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Abstract 

LBNL-45962 

In scalar field theories the Landau pole is an ultraviolet singularity in the running 

coupling constant that indicates a mass scale at which the theory breaks down and 

new physics must intervene. However, new physics at the pole will in general affect 

the running of the low energy coupling constant, which will in turn affect the location 

of the pole and the related upper limit ("triviality" bound) on the low energy coupling 

constant. If the new physics is strongly coupled to the scalar fields these effects can be 

significant even though they are power suppressed. We explore the possible range of 

such effects by deriving the one loop renormalization group equations for an effective 

scalar field theory with a dimension 6 operator representing the low energy effects of 

the new physics. As an independent check we also consider a renormalizable model 

of the high-scale physics constructed so that its low energy limit coincides with the 

effective theory. 

1This work is supported in part by the Director, Office of Science, Office of High Energy and Nuclear 

Physics, Division of High Energy Physics, of the U.S. Department of Energy under Contract DE-AC03-

76SF00098 
2 Email: chanowitz@lbl.gov 





(1) Introduction 

In a classic paper Dashen and Neuberger[1] showed in perturbation theory at one loop 

that the location of the Landau pole in scalar field theory implies an upper limit on the mass 

of the Higgs boson. The Landau pole indicates the mass scale at which the running coupling 

constant, AQ, diverges. In the elegantly simple DN (Dashen-Neuberger) analysis it implies 

an upper bound on the scale where new physics supplants the scalar field theory, which is 

regarded as an effective low energy description of the Higgs sector. By requiring a minimal 

hierarchy between the new physics scale A and the Higgs boson mass, e.g., A~ 2mH, DN 

obtained an upper bound on mH from the perturbative relation between the low energy 

coupling constant A and the ratio A/mH. They proposed a space-time lattice "experiment" 

to confirm the bound and make it quantitative. Lattice calculations[2] have established the 

bound on mH at about 700 GeV, not far from the~ 1 TeV estimate of DN. 

The purpose of this paper is to explore, in a similarly transparent way using one loop 

perturbation theory, the extent to which the new physics that must occur at or below the 

Landau pole can affect the relationship between the pole location and the low energy coupling 

constant. In this paper we consider the simplest case: O(N) ¢4 field theory in the symmetric 

phase, for which the DN analysis implies an upper bound on the coupling constant. The 

broken symmetry phase will be considered elsewhere. 

Since new physics must exist at the Landau pole, it is not optional but essential to 

consider its possible effect on the analysis. The obvious method is to introduce higher 

dimension operators to represent the power-suppressed, low energy effects of the new physics. 

For instance, effects of dimension 6 operators are suppressed by p,2 / Atandau where p, is the low 

energy renormalization scale and A Landau is the scale of the Landau pole. 3 For the minimal 

hierarchy used to obtain the upper bound this suppression is only a factor 1/4, which could 

be overcome if the new physics is strongly coupled to the low energy scalar sector. We will 

compute the effect of such an operator on the running of the scalar coupling constant and 

the position of the Landau singularity. 

Most lattice studies of triviality (e.g., [2]) considered renormalizable scalar field the?ries 

without higher dimension operators representing the possible effects of new physics and 

would apply literally if the new physics at the pole were actually the assumed space-time 

lattice. Some lattice simulations[3] (of the Higgs phase) have explored the effects of new 

physics by introducing higher dimension operators, as we do here, but with a different focus. 

Their results agree qualitatively with ours but are not directly comparable for two reasons (in 

addition to the fact that different phases are considered). First, a precise comparison would 

require studying the same operators with carefully matched normalizations. Second, the 

3 Away from the triviality limit the new physics could lie below the pole, MNew < ALandau, in which case 

the effects of the new physics would be larger, oc J.t 2 / M~ew. 
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goal in (3] is to establish an upper limit on mH such that corrections to various Higgs sector 

quantities (e.g., the Higgs decay width) from the higher dimension operators are limited to a 

few percent, whereas the focus in this paper is on the maximum allowed value, independent 

of the size of other corrections, which are not known experimentally and could actually be 

large. 

The coupling constants must be defined by renormalization conditions. We define the 

scalar coupling constant A in terms of the 2 -t 2 scattering amplitude, for off-shell external 

momenta, as is customary in the RG ( renormalization group) analysis in order to avoid 

mass singularities. (4] Then the first dimension 6 operator that comes to mind, ex ¢i I A 2 , 

does not contribute to the running of AQ, since its one loop contribution to the scattering 

amplitude, shown in figure 1, is a (divergent) constant, independent of the external scale Q. 
For the off-shell renormalization condition adopted below there is just one other independent 

O(N) symmetric dimension 6 operator, which we choose to write in the form ~(a(</> )2)2. 
Here r;, = CIA 2 where C is a dime~sionless constant and A is the mass scale of the high 

energy theory, which we identify with the position of the Landau pole. Using the off-shell 

renormalization condition, ~ is also defined in terms of the 2 -t 2 amplitude. Operator 

mixing occurs, resulting in coupled renormalization group equations for A and ~ which we 

compute to order A2 and A~. Solving the coupled RGE's (renormalization group equations) 

we find fractional corrections of order ~p2 I A to the Landau pole postion, ALandau, and to the 

upper limit on the .low energy coupling A, where p is the low energy renormalization scale, 

chosen to be the scalar mass. 

