williams solution (Williams, 1957):

o~K, @)\ 2xr +K,f"(0) 2nr with

ool =
ol
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for 6 = o), the maximum principal stress. F igure 4.1 compares the isostress contours for
principal and hoop stresses for the sharp elastic crack with phase angles of y = 0°, 45°
and 90° (K= 0, K= Ky, K1 = 0). |

As in homogeneous materials, K; and Kj;, the mode-I and mode-II the stress
intensity factors characterize the magnitude of the symmetric and antisymmetric stress

fields in a neighborhood near the crack. tip; however, their values for.a given geometry

and load will differ versus the homogeneous case in both magnitude, |K|= K Z+K,,

and phase angle, y = tan’ (Ky/K;7) (Konda and Erdogah, 1994).

In an FGM with variable modulus E(x,y), strains associated with the Williams
crack-tip field do not satisfy the equations of compatibility. At finite distances away
from the érack-tip_ (at locations with an elastic modulus different from that at the tip), the
solution field must take on a different character. Therefore, the steeper the gradient in E,
the smaller the region wﬁere Eq. 4.1 pertains. Outside of the K-dominant regions, the

stresses depénd on the variation in E. .

The mixed-mode analysis of Konda and Erdogan (1995) satisfactorily describes
the stress field near the crack by the pointwise multiplication of the Williams solution by
the variation'in Young’s modulus, chosen as E(x,)/E(0,0) = e®*, Written in a more

general form:

~ E_(x’_y) KI ! KII 17
O-zj ~ E(0,0) |:\/2—7; fij (9) + \/EZ?“ fy (9):| > (42)

for any E(x,y) which is a continuous function of position (taking the Poisson’s ratio, v, as

a constant). E(0,0) is the value at the crack tip.
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Eq. 4.2 approximates the effect of modulus variation, E(x,y), on the stress. For
locations asymptotically close to the tip, Eq. 4.2 and Eq. 4.1 agree. Moreover, Eq. 4.2
satisfies the equations of compatibility exactly, although it is not an exact solution, as it
does not satisfy the conditions for equilibrium. It will therefore also be limited in its own
region of dominance.

The issue of the direction of crack growth in homogeneous materials was first
addressed by Erdogan and Sih (1963), who predicted that a crack loaded in mixed-mode
would kink along an aﬁgle, 0, which corresponds to the maximum hoop Stresé, G, at the
crack tip. Later analyses that explored the mode-mixity and strain energy release rate, G,
of a kinked crack and gave more rigorous results. The analysis of crack kinking in FGMs
has been limited to the application (Gu and Asaro, 1996) of the first-order homogeneous
analysis of Cotterell and Rice (1980). Implicit in this analysis is the assumption that the
gradient in Young’s modulus only affects the crack tip through mode-mixity, y. This is
true for crack kinks of infinitesimal length growing continuousiy from the crack tip, but
these assumptions cannot be sustained if material inhomogeneity leads to longer kinks or
for fracture events that are initiated ahead of the crack tip or in materials with variable

strength.

4.3 RKR FRACTURE MODELING

4.3.1 Weibull statistics

The effects of variability in strength of brittle materials were analyzed by Weibull
(1951) and described in terms of extreme value statistics. For a body experiencing stress

o, the probability of failure @, is
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q):l_exp{ ;_&)dy} (43)

Vol o
where ¥, is a reference volume and p(c) is the strength distribution, i.e., the cumulative
failure probability of the material in the small-volume limit. The three-parameter

Weibull strength distribution has the form:

o, -

n
o]
"J foroc-oc, >0

p(;f)= ( %

“4.4)

0 foroc-c, <0
where o, is maximum principal stress and oy, 0, and m are material constants to be
.determined by experiment. The lower bound cutoff strength, o, is often set to zero for
ceramics and glasses, thus defining the two-parameter Weibull distribution. o, ‘is the
scaling strength such that in pure tension when 6y =cg, and V=V,,®=1-¢~0.62.

The Weibull function expresses the probability of failure in terms of both the
level of stress and the volume over which the stress is distributed. The relative severity
of this volume dependence is in large part determined by the Weibull modulus, m.! In the
limit of a purely deterministic material, as m — oo, failure would be determined by _the
maximum stress at one point. For a high-quality engineering ceramic, m is in the range
of 20-50. However, fo; brittle/brittle composites, the introduction of internal interfaces,
residual stresses, and incfeased microstructural variability often result in greater scatter in
strength and a lower Weibull modulus. Indeed, bend strength tests of a SiO/Mo FGM

have indicated a Weibull modulus of 4 pertains (Tomsia et al., 1997).

'The cutoff stress o, also can mitigate the effect of volume. When a two-parameter distribution is app]ied
to an infinite body, any non-zero far-field stress leads to a failure probability of unity. The invocation of a
cutoff stress allows for the modeling of failure in an infinite body.
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To demonstrate fracture initiation behavior near a crack in a homogeneous
material with strength described by Weibull statistics based on the maximum principal
stress, Fig. 4.2 displays the results of Moﬁte Carlo simulations. (Details are given in
Appendix A.) Each point indicates the location of a fracture initiation for mode-I (square
symbols) and mixed-mode, y = 45°, (circles) loading. A number of features are evident.
First, for the mode-I case, these data are scattered away from the x-axis, but are roughly
symmetric aboﬁt y =0, giving a bimodal distribution with an average angle of 4°. For the
mixed-mode case, the data are strongly skewed toward the negative y-direcﬁon, at an
average angle of —81°. This indicates that, averaging of a number of events, there is the
tendency for straight-ahead crack extension under mode-I loading and downward growth
under positive phase-angle mixed-mode loading. In addition, for fhe same number of
trials, the number of fracture initiations under mixed-mode loading is greater than for
mode-I loading at the same |K] (764 sites vs. 111). This indicates a lower resistance to
fracture initiation pertains at a given magnitude of the stress intensity. This would resuit
in a lower measured fracture toughness. This simulation indicates the trends that would
be expected; a framework for quantification for such results is needed.

4.3.2 Statistical fracture modeling

Originally the scaftter in fracture toughness data motivated the application of

Weibull statistics to crack problems. The near-tip region of a crack is an extreme

example of the competition between stress and volume. At the tip of a sharp elastic
crack, stress is infinite; however, such stress is experienced over exactly zero volume.
Away from the crack tip, stresses decrease; however, an increasing volume is exposed to

stress.  The Ritchie-Knott-Rice (RKR) fracture model (1973) in part used this

Fo
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competition to motivate tﬁe description of fracture in low-toughness steels in terms of the
stresses a “characteristic distance” ahead from the tip of the crack, where fracture of a
brittle inclusion triggers catastrophic crack growth.

The direct substitution of singular fracture mechanics stress fields into Eq. 4.3 is
problematic, as it yields an integral that is not finite for most values of the Weibull
modulus.? This means that for any applied load, the global failure probability would be
ﬁnity and the fracture toughness would be zero. A number différent érguments have been
invoked by investigators have to avoid this non-physical result.

For brittle materials, the explicit modeling of a notch rather than a sharp crack tip
allows for the integration of the stress field over the entire material region, with the
results being a function of the size of the notch (Lei et al., 1997; Becker, 1999). For
materials with sufficient ductility, crack tip blunting truncates the stresses near the tip and
renders the integral (Eq. 4.3) finite. Numerical calculation (Lei et al, 1997) of the‘

“blunted stress field has been performed as well as the pseudo-analytic application (Lin et
al., 1986b) of a simplified plastic notch field within the HRR singularity (Hutchinson,
1968; Rice and Rosengren, 1968).

For elastic sharp cracks, special attention must be paid to the physical
implications of applying Eq. 4.3 near the crack tip. Most early work on statistical
fracture was strongly rooted in the dominant fracture mechanism of the material being

studied (e.g. carbide fracture in low-toughness steels). Regardless of the mechanism

2 For the linear elastic soluﬁon, the integral is not defined for (m > 4). In nonlinear materials, there is a
similar result which depends on m and the strain-hardening coefficient (Lin ef al., 1986a).
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underlying the statistical fracture process, the characterizing,statistical parameters of the
strength distribution will be determined by the volume of material tested to obtain them.
When a volume of material is smaller than can be expected to possess any of the
dominant fracture elements (carbide, grain boundary, etc), the subsequent failure will no
longer be characterized by the same parameters as is the bulk material even if it is
statistical in nature. Such small volumes are likely to be stronger than implied and thus
‘may contribute little incremental probability of failure. The implications of applying the
Weibull distribution to the region of small volume and high stress gradient near the crack
tip led Beremin (1983) to invoke a cutoff radius around the crack tip, which was excluded
from the region of integration. Evans (1983) ruled out the classical Weibull equation for

p(o) on these and related physical grounds. This allowed for the analysis of a sharp crack

tip with a substitute p(c).

4.3.3 Crack Trajectory

Previous authors (Evans, 1983; Lin er al, 1986a,b) have investigated the
incremental failure probability ahead of a crack tip. The distance at which the
incremental féilure probability was a maximum was deemed to be a characterizing
parameter. These analyses were performed on an infinite body and utilized the first term
of the elastic stress field expansion (either Williams or HRR).

Mixed-mode fracture does not lend itself to the analysis of Lin et al. (1986a).
Considering the single distance of the maximum failure_probabilbity is of insufficient
utility compared to analyzing the full planar stress field. Although previous analyses of

continuous crack kinking used the hoop stress cgg as the criteria for determining the kink
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angle and critical load, for initiation in material at a disfance awéy from the crack tip, the
orientation of flaws need not be along lines of constant-0. Therefore the principal stress
o) is used to determine flaw activation. The symmetric Mode-I elastic stress field
possesses maxima in brincipal stress o; at O = +£60°; symmetry dictétes that Mode-I crack
advance must 600ur aiong 6 = 0°, but only statistically.

To describe the expected location of these activated flaws, a spatial average of the
failure probability is invoked. For a body with spatially varying étress, the average, or

expected value, of a coordinate  is obtained via a weighted integration:

ngdV
¥ Vol Vo
E= _ (4.5)

‘ji’-—(" )y

Vol ]

When & = x, & = y the mean Cartesian coordinates, xand y, of fracture initiation are
obtained. From these, the angle from y = 0 plane of the average location, can be

determined as ¢ = tan ! (;/ ;'). Eq. 4.5 yields the mean distance 7 for E=r. (Thisis, in

-2 =2
general, distinct from the radial coordinate of the average location,yx +y , which will

be, for the problems examined, less than ;.)
It is possible to describe the relative contribution of stress fields at different

angles to the total failure probability. The median angle which bisects the distribution of

failure prob‘ability, 050, is defined through



67

6
f .
[plo)d6
Z =f0 (4.6)
[plo)ae
-
with /= 50%. Furthermore, bands of probability can similarly be defined, so that the

proportion of the failure probability between two angles are determined, i.e., 90% of

failures will be initiated between 05 and Oos .

4.4 PROCEDURES

Calculations for infinite bodies were performed with stresses derived from Eq.
4.2. Eqgs. 4.5 and 4.6 were evaluated with ‘the numerical integratidn package in
Mathematica 3.0 (Wolfram Research, Champaign, IL, USA). For finite geometries, the
single edge-crack tension (SE(T)) and middle-crack tension (M(T)) fracture mechanics
specimens were modeled by a plane-strain linear-elastic finite element code for FGMs,
FEAP 4.2 (Zienkiewicz and Taylor, 1989).

The crack length, a, was kept constant in the analyses, being equal to half the total
width of the sample in the x-direction, #. The mesh for the M(T) sample was the same
as for the SE(T), (Fig. 4.3) except it contained an additional row of displacement
boundary conditions along x = -a, preventing displacements in the x-direction. The mesh
consists of 2300 total elements,. 9233 nodes, with extensive refinement in the near-tip
region, with the smallest element size on the order of a/10°. The fracture mechanics
element of Stern and Becker (1989) was used in both meshes to model the first row of

elements surrounding the crack tip. A second mesh with 4096 elements was also used to
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estimate the error via refinement. The difference between the results from the two
meshes was negligible, with average initiation angles differing by less than 0.1°.

Stress intensity factor calibrations were performed for each geometry and
gradient. Pointwise evaluation of the stress intensity factors can be obtained through:

e-e=( o) el

Excluding the crack flanks and the first four elements at the crack tip, these values were
averaged over Gauss points within the next five rows of elements (360 elements total,
those for -160° < < 160° and 1/10° < r/a < 1/10%). High-precision results were
obtained and found to vary weakly with variance of this fitting region.

