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Abstract 

A maximally supersymmetric configuration of super Yang-Mills living on a non
commutative torus corresponds to a constant curvature connection. On a noncom
mutative toroidal orbifold there is an additional constraint that the connection be 
equivariant. We study moduli spaces of (equivariant) qmstant curvature connec
tions on noncommutative even-dimensional tori and on toroidal orbifolds. As an 
illustration we work out the cases of Z2 and Z4 orbifolds in detail. The results we 

. obtain agree with a commutative picture describing systems of branes wrapped on 
cycles of the torus and branes stuck at exceptional orbifold points. 

1 lntrod uction 

The idea that String theory leads to some sort of fuzzy or noncommutative microscopic 
structure of space-time has been around for quite a while. A new boost to this idea emerged 
after the paper [3]. It was shown in that paper that noncommutative tori arise as particular 
compactifications of M(atrix) theory ([1]) that is conjectured to be a nonperturbative defini
tion of String theory (see [4] - [15] and references therein for the subsequent development). 
Later in [16] a number of.important results concerning relations between String theory and 
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noncommutative geometry were obtained. In particular the conditions under which noncom
mutative geometry arises within perturbative open string theory were clarified. 

On the mathematics side noncommutative tori are the best studied examples of non
commutative spaces (see [23] for a good overview). An important notion in noncommutative 
geometry is that of Morita equivalence that gives some equivalence relation between algebras 
of functions on noncommutative spaces. A striking result first observed in [3] and later on 
proved rigorously in [5] is that noncommutative world volume field theories living on noncom
mutative tori are invariant under duality transformations generated by Morita equivalences 
of noncommutative tori. This duality is directly related toT-duality of perturbative string 
theory compactifications ([25], [16]). 

It seems to be interesting and important to study compactifications on other noncom
mutative spaces and see how much of noncommutative geometry techniques that proved to 
be useful for tori can be extended (see [6], [7], (22], [21] for some work done in that di
rection). In paper [21] we studied M(atrix) theory compactifications on noncommutative 
toroidal orbifolds. That paper primarily concentrated on two-dimensional Z2 orbifolds. In 
the present paper we continue investigation of M(atrix) theory compactification on non
commutative spaces. The main topic of this paper is the structure of projective modules 
over noncommutative orbifolds that admit a constant curvature Yang-Mills field and moduli 
spaces of all such fields. Such modules and constant curvature connections on them describe 
configurations preserving half of the unbroken supersymmetries. All our results concern clas
sical aspects only. However counting of quantum states with specified brane charges can be 
made in terms of a supersymmetric sigma model on the appropriate classical moduli space 
provided we have a sufficient number of supersymmetries. 

In the commutative case configurations with vanishing .SU(N) part of the curvature and 
their interpretations in terms of D-branes were considered in a number of papers (see [17] and 
references therein). DO branes on toroidal Z2 orbifolds were studied in [18], [19]. Whenever 
our results can be compared with the commutative results we observe a complete agreement. 

The paper is organized as follows. Section 2 contains some generalities on noncommuta
tive tori and matrix theory as well as an explanation of our general strategy regarding the 
moduli space problem. In essence the novelty of our approach is in the following. In the 
usual approach one first fixes a module, i.e. a representation of algebra of functions on a 
noncommutative space, and then considers all constant curvature connections modulo gauge 
transformations. Instead we fix the connection V'i and then look at all equivalence classes 
of the torus representations compatible with that connection. If [V'i, V'j] = Iii · 1 where Iii 
is a non-degenerate matrix then the algebra generated by V'i is isomorphic to Heisenberg 
algebra. We can use then the well known results about complete reducibility of Heisenberg 
algebra representations. The case of generic constant curvature connection can be reduced to 
the nondegenerate case by use of Morita equivalence provided the torus dimension is even. 
The Morita equivalence technique by itself is not directly relevant to the present paper; 
its discussion is relegated to the appendix. We restrict ourselves to the even dimensional 
case in this paper .. However after appropriate modification our method also works for odd 
dimensions. 

In section 3 we apply our general strategy to noncommutative tori and prove that the 
moduli space is isomorphic to (TdY / Sr where fd is a commutative d-dimensional torus and 
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r is the greatest common divisor of topological integers (D-brane charges) characterizing the 
module. Ford= 2 this result was proved by A. Connes and M. Rieffel in [24). 

In section 4 we introduce noncommutative toroidal orbifolds and outline how the approach 
used for tori can be extended to the study of moduli space of equivariant constant curvature 
connections. 

In sections 5 and 6 we study in detail Z2 and Z4 orbifolds respectively. For these cases we 
work out a general construction of a module that admits a constant curvature equivariant 
connection. In each case a module is built out of standard blocks that can be interpreted to 
describe DO particles and various membranes stuck at exceptional points of the orbifold. The 
corresponding moduli spaces are proved to be isomorphic to (Td IZ2 )m ISm and ('f'd IZ4)n I Sn 
respectively. Here m and n are some integers that depend on topological numbers of the 
module. In the two-dimensional case Z2 and Z4 orbifolds of noncommutative tori were 
studied by S. Walters in a number of papers ([28]). It would be interesting to calculate the 
topological numbers introduced in those papers for the modules we consider. 

In section 7 we add scalar fields to the discussion and describe how Coulomb branches 
vary over the moduli space of constant curvature connections. 

Finally the appendix contains a general discussion of Morita equivalence for toroidal 
orbifolds and details of its application to Z2 and Z4 cases. 

2 1/2 BPS configurations on noncommutative tori 

We start this section by discussing some general aspects of constant curvature connections 
on noncommutative tori. 

We define an algebra To of smooth functions on a d-dimensional noncommutative torus 
in the following way. Let D c R d be a lattice D rv zd and (}ij be an antisymmetric d X d 
matrix. The algebra To is an associative algebra whose elements are formal series 

LC(n)Un 
nED 

where C(n) are complex numbers and Un satisfy the relations 

TT TT _ TT e1rinjOikmk 
UnUm- Un+m · (1) 

Here the coefficients C(n) are assumed to decrease faster than any power of lnl as n--+ oo. 
We will denote generators corresponding to standard basis vectors (ni)i = c5j by Ui. Any Un 
can be expressed as a product of Ui's times a numerical phase factor. 