While effective Lagrangians were first used strictly in tree approximation, it has long 

been realized that it makes sense to consider them at the quantum level.(5] Though techni

cally "nonrenormalizable" in the sense that they cannot be defined to all orders by a finite 

number of renormalization conditions, they can be renormalized to any finite order. The 

quantum effects of chiral effective Lagrangians have been thoroughly analyzed at the one 

loop level[6] and one loop quantum corrections from dimension 6 operators have been used 

to study the possible consequences of new physics in electro weak gauge theories. [7] These 

calculations can be carried out to useful approximations, though arbitrary precision would 

require arbitarily many renormalization constants. This is not a concern, since arbitrary pre

cision is in any case not the goal in applications of effective theories. See [8] for an excellent 

review with interesting examples and additional references. 

We have verified the renormalization of the effective theory considered here, first by 

checking explicitly that the result is independent of the choice of regulator (for dimensional 

regularization, Pauli-Villars regularization, or Euclidean space cutoff) and second by obtain

ing the same result from a renormalizable model with an additional, heavy O(N) singlet scalar 

field, constructed so that its low energy limit corresponds to the effective theory. Because of 
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the dimension 6 operator the effective theory has quadratic and logarithmic divergences at 

one loop. The quadratic divergences are constants, independent of the renormalization scale 

and are absorbed into the <5>. counterterm without affecting the running of>.. Furthermore, 

as the renormalizable model makes clear, the quadratic divergences are in any case artifacts 

of the effective theory, dominated by the scale of the cutoff where the effective theory breaks 

down. In contrast the logarithmic divergences reflect the domain in which the effective the

ory is valid and may be reliably extracted from the effective theory. They give rise to the 

renormalization scale dependence from which the RGE's follow. 

Section 2 presents a brief review of the DN analysis, modified slightly to apply to the 

symmetric phase. In section 3 we derive the one loop coupled RGE's for the effective theory. 

In section 4 the results are rederived from the renormalizable model. The coupled RGE's 

are solved in section 5. In section 6 we use the solutions to estimate the corrections to the 

Landau pole position and to the triviality bound in the strong coupling regime. We conclude 

with a brief discussion in section 7. 

(2) The DN analysis 

We review the DN analysis, considering both the broken symmetry phase of 0(4) scalar 

field theory (the SM Higgs sector) as considered by DN and also the unbroken phase which 

is the focus of this paper. For renormalizable ¢} theory the ultraviolet RG behavior of the 

two phases is the same and the DN analysis applies also to the symmetric phase. However 

we must modify the renormalization conditions slightly, since DN used the Higgs boson mass 

mH to specify the low energy coupling >.. In order to have a method that applies also to 

the symmetric phase we will define the low energy coupling constant in terms of the 2 -+ 2 

scattering amplitude. 

Where 4> is an N component scalar field the Lagrangian is 

(2.1) 

We first consider the symmetr~c phase, J-L2 > 0. At the quantum level, with the RG analysis 

in mind, we define the renormalized coupling constant, >. = >.~-', by an off-shell scattering 

amplitude[4] chosen for convenience at a symmetric, space-like scale 

s=t=u=-J-L2
, (2.2) 

that is, 

M ( </>1</>1 -+ </>1</>ds=t=u=-f-1.2 = -6i..\. (2.3) 

The one loop amplitude (see figure 2a) at an arbitrary space-like scale Q2 < 0 is 

(1) _ (< . )2 < . 2) i
2 I d

4
k 1 

Ms=t=u=Q 2 - 3 -6z..\ + N -1)(-2z..\) 2 (27r)4 (k2 _ J-l2 )((k + Q)2 _ J-l2 ) (2.4) 
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Rewriting the integrand as a parametric integration f dx and performng the k integration 

by dimensional regularization inn dimensions the integral in (2.4) becomes 

i . /ol ((x2-x)Q2_f.t2)_€ --2f{t:) dx 2 1671" 0 f.tD 
(2.5) 

where r is the Gamma function, € = 2 - ~ and /JD is the regularization scale. The X 

integration is then evaluated for -Q2 >> f.£ 2
, with the result 

M <l> = 3i(N + 8)A
2 (r( ) _1 Q

2
) 

Q 8 2 E og 2 + ... 
7r f.t D 

(2.6) 

where the omitted terms in (2.6) are finite constants that will be absorbed by counterterms 

without affecting the running of AQ. 

Using the method of "renormalized perturbation theory", [9] we introduce counterterms, 

(2.7) 

so that the amplitude through one loop is 

(2.8) 

The counterterm 8A is then determined from the definition of A, equation (2.3), to be 

" = _.:_M(l) , UA 
6 

f.L • (2.9) 

Defining the running coupling constant at scale Q as 

(2.10) 

we then find 

(2.11) 

The wave function and mass renormalizations can be neglected because they are trivial 

in the ¢4 model at one loop: the wave function renormalization vanishes and the mass is 

renormalized by a Q independent constant that is absorbed in the mass counterterm. 