The modeling of the fracture mechanics samples used the results from each finite
element calculation in the probability integral as the sum over the finite elements, viz.

m elems | Gauss pts
ff(ij Tt Zf{ > (Gﬁ”)i«fwf} (438)

m
Voo 0"V, i J

vol

where J is the Jacobian of the mapped element (calculated at the Gauss points), w;’s are
the weights for Gauss-Legendre quadrature, and B is an out-of-plane thickness. For a-
physical sample with a large thickness, multiple fracture events are sometimes expected
to occur along the crack front, with implications discussed in Section 4.5.1.5.

Sigmoidal variation in modulus or strength was employed via a gradient function

g(x) or g(y):

(el
gl |=(c—Dtanhj b +c . (4.9)
Y y
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At the origin (the crack tip), g(0) = ¢. The slope of the function, b(c-1), is controlled by »

for fixed crack-tip value, c. A value of ¢ = 10.5 was chosen for the analyses, allowing for

a twenty-fold change in properties across the sample. As such, b is a measure of the

Vg _be-D _,

steepness of the gradient and
g(0) c

In the limit of » - oo, a sharp

interface is formed, with g(w)/g (-0) = 2¢ - 1. Fig. 4.4 displays the shapes of the gradient

for a range of b.

4.5 RESULTS AND DISCUSSION

4.5.1 Homogeneous body analyses

The application of the Weibull crack initiation model to the geometry with a
mode-I crack permits the determination of ffacture toughness from statistical parameters
(ouw, 0o and m) and perhaps other material parameters (flaw density, strain-hardening
coefficient). The extension of the Weibull analysis to mixed-mode situations allows for

predictions about homogeneous material response without reference to geometry effects.

4.5.1.1 Mixed-mode fracture toughness

Combining Eqgs. 4.1, 4.3 and 4.4 and inverting gives an expression for the stress intensity

to produce a given failure probability, Ko

o, (V,/ B}/ ™2 (~In(1 - D)™
Kq) =

— (4.10 a)
[ [re.wymde } F(m,R, p)
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( 1
Mmoo, M m
_ 2
R P form+# 4
F = R (4.10b)
0
4 :
(ln(ﬁn form=4
\ p . »

where f1(0,v) =027 /|K| and can be inferred from Eq. 4.1. The integration is

conducted over an annulus between the inner cutoff radius, p, and the outer radius, R » p,

which is still within the K-field (Eq. 4.1). Explicit values of K¢ scale primarily
witho, (V,/B)'" p™ "> for large m and o ,(V, /B)"'™ / R“™'?™ for small m. That is,

for materials with large scatter in strength, toughness is dictated by the large volume of
low-stress material as 7 — R and for those with little scatter, toughness is determined by
the small volume of highly stressed material- near the crack tip. | |

From these, geometry-independent predictions of the relative fracture toughnes.s‘
for mixed-mode loading can be made (Fig. 4.5a). These toughnesses are normalized to
the mode-I toughness (therefore are independent of the choice of ®) and predict (for a A
st_ress-controlled failure mechanism) a reduction in the fracture toughness under mixed
mode loading. Comparing the isostress contours for v = 0° and 45° in Fig. 4.1 provides
an explanation of this behavior. The area contained within the 45° contour is plainly
larger than that of the 0° contour. This can be interpreted as a larger volume being
-exposed to a given level of stress at a given G, or an elevation of stress at a fixed
distance, r, from the crack tip. For a material described by initiation at a distance, this

results in a lessening of the fracture toughness.
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This reduction in toughness under mixed-mode conditions at a moderate phase
angle is stronger than that for a deterministic analysis based on the maximum hoop stress
oo (Erdogan and Shih, 1957) (dashed line in Figure 5.4a) or the maximum energy
release rate criteria applied to the tip of a kink. The inixed mode fracture envelope is
displayed in Fig. 4.5b. An alternative theory of Palaniswamiy and Knuass (1978)
predicts a failure envelope defined by Ky/Kj, + (l/C-Ku/KIC)2 = 1, where C is an
experimental fit parameter. A value of C = 0.82 closely fits the maximum energy release
rate criteria for a kink, where C = 0.87 more closely fits the maximum hoép-stress law
(Singh and Shetty, 1989). The continuous kink analysis is consistent with experimental

data for the mixed-mode fracture of Al,03; (O’Dowd ef al., 1992).

4.5.1.2 Mixed-mode initiation angle

Under mixed-mode conditions, a crack will not, in general, grow in a self-similar

manner, rather it will kink off of the y = 0 plane. The average initiation angle ¢ is

calculated via Eq. 4.5 as tan_l()_)/ )—C) under mixed-mode conditions for a crack in an

infinite homogeneous body (Fig. 4.6). For comparison, the results of deterministic finite
angle kink analyses are included (dot-dashed lines). The predicted average crack élngles
of the statistical formulations based on principal stresses a;e much larger than those
developed by analyzing the continuous growth of the crack tip along fhe path of
maximum hoop stress (Erdogan and Sih, 1963) or maximum strain energy release rate

(after He and Hutchinson, 1989). At higher m, these average crack angles increasingly

reflect the trend, also plotted, for the angle of maximum principal stress. However, the
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behavior would only replicate this for very large m. Median angles, 65y, above which half
of the fracture initiations occur, exhibit similar trends (Fig. 4.7) as does ¢.

This behavior is also easily related to the mixed-mode stress fields plotted in Fig.
4.1. In the case of pure mode-II loading (y = 90°), the angle of maximum principal stress
is along 6 = 180°. Therefore, locations of average fracture will tend toward this extreme
angle. The boundary conditions dictate that this must be the oxx component of stress.
Deterministic, continuous-growth analyses are restricted to the cgg component, which is
~ zero at the crack flank, and predict opening along radial lines. This difference requires

careful physical interpretation, which will be discussed in Section 4.5.1.5.

4.5.1.3 Contours of failure probability

In additién to measuring the angle of the average fracture event, it is important to
consider the distribution of first fracture pxn‘;)babilities. Fig. 4.7 displays the O¢ for f =
{5,25,50,75,95} and m = {3,11}. The trends for sy (the median angle for fractures) are
very similar to those for ¢, described in the previous Section.

The 90% and 50% bands of probability are also indicated. Within these bands
50% and 90% of failures, respectively, will be initiated. For mode-I loading,. there is
little éffect of Weibull modulus. The 50% band spans 120° symmetrically about 0°.
There is a much greater effect for the pure mode-II case, spanning 73° for m = 3 and 21°
for m = 11. This difference is due to the bimédal, (symmetrical about 8 = 0) stress field
in the mode-I case and the highly skewed, but uni-modal stress field with a maximum at

0 = -n for the mode-II case. In the limit as m — oo for the mode-II case, the band will
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infinitely narrow near 8 = -n. The band of failures in the mode-I case will be clustered at

0 =160°.

4.5.1.4 Mean fracture initiation distance

The mean distances of fracture initiation » for an infinite body for a range of
Weibull modulus\? m, are displayed in Fig. 4.8. Two inner limits of integration in the r-
direction were used for Eq. 4.3, with root radii of p = R /10* and p= R /10°. For small
values of m (m = 2-4), r is on the order of the outer limit of integration R, r ~R2 to
R/N0. For larger values-of m (m > 7), r is on the order of the inner cutoff limit of
integration p, 7 ~ p to 3p. Results are iﬁdependent of mode-mixity.

For small m, the volume is a determinant and for m = 2, the failure probability in a

thin annulus at a given 7 is uniform from the crack tip to infinity. Therefore, the mean
distance is the average of the limits of integration (R + p)/2 ~ R/2. Taking the limit of
large m, -fracture is dictated simply by the largest stress, that at {r,0} = {p, £60°}. The
results of Fig. 4.8 are asymptotic to that limit, but even for m > 11, r is measurably
larger than p. Thus, the first principal stress o, not the hoop stress, is still the pertinent
measure of stress for the failure criteria, as ¢, > o¢p, and flaws are expected to be oriented

randomly, not along 6.

4.5.1.5 Physical Implications
The present material model is formally limited to calculating the behavior of the
first activated flaw, but this “first failure” may or may not lead to catastrophic crack

growth. For flaw-intolerant materials such as glasses and fine-grained ceramics, initial
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flaw growth and catastrophic failure generally are synonymous. However, there is
experimental experience with brittle, polycrystalline or _cémposite materials with low
Wéibull modulus that near-tip microcracked regions develop (Riihle et al., 1986, 1987) or
especially that cracks bifurcate extensively (Wu et al., 1978; Mecholsky, et al., 1976).
Evidently, there are flaws that are activated by the near-tip stress field, but do not yet
possess the driving force necessary to overcome the next-higﬁer length scale fracture
resistance (e.g., after cracking across a weak or residually stressed grain boundary). The
statistical initiation analysis (Fig. 4.7) shows thaf this ﬂaw is unlikely to be located on the
path followed by a crack under the same loading'co-nditions but that is continuously
moving according to the maximum-cgg condition. Even in the mode-I case where the
statistical and continuous-growth analyses agree on the average angle, most of the
microcracks will be initiated at large aﬁgles to the crack plane.

When failure ensues from growth of a flaw ahead of the main crack, then further
extension will eventually involve connection of this flaw and the main crack. It may be
expected that the intervening ligament between the main crack and the microcrack will be
fractured or torn under mixed-mode loading requiring much greater dissipation
(McClintock, 1997). Moreover, if various flaws along the crack front are triggered prior
to criticality, which is more likely with larger B and smaller m, théy will each likely be at
different angles to the crack plane. Thus the main crack and the microcracks may not
immediately link, but rather a microcrack next grows forward, then the uncracked
ligaments will act as bridges and further enhance the fracture toughness (Mai and Lawn,
1986). By such interactions, microcracking can be a toughening mechanism in ceramics

(Evans, 1989) or more likely serve as a trigger to more potent bridging mechanisms



. 75

- (Becher, 1991; Rédel, 1992). The resulting bifurcated' cracks, rougher crack surfacé and
associated tearing of the trailing ligaments will all lead to significant toughening of the
material. Analogous local roughness has also been seen in simulations at fﬁe atomic
scale of glass fracture (Garofalini, 1999; Blonski and Garofalini, 1997) and may account
for the toughness of glass exceeding the thermodynamic Griffith value by a factor of
about three (Gumbsch and Cannon, 2000).

The calculated average initiation angle ¢ and more imbortantly the dispersion in
angles, Fig. 4.7, will be descriptive of these microcracks and their i)btential for
toughening, but not necessarﬂy the path of crack advance past the point of criticality nor
the actual extent of microcracking prior to criticality. The complicated problerri of
treating subsequent failure after first fracture requires an entirely different statistical
formulation and detailed simulation of a npn-continuum microstructure (McClinktock
and Zaveral, 1978), which is beyond the scope of the present work. However, the
dispersion in angles, which is largest for y = 0, and the difference in angles for first -
cracking versus for stable extension (Fig. 4.6) which is larger for y > 0 and large m, may
be indicatory of the potential for toughening involving rising R-curves.

Thus, very low-m materials may be relatively notch-insensitive, with large
volumes .of low-stress material dominating the probability analysis. For finite
geometries, failure would be influenced by stresses outside the K-field, so trends
illustrated here are semi-quantitative and their application would be geometry dependent.
This effect can be somewhat mitigated by the invocation of a cutoff stress o, in the
Weibull strength distribution (Eq. 4.4). Indeed the size of flaws implied by the absence

of a cutoff stress becomes unrealistic. This would offset some of the pathological
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. behavior when analyzing cracks in infinite bodies (Eq. 4.10) and may lead to instances

where the important behavior occurs within the K-field and reflects trends predicted here,
that is the pertinent cutoff radius should vary as R« 1/0,”.

For sufficiently large m, the bulk material response is much less volume-sensitive
and as the scatter in stréngth decreases, one would expect the material to behave in a
deterministic manner. Nonetheless, the transition -of the fracture mechanism from
dictation by o] to Gg¢ does not follow simply by faking the limit of large m for the present
formalism. The behavior of this limiting analyéis may be implausiblé regérding the
strength characteristics implied for small volumes under high stress, e.g., near the crack
tip. Elementary calculations show that the typical Weibull volume-dependence on
strength underestimates the strength of pristine glass fibers, for instance. Similarly for
structural ceramics, the strength implied for small volumes using the normal Weibull
parameters underestimates the theoretical strength. Therefore, careful consideration must
be paid before attempting to apply a statistical model to very near-tip mechanisms.