The notion of a vector bundle (or rather that of a space of sections of a vector bundle) in 
noncommutative geometry is replaced by a projective module over T0 . Unless specified we 
will assumed that we work with a right module (i.e. we have a right action of T0 ). Let L be 
a d-dimensional commutative Lie algebra acting on T0 by means of derivations 

(2) 

A connection on a projective module E over To is defined in terms of operators Vi : E--+ E 
satisfying a Leibniz rule · 

'Vi(ea) = ('Vie)a + e(c5ia) 
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for any e E E and any a E To. 
It was first shown in ([3]) how (super)Yang-Mills theory on a noncommutative torus 

arises as a particular compactification of M(atrix) theory ([1], [2]). The Minkowski action 
functional of M(atrix) theory compactified on a noncommutative torus To can be written as 

S= 
4 2V .Tr((Fi; + ¢i;1)2 +[Vi, Xr]2 + [Xr, XJ] 2

) 
9YM 

iV - i - I + 
29

fM Tr('I/Jf [Vi, '1/J] + '1/Jf [Xr, '1/J]) (3) 

where Vi, i = 1, ... , dis a connection on a To-module E, '1/J is a ten-dimensional Majorana
Weyl spinor taking values in the algebra Endr9 E of endomorphisms of E, <Pi; is an anti
symmetric tensor, X 1 E Endr9 E, I = d + 1, ... 10 are scalar fields, r~ are ten-dimensional 
gamma-matrices. 

The action (3) is invariant under the following supersymmetry transformations 

(4) 

where E, f. are 10D Majorana-Weyl spinors parameterizing the transformation. 
Classical configurations preserving 1/2 of these supersymmetries have a vanishing field '1/J 

and the fields vi, XI satisfying the equations -

[V;, V k] = 27rif;k · 1, 
[V;, XI]= 0' [XI, XJ] = 0 (5) 

where fii are constants and 1 is a unit endomorphism. We call solutions to the first equation 
modulo gauge transformations a Higgs branch of the 1/2-BPS moduli space. The whole 
moduli space of solutions to (5) can be viewed as a fibration over the Higgs branch. We will 
first describe the Higgs branch which is the moduli space of constant curvature connections 
and then take into account the scalar fields. 

Let us outline here the strategy we will take addressing the moduli space problem. The 
complete set of equations that defines a module over a noncommutative torus and a constant 
curvature connection on it reads 

U·.u - e27riOikU U· 
3 k- kn 

[V;, Uk] = 21ri8ikUk, 
[V;, Vk] = 27ri/;k (6) 

If Ui, Vi are operators in Hilbert space E satisfying these equations and Z : E --+ E is a 
unitary linear (over C) operator, then ZUiz-I, Z\liz-1 also solve (6). The usual approach 
to equations (6) is to fix generators ui, i.e. fix a module, and then look for vi satisfying 
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the last two equations in (6). The transformations Z : E -+ E preserving Ui's are unitary 
endomorphisms. We will take a different approach in this paper and fix the representation 
of Vi· The gauge transformations in this picture are given by unitary operators Z that 
commute with all Vi. The moduli space is then a space of solutions Ui to the first two 
equations in (6) modulo gauge transformations. Note that in this approach inequivalent 
modules, that in our case are modules that have distinct Chern (and/ or other topological 
numbers in the case of orbifolds), are treated simultaneously. Fixing topological numbers 
then corresponds to choosing a connected component of the total moduli space of solutions 
to (6). 

The (super)Yang-Mills theories (3) on Morita equivalent noncommutative tori T8 , T0 are 
physically equivalent (see [5]). ·To any module E over Te there corresponds a module E over 
T0 and to any connection V on E there corresponds a connection V and vice versa. The 
correspondence of connections respects gauge equivalence relation and maps a constant cur
vature connection into a constant curvature one. This means that moduli spaces of constant 
curvature connections are isomorphic for Morita equivalent tori. A crucial fact that we are 
going to exploit analyzing representations of (6) is that by use of Morita equivalence one can 
reduce the problem to the situation when ]ij is a nondegenerate matrix (see Appendix). 

3 Constant curvature connections on noncommutative tori 

Let Te be ad= 2g-dimensional noncommutative torus. Let E be a projective module over 
Te admitting a constant curvature connection Vi, i = 1, ... , d 

(7) 

where ]jk is a constant nondegenerate antisymmetric matrix with real entries. (We assume 
that Vi are antihermitian operators.) Up to normalizations algebra (7) is the Heisenberg 
algebra specified by canonical commutation relations for g degrees of freedom. According to 
the Stone-von Neumann theorem there is a unique irreducible representation :F of algebra 
(7). We assume that E can be decomposed into a direct sum of a finite number of irreducible 
components: E ~ :FN ~ :F ® eN 0 

We fix the representation :F as follows. First let us bring the matrix fii to a canonical 
block-diagonal form 

C' 
0 

J.) (/;;) = ~ he 
0 
0 

(8) 

where 

E = ( 
0 ~) -1 (9) 

is a 2 x 2 matrix and fi are positive numbers. 
Then we can define a representation space as £ 2 (RY) and the operators Vi as 

\li = J ](j+I)/28j ,j- odd, \li = i{J;xj-l ,j- even (10) 
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where 8;, xk, j, k = 1, ... , g are derivative and multiplication by xk operators acting on 
smooth functions f(x) E L2(R9). An arbitrary representation of the torus generators Ui, 
i = 1, ... , d has the form Ui = ur · Ui where ur is some standard representation satisfying 

[Vj, u:t] = 21riojku:t 

and ui is an N x N unitary matrix. This form of representation of Ui follows from the 
irreducibility of representation :F. A straightforward calculation shows that one can take 
u~t to be . z 

(11) 
These operators satisfy 

uru:t = e-2rri(!-1)jku:tur. (12) 

Since ui = ur . Ui must give a representation of a noncommutative torus it follows from (12) 
that so must do the operators Ui· But the last ones are finite-dimensional matrices so they 
can only represent a noncommutative torus whose noncommutativity matrix has rational 
entries, i.e. u/s have to satisfy 

UiUj = e2rrinii /N UjUi (13) 

where N is a positive integer and nii is an integer valued antisymmetric matrix. Putting the 
formulas (12) and (13) together one finds that Ui's give a representation of a noncommutative 
torus To with 

()ii = -(f-l)ii +niijN. (14) 

It folJows from the results obtained by M. Rieffel ([27]) that for finite N (i.e. when E 
decomposes into a finite number of irreducible components) the module E endowed with 
Ui = ur · ui as above is a finitely generated projective module over To with() given in (14). 
Conversely one can show that the finiteness of N is required by the condition of E to be 
finitely generated and projective. (See [26] for a detailed discussion of modules admitting a 
constant curvature connection.) 