From (2.11) it is easy to determine the Landau pole and the upper bound on A= Aw 

Differentiating (2.11) we have the RGE 

where 

dAQ 2 2 3 
dlogQ = bNA = bNAQ + O(A ) 

b _ N +8 
N- 871"2 

4 
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Integrating (2.12) from p, to Q we have 

(2.14) 

which exhibits the pole at 

(2.15) 

The upper bound on the coupling constant then follows by requiring a minimal hierarchy 

between ALandau and p,. For instance, 

ALandau > 2p, (2.16) 

implies 

A< 1 
bN log2 

(2.17) 

In the broken symmetry phase, p,2 < 0, the analysis proceeds as above with the low 

energy renormalization specified at -m'k instead of -p,2 •4 Since the Higgs boson mass is 

proportional to the coupling, 

(2.18) 

where v2 = 4m'fv/g2 is determined from the W boson mass and SU(2) gauge coupling 

constant, the upper bound on A becomes an upper bound on mH. Setting bN = 3/27r2 for 

N=4 we obtain the DN bound, 

For ALandau > 2mH this implies ffiH ~ 1.08 TeV. 

(3) The effective theory 

The effective theory is defined by 

.CEFF = ~(8¢)2- AE (4>2?- f-l2 4>2 + '3:..(84>2?. 
2 4 2 4 

(2.19) 

(3.1) 

where </>is an N component scalar field, and the superscript E, for "effective," distinguishes 

AE from the coupling AR of the renormalizable theory defined in the next section. The 

coupling x;is dimensionful, x; = C / M 2
, where M is the mass scale of the "new physics" that 

gives rise to the dimension 6 operator and C is a dimensionless constant characterizing the 

strength of the interaction between the new physics and the scalar sector. 

There is anGther independent dimension 6 operator that is quadratic in momentum, 

which may be written as ¢2( 8¢ )2. On mass-shell it can be expressed as a linear combination 

4 Since we have neglected p 2 < < Q2 as noted above, the fact that we now have Goldstone boson loops in 

addition to the Higgs boson loop has no effect on the quoted results. 
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of the dimension 6 operator in equation {3.1) plus the c/>4 interaction. Off-shell it is in general 

an independent operator. However for the symmetric off-shell renormalization condition 

specified below in equation (3.3), its contribution is proportional to the dimension 6 operator 

in {3.1) and it is not considered separately in our analysis. 

We define the renormalized couplings in terms of the diagonal elastic scattering am

plitude M ( c/>1 4>1 -r c/>1 4>1) so that the definition can be used for all N > L The tree 

approximation amplitude from . ..CEFF is 

(3.2) 

Since s + t + u = ~P7 = 4p2 for on-shell scattering, the on-shell amplitude is indistinguishable 

from the amplitude due to the >.¢4 interaction alone with >. replaced by >.E - ~KJ.L2 • The 

( 8¢2 ) 2 and c/>4 interactions can however be distinguished by other means, for instance, with 

the off-shell four-point function or the on-shell six-point function. Since we wish in any case 

to consider an off-shell configuration to avoid mass singularities in the RG analysis[4], we 

will use the off-shell four-point function to define K and >.. 
In this section we will renormalize the effective Lagrangian at one loop order and to 

leading order in K, retaining terms of order >.2 and AK. We compute the running coupling 

constants >.Z and KQ, where Q is the renormalization scale defined below. Wave function 

and mass renormalization can be ignored to this order, since both contribute constants, 

independent of Q. In the renormalizable 0( N) ¢>4 field theory in the symmetric phase, 

considered in section 2 above, the wave function renormalization vanishes and the mass 

renormalization is accomplished by just a Q independent counterterm. With the addition 

of the dimension 6 operator in equation (3.1), the wave function renormalization does not 

vanish but is constant so that, as in the renormalizable ¢4 theory, no anomalous dimension is 

induced for the field¢. The mass renormalization in ..CEFF also involves only a Q independent 

counterterm. Neither has any effect on the running of the coupling constants and so can 

be ignored. These conclusions follow because the one loop integral represented by figure 3 

has no dependence on the external scale other than the multiplicative factor of Q2 .from the 

vertex of the dimension 6 operator. 

To specify the renormalization conditions for >.E and K it IS convenient to choose a 

symmetric, spacelike, off-shell point 

. 2 
s = t = u = Q < 0, (3.3) 

corresponding to spacelike external 4-momenta with P7 ~Q2 for each external leg, i 

1, 2, 3, 4. Then the low energy coupling constants >.E = >.~ and K = KJ-L are defined by 

(3.4) 
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and the renormalized running couplings >.~ and KQ for arbitrary Q are defined by 

(3.5) 

Actually we must vary Q2 by a small amount around each given central value since at least 

two measurements are needed to determine both >.~ and KQ, e.g., Q2 = Q~entral ± t: where 

t: «: Q~entral· This is a difficult task, but our excellent, highly paid gedanken experimenters 

have the necessary skills to carry out the measurements (e.g., using dispersion relations in 

the external off-shell masses). 

We now compute the one loop renormalized couplings to order >.E2 
and >.E "'· The 

relevant Feynman diagrams are shown in figure _2. We will regularize the loop integrals 

with a momentum space cutoff, since it provides the most physical description of the loop 

amplitudes in the effective theory. We have the luxury of this choice since we are not 

concerned here with gauge invariance. We have checked that the same results are obtained 

from dimensional and Pauli-Villars regularization. 