In particular, the relevance of behavior that implies failure near an arbitrary cutoff
radius may be of concern. Clearly, however; for semi-brittle materials wherein crack tip
blunting leads to diminished stresses in a region within r ~ 2~K2/(cyield E) (Rice and
Johnson, 1970), the present type 6f approximation (perhaps using an HRR stress field)
may be robust. For more brittle composites, the. pertinence may be appreciated by
considering a penny-shaped flaw of diameter D centered a distance D ahead of a cutoff

radius p. The nominal K at the tip of the flaw is related to the applied load K% as,



77

® 2
K _K D 2 For Dlp= 1.1, K™ /K® ~ 1/20. Recent atomistic
7 \2(p+ D)

simulations have shown that the theoretical strength of impure ceramic/metal interfaces
(5-10 GPa) (Hong e? al., 1995) can be an order of magnitude below lthat of flaw-free
ceramics (= F/10). Thus, in composites, impure interfaces experiencing some further
Amismatch stresses, which can eaSily exceed +1 GPa locally, could well fail in preference
to the tip of the main crack. Then it may be possible to conceive p as being relgted to the

volume within which Eq. (4.3) fails.

4.5.2 FGM infinite body analyses
In the prior Section, discussion was limited to all cracking initiating withiﬁ the
classical K-field for homogeneous materials. For cracks in functionally graded materials,
the stress and/or strength field at a distance away. from the crack will vary with the
severity of the gradient. The fracture of an FGM can therefore be modeled, with the
parameters describing the gradient included in the analysis, but only addressing failure
probabilities within the context of adjustments to a region lying within a homogeneous K-
field.
| The exact size of the domain of integration in Eq. 4.3 need not be speciﬁed to
assess the initiation aﬁgle and relative mixed-mode toughness for the homogeneous
problem, as the results of the integration o?er the classical K-field are independent of the

choice of radii. However, determining the effects of a strength or modulus gradient on

3 The expression is obtained by combining the solution for a penny-shaped crack in an infinite body (Tada
and Paris, 1985) and the Williams K-field, Eq. 4.1.
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fracturé behavior requires specification of these dimensions, as it is precisely the
gradient-induced variations away from the crack tip that will alter the fracture
characteristics. Only for sufficiently shallow gradients (low b), or for fracture processes
dominated by the very near-tip fields (high m), will the near-tip character of the crack
fields be the same as in the homogeneous case. Several examples with sigmoidal E
variations in o, or E are examined with two sets of integration limits in the r-direction, p

= R/10° and R/10°, before generalizing the results.
4.5.2.1 Parallel strength gradient o,(x)

For a functionally graded material with a variation in strength c,(x) and nominal
Mode-I loading, the symmetry of the prbblem dictates a solution with no kinking on
average, ¢ = 0. However, the initiation fracture toughness Ko, i.€., the stress intensity
factor that will result in a stated first failure probability (sayv 50% or»90%), will be
affected by the strength of the gradient.

Results for the normalized toughnesses, which do not depend on ®, are displayed
in Fig. 4.9 for two sets of integration and for m from 2 to 11 and b-(2R) = {-20,20}. For
gradients in'strength with b < 0, which correspond to the cases of cracks growing into
weaker material, there is, as expected, a reduction in the predicted initiation tdughness.
The effect is very strong for lower m, as the féilure behavior is increasingly volume-
.d'ependent, and farther ahead of the crack tip, lafger volumes of weak material can be
sampled. However, for cracks growing into stronger material (b > 0), a similar, but‘
smaller degradation of initiation toughness trend is also evident. This is a result of the

sampling of all material in the neighborhood of the crack tip, not just that in front, x > 0.
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The‘material located outside -n/2 < 8 < /2 is weaker than that just ahead of the crack tip
and the steeper the gradient, the weaker that material. Given that the maximum principal
stress at @ = £114.1° is the same as it ié at 0° (see Fig. 4.1), this weakness greatly affects
the probability integral, although not as much as for a negative gradient.

As for homogeneous mixed-mode fracture (Section 4.5.1.2), these results must be
carefully interpreted. Although material fracture is expected at a lower applied K than in
the homogeneoué case, a cracking event behind the main crack tip is unlikely to trigger
total failure of the body, but rather would lead to a zone of distribufed dafnége, or to a

discontinuous jump that would later lead to a bridged crack.

4.5.2.2 Infinite body with parallel stiffness gradient, E(x)

Fig. 4.10 shows the range of predicted K¢ toughness for E(x) gradients, again
.normalizing to Ko(b =0), Eq. 4.10. The stréngth, O, is taken to be constant. The stress
field used is the FGM modification of the classical stress field (Eq. 4.2). Results
displayed for two sets of integration limits show a toughening for # < 0 and low values of
m. That is, for a given crack-tip K, the probability of failure is lower for cracks growing
into more compliant material. In contrast, large reduction in the toughness is seen for b
> 0, but again only for relatively low m.

The effect is clearly a result of the form of the modified K-field. For cases with
elevated stresses ahead of the crack, b > 0, the failure probability is increased, and
thereby the toughness is decreased. The opposite is true of the b < 0 case at modest level

of -b, where stresses ahead of the crack are lower for a given K.

* Commentary on the accuracy of this approximation can be found in Section 4.5.3.3
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4.5.2.3 Infinite body with perpendicular strength gradient, c,(y)

The classical formulae for crack kinking indicate the preferred direction for
extension to be along 0° for Mode-I loading, but for an FGM with a normal gradiént in
the Weibull strength, c4(y), the spatial variation in strength results, on average, in a
preferred non-zero initiation angle, ¢. Fig. 4.11 shows the range of | predicted ¢, and as
these results are an odd function of the gradient strength (¢(b) = — ¢(-b) ), only for a
positive range of 5(2R) = {0,5}. A strong dependence on G(y) is observed, with the
average initiation angle approaching 80° for very low Weibull modulus materials (m<)5).
Even for higher m, there is a transition to cracking at 80° although the critical gradient
increases sharply with m.

Note that toughness results for 64(y) show similar trends as for the case of 6,(x),
with a degradation of toughness exhibited. The actual curves are more similar to the b <
0 region of Fig. 4.9. Therefore, not only will the crack tend to grow into the weaker
material with a variation in strength present, 6,(y), but fracture initiation will occur at a

lower applied X than in the homogeneous case

4.5.2.4 Infinite body with normal stiffness gradient, E(y)

Crack initiation was studied for infinite bodies with E(y). The stfeSs field is
approximated by Eq. 4.2 and the strength, o, is agaiﬁ taken to be constant. First, the
effects of the gradient-induced terms in the stress field are examined by analyzing a pure
mode-I field near the tip with the E(y) modification. Fig. 4.12 displays the effect of the

gradient on the fracture toughness for b2R = {0,20}. A degradation of over 25%
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compared to the homogeneous case is evident for the low-m (m = 2,3) cases, purely due
to the elevated stress in the regions of material with increased modulus.

For the majority of situations, the existence of a stiffness gradient normal to the
crack plane causes mixed-mode loading at the crack tip (Erdogan, 1995). The FGM
stress field depends on the geometry;speciﬁc_: relationship between the modulus gradient
and the phase angle. The average initiation angles for an infinite sample with a range of
Weibull moduli from m =2 to 11 are displayed in Fig. 4.13 for a range of 5:(2R) = {0,20}
(as ¢ is an odd function of gradient strength). However, to facilitate comparison with the
subsequent analysis of the SE(T) specimen, the phase angles used are increased with b to
match the y(b) data of the subsequent Fig. 4.14.

The results for the FGM field compare reasonably well with the cracking angles
for homogeneous field for high m. For insta_r_lce, forb=10,y=18.1°,and form=9- 15,
dram = -50° to -60°, which is similar to that for homogeneous materials af the same y. At
low m, the agreement is poor; with cracking angles being near to zero for graded
materials. This difference arises because the high-m, small p case is dominated by the
stresses of the very near-tip field, which, being essentially those of the classical Williams
singularity, are affected by the gradient primarily through the phase angle, v, unless b is
very large. As the gradient is made steeper (from b ~ 10-20), the phase angle nearly
plateaus, as seen by the dashed line in Fig. 4.14. However, the assumed multiplicative
effect of the modulus field on the stress field, Eq. 4.2, does not change in form as the
gradient steepness increases. Thus, from Eq. 4.2, for a fixed phase angle, an increase in
modulus will increase the stresses af y > 0 (as compared to the homogeneous case with

the same ). The resulting sampling of the whole body will recognize this elevated stress
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level; for sufficiently low m, it will dominate, as implied by the insensitivity to p. Thus,
near-tip stresses for y > 0 drive the crack in the negative y-direction while the gradient-
induced stresses drive the crack in the positive y-direction. This leads to the average
initiation angle being substantially decreased (less pegative) in the FGM computed with
larger p, compared to the homogeneous case an(f the same w; furthermore, this effect is
strongest at lower m, such that the resilts are more dependent on the next-order terms in

 the stress singularity solution (here, because of the modulus gradient).

4.5.2.5 Implications

Gradients inv material properties affect the toughness in two distinct ways, 'the
initiation toughness and the crack angle including its dispersion. Both ﬁave implications
for the ﬁnal fracture.

The trends depicted, as well as behavior for other conditions, can be understood in
terms of the most probable radial distance from the crack tip for cracking té initiate. The

local cumulative cracking probability is p(c)dV/V,, and so the fracture probability in an

annulus at a given radial distance from the tip increases with Jp(a)rd&. Thus, key

trends are revgalea by the behavior of the weighted probability function pP*(Kyr) =
p(o(r))r where p(c) is given in Eq. 4.4 (with a possible gradient in 6,) and o(r) is given
by Eq. 4.'2 with 8 = 0.

In a homogeneous materials, cracking frequencies decrease with increasing » for
all m > 2 in a linear elastic stress field. However, for a sigmodal gradient in either o, or

E, under certain conditions a local minimum and maximum in p* exist at radial positions
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rn and r,, respectively, as depicted in Fig. 4.14. From conditions based on dp*/dr = 0, it
can be ascertained that these occur at 0 <r, <r,, and that they scale with 1/b.

The key issue concerns the strength of the_rhaxima, in particular the relative
values of ¢/c, and éspecially of p* at r, versus at the cut-off distance p. The cases of
oo(x) with b-2R = -20 and E(x) with b-2R = 20 for m = 3 and 11 provide an illustrative
range of examples. Values for r,b are listed in Table 4.1 as are ratios of o/c, and of p*
(at , and p) taking bp = 10™* and 0.01, th;, limiting conditions for the plofs in Figs. 4.9 -
4.13. For most of these cases, maxima éxist for the weighted probabili"[y p*, but they
span a range from the local peak o/c, being low but relevant versus that at p to c/co(;;x)

being too small to influence the cracking probability.

Table 4.1. Parameters for local maxima in cracking probability

m=3 m=11
oox),c=10 | pb=0.01 pb =0.0001 pb=0.01 pb =0.0001
rb 3.26 3.26 2.69 2.69
0/6,|x/G/Golp 0.55 0.055 0.61 0.061
P*(r)/p*(p) (3.79)° (1.76y° a.on' 0.15)"
E(x),c=w pb=0.01 pb =0.0001 pb=0.01 pb = 0.0001
rb 1.7 1.7 0.6 0.6
6/Go|nlo/co|, | 0.14 ~l0.014 0.19 0.019
p*(r)lp*(p) | (0.78)° (0.36)° 0.27)" 0.041)"

*I'Inflection only for this condition

Thus, if a gradient is oriented so that the direction of increasing'E/c, is aligned

with the region of high f7(6,y), a reduced toughness results with even modest gradient
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intensities, and the damage will be mﬁch more focused for both degradation regimes (low
and intermediate m). This is shown in Table 4.2, which lists the median cracking angles
050 and the dispersion in cracking angles, as 675 — 0,5, for several situations involving
gradiehts in o, with 5-2R = {-20,0,20}. In particular 875-6,s is smaller if 5<0.

In contrast, if the alignment is opposite, the toughness may rise with moderate
gradient levels in low-m Iﬁaterials, but diminish for more intense gradients even with
higher m values. This is clear in Fig. 4.9 for variations in 6,(x) and implied by
extrapolating the curves for gradients in E(x) in Fig. 4.10 to higher —b.‘ In essence,
material beyond the craék by r > 1/b (6 >0) becomes relatively stronger than without a
gradient, and so the total failure probabilities can be reduced for m low enough that
- cracking at large 7 is relevant. However, the degradation in K¢ with a steeper gradient
entails fracture at the crack flanks, as shown in Tablé 4.2 for o,(x) at b > 0 for which
075 — 025 becomes very large.