Topological numbers. 
Let us calculate here the topological numbers of the modules constructed above. We assume 
here that the matrix ()ij given in (14) has irrational entries. Then a projective module E is 
uniquely characterized by an integral element J-t(E) of the even part of Grassmann algebra 
Aeven(Rd). In order to calculate J-t(E) we can use Elliot's formula 

(
1 a .. a ) 

!-l(E) = exp 2 8ai ()'J 8ai ch(E) (15) 

where 
1 . . 

ch(E) = D · exp(
2
7ridfi;a3

) (16) 

and D is a nonnegative real number that plays a role of the dimension of a module in 
noncommutative geometry. From (15) applying a Fourier transform we obtain 

J-t(E) = D ·Pfaff(!)· I df3exp(~f3i((f-1 )i; +fii)/3; + o:if3i) = 

D ·Pfaff(!)· I d/3 exp(~f3inij /3;/N + aif3i). (17) 
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At this point it is convenient to assume that the matrix ni; is brought to a canonical block
diagonal form similar to (8) with integers ni, i = 1, ... , g on the diagonal by means of an 
SL(d, Z) transformation (this is always possible, see [30]). Then we can explicitly do the 
integration in (17) and obtain · · · 

p,(E) = C · (~ + a 1a?) (~ + a 3a 4
) • .•• • (~ + a 2

!!-
1a 29

) (18) 

where C = D ·Pfaff(!) is a constant that can be determined by the requirement that p,(E) is 
an integral element of Grassmann algebra A (i.e. each coefficient is an integer). By looking 
at the term with a maximal number of a's in (18) we immediately realize that C must be 
an integer. We will prove below that C = N. 

Let us introduce numbers 

N 
Ni = ) , g.c.d.(N, ni 

so that for each i = 1, ... , g the pair Ni, Ni is relatively prime. Then we can rewrite (18) as 

c IIg - 2i-1 2i _ c 
p,(E) = N1N2 ..... Nu i=l (Ni + Nia a ) = N1N2 ..... Ng ~o(E). (19) 

For any integral element v of Grassmann algebra A let us introduce a number g.c.d.(v) 
which is defined to be the largest integer k such that v = kv' where v' is also integral. It 
is a simple task to prove by induction in g that g.c.d.(p,0(E)) = 1. Hence, C must be an 
integer divisible by the product N1N2 · ... · N9 • Moreover C = g.c.d.(p,(E))N1N2 · .•. • N9 • 

It is known (for example see [29]) that the dimension of an irreducible representation of the 
algebra (13) is equal to the product N1 • N2 • •.. • N9 • Thus, necessarily this product divides 
N, i.e. N = N1 • N2 • ••• • N9 • N0 where N0 is an integer equal to the number of irreducible 
components in the representation eN of the algebra (13). Evidently No divides g.c.d.(p,(E)). 
We are going to show below that g.c.d.(p,(E)) cannot be bigger than N0 . This will prove 
that C = N. 

Let us look at some particular examples offormula (18). If the matrix nii is nondegenerate 
then p,(E) is a quadratic exponent: 

(20) 

where p = N · Pfaff(n/N) is written in a form where it is manifestly an integer. If nii 
is degenerate then p,(E) is a so called generalized quadratic exponent (see [26] and [11], 
Appendix D). For example if nii = 0 for all i and j then we obtain from (17) 

p,(E) = N a 1a 2 
· ... ·ad. (21) 

Moduli space of constant curvature connections in terms of irreps of rational n.c. tori. 
In the previous subsection we showed that modules endowed with a constant curvature 
connection correspond to representations of matrix algebra (13). The residual gauge trans
formations preserving (10) correspond to N x N unitary transformations acting on the eN 
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factor of E. Thus, we see that the moduli space of constant curvature connections on a 
module with fixed (N, nij) (or fixed p,(E), which is the same) can be described as a space of 
inequivalent representations of the matrix algebra (13). The center of algebra (13) is spanned 
by elements uk with kED"" Zd satisfying kinijm;IN E Z for any mE D. Such elements 
correspond to a sublattice of D that we denote b. To describe the ceriter in a more explicit 
way it is convenient to choose the basis we used above, in which the matrix nij is brought 
to a block-diagonal canonical form. In this basis generators of the center can be chosen to 
be elements (ui)M; where we set Mi = N(i+l)/2 , i-odd and Mi = Ni/2 , i-even. Thus, in an 
irreducible representation (ui)M; = Ai E ex are constants of absolute value 1. 