Since regularization by cutoff is becoming a lost art (see however [9]), we will warm up by 

evaluating the three O(>.E2
) diagrams, which were computed by dimensional regularization 

in section 2. Together they contribute 

(3.6) 

or, introducing the parametric integral over x, 

(3.7) 

where 

(3.8) 

To define the integral with a cutoff we first rewrite it as a Euclidean space integral by 

continuing the integrand into the complex k0 plane. By contour integration we relate the 

integral along the real k0 axis to one along the imaginary axis: 

/_: dkof(ko) = -~~ioo dkof(ko) = -i i: dk~f( -ik~), (3.9) 

where we define k~ = -ik0 • The arcs in the first and third quadrants may be neglected since 

they only contribute constants that are absorbed in the counter.terms. The Minkowski space 

4-vector k then becomes negative definite within the domain of the k~ integration, 

(3.10) 
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We define a Euclidean 4-vector kE whose components are 

(3.11) 

so that 

(3.12) 

The Minkowski space integral, equation (3. 7), is then replaced by a Euclidean space integral, 

(..\2) _ . E2 [
1 J d4kE 1 

ISMQ - -62(N + 8).\ lo dx (2rr)4 (k1 + X)2 (3.13) 

which we will regulate with the 0(4) symmetric cutoff k1 ~ A2. Equation (3.13) exhibits 

the advantage of choosing off-shell, spacelike external momenta: for Q2 < 0 we have X > 0 

so that k1 + X never vanishes and the integrand has no singularities. 

The integrand is spherically symmetric so the angular integration yields a factor 2rr2 

and the remaining integration over lk11 ~ A2 is easily done. The result is 

ISM(..\2) = -3i>.E
2
(N + 8) [1 d l (X) 

Q 8rr2 lo x og A2 (3.14) 

where we omit terms of order 1/ A2. Finally, for Q2 ~ p2, we approximate log(X) ~log( Q2
), 

obtaining the usual result, 

(3.15) 

where Q = FQ'i. The terms we have neglected by approximating log( X) ~ log( Q2 ) are 

either constants that would be absorbed in counterterms or are suppressed by p2 /Q2 • The 

logarithmic term in (3.15) agrees with the dimensional regularization result (2.6) if the cutoff 

A is identified with ·the dimensional regularization scale f-lD· 

It is straightforward to apply the same method to the 0( AK) diagrams shown in figure 2b, 

of which there are six, each contributing equally due to the symmetric kinematics, equation 

(3.3). Including a factor 6 for the number of diagrams, the Feynman rules yield 

oM(..\~> = _ 36>.E J d4 k (k + P1? + (k + P2)
2 + HN + 2)Q

2 

Q K (2rr)4 (k2-p2)((k+Q)2-p2) 
(3.16) 

Introducing the Feynman parameter integration and symmetrizing the k integration, we have 

(..\~) _ _ E [1 j d4k 2P + (2x2 - 2x +If+ Jf)Q2 

oMQ - 36.\ K lo dx (2rr)4 (k2- X)2 (3.17) 

where X is defined in equation (3.8). Just as in equations (3.9 - 3.13), the k integration is 

expressed as a Euclidean space integral, which after the angular integration is 

oM(..\~)= -9iAEK {1 d {A.2 dk2 k2 -2k1 + (2x2- 2x +If+ Jf)Q2 
Q 4rr2 lo x lo E E (k1 + X)2 

(3.18) 
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The term proportional to Q2 diverges logarithmically. The term proportional to k2 is 

rewritten to isolate the quadratic divergence, 

(3.19) 

The remaining log divergent term in (3.19) is then combined with the log divergent term pro

portional to Q2 in (3.18). The finite term proportional to X 2 is neglected since it contributes 

O(A - 2) to the amplitude. The result is 

6M(-X~~:) = -9iAEK (-A2 {1 d {A2 dk2 k2 (6x2- 6x +If+ Jf)Q2 + 4p,2) 
Q 47r2 + lo x lo E E ( kj; + X)2 (3.20) 

Performing~the integral over kj; we are left with 

(-X ) 9iA.E K ( [1 (X) { N 13 }) 6MQ ~~: = 411"2 A2 + lo dxlog A2 (6x2- 6x + 3 + 6 )Q2 + 4p,2 (3.21) 

If the cutoff A is chosen to be equal to the scale of the new physics, A ~ M, then the 

A 2 term in (3.21) is an artifact since it is dominated by the region of the k integration near 

M where the effective theory fails. In any case, since it is independent of Q, it does not 

affect the running of the couplings. By contrast the log( A) term samples the entire hierarchy 

between M and Q: e.g., for large log(A/Q) the region between A and A/2 only contributes a 

small fraction, 16g(2) << log(A/Q) to the logarithm while contributing 3/4 of the quadratic 

term. This is seen again in the renormalizable model presented in the next section. 