Table 4.2. Effect of gradient on angular dispersion of first fracture

W = 0° (Bs6pjmax = 0°)

Go(x) m=3 m=11 oo(y) m=3 m=11

b Os0 | ©75-025 Os0 | 875-025 b 050 | 075-025 Os0 | 075-025

-20 0° 70° 0° 64° | -20° 73° 42° 72° 24°

0 0°| 124° 0°| 118° 0° 0°| 124° 0°| 118°

20 0°| 244° 0°| 124° 20°| -73° 42° | -72° 24°

y = 45° (eceglmax = 520)

Go(%) m=3 m=11 oo(y) m=3 m=11
b 050 | 075-025 050 | 675-625 b Os0 | 675-025 050 | 875-025

-20 | -19° 51° | -27° 28°| -20°| +46° 39°| -83° 80°

0| -74°| 100°| -88° 72° 0°| -74°| 100°| -88° 72°

20 ] -146° 32° | -150° 25° 20°| -90° 57°| -90° 38°

e~
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Obviously frqm inspection of ‘Fig. 4.1, it can be seen that if a cracking condition
depending upon the hoop stress, cgg, Were pertinent, the tendency of weakening effects to
outweigh lécal strengthening would be lessened owing to the narrower angular range of
singular crack-tip stresses.

The probable angle of crack initiatioﬁ can also be shifted by the presence of a
gradient. It should be noted that the angular location of cracking that occurs near p can
Be changed at relatively small levels of b, that is at levels at having only minimal affects
on Ko. This emerges from comparing the levels of b that markedlvy éhé;luge the crack
angle with a gradient in oo(y), Fig 4.11, with the much larger levels of —b needed to alter
the toughness with o,(x), Fig. 4.10. This follows because the angular dependence of the
crack-tip stresses, especially o}, is rather weak over a wide interval, Fig. 4.1a, and so the
angle of the maximum stress can be appreciably perturbed even by a shallow material
gradient. |

An equally impvortant issue concerns whether the range in probable crack -
initiation angles or the difference in initiation angle and stable extension angle is made
larger or narrower by the presence of a gradient. Expected trends are again illustrated in
Table 4.2. For situations in which the range of initiation angles. is raised with increasing
gradient, a microcrack or bifurcation zone would be wide, or more diffuse, especially for
low m. Thii should raise the difference between the loads for first cracking and final
failure, i.e., affect the streﬁgth of the R-curve. Where the zone of probable cracking is
narrower, i.e., focused, the fracture surface will be less rough and the R-curve relatively

flatter.
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For mixed-mode loading, the expected microcrack zone tends to be less wide,
Table 4.2. However, the average location depends strongly on m and is unlikely to be on
the path of the eventual main crack. It is assumed that subsequent cracking would
statistically tend to be along the path of maximum G, approximately that of maximum
oge- When these angles differ, rising R-curve effects could also be significant.

Thus, the presence of a strength gradient would almost invari’ably lower the
toughness for first cracking, but unless the weak material were largely ahead of the crack,
the corollary effect would be to markedly widen the damage zoné pérhaps 'e;/e.ﬁ enough to
induce a net increase in final toughness when there is a substantial trend toward first
cracking occurring near the crack flanks. For modest m_odulué gradients, the effects on
first cracking and final cracking would tend to be the same rather than offsetting unless
the gradient were nearly normal to the crack. Thus, situations with some toughening both

. for first cracking and from a rising R-curve can exist.

453 FEA of finite-sized specimens

Although dependencies of the toughness and initiation angle on the modulus
gradient emerge fér the infinite body FGM (Sectiori 4.5.2) due to the gradient induced
modification of the stress field, at finite , deviations from the classical K-field can also
be expected even in homogeneous materials. For cracks in finite bodies, boundary
condition-induced higher-order terms in the Williams expansion will dictate the stress

field at increasing distance from the crack tip. Thus, it should be appreciated that fracture

toughness for a very low Weibull modulus material could depend in detail upon the

actual specimen size and geometry under consideration. By comparing the results of an
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infinite body (sections 4.5.2) and those derived from finite element results (containing the
full stress field so‘lution) for a specific specimen geometry, it can be determined which
effect, geémetry or gradient, is likely to dominate a problem. After describing the .
calibration of the single-edge crack tension SE(T) sample, several examples will be given
in which the failure probabilities are computed based on stresses in the entire sample

excluding 4 zone within p = a/10° and a/10°.

4.5.3.1 Specimen Calibration

A modulus gradient parallel to the direction of the crack, E(x), retains the
symmetry of the homogeneous problem so that Kj; = 0. For homogeneous materials with
load boundary conditions, the stress intensity factor is not influenced by the Young’s
modulus; however, for an FGM, the magnitude of the mode-I stress intensity factér K is
increased for » < 0 and decreased for b > 0 as shown in Fig. 4.15 for the SE(T) geometry
with a = W/2 (Fig. 4.3). This behavior is consistent with other observations relating the
far-field load and K| for an FGM with E(x) (Erdogan, 1995).

| Deterministic failure comparisons based on loads can be directly inferred from the
results of Fig. 4.15. This indicates that cracks growing into positive b gradients are
expected to carry higher loads than homogeneous or negative b rﬁaterials when fracture is
determined by a critical K| or near tip cgg.

The effect of a modulus gradient normal to the direction of the crack, E(y), is to
take a nominally mode-I geometry and load the crack tip in both tension and shear. The
mixed-mode calibration for the stress intensity factors, K; and Kjj, is also shown in Fig.
4.15. Kl is an even function of b, K; (b) = Kj(-b) and Kj; is odd. An amplification of both

stress intensity factors is observed with increasing |b|, but with a resulting monotonic
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growth in the tip phase angle, y = tan”’ (Ki/K)) (dashed line). This trend seems to

plateau for 5-2a > 10, as y shifts from 0 to 18° as b-2a goes from 0 to 10 but only an
additional 2° from b-2a =10 to 20.

The subsequent results depend on calculation of the stress field of the entire:
sample, not only those pertinent to the asymptotic crack tip, Eq. 4.1. The deviations of
these stresses for a homogeneous modulus from those of Eq. 4.1 are 'displa.yed in Fig.
4.16 (curve labeled b = 0). These stresses deviate weakly from those of Eq. 4.1 compared

to those with a E(x) gradient present, also shown for b-2a = {20,-20}.

4.5.3.2 SE(T) with parallel strength gradient, o,(x)

A SE(T) sample with strength gradients c,(x) but homogeneous modulus, E, was
first modeled using finite element analysis. The variation in the fracture toughness, K¢ as
a function of strength gradient is shown inl .Fig. 4.17. Results for a range of gradients
with b-2a = {-20,20} are plotted, with the integration of the failure probability integral
excluding a zone of size p. Fig. 4.17a displays a reduction in toughness for all gradients
when m < 7. For the case of the larger cutoff region (Fig. 4.17b), the degradation in
toughness occurs for m < 11. The p = a/10° case biases the results toward the
~ homogeneous situation, which lessens the effects on toughness as seen in Fig. 4.17a. It is
worth noting thé general agreement between the results in Figs. 4.17 and 4.9, the latter
which only utilize the Williams expansion near the crack tip (but have a cutoff R).
However, there are discernable differences even for intermediate m values for which

most cracking occurs between p and 7y.

4.5.3.3 SE(T) with parallel modulus gradient, E(x)
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The calculated statistical fracture toughness, K¢, for a range of modulus gradients
E(x) are plotted in Fig 4.18. These toughnesses are normalized to the toughness of a
homogeneous body and aré, therefore, insensitive to the failure probability, @, chosen as
a basis for comparison. It is clear that for a crack growing into a stiffer material, there is
a decrease in the toughness of the structure for material with low m. Conversely, there is
a toughening effect for cracks growing into a ﬁore compliant material. Again the effect
of a gradient is stronger for the case with the largér p (Fig. 4.18D).

These results, which are obtained from the ﬁnité element analysi.s of the SE(T)
fracture mechanics sample, utilize the stress field of the entire sample, and effects are due
to both the modulus gradient and the finite géometry. Prior calculations with a linear
E(x), rather than a sigmdidal variation, exhibited similar trends, but which differed in
detail (Becker, et al., 1999).

The trends of a large influence of the gradient with low m correspond to tl\le most
probable location of fracture initiation moving away from the crack tip, where the form
of tﬁe stress solution deviates from the classical form, as was seen in Fig. 4.16. These
results indicate that although X is a valid scaling paramefer for the stress field very near
the crack tip for an FGM, the dependence of the stress field ahead of the crack on the
grad_ient in E renders Ko to be an inaccurate predictqr of failure if the fracture initiation
occurs away from the tip. These effects arise because the stresses ahead of the crack tip,
~ and hence the failure probability, are higher with a positive gradient thaﬁ would exist for
a homogeneous material at the same K. |

The trends agree in Figs. 4.118 and 4.10; however, the infinite body analysis only

utilizes the first two terms in the asymptotic expansion near the crack tip and
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underestimates the magnitude of the effect of the gradient. The reason can again be see
in Fig. 4.16. Here the maximum principal stress o, ahead of the crack tip (along y = 0) is
plotted for the b = {-20,0,20} cases; also plotted are the variations in the modulus for the
same gradient cases b = {-20,20}. The homogeneous stress solution is found to deviate
slowly from the classical K-field, with exact agreement as x — 0 (by nature of the fitting
routine for K) and 20% error at x/(2a). =0.1. Eq. 4.2 describes the stress field in the FGM
as that of the homogeneous field multiplied by the pointwise variation in modulus. Fig.
4.16 demonsfrates that although this methodology results in a better eétiinéte of the stress
field than the Williéms field, it underestimates the true change in stress for FGMs as
calculated by the finite element analysis, even at x|b| << 1. Theréfore, the infinite body
ahalysis of Section 4.5.2.2 apparently uses a stress field which varies too weakly with b
and, especially for b < 0, the overall effect_on the fracture behavior is underestimated.
For example, for m = 4 and b = -.10 in the infinite body with the larger cutoff region,

Ko(b) Ko(0) = 1.1, and for the SE(T) geometry, Ko(b)/ Ko(0) = 1.6.

4.5.3.4 SE(T) specimen with perpendicular strength gradient, o,(y)

For the SE(T) specimen with gradients in strength c,(y) varying over b = {0,5},
the average angle of initiation is diéplayed in Fig. 4.19. The results are in good
agreement with those in Fig. 4.11,'with a large negative initiation angle predicted for
positive gradient, ¢-b < 0. The lower the value of m, the larger the average initiation
angle will result, until ¢ = 90° at sufficient . As increasing distances from .the crack tip
participate in the fracture event at low m, the lower strength material will dominate the

problem. For high m, (> 9 for p= a/ 10°, >15 for p = a/10%), the very near-tip region
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dominates the calculation for the b levels explored, where the strength variation is limited
and the symmetry of the stress field dictates a ¢ = 0° solution. Overall the results
compare favorably to those in Fig. 4.11; however, the sensitivity to increasing m is

notably greater for the finite sample.

4.5.3.5 SE(T) specimen with perpendicular modulus gradient, E(y)

The average initiation angles for the SE(T) specimen and a modulus gradient E(y)
for a range of m from 2 to 15 are shown in Fig. 4.20(a). As ¢ is an odd function of
gradient strength, only a range of b = {0,20} is plotted. The dramatic effect of m is
evident. First, for high m (m > 10), positive gradients lead to negative initiation angles,
i.e., ¢-b < 0. The high-stress near-tip region of the sample, which experiences a shift in’
phase angle, dominates these results. As seen for the infinite body analysis for both
homogeneous material and FGMs, positive phase angles lead to crack initiation angling
downward, ¢ < 0 for y > 0.

In contrast, for the very low values of m, the average directiqn of initiation is
positive for positive gradients, ¢-b > 0. This is in response to higher stresses associated
with the increasing modulus in the positive y-direction, which is only important when
cracking is widely distributed. In comparison with the results in Fig. 4.13, this effect of a
gradient for lo§v m is even more drastic. This is again due to\ the fact that Eq. 4.2
underestimates the effect of E(y) on stress at finite distances away from the crack tip.
Although the modulus adjusted K-field analysis does not exactly mimic the extent of the
low-m behavior, the mitigation of the near-tip tendency to initiate downward cracking for

positive y(b) is evident.
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4.5.3.6 M(T) specimen with perpendicular modulus gradient, E(y)

To further illustrate the effect of geometry in the presence of a modulus gradient,
a middle cracked tension (MC(T)) fracture mechanics specimen was also analyzed with a
variation E(y). This geometry is known to develop a markedly different stress
| distribution for homogeneous materials outside of the K-dominant region. The
nonsingular compressive 7-stress in the M(T) sample is twice the magnitude of that in the
SE(T) sample (Sherry et al., 1995). Also, there is a change in sign in the deviation of the
_Gyy stress from the K-field aue to higher-order geometry terms (Knott, 1973).