Using the substitution · 
(22) 

where c; are constants, lc;l = 1, we obtain an irreducible representation with values of center 
generators A~ = Aicf:li. By means of this substitution one can transform any irrep into the 
one with Ai = 1. The last one corresponds to a representation of the algebra specified by 
relations {13) along with the relations ( ui)M; = 1. This algebra has a unique irreducible 
representation of dimension N 1 · N2 · •.. • N9 (for example see [29]). Therefore, the space of 
irreducible representations of algebra (13) is described by means of d complex numbers Ai 
with absolute value 1, i.e. is isomorphic to a (commutative) torus rjd "' R *dID*. We denote 
the corresponding irreps by EA, A= (A1 , ... , Ad)· In general for any noncommutative torus 
To one can construct a group L0 of automorphisms isomorphic to a commutative torus of 
the same dimension by means of (22). This torus acts naturally on the space of unitary 
representations of T0 . If () is rational we obtain a transitive action of this automorphism 
group on the space of irreducible representations. In this case one can consider Lo as a finite 
covering of rjd. . - · 

Let us assume now that the space eN is decomposed into irreducible representations of 
algebra (13) 

{23) 

Note that in the picture we are working with, gauge transformations are given by unitary 
linear operators acting on E that commute with all 'V/s that is by unitary N x N matri
ces. The matrices representing central elements are diagonalized in the basis specified by 
decomposition (23). There are residual gauge transformations corresponding to permuta
tions of diagonal entries. Thus, we see that in general the moduli space is isomorphic to 
(Td)No I SNo· As it was noted in the previous subsection N0 divides g.c.d.(p,(E)). On the 
other hand as we know from [26], [11] any module E over a noncommutative torus To ad
mitting a constant curvature connection 'Vi can be represented as a direct sum of k identical 
modules E = E' EB ... EB E' with k = g.c.d.(p,(E)). This implies that the moduli space of 
constant curvature connections necessarily contains a subset isomorphic to (Td)k I Sk. Thus, 
on dimensional grounds we conclude that k = g.c.d.(p,(E)) = N0 • 

4 General toroidal orbifolds 

In this section we will consider how the considerations above can be generalized to the case 
of toroidal orbifolds. We will work out in detail the particular cases of Z2 and Z4 orbifolds 
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in the subsequent sections. Let D c Rd be a d-dimensionallattice embedded in Rd and let 
G be a finite group acting on Rd by linear transformations mapping the latticeD to itself. 
For an element g E q we will denote the corresponding representation matrix Rf (g). One 
can write down constraints describing compactification of M{atrix) theory on the orbifold 
TdjG, where Td = RdjD:. 

xj + oij21f. 1 = ui-1 xjui, 

xi = ui-1 xiui '1/Jo. = ui-1'1/Ja.Ui, 

Rf(g)Xi = w-1(g)XiW(g), 

Aa.p(g)'I/Jp = w-1(g)'I/Ja.W(g), xi= w-1(g)XIW(g). 

{24) 

{25) 

{26) 

{27) 

Here i,j = 1, ... , dare indices for directions along the torus , I = d + 1, ... , 9 is an index 
corresponding to the transverse directions, a is a spinor index; Aa.p (g) is the matrix of spinor 
representation of G obeying At(g)riA(g) = ~i(g)ri; Ui, W(g)- unitary operators. One can 
check that the quantities u"iuiui-1ui-1 commute with all Xi, XI, and 1/Jo.· It is natural to 
set them to be proportional to the identity operator. This gives us defining relations of a 
noncommutative torus 

U·U - e21riOikU U· Jk- kJ• 

It is convenient to work with linear generators Un that can be expressed in terms of products 
of Ui. One can further check that expressions W(gh)W- 1(g)W-1(h) and w-1 (g)UnW(g)U_R~l(g)n 
also commute with all fields Xi, XI, '1/Jo.· We assume that these expressions are proportional 
to the identity operator. This leads us to the following relations 

W(g)W(h) = W(gh)ei<f>(g,h), 
w-1(g)UnW(g) = UR-l(g)neix(n,g) (28) 

where ¢(g, h), x(n, g) are constants. The first equation means that operators W(g) furnish a 
projective representation of G. It follows from these equations that the matrix() is invariant 
under the group action R(g). Below we will confine ourselves to the case of vanishing cocycles 
¢and X· We refer the reader to papers [6], [20] for a discussion of cases when cocycle ¢does 
not vanish. (Note that for cyclic groups both cocycles are always trivial. This means that 
they can be absorbed into redefinitions of generators.) 

One can define an algebra of functions on a noncommutative orbifold as an algebra gen
erated by the operators Un and W(g) satisfying (1) and 

w-1(g)UnW(g) = UR-l(g)n' 

W(g)W(h) = W(gh). 

(29) 

(30) 

These equations mean that the algebra at hand is a crossed product To ><IR G. Again we 
remark here that allowing central extensions gives a more general case of twisted crossed 
products. In this paper we will concentrate on the untwisted case. 

The algebra To ><IRG can be equipped with an involution* by setting U~ = U_ 0 , W*(g) = 
W (g). This makes it possible to embed these algebras into .a general theory of C* algebras. 
A projective module over an orbifold can be considered as a projective module E over To 
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equipped with operators W(g), g E G satisfying {29). The equations {24), {26) mean that 
Xi specifies a G- equivariant connection onE, i.e. Vi is a T9 connection satisfying 

{31) 

The fields X 1 are endomorphisms of E, commuting both with Un and W(g) and the spinor 
fields 'lf;a can be called equivariant spinors. · 

Let us comment here on the supersymmetry of these compactifications. The surviving 
supersymmetry transformations are transformations {4) corresponding to invariant spinors 
E, €, i.e. the ones satisfying A(g)E = €. For d = 4, 6 this equation has a nontrivial solution 
provided the representation R(g) lies within an SU(2) or SU(4) subgroup respectively. The 
possible finite groups G that can be embedded in this way are well known. Those include 
the examples of Z2 and Z4 four-dimensional orbifolds to be considered below. In those 
cases when the supersymmetry is not broken completely equivariant connections of constant 
curvature correspond to configurations preserving half of the unbroken supersymmetries. 