The running couplings A.Z and KQ receive contributions from the terms in (3.21) pro

portional to p,2log(Q) and Q2log(Q) respectively. However, the contribution proportional 

to p,2log(Q) is not given simply by the coefficient of the term proportional to p,2 in (3.21), 

since an additional p,2 contribution is hidden in the term proportional to Q2
• Evaluating the 

integrals over x through order p,2 / Q2
, we have 

[ dx log c~:) = ( 1 - 2 ~:) log ( ~:) + 0 ( ~:) 
2 

+ ... (3.22) 

and for integer n ~ 1 

{1 n (X) 1 ( . p,2) (Q2) (P,2)
2 

lo dx x log A 2 = n + 1 1 - ( n + 1) Q2 log A 2 + 0 Q2 + ... (3.23) 

where we also omit constant terms that are independent of log( Q) and do not affect the 

running of A and K. Substituting (3.22 - 3.23) into (3.21) we have 

(3.24) 
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where Q = IQI = FQ2 and we again omit all terms (including the A2 term) that do not 

contribute to the running of>. and "'· 

We can now derive the renormalized couplings and the RGE's. The counterterm La

grangian for the effective theory is 

(3.25) 

As noted above, 8Z and bJ.l have no Q dependence and can be ignored. Combining the 

relevant tree, counterterm, and one loop contributions, the amplitude is 

' (3.26) 

where 

8Mg> = 8Mg2> + 8Mg">. (3.27) 

It is convenient to write 8Mg) as 

(3.28) 

where we omit terms that are constant or small. The coefficients A and B are given by 

(3.29) 

and 

(3.30) 

The counterterms are determined at Q2 = - p2 (or, more precisely, in a small neighbor

hood around Q2 = -p2 ) from equation (3.4), which implies 

(3.31) 

Equating powers of Q2 the counterterms are then 

(3.32) 

and 

bK = +~Blog (~) (3.33) 

Then from (3.3) and (3.26) the running couplings are 

>.Z = >.E + ~Ap2log (~) (3.34) 
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and 

KQ = K - ~ Blog ( ~) . (3.35) 

or explicitly 

(3.36) 

and 

Kz = KE + 8~2 log (~) (2N + 7)AEK. (3.37) 

To one loop and to leading order inK, the coupled RGE's are then 

(3.38). 

and 
dKZ 1 E 

dlogQ = 871" 2 (2N + 7) >.QKQ. (3.39) 

( 4) A Renormalizable Model 

In this section we construct a renormalizable model with a heavy scalar of mass M » J-l, 

which replicates the effective theory defined in equation (3.1) at low energy, J-l < Q << M, 

and then use the renormalizable model to verify the RGE's obtained in the previous section. 

In the renormalizable model the one loop, log( Q) dependent terms arise both from the low 

energy limit of finite Feynman diagrams as well as from log divergent diagrams reflecting 

the divergences of the original q} theory. The results are of course regulator independent. 

For convenience we use dimensional regularization here. The renormalizable model provides 

a very useful check on the calculation because the result arises in a rather different way 

from the effective theory - in particular, the order J-L 2 fQ 2 terms from equations (3.22 -

3.23) contribute differently, so that the results disagree if those terms are overlooked (as the 

author learned the hard way). 

In addition to the O(N) vector field</> we now add an O(N) singlet scalar field a. The 

relevant terms in the renormalizable Lagrangian are 

1 ((o )2 (fJ )2) ).R ( 2)2 G 2 J-l
2 

2 M
2 

2 £n = - </> + a - - </> - -a</> - -</> - -a 
2 4 2 2 2 ' 

( 4.1) 

where M » J-l and G is a coupling constant with the dimension of a mass. Interaction terms 

involving more than a single heavy field a, such as a 2¢2 , a 3 or a 4 are neglected since they 

give rise to diagrams that are suppressed by additional powers of M 2
, inducing corrections 

beyond the leading order in K in the effective low energy theory. We will see that even in 

tree approximation the coupling ).R is not equal to the analogous coupling >.E of the effective 

theory. 
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Despite our misleading notation, the renormalizable model is not a "sigma model" since 

in general the interactions do not have an O(N + 1) symmetry. In order for £n to be 

embedded in a sigma model (i.e., one with its symmetry softly broken by the explicit "pion" 

mass J.t) the parameters would have to be related by ).R = G2/2M2. This is not a relevant 

limit for us since it implies ).E = 0 (see equation (4.4) below), as required by the low energy 

theorem for "7r1r" scattering. 

In tree approximation the <!>I <!>I -7 <h <!>I sca,ttering amplitude is 

M(<!>I</>I -7 <!>I</>I) = -6i).R- iG2 (s -1M2 + t -1M2 + u _1M2) (4.2) 

Expanding for M 2 >> lsi, ltl, lui this is 

M(<!>I</>I -7 </>I</>I) = -6i).R + 3i ~: + i ~: (s + t + u) (4.3) 

which is equivalent to the tree approximation amplitude of the effective theory, equation 

(3.2), if we identify 

( 4.4) 

and 

(4.5) 