The two salient trends, namely tip-dominated, negative angles for m > 7, and
positive average initiation angles for m = 2,3 are evident for both sample geometries.
However, the initiation angles for large b are shifted to about 20° lower values for all m
for the M(T) sample. The other differences are mainly expressed for the intermediate m
where neither tip nor far-field stresses dominate. It is interesting to note that the phase
angle-gradient relationship for these two samples was shown to be very similar, thus
indicating that the differences in Fig. 4.20 arise on the basis of b and not y(b). Atlow m
the crack initiation trends in Figs. 4.20(a) and (b) for the iwo samples are more similar

compared to the infinite case, Fig. 4.13, but differences are notable.

4.5.3.7 Implications for fracture experiments and application to FGMs

Effects with far-field mode-I loading and variable c,(x), 6.(3), E(x) and E(y) have
been explored. For more general cases with far-field mixed-mode loading and an FGM
with arbitrary o,(x,y) and E(x,y), the space of possible combinations is prohibitively large

to completely survey. The results thus far presented for m > 6 indicated that behavior is
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somewhat similar between the finite and infinite bodies. Therefore, Eq. 4.2 for analysis
of infinite bodies can be used in conjunction with Eq. 4.11 to anticipate the results of
cases not explored here; however, the geometry induced shifts in phase angle with elastic
modulus gradient must be known. Using this, it‘ can be observed that as a plausible
- approximation for real materials, o, « E, some of the gradient effects could tend to
compensate; nonetheless, large effects of low m and induced vy, Figs. 4.5 and 4.6, still
pertain.

For lower and intermediate m, the fracture behavior may not be | adequately
determined by the stresses within the K-field of a finite geometry. Even when failure
occurs near the crack tip, gradient induced perturbations influence crack angles. For
these cases, the combined effects at near crack-t.ip, gradient-induced and geometry
determined stresses must be taken into account. This must be done though numerical
determination of the stress field, e.g., through finite element analyses. This is, by
' compa;ison, a more expensive procedure than the semi-analytic modeling of infinite . -
bodies. |

The nonlinear fracture mechanics of ductile materials 1;s most simply
characterized using a single parameter, J; however, this still leads to an appreciable
geometry-;co-geometry variability in measured crack-growth resistance 'for many
matérials. The T-stress (or, nearly equivalently, the constraint factor, Q) has been evoked
to account for the next term in the nonlinear stress field expansion about the crack tip (Du
and Hancock, 1991). This two-parameter characterization allows the description of the
material not only at the crack tip, but also at finite distances, and thereby is more

successful in determining critical conditions for crack initiation and growth.



| 94

The characterization of the stress field in an FGM by the single parameter K has
similar limitations. The approximate formulation (Eq. 4.2) alludes to the form of the next
higher-order term in the expansion. Although in the asymptotic near-tip limit one could
also assume the existence of a parallel 7-stress, this suffers from the same incompatibility
discussed in Section 4.2. It seems likely that the addition of a single parameter, a “b-
stress”, can be used to more accurately describe the stress field in an FGM and, therefore
also provide a powerful two-parameter scheme to predict crack behavior in different
geometries and gradients, at lease for the intermediate and high-m materiai. Indeed,
analysis in Chapter 5 explicitly shows the existence of .a large gradient-induced 7-stress
for a crack with E(y). However, the preéent results indicate that either such a second
parameter must be geometry dependent, or perhaps a three-paramgter treatment would be

superior

4.6 SUMMARY AND CONCLUSIONS

The application of two-parameter Weibull statistics to near-crack fracture
problems has been elaborated and extended to the case of mixed-mode loading, with
predictions made for both the toughness and average initiation angle of a crack in a brittle
material. - This fracture model allows for the statistical correlation between near-tip
stresses and first fracture for heterogeneous materials. This is especially interesting for
problems in functionally graded materials (FGMs), where the stress and strength fields
are known to vary from the homogeneous form away from the crack tip. Infinite-body
and finite element analyses reveal that:

e For statistically homogeneous materials, the mixed-mode loading of an

elastic crack subject to a stress-controlled failure criteria results in a reduction
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of the fracture toughness by up to 30%, depending on the phase angle y and

Weibull modulus m. This is roughly 150% of the effect predicted by
mechanisms triggered by cgg, usually invoked for continuous kinking.

The angle of microcracks initiated by the main crack stress field do not
coincide with that determined by maximum energy criteria. Thus, crack
bridging or the tearing of ligaments must occur for crack advance, thereby
expectedly leading to toughening for materials that fail by cracking ahead of
the main crack. |

Gradients in Weibull scaling stress oo(x) lead to a dramatic decrease in
fracture toughnes§ for crack growing into either weaker, b < 0, or stronger, b
> 0, materials. Gradients normal to the crack ,(y) lead to weakening for first
fracture and also to crack growth initiating at non-zero angles that may offset
this effect for final failure.

Gradients in modulus E(x) for a single-edge notched fracture mechanics
specimen lead to an increased stress intensity factor for cracks growing into
more compliant materials, and crack-tip shielding when groWing into a stiffer
material.

When comparing FGMs with gradients in the Young’s modulus, £, and the
same crack tip stress intensity, the crack growing into the steeper negative
gradient, b <0, will be tougher for moderate gradients.

Gradients in modulus E(y) for a single edge-cracked tension SE(T) sample
lead to initiation behavior similar to that in homogeneous materials with the

same phase angle for m > 5, with the average angle ¢ < 0 for 5 > 0; for lower
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Weibull modulus, though, the effects of the modulus gradient on the stress
field cause the average fracture initiation site to be skewed toward the higher
modulus region, ¢ > 0 for b > 0.

e Infinite-body analyses predict many of the gradient—induced features seen in
a finite geometry. When comparing two fracture-mechanics specimen
geometries, additional effects of gradient on crack initiation angle were found
to be important. There is scope for further analysis which incorporates
higher-order terms in the stress field. h

e The evolution of damage near a crack tip will vary strongly with the Weibull
modulus, m, of the material. For low m materials, a distribution of damage is
expected before catastrophic crack advance. The effects of considering
“action-at-a-distance” are many-fold. Most importantly, the first flaws to be
activated in a mixed-mode loading are most likely not in line with what is
considered to be the energetically most favorable path. Therefore, it is
expected that materials with wide distributions of strength will develop diffuse
micrbcracking damage zones around the crack tip. At elevated loads, one
expects that these microcracks will link up, or the main crack will jump
beyond this damage zone. Under either scenarid, the tearing or bridging that

results will be act as an R-curve mechanism.
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APPENDIX A: MONTE CARLO SIMULATIONS

To illustrate the effects of the elastic near-tip stress field on a material with strength
described by Weibull statistics, a Monte Carlo simulation was perforrﬁed. A domain, 100
units square, was considered with a crack tip at the center {0,0}. For the reasons
discussed in Section 4.3.2, a region (with radius 1 unit) was excluded surrounding the

crack tip. For each loop in the simulation algorithm:

e Select random location within the domain (outside of the region of exclusion).
e For element with size AV = rérd6, centered at {x, y}, compute ®*" from Eq. 4.1 and

Williams stress field. & = 0.1 unit and 66 = 10°.
o Select random { @, } (between 0 and 1)

test

QX < O — “hit”; the value of {x,y} is stored as {x, y}" ; N " = N "5+]

test

dY > O —» “miss” ; the value of {x,y} is discarded

test

Fig. 4.1 displays the results of 5 x 10° runs. From these results, averages can be

calculated from the location of the “hits”.

N hits N hits
1 1 hit

_ hit ave __
- NS zxi yo = N Hits pan Vi

i=1

ave

{

For this average location, the angle is tan™ (3™ /x“). For the mode-I case, this is 4.3°.

For a phase angle of y = 45° case, the angle of the average location is 80.7°. The
different mode loading also resulted in a greater number of “hits” (fracture initiations),

with 111 hits for the mode-case and 764 for the mixed-mode case.
S .
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Figure 4.1:

Figure 4.2:

Figure 4.3:

Figure 4.4:

Figure 4.5:

Figure 4.6:

Figure 4.7:

Isostress contours of for (a) maximum principal stress ¢ and (b) hoop
stress Ggg for loading phase angles y=0°, 45°, 90°. Shapes of contours
indicate relative levels of stress, with larger » corresponding to higher
larger stress at that 0.

Results of Monte Carlo simulations for a brittle material in the
neighborhood of a sharp elastic crack. Mode-I, (y=0°) and mixed-
mode (y=45°) cases are displayed for Weibull modulus, m=7. Points
around the crack tip at (0,0) indicate the location of a simulated
fracture initiation. Strong skewing toward in the negative y-direction
is evident for the mixed-mode case, which indicates that the crack will
tend to grow downward. The increased number of fracture initiations
in the mixed-mode case loaded to the same |K]| indicate a decreased
fracture toughness.

Finite element mesh used in study of SE(T) fracture mechanics
specimen. A high degree of refinement was used, with a focused ring
of element surrounding the crack tip. A similar mesh with different
boundary conditions was used to study the MC(T) sample.

Sigmoidal gradient modeled. This shape allowed for an arbitrarily
steep gradient at the crack tip, determined by the parameter b. The
total range of variation within the sample is held constant, with g(w)/g
(-00) = 20.

(a) Prediction for the mixed-mode fracture toughness for an infinite
body of a homogeneous material based on statistical fracture model for
various values of Weibull modulus (solid lines) compared to the
deterministic prediction based on critical hoop stress (dashed line).
(b) Prediction for the mixed-mode fracture toughness envelope for the
statistical model compared to the toughness envelope of Palaniswamy
and Knauss (1978) for fitting parameter C=0.82 and 0.87.
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Average initiation angle for mixed-mode fracture loading for an -

infinite body of a homogeneous material based on statistical fracture
model. Included for comparison are the angles of maximum hoop
stress and maximum energy release rate (dashed lines).

Contours of cumulative probability for homogeneous material with
mixed-mode loading for (a) m=3 and (b) m=11. The median angle,
050, bisects the total failure probability for the material between -n and
n. The bands about the median indicate the angles where 50% and
90% of the fractures will initiate. For mode-I (y = 0°) the bands are
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relatively insensitive to m owing to the bimodal stress distribution;
however, for mode-II (y = 90°) the failure are more tightly grouped
for large m.

Figure 4.8:  Average distance of fracture initiation for statistical fracture model for
mode-I, (y=0°) and mixed-mode (y=45°) case. Average fracture
initiation distances are close to the cutoff dimension, p, for high m and

are weakly affected by R. For low m, ris weakly affected by p can be
as large as R/2.

Figure 4.9:  Mode-I fracture toughness for an infinite body FGM with o4(x) based
on statistical fracture model. Results are displayed for two sets of
limits of integration, p and R, with (a) p =R/ 10° and (b) p R 110°
and m from 2 to 13.

Figure 4.10: Mode-I fracture toughness for an infinite body FGM with E(x) based
on statistical fracture model. Stress field is a one-term modification of
the homogeneous stress field (Eq. 4.2). Results are displayed for two
sets of limits of integration, p and R, with (a) p =R /10’ and (b) p = R
/10° and m from 2 to 8.

Figure 4.11: Average initiation angle ¢, for an infinite body FGM with c(y) based
on statistical fracture model. Results are displayed for two sets of
limits of integration, p and R, with (a) p = R /10° and (b) p = R /10
and m from 2 to 15.

Figure 4.12: Ko for infinite body with the modified K-field (Eq. 4.2) and a gradient
in Young’s modulus perpendicular to the crack plane, E(y). The near-
tip was in pure mode-I loading, but the modulus gradient induces an
asymmetry in stresses. The elevated stresses in a region y>0 for >0
cause the failure probability to be increased for a given K.

Figure 4.13:  Average initiation angle ¢, for an infinite body FGM with E(y) based
on statistical fracture model. Stress field is a one-term modification of
the homogeneous stress field (Eq. 4.2). Results are displayed for two
sets of limits of integration, p and R, with p =R/ 10° (solid lines) and
p=R/ 10* (dashed lines) and m from 2 to 15.

Figure 4.14:  Variation of the weighted local failure probability p*(c) for an infinite
body with o4(x) for m=3 and m=11.. Gradient parameters of
b2a={0,5,10,20} are displayed. The tendency for fracture to initiate
away from the crack tip is apparent as p*(c) can reach a local
maximum greater than the value of p* at p.

Figure 4.15: Stress intensity factors, Kj and Ky for the SE(T)' fracture mechanics
sample for modulus gradients E(x) and E(y) (solid lines). The gradient
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in the y-direction results in a shearing of the crack tip, such that that
the tensile geometry results in a mixed-mode loading with the phase
angle increasing in magnitude for increasing gradient (dashed line).