Now we restrict ourselves to modules admitting a constant curvature equivariant connec
tion ( 7), ( 31). All the steps of the analysis made above for the case ·of tori leading to the 
decomposition {23) can be repeated in a straightforward way. We should add now to that 
analysis operators W(g). Equation (31) implies that the curvature tensor fii is invariant 
under the action of G. As above we fix a representation of the Heisenberg algebra (7) in the 
form ( 10). Then a connection Vf = Rf (g) Vi gives a representation of the same Heisenberg 
algebra (7). By uniqueness of irreducible representation :F there exists a set of operators 
wst(g) : :F-+ :F satisfying (31). It follows from the definition (11) of u;t that wst(g) and 
U;t commute as in (29). This implies that a general set ~f operators W(g) : E -+ E has a 
form 

W(g) = wst(g) ® w(g) 

where w(g) are N x N matrices satisfying 

w-1(g)unw(g) = UR-l(g)n · 

(32) 

(33) 

Here Un are (linear) generators of the rational torus (13). In general relation (31) only implies 
that the operators wst(g) form a projective representation of G. Then, the commutation 
relations for w(g) are twisted by an opposite cocycle. The problem of describing moduli space 
of equivariant constant curvature connections now boils down to the study of irreducible 
representations of the matrix algebra generated by ui, w(g). 

As it was explained above an irreducible representation of a rational torus is labeled by a 
point of the commutative torus fd = R*d / iJ*. The sublattice iJ defining the center of (13) is 
preserved by G and so is its dual D*. Therefore, G acts on the torus fd. We denote this action 
by R*(g). It follows from (33) that an irreducible representation EA from decomposition (23) 
is mapped by w(g) into ER*(g)A· Therefore, the set of Ai in the decomposition (23) has to be 
invariant under the action R*(g). The irreducible representations of the algebra generated 
by ui, w(g) can be grouped according to the orbits of G action on fd. For a generic point one 
has an orbit of length IGI. There are also exceptional points that include fixed points and 
points whose orbits length is a nc;mtrivial divisor of IGI. If the exceptional points are isolated 
the corresponding representations can be interpreted in terms of branes that are stuck at 
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the exceptional points. Below we will consider in detail the structure of the aforementioned 
representations for the orbifold groups z2 and z4. 

5 N oncommutative Z2 orbifolds 

As in the case of tori we start by fixing the representation of connection (10). In addition to 
representation of the torus generators (11), (13) now we need to represent the Z2 generator 
W. As in the case of Ui's a generic representation of W has the form W = wstw where wst 
is some standard representation satisfying 

and w is a N x N matrix that obeys the relations 

(34) 

It is easy to check that one can take 

wst : /i(x) I-t /i( -x) 

where fi(x) E E "' L 2 (Rd) ®eN (i = 1, ... , N). As before consider the decomposition of 
eN into irreducible representations of the algebra (13) given by (23). The operator w maps 
E A ---+ E A -1 where A -I = (.X! I, ... , \[1

). Thus, the space eN carries a representation of the 
algebra specified by (13) and (34) only if the set of { Ai, i = 1, ... , k} in (23) is invariant 
under the inversion Ai 1-t A;1

. We see that decomposition (23) can contain summands in 
the form of couples EA = EA EB EA-1 and possible excGptional representations EA. with 
A€ = (~:1, ... , Ed), Ei = ±1, i.e. we have 

(35) 
€ 

where r(~:) are nonnegative integers. This decomposition can be chosen in such a way that 
the matrix w has a block diagonal form with r blocks Wi : EA; ---+ EA; of the form . 

where Wi: EA; ---+ EA-:-1 and a number of blocks w€: EA. ---+EA.· 
Let us first look ~t the components specified by pairs (EA., w€). It follows from the. 

irreducibility of the representation EA. and the fact that w; = 1 that w€ is defined up to an 
overall sign. 'Let w~o) be a standard choice of w€. Denote by F€± the representation of the 
algebra (13), (34) specified by (EA., ±w~0)). 

As for the blocks (EA;, wi) we first note that due to the irreducibility of EA; and EA-:1 the 
• operator wi is defined up to a constant factor. This constant factor can be gauged away by 

conjugating wi with a suitable rescaling transformation 

( 
1. /-li 0 ) 

0 1. /-l2 
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where p,1 , p,2 are complex numbers of absolute value 1 (these rescalings are allowed gauge 
transformations). Thus, we get a single representation of the algebra specified by (ui, w) 
that we denote FAi. This representation is irreducible except for the cases when Ai = Ae for 
some E. Then we have wi = ±w~o) and one can readily check that FA. ~ Fe+ EB Fe-. This 
permits one to decompose CN into the components 

(36) 

where "le = ±, T(E) are nonnegative integers specifying the multiplicities with which the 
corresponding representations enter the decomposition. The "representation I" and "repre
sentation II" of paper [18] are particular cases of the two types of elementary representations 
we have at hand: FA, Fe11•. Note that the set of numbers Ai, r, T(E) is uniquely determined 
by the given module E over B9 =To ~ Z2 and by an equivariant constant curvature con
nection Vi on it. The residual gauge transformations preserving the decomposition (36) can 
be represented as compositions of transpositions acting inside each FA; block and sending 
Ai ---t Ai1 and permutations of different FA; blocks. Thus, the moduli space of equivariant 
constant curvature connections is isomorphic to (Td /Z2Y / Br where r is some integer. Using 
the relation 

g.c.d.(p,(E)) = 2r + LT(E) 
€ 

one can find an estimate from above on r: r ~ [ g.c.~.(p.)] • 
Let us comment here briefly on the invariance of the above results under Morita equiv

alence. It follows from the definition that the mapping of modules and connections in
duced by (complete) Morita equivalence relation preserves the gauge equivalence relation 
and maps equivariant constant curvature connections into equivariant constant curvature 
connections (see Appendix). Hence, the moduli spaces over the modules related by Morita 
equivalence are isomorphic. In particular the dimension r of the moduli space is preserved 
under Morita equivalences. Since the number g.c.d.(p,(E)) is also preserved we see that 
2::€ T(E) = g.c.d.(p,(E)) - 2r is preserved under Morita equivalence. In fact the set of pairs 
(T(E), 'fJe) can only get permuted under Morita equivalence transformations. One can show 
that for modules admitting a constant curvature connection the set of parameters { ( T( E), r~t:)} 
is in a one-to-one correspondence with additional topological numbers characterizing the 
module (see (21]). 