The first term in the expansion of the a propagator induces a tree level shift in A while the 

second term reproduces the dimension 6 operator in £EFF· 

We now consider the one loop corrections to the <!>I <!>I --+ </>1 <f>I scattering amplitude in 

the renormalizable model. Each of the six Feynman diagrams in the effective theory, shown 

in figure 2b, is replaced by three diagrams in the toy model. The first of these, shown in 

figure 4a, contains precisely the same logarithmically divergent integral that renormalizes 

lambda in the original </>4 theory, shown in figure 2a. In figure 4a it corresponds to a a</></> 
vertex correction. Using the M S prescription and the symmetric, off-shell external momenta 

defined in equation (3.3), the six diagrams of type figure 4a together contribute 

-3i).RQ2 [I (X ) 
Ma = 87r2(Q2- M2) (N + 2) Jo dx log f..lb ( 4.6) 

where f..lD is the regulator scale. Using equation (3.22) and expanding for M 2 » Q2 » J.t2 

this becomes 
3i).RQ2 ( Q ) { 1 f..l2 Q2 } 

Ma = 471"2 (N + 2)log f..lv M2 - 2 M4 + M4 (4.7) 

In addition to Ma there are 12 finite diagrams of the type shown in figure 4b which 

together contribute 

Mb = 36).RG2 [ 
1 

Jk ((k- pi)2- f..l2)(k2- M2)((k + P2)2- f..l2) 
( 4.8) 
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or, introducing Feynman parameters and symmetrizing, 

where 

y = yM2 + (1- Y)~-t2 + [~(y2- y) + x2- x + xy] Q2 

After the d4 k integration the result is 

-9i>.RG21ai 11-x 1 Mb = dx · dy-
4rr2 o o Y 

(4.9) 

( 4.10) 

(4.11) 

Performing the y integration and retaining only the terms proportional to log( Q) for M » Q, 
we find 

(4.12) 

where X is defined in equation (3.8). The terms that are omitted in (4.12) are either 

constants that are absorbed in counterterms or are of higher order in small ratios. Applying 

equations (3.22 - 3.23) the final result for Mb is 

(4.13) 

The complete one loop amplitude is given by combining ( 4. 7) and ( 4.13), 

(4.14) 

where again we drop terms that do not vary as log(Q) and will be absorbed in counterterms. 

The term proportional to (N+8) in (4.14) provides an interesting consistency check. 

Since it is proportional to G2 / M 2 ex KM2 it seems to imply a nondecoupling contribution to 

the low energy theory which would invalidate the effective Lagrangian of section 3. But it 

actually provides just the appropriate renormalization of the tree level shift encountered in 

equation (4.4), 

( 4.15) 

to give >.~ = >.~ + <>>.Tree the correct order >.E2 
renormalization. That is, in the effective 

theory the order >.E2 renormalization, from (3.30), is5 

<>>.E- N + 8 \E21 (Q) Q-82"' og-. 
7r It 

(4.16) 

5 The shift in the scale of the logarithm from A to Jl is absorbed by the counterterm in the renormalization 

procedure. 
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Substituting 
)..E

2 ~ AR2 + 2)..Ro)..Tree ( 4.17) 

we see, using ( 4.15), that the contribution of the second term in ( 4.17) to ( 4.16) is 

~ N + 8 )..RQ21 (Q) 
871"2 M2 og J1, • (4.18) 

But this is precisely equal to i/6 times the first term in (4.14), as required for consistency 

with equation (2.10). 

The remaining two terms in ( 4.14), proportional to G2 J1, 2 I M 4 and G2Q2 I M\ agree 

precisely with the corresponding terms proportional to KJ1,2 and KQ 2 in the effective theory, 

as may be seen by comparing (4.14) with equations (3.14) and (3.24) using the expression 

for "' in ( 4.5). Therefore the renormalization of )..E and "' computed in the effective theory 

in section 3 is verified by the results obtained here from the renormalizable model. We 

see that renormalization effects which arise in the effective theory from a combination of 

quadratically and logarithmically divergent diagrams arise in the renormalizable model in a 

rather different way, with some log( Q) terms arising from diagrams with the usual ultraviolet 

logarithmic divergences of the original ¢4 theory (figure 4a) while others arise from the low 

energy limit of finite diagrams (figure 4b ). 

(5) Solution of the RGE's 

We now solve the coupled RGE's of the effective theory, first rewriting the RGE's, 

equations (3.32- 3.33), in a more compact notation with the superscript E suppressed, 

)..' _ b ().. 2 2 ( N + 2) ).. ) 
Q - N Q + N + 8 Q/Q (5.1) 

and 
I 2N +7 

IQ = 871"2 AQ/Q (5.2) 

where bN was given in equation (2.13), and we have defined 

(5.3) 

The quantity /Q has the same log( Q) dependence as KQ since J1, has no log( Q) dependence 

at one loop order. 