Figure 4.16: Deviation of yy-stresses ahead of the crack tip from classical K-field
for a single-edge notched tension, SE(T), specimen with E(x) gradient
for cases with b(2a)=-20,0,20. Normalized moduli E(x) are also
plotted for comparison. Comparing these shows the approximation in
Eq. 4.2 would appear to improve the description of the near-tip
stresses, but underestimates their magnitude.

Figure 4.17: Effect of variable strength o,(x) on the fracture toughness of a single-
edge notched tension, SE(T), specimen. Two near-tip cutoff regions
are utilized, p= a/10° (a) and a/10° (b).

Figure 4.18: Effect of variable modulus E(x) on the normalized fracture toughness
' of a single-edge notched tension, SE(T), specimen. Two near-tip
cutoff regions are utilized, p=a/10° (a) and a/10° (b).

Figure 4.19:  Average initiation angle for the case of pure Mode-I loading and G,(y)
in a single-edge notched tension, SE(T), specimen. Strength gradient
skews average location of fracture such that non-zero initiation angle
is preferred Two near-tip cutoff regions are utilized, p=a/10° (a) and
al10® (b). , '

Figure 4.20:  Average initiation angle for a material with modulus gradient E(y) in a
(a) single-edge notched tension, SE(T), and (b) middle-cracked
tension, M(T), specimen geometry. Results using for near-tip cutoff
radius p=a/10° (solid lines) and a/10°(dashed lines) and for Weibull
moduli m={2-7,9,11,13,15} are displayed. The gradient induces a
positive phase angle as seen in Fig. 4.15, but the gradient-induced
stresses cause a positive initiation angle for very low m. The
substantial gradient-induced trends are seen in both the SE(T) and
M(T) sample geometries.
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Figure 4.1:  Isostress contours of for (a) maximum principal stress o7 and (b) hoop
stress ogg for loading phase angles y=0°, 45°, 90°. Shapes of contours
indicate relative levels of stress, with larger » corresponding to hlgher
larger stress at that 6.
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Figure 4.2:  Results of Monte Carlo simulations for a brittle material in the
neighborhood of a sharp elastic crack. Mode-I, (y=0°) and mixed-
mode (y=45°) cases are displayed for Weibull modulus, m=7. Points
around the crack tip at (0,0) indicate the location of a simulated fracture
initiation. Strong skewing toward in the negative y-direction is evident
for the mixed-mode case, which indicates that the crack will tend to
grow downward. The increased number of fracture initiations in the
mixed-mode case loaded to the same |K] indicate a decreased fracture
toughness. '
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'Figure 4.3:  Finite element mesh used in study of SE(T) fracture mechanics specimen.
A high degree of refinement was used, with a focused ring of element
surrounding the crack tip. A similar mesh with different boundary
conditions was used to study the MC(T) sample.
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(a) Prediction for the mixed-mode fracture toughness for an infinite
body of a homogeneous material based on statistical fracture model
for various values of Weibull modulus (solid lines) compared to the
deterministic prediction based on critical hoop stress (dashed line).
(b) Prediction for the mixed-mode fracture toughness envelope for the
statistical model compared to the empirical envelope of Palaniswamy

and Knauss (1978) for fitting parameter C=0.82 and 0.87.
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Mode-I fracture toughness for an infinite body FGM with E(x) based on
statistical fracture model. Stress field is a one-term modification of the
homogeneous stress field (Eq. 2). Results are displayed for two sets of
limits of integration, p and R, with (a) p=R/ 10° and (b) p=R/ 10%and
m from 2 to 8.
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Ko for infinite body with the modified K-field (Eq. 2) and a gradient in
Young’s modulus perpendicular to the crack plane, E(y). The near-tip
was in pure mode-I loading, but the modulus gradient induces an
asymmetry in stresses. The elevated stresses in a region y>0 for 5>0
cause the failure probability to be increased for a given K.
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Deviation of yy-stresses ahead of the crack tip from classical K-field
for a single-edge notched tension, SE(T), specimen with E(x) gradient

for cases with b(2a)=-20,0,20. Normalized moduli E(x) are also

plotted for comparison. Comparing these shows the approximation in

Eq. 4.2 would appear to improve the description of the near-tip

stresses, but underestimates their magnitude.
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Average initiation angle for a material with modulus gradient E(y) ina
(a) single-edge notched tension, SE(T), and (b) middle-cracked tension,

M(T), specimen geometry. Results using for near-tip cutoff radius

p=a/10° (solid lines) and a/10*(dashed lines) and for Weibull moduli

m={2-7,9,11,13,15} are displayed. The gradient induces a positive -

phase angle as seen in Fig. 4.15, but the gradient-induced stresses cause

a positive initiation angle for very low m. The substantial gradient-

induced trends are seen in both the SE(T) and M(T) sample geometries.
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Chapter 5: Finite Crack Kinking in Functionally Graded Materials

5.1 INTRODUCTION

For cracks loaded in tension and shear, the direction of crack growth is an
important asi)ect.of fracture behavior. For FGMs with variable modulus, mixed-mode
cracks are common. A thorough analysis of the kinking problem for FGMs will
incorporate both traditional fracture mechanics parameters and higher-order terms in the
stress field,- which will depend on the gradient. This will allow the calculation of the

optimum crack path given the loading and material parameters.

5.2 CRACK KINKING IN HOMOGENEOUS MATERIALS

Historically, fracture mechanics research first sought to determine the conditions
for stability of straight cracks extending in their own plane. For mixed-mode loading,
this is often not the mechanically or energetically most favorable path. In fact, a variety
of methodologies have been employed to determine the direction of crack growth under
mixed-mode (tensile and sﬁear) loading in homogeneoué and layered materials.

The first calculations are those of Erdogan and Sih (1963) who used two simple
© criteria to determine the kink angle under in-plane loading:

1) t};at the growth should extend in a radial direction from the tip of the existing
crack, and |
2) the crack extension starts in the plane perpendicular to the direction of greatest

normal stress.
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This implies that the direction of crack growth is determined by the angle of maximum
cgo (hoop stress) near the tip of the preexisting (unkinked) crack; using the Williams
(1957) K-field sélution the optimal kink angle @ can be determined by
K,Sin(w) - K, (3Cos(w)-1)=0. (5.1)

This somewhat simplistic formulation (referred to as the cgomax criteria) tends to under-
predict experimental results (Finnie and Saith, 1973). Subsequent analysis (Cotterell,
1966) shows, for small k\ink angles, that this’. direction coincides with the direction of
maximum energy release, Gpax. ]

The analysis of the problem was advanced to include the geometry of a small off-
plane extension (kink) (Fig. 5.1). Thé stress intensity state (Kj, Kj) of a kink can be
calculated in terms of the stress field surrounding the tip of the original crack (with stress
intensities K|, K). Using Erdogan and Sih’s (1957) analysis, the subsequent direction of
crack growth can be determinéd. Utilizing the power series description of the each

component of stress near the unkinked crack, = .
o =a,fi0)r"? +a,/,(0)+ a3 /3(0)r"? +as £, (6) 72 +OG?),  (5.2)
the role of the coefficients (a;) describing the stress state near the crack in determining the

tendency of a kink to grow increasingly away from y=0 (or to return to the original crack

plane) was established (Cotterell, 1966).
The first term, a,, is the stress intensity factor, K| / 27 , which is preeminent in

most fracture mechanics analysis. The second term, a,, represents the strength of a

constant Gy stress, and is usually referred to as the T-stress. It has been found to have a
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major effect on ductile fracture behavior (Du and Handcock, 1991) as well as in the
determination of the extent of kinking.

The T—stress is, in general, independent of the stress intensity factor; that is, two
cracked bodies can have the same Kj, K, but different 7°s. For a compressive (negative)
value of 7, fhe crack path is stabilized. For a positive (tensile) T-stress, the path is
destabilized; that is, for a mode-I crack, if a small random positive kink is formed along
®, subsequent crack growth will occur at an angle greater than ®. Similar analysis was
performed on curved cracks (Cotterell and Rice, 1980). Both .are restricted
approximations that are only accurate to the first order of o.

For analysis of finite angled ‘cracks, the kink angle corresponding to the Gpax
criteria was determined for both sharp interfaces and homogeneous materials by He and
Hutchinson (1989) and He ef al. (1991). Here the stress intensity factofs for a kink are

calculated in the form

K] :CIK1+d1K2 +b1T'\/Aa' (533)
K” = C”Kl +dHK2 +b”T\/Aa (5.3b)

where K, and K> are the stress intensity factors of the unkinked crack tip (Fig 5.1). For
homogeneous materials, the coefficients ¢;;j and dy; are also given in the earlier work of
Hayashi and Nemat-Nasser (1981). The strain energy release rate of the kink can
subsequently be calculated via G =(Ki*+Kii*) / E. Usving the tip state, the angle for which
Ki(®)=0 or G(®») is the maximum (G = max(G(®),Y m:-n<co<1t) caﬁ be calculated from
Ky, K;,and T.

A comparison of the stress intensity and energy criteria can be found in Suo and

Hutchinson (1991) (Fig 5.2);'the two methodologies agree at y=0° (pure tension, K;=0)
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and diverge by about 3° at ¥=90° (pure shear, Ki=0). Cotterell (1965) showed the

equivalence of the direction of maximum hoop stress prediction with that of maximum
energy release for small ®. The agreement for large ® is surprisingly good.
Experimental evidence clearly shows the advantage of the finite ® criteria over ®spg max
(Finnie and Saith, 1973), but the scatter is sufficiently large that discriminating between
the K;j=0 and G criteria is difficult.

The K;=0 criteria can be understood from a symmetry argument. For brittle
materials, failure is associated with normal (rather than shear) stressevs.v Mixed-mode
cracks, by definition, then have a mechanical driving force to grow off their plane.
Therefore, the kink in pure mode-I is the only stable path. However, for finite-length
straight cracks, this criteria has less appeal, .as it focuses s‘olely on the conditions near the
tip of the kink. The Gmax formulation of the problem suppresses any influence of the
mechanism of crack advance, but instead appeals to the variation principle for linear
elasticity.

Palaniswamy and Knauss (1978) used Betti’s reciprocal theorem to explain the

close agreement of the two methodologies. The energy release, G, rate can be written as

Aa

1 ' ” ! 4
Glw)= lim SAa I(agg(r,w)59(r,w)+ ololr, )5 (r,w))dr 5.4
Aa—0 <B4 0

where ()’ denotes the unkinked solution (Figure 5.1a), ()" the kinked (Figure 5.1b), and &
the opening displacements across the kink faces. The Gy criteria is satisfied by the
combined effect of both of the integrals, where as the K;=0 criteria infers restrictions on

terms in the second.



130

5.3 CrRACK KINKING IN FGMSs

FGMs, like discrete elastic interfaces, are inherently prone to developing mixed-
mode cracks. Nevertheless, few studies on crack kinking in FGMs have been performed.
Lee and Erdogan (1995) calculated the effect of modulus gradient on the angle of
maximum hoop stress near the free edge of a graded joint and discussed the implications
on the direction of fracture initiation. The coincidence of the asymptotic stress solution
of the crack problem with the homogeneous William’s solution (1957) motivated Gu and
Asaro (1997) to apply the analysis of Cotterell and Rice (1980) to \.zlaricm)us geometries
with modulus gradients. This analysis inherits the approximation for suitably small kink
angles. Furthermore, it assumes no gradient effect on the kinking behavior besides that
- which is characterized in the near-tip phase angle y. The directioh of crack growth will
vary from this prediction for any non-zero length. The authors give no guidance as to the

range over which this analysis will be accurate.

5.4 PROBLEM FORMULATION

5.4.1 Kinked crack geometry

To assess the dependence of the optimal kink angle on kink length, a finite
geometry with various combinations of kink angle and length was analyzed. Ideally, the
far-field boundary cOnditiéns should be set such that the results are the most general. For
instance, in studying the near-crack behavior of a nonlineér elastic material Geubelle and
Knauss (1995) employed a boundary layer methodology where the far-field boundary
conditions were assigned to be those of the linear elastic crack solution. The body was

sufficiently large that the distance to the boundary did not effect the outcome of the
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solution. This is the familiar small-scale yielding condition. Such results could be
applied to any body large enough that it could be expected to contéin a sufficiently large
linear K-dominant zone.

Sugh a methodology presupposes a nested set of singular solutions, namely that a
nonlinear field is bounded by linear K-field. No such set of solutions is knoWn for an
FGM. However, as shown in Chapter 4, the gradient-induced terms should be important
in. the neighborhood near the crack tip such that r~i/b (Jin and Batra, 1996). For a
homogeneous linear body, the K-dominant region should scale with about 1/10 to 1/100

hom the stress state should

of the smallest in-plane dimension. Therefore, for r ~ 1/b < rg
be characterized by crack-tip and gradient terms. For r < rg™®™ «1/b the stress state is
describable by K; and K alone.