6 z4 orbifolds 

In this section we will consider the case of toroidal Z4 orbifolds. For definiteness let us 
concentrate on the four-dimensional case. It is not hard to extend the results we obtain to 
other even-dimensional Z4 toroidal orbifolds. For d = 4 without loss of generality one can 
define a Z4 action on R 4 by p : (x, y) f--7 ( -y, x). Here we assume that R 4 has a product 
structure R 2 x R 2 and x, y belong to the first and second R 2 factor respectively. This 
action preserves the orthogonal lattice D ~ Z4 c R 4 and thus descends to an action on 
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the torus R 4fD. We can consider a noncommutative four-torus To constructed by means 
of lattice D and an antisymmetric two-form (}ii that .is assumed to be decomposed into a 
2 x 2 block form relative to the R 2 x R 2 product structure. One can easily see that such 
a form is invariant with respect to the above defined Z4 action. Thus, we can consider a 
noncommutative toroidal orbifold T0 >4 P Z4 • 

Let E be a projective module over this orbifold and let Y denotes a representation of the 
Z4 generator. Applying the general construction of section 4 we arrive at the decomposition 
{23) and a representation of a matrix algebra generated by Ui andy, satisfying (13) and 

4_1 
y- ' (37) 

The total representation space CN splits into irreducible· representations of this matrix al
gebra. To describe those we first classify the orbits of the Z4 action p* on the dual torus 
T4 

"' R* 4 / fr. For a generic point of T4 the orbit consists of 4 distinct points. There 
are 16 exceptional points. Those include the four fixed points: (0, 0; 0, 0), (0, 1/2; 0, 1/2), 
(1/2, 0; 1/2; 0), and (1/2, 1/2, 1/2, 1/2), and 12 points whose orbit is of length 2. The last 
ones have coordinates 0 or 1/2 and they complete the Z4 action fixed points written above 
to the whole set of 16 Z2 action fixed points (the Z2 action is specified by p2). Hence, we 
have 4 orbits of order 1 and 6 orbits of order 2. Denote the fixed points Af., f = 1, ... , 4 and 
the pairs of points whose orbits are of order 2 by (A~, A~), v = 1, ... , 6. 

Let us first consider the representations corresponding to generic points. Denote 

EA = EA EB Ep•A EB E(p•)2A EB E(p•)3A. 

Relative to this decomposition the generator y can be written in a block form as 

Y12 0 
0 Y23 

0 0 
0 0 

y~) 
where Yii : E(p•)i-lA ---+ E(p•)iA· It follows from irreducibility of representations EA that the 
blocks Yii are determined uniquely up to constant factors. These constant factors can be 
gauged away by gauge transformations that multiply each of the E(p•)nf\. components of EA 

by a constant. Thus, we obtain a representation FA of the matrix algebra (13), (37) (we 
hope that using the same notation as the one used in the previous section when studying 
the Z2 case will not cause any confusion). 

Next let us look at representations labeled by pairs of exceptional points (A~, A~). The 
representation of rational torus is EAv = EA~ EB EN,:. A general form of the generator y is 

y = ( 0 J.l1 • Y1 ) 
J.l2 · Y2 0 

where y1 : EN,: -+ El\.~, y2 : EA'v -+ EN,: are fixed and J.t1 , J.t2 are constants satisfying 
(J.t1J.t2)2 = 1. Using gauge transformations one can bring y to one of the two forms specified 
by J.li = J.t2 = 1 and J.li = -J.t2 = 1. Therefore, we have two inequivalent representations of 
the algebra (13), (37) denoted a; with ± standing for the sign of the product J.ll/-l2· 
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Finally, consider the fixed points A£. Since each EA. is an irreducible representation of 
a rational torus the operator y acting on it is defined uniquely up to a multiplication by a 
4-th root of unity ~k :__ exp(27rik/4), k = 0, 1, 2, 3 . Thus, for every fixed point we have 4 
different representations F:, k = 0, ... , 3. 

The generic representation FA is irreducible unless A hits one of the exceptional points. If 
it hits a fixed point the representation splits as FA. rv ffi~=oF:. In this case the representation 
of Z4 is a tensor product of a regular representation with a representation that acts -on a 
single copy of EA. . If A coincides with one of A~ or A~ the corresponding representation 
splits as FA~ :: FA'J rv a: ffi a;. Using these equivalences we can decompose a general 
representation as 

where (v = ±; 1J!, i = 1, 2, 3 are a triple of distinct integers from 0 to 4; ri(t:) and s(v) 
are nonnegative integers standing for the multiplicities of modules. The numbers r, ri(t:), 
s(v), (v = ±, 1J! are uniquely determined by a given module. In is straightforward to 
generalize considerations of the previous section to show that the moduli space of equivariant 
constant curvature connections is isomorphic to ('fd /Z4Y I Sr where r is some integer such 

that r :::; [ g.c.!.(IL)] . The last restriction follows from the relation 

3 

g.c.d.(f1,) = 4r + 2(2: s(v)) + 2:2: ri(t:). 
v £ i=l 

7 Coulomb· branches of the moduli space 

Once we described moduli space of constant curvature connections it is not hard to add 
scalar fields to the discussion. Let us first consider the case of tori. The equations for scalars 
that we have are 

(39) 

Here I= 1, ... , 9-d. For the fixed representation of Vi (10) the first equation in (39) implies 
that XI are constant N x N matrices. It follows then from the last two equations that the 
matrices XI, ui can be simultaneously brought to the form when X/s are diagonal and u/s 
are block diagonal corresponding to the decomposition (23). Moreover the X/s are constant 
on each irreducible component EA;· Quot~enting over SNo residual gauge transformations 
gives us Coulomb branches isomorphic to (R9-d)No I SNo that matches with a dual (Morita 
equivalent) description of this system as a system of N0 = g.c.d.(f1,(E)) DO-branes. 