We solve the coupled equations by constructing a quantity /Q that obeys the usual one 

loop RGE, 

(5.4) 

where CN is determined by requiring 

(5.5) 
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Working to first order in 'YQ we find 

2 
CN = g-(2N + 1). (5.6) 

Integrating (5.5) from -p,2 to Q2 we have the familiar solution 

(5.7) 

To solve for .Xq and 'YQ we replace .Xq in (5.2) by fq, valid to first order in "{q, obtaining 

I 2N +7 
'Yq = 871"2 /Q'YQ· (5.8) 

Substituting (5. 7) into (5.8) and integrating we then find 

(5.9) 

(5.10) 

We consider two special cases. For N = 1 the solutions take a particularily simple form, 

(5.11) 

and 

AqiN~l = A" (Q) · 
1- bd11-log ; 

(5.12) 

We also consider N = 4 which would correspond to the Higgs sector of the Standard Model 

if we were to consider the broken symmetry phase. Then c4 = 2 and the running couplings 

are 
5 

/QIN~• = '" [1- b.J~log (~l (5.13) 

and 

(5.14) 

From these solutions to the RGE's we see that "new physics" represented by the di

mension 6 operator has two effects on the Landau pole. First, as we will discuss in the 
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next section, it changes the relationship between the coupling constant A and the position 

of the pole. Second it also affects the strength of the singularity at the pole, making the 

leading singularity stronger for all N > 1. From (5.10) we see that since CN is proportional 

toN, the correction proportional to CNIJ.L would dominate AQ for sufficiently large N. Our 

perturbative approximation then breaks down in the large N limit, which would require a 

separate analysis. 

{6) The Landau pole and the low energy coupling constant 

We now consider the effect of the dimension 6 operator on the relationship between the 

low energy coupling constant and the location of the Landau pole. Without the dimension 

6 operator, i.e., for K = 0, we see from equation (2.15) that the pole location is fixed by the 

low energy coupling constant and mass, 

A Landau = J-L exp ( bN\J.L) • (6.1) 

Equivalently, the low energy coupling is determined by the ratio ALandau/ p, 

(6.2) 

New physics must intervene at or below the pole. Defining M to be the new physics mass 

scale, (6.1) implies 

(6.3) 

In order that the low energy theory have some domain of validity we require a minimal 

hierarchy R between M and the mass scale of the low energy theory, 

M 
->R - ' J-L 

which implies the upper limit on the low energy coupling constant, 

(6.4) 

(6.5) 

These are simple but powerful relations. They are accurate in the perturbative domain, 

for small coupling .AJ.L and large hierarchy R. At strong coupling and small R, the domain 

of the triviality bound, lattice simulations have found them to be qualitatively correct and; 

beyond that, accurate to about ~ 30%.[2] 

The dimension 6 operator considered in section 3 modifies these relations, due to the 

effect of the high scale physics on the running of the scalar coupling constant. The result is 
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simply to replace Ap. in the above equations with fp. defined in (5.5). Then (6.1) and (6.2) 

become 

(6.6) 

and 
1 2 

Ap. = (A ) - CNKp.J-l . 
bNlog ~ 

(6.7) 

The upper bound on the low energy coupling constant becomes 

1 2 
Ap. ~ bNlogR - CNKp.J-l (6.8) 

The sign of the new physics correction depends then on the sign of ""w If Kp. > 0 the 

Landau pole position is lowered for fixed Ap. and p,, and the upper bound on Ap. becomes 

stronger for given hierarchy R. Conversely for Kp. < 0 the Landau pole moves to higher 

energy and the upper bound on Ap. is weakened. In the renormalizable model considered 

in section 4, in which the new physics arises from the exchange of a heavy singlet scalar, 

equation (4.5) implies Kp. > 0. In general the sign may be positive or negative. 

If the dimension 6 operator arises from a dimension 4 interaction with dimensionless 

coupling g between high-scale quanta of mass M and the light scalar fields </J, then "" will 

be of order O(g2 I M 2
) where for strong coupling g2 would be of order 0( 47r ). If the under

lying interaction has dimension 3 with dimensionful coupling G, then K ~ O(G2 IM4
), as 

in equation ( 4.5). For strong coupling we would then expect G2 I M 2 ~ 0( 47r ), and, again, 

""~ 0(47riM2
). 

In general the strength of the dimension 6 operator is characterized by a dimensionless 

quantity C, defined by 
c 

Kp. = M2. (6.9) 

Assuming now that M is as heavy as it can be, M rv ALandau, and that the hierarchy 

inequality (6.4) is also saturated, i.e., 

then (6.7) becomes 

Alandau = R 
p,2 

1 c 
Ap. = bNlogR - CN R 2 • 

(6.10), 

(6.11) 

Defining r>.. as the ratio of the value of Ap. determined from (6.11) to the corresponding value, 

equation (6.2), for C = Kp. = 0, we have 

(6.12) 
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Similarly, we define rA as the ratio of ALandau determi1;1ed for Kp. # 0 from (6.6) relative to 

the value for x;JJ. = 0 from (6.1), for the same values of >.JJ. and p, and find 

r A = exp (-beN~ ( 1 c ) ) . 
_NR Ap. Ap. + CN R2 

(6.13) 

Expanding to leading order in x:p.p2 
/ Ap., rA is approximately 

(6.14) 

which is enhanced by an additional factor of logR relative to the correction to r>. in (6.12). 

The value of>.,.,_ from equation (6.11) for N = 4 is plotted in figure 5 for C = 0, ±47r as a 

function of the hierarchy R. Numerical values for the ratios r>. and rA from equations (6.12) 

and (6.13) are given in .tables 1 and 2 for N = 4 and N = 1 respectively with C = ±47r. 