The geometry analyzed here isb a square sheet with a centered crack with length 2a
(Fig. 5.3). The outer dimensions are much' ‘greater than the crack length, with W/a=20.
Therefore, the details of the size and shape of the boundary are of minimal consequence
to the near-tip conditions'. The tip and kink regions are refined (Fig. 5.4) to accurately
model the stress singularities. Solutions were obtained with the finite element package
FEAP (Zienkiewicz and Taylor, 1989) as described in Section 2.6. Meshes consisted of
10,000-13,000 quadrilaterél plane-strain elements.

The edges of the sheet are have set displacements. The deformation is

characterized by the linear strain in a homogeneous crack-free sheet normal to the plane

of the crack, &}, parallel to the crack, &5, and in shear, &5,. The corresponding

' Analysis of a sheet with W/a=40 yielded results for kink angles within 0.2° of those for W/a=20.
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£
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reference stress through B, = The far-field (or reference) phase

%
angle is defined as y® = tan'l(af;/ 0';,'; ). For a homogeneous material, the phase angle
at the tip of a crack \u'= tan” (Ki/Ky) = v”. However, for graded structures, there will be
a shift in the phase angie corresponding fo gradient strength (Erdogan, 1995).

Furthermore, for homogeneous materials the 7T-stress is a linear function of the stress

biaxiality, Bs. Less well understood is the nature of the T-stress for FGMs.

5.4.2 Kink angle selection methodologies

5.4.2.1 Maximum energy release rate criteria

The energy release rate, G is derived from the work, W, necessary to close the
kink. This uses the tractions # of the unkinked ’solutlons and the crack opening
displacements §; of the kinked solution (schematically, the geometries in Figure 5.1a and
5.1b) via

Aa Aa Aa
W= It,-u,- da + It,-u,- da = jtié'i da, (5.5)
v top - bottom

0
face . 0 Jace 0
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(summing over repeated index i=1‘,2.) Given the spatially discrete nature of the finite
element solution, the nodal stresses and displacements are used as integration points to
numerically evaluate Eq. 5.5; however, the linear elastic stresses at the root of the kink
(r=0) are infinite. Therefore the stresses at those nodes cannot be directly used in é
numerical integratioh. (The FEA will report finite stress values, but they will be mesh

dependent.) The integration along the kink is divided into two parts, one to be solved
. Aa . Aa
analytically (fromr =0 fo —Aj) and one numerically (fromr = IV to Aa). The stresses

and displacements inv the two elements closest to the kink root were approximated
analytically; this corrésponds to an M of 12.5 for the kink modeled with 25 elements.

For the analytical calculation of the work, approximations are made for the stress
behavior for the unkinked crack and the opening displacements for the kinked crack.
Near the root of the kink, the stress is assumed to behave as a Williams singularity. Near
the tip of the kinked crack, opening displacements scale with v (Aa-r), but ﬂear r =0 they
can be seen to be approximately linear. The work is therefore an integral of the product

of the singular (unkinked) stresses and the linear kink face opening:

Aa/M'— -

W(r=0to%)= Oj % & +5, )%-(‘5;+3;;-r)da (5.6)

The values foro,i,061, which scale the singular unkinked stresses, are fit from the

 stresses from the 3™ and 4™ elements from the crack tip (as the two elements neighboring

a singularity are not considered to be accurate (Williamson ef al., 1995)). & (0y1.2) are fit

from the kinked solution displacements. The work over the remainder of the length
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Aa o . .
(from r =—to Aa) is integrated using Simpsons rule and the nodal values from stress

and displacement.
The formal definition of the strain energy release rate, G, refers to the change in

potential in the small crack limit. A finite kink energy release rate is defined

by, GA4 E—z—pg—; clearly as Aa—0, G**—G. When comparing kinks with different
a

angles, this methodology yields the angle at which a kink of a given length, Aa, is most

energetically favorable to form. This will be referred to as the Gmax angle, ®Gmax-

5.4.2.2 Pure opening mode criteria

To determined the phase angle of the kink, the crack opening displacements were

fit using the known near-tip behavior:
5p +i6, = Y297 (K, +iK ;) R
Rearranging yields:

e =_arctan(§r—J | (5.8)
4

The displacements of the 2" element behind the tip of the kink are fit to (5.7) and the
phase angle calculated. Note, that as the Gnax criteria is integrated over Aa, the results
reflect conditions along the entire kink length, but the Ky=0 criteria only depends on

conditions near the tip of the kink.



135
5.4.3 Procedures

For each far-field phase angle, y*=45°,0°-45° and deformation biaxiality
B:={1,0,-1}, kink lengths of Aa/a={10", 103, 3-107, 102, 3-10% 10", 3-10"} are
-analyzed. In addition to the homogeneous case, a gradient in the Young’s modulus was
assumed for analysis, where

E(y)=(c~Dtanh(p- y)+c (5.9)

and b=100/a, ¢=10.5. This allows for a twénty-fold change in the Young’s modulus.

VE =b(c—l) ~bh

Ninety percent of the change occurs over a distance Ay ~3/b and )
: c

Possion’s ratio, v, was taken be 0.3 for all cases.

A family of kink angles was analyzed for each phase angle and kink length, frorﬁ
®=-85° to 85° in increments of 5°. For each kink angle, the Work and kink-tip phase
angle‘were calculated. A parabola was fit to the angles with the 3 largest G**(w0). The
angle corresponding the maximum of that parabolic equation was set to be ®gmax(Ad).
The two points with phase angles closest to 0 were also selected and g =o(Aa)=0

linearly interpolated.

5.5 RESULTS AND DISCUSSION

5.5.1 Homogeneous material kink angles

The optimal kink angle predicted by the two criteria are displayed in Fig 5.5 for a
homogeneous material with phase angle = 45° and 75° and B=0. Solid lines indicate
the predictions under the Gpax formula: -56.6° and—69.3° respectively. Dashed lines

show that for the K;;=0 criteria: —57° and —71.5° (Suo and Hutchinson, 1992). These
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analyses assume an infinite K-field and are therefore independent of the length scale of
the kink, Aa. This independence has been confirmed numerically by Geubelle and
Knauss (1995).

The finite element analysis results show excellent agreement for the smallest kink
lengths Aa/a=10"*. For longer kink lengths, there is a monotonic deviation of the finite
element results from the analytical. This is due to the influence of finite geometry,
primarily the T-stress. For both phase angles, T/(|K|/Na)=-0.2. (This is nearly the same
value as a sheet in uniaxial tension under load boundary conditions (Sherry, 1995)).

A negative T-stress stabilizes a straight-ahead crack (Cotterell, 1965), which
corresponds to a decrease in the optimal o for the sample studied. The deviation of the
numerical results from the analytical theories will be used for comparison with the graded
material results, allowing for a baseline of a kink-length effect due simply to pure 7-
stress effects. This effect will be quantified in subsequent sections.

For y®= 0° and 45°, the finite kink energy release calculated for extension along

®=0 are shown in Figure 5.5(b). The results are compared to the analytical

G= N/Klz + K22 / E', which holds in a pure K-field. There is no change in the results

~ from Aa/a=10" to 107, but as in Figure 5.5(a), there is a change between Aa/a=107 and
107", This corresponds to the common assumption that of rk=a/10 —a/100. The offset
seen, ~1% for y*= 0° and 2% for y™= 45°, is due to the approximate nature of 'Fhe finite
element results, which will always under-predict the displacements. This offset error

could be reduced with additional mesh refinement.
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5.5.2 Graded material
5.5.2.1 Kink angles
The optimal kink angle predicted by the two ériteria are displayed in ‘Figure 5.6a
for far-field ﬁhase angle y = 45°, 0°, -45°, deformation biaxiality B.=1, and E(y) with
b-a=100. Table 5.1 shows the results for the smallest kink calculated Aa/a=10"* and the

asymptotic short-kink limit (denoted for wgy-o by < on the y-axis in Figure 5.6a). These

agree within 4°.

Table 5.1 Tip parameters for graded sheet

v |y | 0cma(Aa—0) | oki=o(Aa—0) | 0gma(Aa/a=10") | oxi-o(Aa/a=10"
-45° 1 -10° 19.2 19.1 19.4° 19.6°

0°.| 320 -46.9 473 -50.6° -50.5°
45° | 75° -69.3 713 -73.3° -74.2°

As kink lengths incfease, the value of the kink angle is found to decrease (become
more negative). This trend iS steady until roughly Aa/a=10? (or Aa-b=0.1). The effects
for even longer kink lengths are twofold: 1) the two criteria drastically diverge and 2) for
most cases the trend in optimal kink angle rapidly increases (becomes less negative).

The first of these effects is due to the fact that the K;=0 criteria is localized to the
tip of the kink, whereas the energy criteria used here depends on the tractions and
displacements all along the kink. For cracks, in radially self-similar stress fields, there is
no change with kink length. However, for blonger kinks, with lengths comparable to the
governing elastic dimension, this no longer holds. The change in the nature of the stress
field is due the modulus gradient. Comparable disparity would be expected in a

homogeneous sample for Aa/a~1.
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The effect of biaxiality is displayed in Fig 5.6b and 5.6c. These display the kink

angles for cases with deformation biaxiality B;=0 and —1. The trend in most cases is that
the magnitude of Kkinking is decreased with decreasing biaxiality. To the first

approximation this can be understood through the same effect as in the homogeneous

case. The application of a far-field compressive stress o, < 0 will decease the T-stress -

by T( o5 )=T(0)+ o5, . This simple relation does not hold for the graded case.

5.5.2.2 Modulus affected stresses

“The change in the stress fields with radial distance from the tip is demonstrated in
Fig 5.7. This shows the‘ {c”,oee,c,g}~\/(2nr) at distances of r=104_a =10"%/b (a) and
r= 1_0'2a =1/b (b). For comparison, the results of fhe Williams equation are in Fig. 5.8a.
Although the finite element results agree well with the Williams field at the smaller
dimension, at the larger there are drastic differences in the ﬁelds. First, the _loéation of
the maximum hoop stress has shifted roughly 40°, Second, focusing along 6=0°, there is
a large difference between o, and cg9. In a Williams field, regardless of phase angle,
these are the same at this angle. Somewhat more subtle is the larger variation in oy with
angle.
| It is interesting to compare these results with the analytical description of the
stress field in the neighbbrhood of an interface crack. In the linﬁt of b— oo, the gradient
will form a sharp interface with £ 1/E2=20. In the notation éf interface mechanics, this
corresponds to Dundurs parameters of {o,f}={0.9,0.26}(Dundurs, 1968) and an
oscillatory index €= -0.084. Setting the reference phase angle to be the same as the FGM

case at =10z and using the equations for an interface crack (Rice et al., 1990), the
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results of Fig 5.8b are obtained. It can be seen that the shift in the location of maximum
hoop stress in predicted by the interface equations, although with a sharper maximum
than in the FGM case. The radial stresses are discontinuous across the interface, but at
this distance from the tip in an FGM, the change in properties is still experienced over a
number of elements and such discontinuities are not allowed. The trend for substantially
larger stresseé for 6>0 is seen in the interface analysis just as in the finite element results
for the FGM. In addition, the normalized difference between the o,; and cgg is greater in
the FGM case than predicted by either the homogenous or interface-crack soiutions.

Thus it is apparent that the interface mechanics solution captures some of the
effect of the gradient at this distance from the crack tip. For sufficiently large bodies and
long kinks (Aa-b » 1) the distinction between the sharp and the graded sigmoidal interface
could be diminished. In this situation, interface fracture mechanics solutions could be

applied directly.

5.5.2.3 Parallel stress approximation

The power-éeries solution to the homogeneous crack problem indicated that the
second term in the stress solution is constant. For free crack faces, the normal and shear
tractions must be zero, so the only constant non-zero component must be oy For graded
materials, this line of argument is on weaker ground, as a constant stress in a material
with varying modulus violates the conditions of compatibility. Suffice it to say that the
next-order term in the stress solution will be 7-like in that the boundary conditions still

dictated that the effect of the higher order terms will be strongest in the xx-component of
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stress. To what extent this term for FGMs, denoted Ty, is constant, has not been
established analytically. It also is evident from Fig. 5.7b that there are terms acting on all
components of stress within r <1/5.