For the case of a Z2 orbifold in addition to equations (39) we have the condition· 

[W,XI] = 0. (40) 

This implies that the matrices XI commute with the matrix w. Thus, the matrices ui, w, 
and X/s can be simultaneously brought to the form that corresponds to the decomposition 
(35) and Xt are in a block diagonal form with r blocks x}i) : FA;,r/i -+ FAi,-'li' i = 1, ... , rand 
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blocks of the form xj : FE --t FE. The last ones are necessarily constants due to irreducibility 
of EA·· If none of the points Ai coincides with one of the fixed points AE we obtain Coulomb . . 
branches of the form 

If Aik = AE for some subset of indices ik, k = 1, ... , p and for some E, each representation 
F>.ik ,71 breaks into a direct sum of two representations Fe and Fe- and instead of the factor 
(R<9-d)Y ISr x ((R<9-d)t(e) ISr(e)) we get a factor of 

(41) 

This picture has an interpretation suggested in [18] in terms of splitting of a DO particle 
into a membrane-antimembrane pair that occurs once the DO particle hits a fixed point. In 
terms of this interpretation ( 41) corresponds to p membranes (or antimembranes depending 
on the value of TJe) and p + T(E) antimembranes (membranes) sitting at the fixed point Ae· 

Now let us look at the Z4 case. Again we have a set of 9- d N x N matrices X 1 . These 
matrices commute between themselves and with the matrix y. This leads us to a block 
decomposition of each of the X 1 relative to the decomposition (38) in which X 1 is constant 
on every irreducible representation of the algebra generated by ui, y. Thus, for a generic 
point in the moduli space of constant curvature connection the Coulomb branch is 

3 

(R(9-d)r I Sr X II (R<9-d))s(v) I Ss(v) II IT (R(9-d)ti(e) I Sri( e). 

v E i=l 

If one of Ai in (38) coincides ~ith one of exceptional points A~, A~ or Ae representations 
FAi split accordingly as FA~ rv FA:; rv Gt EB a;;' or FA. rv EB~=OFEk. In that case the block 
decomposition of X 1 is different and the answer is best described using brane terminology. 
In general the moduli space coincides with the one describing a system consisting of a num
ber of free DO particles, single membranes that are stuck at fixed points Ae and pairs of 
membranes sitting at points (A~, A~). It seems to be natural to identify parameters (v, 'f/e 
specifying different types of membranes with a discrete B-field flux carried by them. 
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Appendix. Morita equivalence of toroidal orbifolds 

In this appendix we will show how Morita equivalences known for noncommutative tori can 
be extended to noncommutative toroidal orbifolds. We will give a general construction for 
arbitrary orbifold group G and then specialize to the Z2 and Z4 cases. 
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We start by reminding the reader some basic definitions concerning Morita equivalence 
(see [5] for details). Let A and A be two involutive associative algebras. A (A, A)-bimodule 
Pis said to establish a Morita equivalence between A and A. This means that the projective 
bimodule P obeys the conditions . 

(42) 

where P is a (A, A)-bimodule that is complex conjugated to P that means that P consists 
of elements of P and multiplications are defined as a(e) := (e)a*, (e)a := a*(e) where 
multiplications on the right hand sides are those defined for the bimodule P. The algebras 
A and A are said to be Morita equivalent if such P satisfying ( 42) exists. The bimodule P 
determines a one to one correspondence between A-modules and A-modules by the rule 

E=E®AP, E=E®AP. 

For the case of noncommutative tori one can define a notion of complete Morita equiva
lence ([5]) that allows one to transport connections between modules E and E. We say that 
(To, An) Morita equivalence bimodule P establishes a complete Morita equivalence if it is 
endowed with operators vr that determine a constant curvature connection simultaneously 
with respect to To and To, i.e. satisfy 

\lf(ae) = a\lf e + (8ia)e, 
\lf(ea) = (\lfe)a+e8ia, 
[V'f, Y'f] = O"ij. 1. {43) 

Here t5i and Ji are standard derivations on To and To respectively. Sometimes for brevity 
we will omit the word Morita in the term (complete) Morita equivalence bimodule. If P 
is a complete (To, To) ·equivalence bimodule then . there exists a correspondence between 
connections on E and connections on E. An operator \1 i ® 1 + 1 ® \7 r on E ®c p descends 
to a connection V Q on E = E ®Te P. The curvatures of· Vi and \7 i are connected by the 

v- A'il formula Fij - Fii + laii. 
Given a (T0 , To) equivalence bimodule P there is a possibility of extension of the equiv

alence relation that it defines to modules over orbifolds To ~R G, To ~R G. We will first 
describe a general construction and then discuss for which bimodt!-les P it exists. 

Assume that Pis equipped with a set of operators WP(g), g E G satisfying 

WP(g)WP(h) = W(hg), 

(WP(g))- 1UnWP(g) = Unn, {44) 

where Un and Un stand for actions of T0 and To generators respectively. The first equation 
in (44) means that operators WP(g) give a right action of the group G on E that is just 
a choice of conventions. IfF is a right module over T0 ~R G specified by a T0-module E 
and operators W(g) acting on it one defines a right T0 ~R G module F as a To-module 



E = E XT8 P equipped with operators W(g) := W(g) ® WP(g). Analogously one defines a 
mapping in the opposite direction. 

Given a pair ( P, {W P (g); g E G}) as above one can construct a true (To >4 R G, T9 >4 R G) 
Morita equivalence bimodule in the sense of general definition given at the beginning of 
this section. The construction goes as follows. To shorten notations denote Bo = T0 >4R G, 
B9 = T0 >4R G. Elements of the (B0 , B0) bimodule that we denote Q are pairs p®c 2:

9 
c(g)g 

where p E P and 2:
9 

c(g )g are formal linear combinations of elements of the group G with 
complex coefficients. Multiplication by complex numbers on Q is defined in the obvious way. 
We further define left and right actions of generators of Bo and B0 as 

Un(P ®g) = (UR-l(g)nP) ® g, W(h)(p ®g) = p ® (hg), 

(p ® g)Un =(pUn)® g, (p ® g)W(h) = (PVVP(h)) ® (gh). (45) 

One can check that Q satisfies the defining properties of Morita equivalence bimodule, i.e. 

Namely, let fix us the isomorphisms I : P ®T11 P -+ T9, I: P ®T9 P -+ Ao, then one can 
define a mapping J: Q ®s8 Q-+ B0 as 

J( (p ®g) ®se (p ®g)) = I(p ® (pWP(g-lg))) . (g-Ig). 