For N = 1 the corrections are approximately four times smaller than for N = 4. For N = 4 

the corrections to the coupling constant are sizeable, reaching 66% for the hierarchy R = 2 

at which the triviality bound is customarily obtained in lattice calculations. The value of 

such a large correction cannot be taken literally since it exceeds the domain of validity of the 

perturbative approximation, but it suggests that large corrections, potentially even of order 

one, are possible. At larger values of R the corrections become smaller and are therefore 

more reliably known. We may for instance consider where the approximation (6.14) becomes 

. a good description of (6.13). From table 1 we find that this occurs at R = 5, where (6.14) 

implies a 40% correction to rA in good agreement with the result shown in the table, and 

for which the correction to the triviality bound is 25%. 

(7) Conclusion 

We have studied the effect of new physics on the RG analysis of the Landau pole and the 

triviality bound in the unbroken phase of 0( N) ¢4 theory. Including a dimension 6 operator 

to represent the low energy effects of the new physics that must exist at the Landau pole, we 

find that the pole position and the upper bound on the coupling constant can be modified 

by substantial amounts, if the new physics is strongly coupled to the 0( N) scalars and if 

the O(N) scalars are themselves strongly coupled. The analysis is performed in the spirit 

of the original Dashen-Neuberger analysis, to explore the possible order of magnitude of the 

effects in a simple approximation. 

Quantitative results for the strong coupling regime would require lattice simulations. As 

discussed in the introduction, the related lattice simulations carried out in (3] had a different 

goal than ours- to see the effect of dimension 6 operators subject to the constraint that the 

low energy Higgs sector resemble the SM Higgs sector to within a few percent- and is not 

directly comparable to the calculation presented here since different phases are considered 
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and the required operator matching has not been done. Here, within the limitations of one 

loop perturbation theory, we explored the maximum effect on the bound without regard to 

the size of other corrections to the low energy physics. It would be interesting to study this 

regime with lattice simulations. 

To check the RG analysis of the effective theory we also considered a simple renormal

izable model of the new physics, consisting of a heavy 0( N) singlet scalar field which in its 

low energy limit gives rise to the dimension 6 operator. The model provides a computational 

check and a measure of physical insight. We saw that in addition to giving rise to the di

mension 6 operator, the exchange of the heavy scalar causes a tree-level shift DATree in the 

¢4 coupling constant A and that apparently dangerous one loop corrections, proportional to 

""M2 (where M is the mass of the heavy scalar) conspire to give OATree precisely the usual 

0 (A 2 ) renormalizatioil. 

The sign of"" determines whether the triviality limit is increased or decreased by new 

physics. For the model considered here with a heavy O(N) singlet scalar, "" is positive, 

in which case the Landau pole position and the triviality bound on the coupling are both 

lowered. For negative "" the opposite occurs. It is then very interesting to exhibit· theories 

with "" < 0 or to prove that none exist. The lattice studies of dimension 6 operators in the 

Higgs phase reported possible increases of the triviality bound[3], but they too introduced 

dimension 6 operators by hand and so also did not address this issue. Since "" is a parameter 

of an effective theory with a limited domain of validity, which might furthermore arise from 

the low energy limit of another effective theory with a still limited (though higher energy) 

domain of validity, it is likely that no general theorem exists. 

In the renormalizable O(N) ¢4 scalar theory it is easy to see that the RG flow of the 

coupling constant is the same in the symmetric and Higgs phases of the theory. Because the 

dimension 6 ¢4 interaction gives rise to dimension 5 ¢3 interactions in the Higgs phase, it 

is not immediately apparent that the same is true of the effective theory. This question is 

under study and will be reported elsewhere. 
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Table 1. Tabulation of r>. and rA, from equations (6.12 - 6.13), for the N = 4 theory 

with C = ±47r. 

lc = 47t 1 c = -471" 

2 0.34 0.26 1.66 1.32 

e 0.48 0.34 1.52 1.41 

5 0.75 0.59 1.25 1.37 

7 0.85 0.71 1.15 1.29 

10 0.91 0.80 1.09 1.20 

Table 2. Tabulation of r>, and rA, from equations (6.12 - 6.13), for the N = 1 theory 

with C = ±47r. 

lc = 471" 1 c = -471" 

R I r>. 

2 0.84 0.87 1.17 1.10 

e 0.87 0.86 1.13 1.12 

5 0.94 0.90 1.06 1.10 

7 0.96 0.93 1.04 1.07 

10 0.98 0.95 1.02 1.05 
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Figure 1: One loop correction to the four point function from the operator </;6 /A 2 • 

(a) (b) 

Figure 2: Feynman diagrams for (a) the order A 2 and (b) the order K,A corrections to the 

scattering amplitude. The black dot denotes the ( 8cjJ2
)

2 interaction. 
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Figure 3: The one loop correction to the self energy from the ( a(p2)2 interaction. 

I 

A 
(a) (b) 

Figure 4: The leading one loop corrections to ¢¢ scattering from exchange of the heavy 

scalar CJ, denoted by the dashed lines. 
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Figure 5: The triviality upper limit on the coupling constant )..J-L for N = 4 as a function of 

the hierarchy ALandau/ J.L· The dashed line shows the limit in the absence of the dimension 6 

operator, while the upper and lower solid lines are from equation (6.11) with C = -4rr and 

C = +4rr respectively. 
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