To attempt to capture the effects of the gradient-induced stresses, the apparent 7-
stress, Oxx-Oyy (0=0), was calculated for the FGM cases. Theses are displayed in Fig.
5.9abc for a range of distances from the crack tip. In the homogeneous case, T is
independent of y*”. However, just as the tip phase angle is shifted for the FGM case, T
is as well, with its value adjusted significantly by the far-field phase anélé, ye, It is
apparent for each case that sufficiently close to the crack tip (#<0.1 b) the apparent ‘
T-stress is approximately constant. There aré variations (roughly 50% from r=107g to
102a), butv given the dominance of the singular components of the stress field at theses
dimension, changes on the order of 1000% are expected. A single value for T, was
defined to be the average over two elements as r—107q.

The effect of biaxiality is seen with a nonlinear decrease in the apparent T-stress

with decreasing deformation biaxiality (Table 5.2). For a given y*, Ty shifts roughly
linearly ‘with the nominal far-field stress o, , although a more thorough exploration of

the dependence of T, on both B, and w® would be required to establish the explicit

dependence.

Table 5.2 Normalized apparent 7-stress, Tm/a /K|

Y B.=1 B.=0 B.=—1
~45° 0.2 -0.77 22

0° 48 4.1 2.2

45° 7.3 6.9 5.4

B=0, all y* 0.13 -0.20 ‘1.0
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Combining asymptotic 7}, with the tip phase angle y, Eq. 5.3b allows a prediction

~of the dependence of kink angle on kink length expected by the'Kﬁ=0 criteria in a
homogeneous material. These predictions are included in Fig 5.6 (dashed-dot lines). As
expected, these curves asymptote to the short-crack values for small Aa/a. There is
excellent agreement with the prediction for homogengous materials and the F GM results
for small Aa/a. Thé agreement ends as b-Aa=0.1, where, as discussed, the next-order
term not captured by a constant 7} in fhé stress analysis is expeéted to begin altering the

behavior of the kink.

5.5.2.4 Bifurcation in energy criteria

The kink angle resulting for the Gmax criteria' are not displayed in Figure 5.6abc
for the y*=-45° case and Aa/a > 10 (Aa-b > 0.1). This is due to a bifurcation in G**, as
displayed in Figure 5.10. For short kinks Adla < 107, there is a single maximum, as in
the homogeneous case. However, it is evident that kinking down into increasingly
compliant material as ®<0° is conducive to increasing values of energy release in a
direction not predicted by either the far-field or tip phase angles. Note that for fixed X,
the analytic expfession G=K*/E predicts an inverse relationship between energy release
rate and elastic stiffness.

This behavior is limited to the wgmax criteria, as the kinks below 0° are subject to

kink_y angle is found, as displayed in Fig 5.6.

a high amount a shear and only a single y
Beyond ©v=45°-60° the kink closes (8,=0) and the energy release is due entirely to

sliding opening, 8;. For kink angles beyond this limit, the crack faces come into contact.
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If detailed results of crack behavior in this regime were to be studied, then a contact-
element routine would be required. This is beyond the scope of this invéstigation.

It is apparent that for kinks of sufficient length there is a competition between the
traditional near-tip driving force and that energy release available by growing the crack in
shear into the very compliant region. Negative far-field loading drives the crack up into
the stiffer material and the compliance effects are-of opposite direction. Naturally, for
conditions of positive tip phase angle (y*=0°, 45°), the driving forces compliment each

other, rather than compete, and this bifurcation is not observed.

5.6 CONCLUDING REMARKS

Even with a full accounting for the effect -of a modulus gradient in an FGM,
accurate modeling of the fracture behavior requires additional analysis. For sharp
interfacés, the balance of the mechanical driving force and the reiative toughness
determines the direction of crack propagation. For the crack to kink off the interface and
into the sﬁbstrate (along o), the criteria G(@)/G™ > G(O)/GcIf (where G>"°,G. are the
toughness, in terms of energy release rate, of the substrate and the interface) has been
established (He er al., 1991). In general, the fracture toughness of inhomogeneous
material will also vary with direction. This may be due to variance in the composite
surface energy, I', and atom trapping for an elastic material or the yield strength for an
elastic-plastic material. Therefore a similar competition between regions of higher stress
(or potential energy release rate) and lower material resisténce will be established. The
domains in which each of these effects are dominant or are in competition must be

determined in order to successfully predict the experimental fracture behavior.
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5.7- SUMMARY
Established theories for the kinking of a mixed-mode crack use the tip phase
angle to determinate the optimal angle. For homogeneous materials, the Kjj=0 and Gpax
criteria agree within 5° for all but the most extreme kink angles. There is an additional
effect of the T-stress, which will increase the magnitude of kinking when positive and
inhibit kinking when negative. For very short kinks in FGMs the phase angle predictions
agree with finite element results within 4°. - For kink lengths within Aa<1/b the K-
dominant regime for homogéneous bodies, the dependence of kink angié ;>n kink length
is well modeled by calculating the apparent 7-stress. This was found to be much larger
for the FGMs studied than for the a homogeneous material with the same geometry and
loading. For a positive apparent T-stress, the crack path was less stable, with the crack
closely following the asymptotic kink angle predictions only for Aala<103. Outside of
the gradient dimension, 1/b, there is a drastic effect of kink length that cannot be
characterized by either the stress intensity factors or a constant parallel stress, including a
widened divérgence between the predictions base on energy maximization (Gmax) and on

kink symmetry (K;=0).
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5.9 FIGURE CAPTIONS

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Schematic of straight (a) and kinked (b) cracks. The state at the tip of the
unkinked crack is characterized by stress intensities K;, K,. The kink at
angle o to the y=0 plane with length Aa is characterized by K, Ki1.

Comparison of three theories for optimal crack kinking angle in
homogeneous materials. Predicted kink angles are based on loading phase
angles y. Up to ©~45°, they agree within 5°. Maximum stress criteria,
Ooe.max 1S based solely on the stress state before kinking. The K;=0 criteria
dictates that kinks will grow only in a state of pure crack tip tension. The
maximum energy release rate criteria, Gmay, selects paths based on a global
reduction in energy.

Schematic of the problem studied, a cracked sheet in tension and shear.

‘Displacements were fixed on all boundaries and loading characterized by

the apparent normal and shear strains, ¢y, ,&),ande5,. The crack was

small compared to the sheet, W/a=20 and the kink was smaller than the
crack, Aa/a<0.3. : : :

Detail of the finite element mesh near the kinked crack. Refinement was
employed to capture the details of the stress singularities. The fan array
set elements every 5° with 20 elements positioned along the length of the
kink. An 8-element fan was meshed at the tip of the kink.

(a) Kink angles for homogeneous sheet with phase angle y=45° and 75°.
The optimal kink angles determined by two criteria are displayed (closed
symbols) and compared with those from the short-kink theories (lines).
(b) Finite kink energy release, G**, normalized by the energy release rate

G= \/Klz +K 22 / E'. These measures will agree in a pure K-field. The 7-

stress in the homogeneous sample causes the deviations for the longer
kink lengths. '

Kink angle for finite kink length in an FGM with E(y) and deformation
biaxiality Be=1 (a), 0 (b) and —1 (c). The asymptotic short kink angle
under the K;1=0 criteria is displayed as < on the y-axis. The effect of the
T-stress is modeled by the analysis of He et al. (1991) which includes the
effect of 7NAa for homogeneous materials. The dependence of kink
length for Aa < 1/b is found to follow the results of this analysis.

Polar stress components calculated at r=10'2/b (a) and 1/b (b) for y =0°.
At the smaller distance, the finite element results compare well with the
Williams field (Fig. 5.8a). The stresses in (b) are dramatically different,

- including a shift in the angle of maximum hoop stress, Gge.



Figure 5.8

Figure 5.9

Figure 5.10
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The analytical stress fields for cracks in homogeneous materials (2) and on
bimaterial interfaces (b) for a reference phase angle of 32° (at 2=0.0001

- @). For the homogeneous materials, these results are independent of .

For the interface case, r is set to be 100L, which facilitates comparison
with Fig 5.7b. The shift in the angle of maximum hoop stress compares to
that in Fig 5.7b, as well does the relative increase in o, for 6>0.

The apparent T-stress, Ty=0xx-Oyy for the FGM sheet with deformation
biaxiality B:=1 (a), 0 (b) and —1 (c). When calculated sufficiently close to
the crack tip. Ty is roughly constant, varying 50% from rla=10" to 107,
where the singular stress field changes 1000%. However, this has a much
different value than a homogeneous sample.

The variation of the finite kink energy release, G*2, for a range of kink
angles, o, normalized to G** (#=0) . Deformation biaxiality, B°=1 and far
field phase angle > =-45°. For the shortest kink displayed, -
Aa/a=1072, there is a single maximum, as in homogeneous materials. The
competition between the far-field and gradient-induced effects leads to
multiple stationary points for longer kinks. '



Figure 5.1
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Schematic of straight (a) and kinked (b) cracks. The state at the tip of
the unkinked crack is characterized by stress intensities K, K>. The
kink at angle o to the y=0 plane with length Aa is characterized by
Ky, Ki.
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Figure 5.2 Comparison of three theories for optimal crack kinking angle in
"~ homogeneous materials. Predicted kink angles are based on loading
phase angles . Up to m~45°, they agree within 5°. Maximum stress
criteria, Gep,max 1S based solely on the stress state before kinking. The
Ky=0 criteria dictates that kinks will grow only in a state of pure crack
tip tension. The maximum energy release rate criteria, Gmax, selects
paths based on a global reduction in energy.
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Schematic of the problem studied, a cracked sheet in tension and shear.
Displacements were fixed on all boundaries and loading characterized

by the apparent normal and shear strains, €3, ,&},ande, . The crack
was small compared to the sheet, W/a=20 and the kink small compared

to the crack, Aala<0.3.
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Figure 5.4 Detail of the finite element mesh near the kinked crack. Refinement
was employed to capture the details of the stress singularities. The fan
array set elements every 5° with 25 elements positioned along the
length of the kink. An 8-element fan was meshed at the tip of the kink.
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Figure 5.5 (a) Kink angles for homogeneous sheet with phase angle y=45° and
75°. The optimal kink angles determined by two criteria are
displayed (closed symbols) and compared with those from the short-
kink theories (lines).

(b) Finite kink energy release, G**, normalized by the energy release

rate G = K{ + K} / E'. These measures will agree in a pure K-

field. The T-stress in the homogeneous sample causes the deviations
for the longer kink lengths.
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Kink angle for finite kink length in an FGM with E(y) and
deformation biaxiality B,=1 (a), 0 (b) and -1 (c). The asymptotic
short kink angle under the Ky=0 criteria is displayed as < on the y-
axis. The effect of the T-stress is modeled by the analysis of He ef al.
(1991) which includes the effect of TAa for homogeneous materials.
The dependence of kink length for Aa < 1/b is found to follow the
results of this analysis.
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Figure 5.6 (b) Finite kink length results for a FGM with deformation biaxiality,
B=0.
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Figure 5.6 (c) Finite kink length results for a FGM with deformation biaxiality
B.=-1.
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Figure 5.7 Polar stress components calculated at r=10"%/b (a) and 1/b (b) for y™=0°.
At the smaller distance, the finite element results compare well with the
Williams field (Fig. 5.8a). The stresses in (b) are dramatically different,
including a shift in the angle of maximum hoop stress, Geg..
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The analytical stress fields for cracks in homogeneous materials (a)
and on bimaterial interfaces (b) for a reference phase angle of 32° (at
L=0.0001 a). For the homogeneous materials, these results are
independent of ». For the interface case, r is set to be 100L, which
facilitates comparison with Fig 5.7b. The shift in the angle of
maximum hoop stress compares to that in Fig 5.7b, as well does the

relative increase in o, for 6>0.
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The apparent T-stress, T,=0xx-Oyy for the FGM sheet with deformation
biaxiality B;=1 (a), 0 (b) and —1 (c). When calculated sufficiently
close to the crack tip. 7 is roughly constant, varying 50% from
r/a=10" to 107, where the singular stress field changes 1000%.
However, this has a much different value than a homogeneous sample.
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Figuré 5.9 (b) The apparent T-stress, Ty=Cxx-Cyy for the FGM sheet with
deformation biaxiality B.=0.
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Figure 5.9 (c) The apparent T-stress, Ty=0xx-Oyy for the FGM sheet with
deformation biaxiality B.=-1.
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The variation of the finite kink energy release, G**, for a range of kink
angles, o, normalized to G* (0=0) . Deformation biaxiality, B°*=1 and
far field phase angle y>=-45°. For the shortest kink displayed,
Aa/a=107?, there is a single maximum, as in homogeneous materials.
The competition between the far-field and gradient-induced effects leads
to multiple stationary points for longer kinks.
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