It is easy to check that J is an isomorphism of the corresponding (B0, B0) bimodules. An 
isomorphism J: Q ®s. Q-+ Bo can be constructed in a similar way. 

II 
We further need to construct a correspondence between equivariant connections on Bo 

and B 0 modules F, F. We call an To-connection Vi defined on a B0-module E equivariant 
if it satisfies a constraint 

(46) 

Now let us assume that we are given a triple (P, V'P, WP(g)) where P is a (To, T0) Morita 
equivalence bimodule, operators WP(g) acting on P satisfy (44), V'f satisfies (43) and an 
additional equivariance constraint (46). The couple (P, V'P) establishes a complete Morita 
equivalence of the algebras T0 . It is simple to check that due to condition ( 46) a mapping 
of T0- connections that is defined by this couple preserves the equivariance condition. We 
will say that a triple (P, V'P, WP(g)) specifies a (Bo, B0) complete equivalence. If a triple 
(P, v;, WP(g)) specifies a (Bo, Bot) complete equivalence and a triple (P', v;t, Wpt (g)) spec
ifies a ( BrJ', Bo") complete equivalence, then the tensor product P" = P® Bet P' along with the 
appropriate connection v;" and involution WP" determines (B0 , Bo") complete equivalence. 
This means that we can consider a groupoid of equivalences. 

Let us discuss now the existence of triples (P, V'P, WP(g)). First we would like to note that 
not every (complete) Morita equivalence of tori can be lifted to orbifolds. There is a:n obvious 
constraint that the matrix () should stay invariant under the orbifold group action. Morita 
equivalence of To algebras is governed by the group SO(d, djZ). An element g E SO(d, diZ) 
can be represented by a 2d x 2d block matrix 

g=(~ ~) 
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and the action on (} is given by a fractional transformation 

g: (} 1--+ (MO + N)(RO + S)-1
• (47) 

The orbifold group G naturally acts on (} as 

h : (} 1--+ Rt(h)OR(h), h E G. 

The condition that two actions commute specifies a certain subgroup of SO(d, djZ) and can 
be formalized as follows. We can embed both groups into O(d, djR). For the first group the 
embedding is obvious, for the orbifold group we embed an element specified by the matrix 
R(g) into 

R(g) ~--+ ( Rtcig) Rt(~-1) ) . 

Now the commutation condition has a precise meaning. We proceed to the construction of 
(P, VP, WP(g)) triples. The group SO(d, djZ) is generated by the following transformations. 
The first type of transformations is a subgroup SL(d, Z) of modular transformations. The 
second type consists of shifts (} 1--+ (} + N where N is an arbitrary antisymmetric matrix with 
integer entries. To generate the whole SO(d, djZ) one has to add a "flip" transformation a 
that inverts a 2 x 2 nondegenerate block in the matrix 0. Namely, without loss of generality 
we can assume that (} has a block form 

(} = ( On 012 ) . 
021 022 

where On is a 2p x 2p nondegenerate matrix. Then a flip i:r2p sends 0 into 

(0) - ( 0!/ -0!/012 ) 
a 2 - 821 0!-/ 022 - 821 0!/812 · 

(48) 

One can check that modular transformations, shifts and the flip a 2 generate the whole 
SO(d, djZ). For any such transformation that commutes with Gone can construct a triple 
(P, VP, WP(g)). Let A E SL(d, Z) and A commute with G. The corresponding (T0 , TAtoA 
equivalence bimodule consists of elements a E To and the actions of generators are defined 
as 

(a)U~ = aUAn. (49) 

where to avoid confusion we denoted by Un elements of T0 , and by U~, U~ left and right 
actions of the corresponding tori. This bimodule can be completed to a triple by adding the 
following operators Vf and WP(g) 

(50) 

where p9 stands for automorphisms of algebra To induced by the action R(g) on the lattice. 
Let N = ( Nii) be an antisymmetric G-invariant matrix with integer entries. The cor

responding (T0 , TO+N) equivalence bimodule consists of elements a E To with tori actions 
defined as 

(51) 
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The operators V'f, WP(g) are the same as in (49), (50). 
Finally we need to define a triple corresponding to a G-invariant flip (48). Although it is 

not hard if only somewhat lengthy to describe triples corresponding to generic G-invariant 
flips of the type a 2 we will confine ourselves to the "total" flip that inverts the whole matrix 
() (provided the last one is invertible). The formulas for that case are most succinCt and 
elegant. Besides this case alone will be sufficient for all our future needs. The operators Y'f 
should satisfy 

[Y'f, V'f] = -21riOik · 1. (52) 

Since () is nondegenerate the last relation defines a Heisenberg algebra. The (To, To-1) hi
module is modeled on L2 (Rdf2) space that is assumed to carry an irreducible representation 
of the Heisenberg algebra (52). The tori actions are defined to be given by the following 
operators on L2 (Rdf2) 

UJ = exp(V'f) , (53) 

Now the matrix() is assumed to beG-invariant. This assumption implies that the transfor
mation Vi ~---+ Rj\i'f is an isomorphism of the Heisenberg algebra (52). There exists then 
a set of unitary operators WP(g) satisfying (46). It follows from (46) and (53) that the 
second equation in (44) holds. As for the first equation in general it is satisfied up to a 
phase factor, i.e. WP(g) determine a projective representation of G. This possibility can be 
easily embedded into a general theory discussed above. However we will assume that the 
first equation in- ( 44) is satisfied precisely which is always the case for cyclic orbifolds. This 
finishes the construction of the corresponding triple. 

Now we specialize to the ca.Ses of Z2 and Z4 orbifolds. We will show that by use of 
Morita equivalence any module admitting a constant curvature equivariant connection can 
be mapped to a module with a nondegenerate curvature tensor (the dimension dis assumed 
to be even). First consider Z2 orbifolds. In this case the mapping x 1---+ -x always preserves 
the lattice D and any antisymmetric two-form () on it. Moreover any transformation from the 
group SO(d, djZ) commutes with the Z2 transformation. In general under transformation 
(47) the curvature tensor f = (Jii) transforms as 

(54) 

where A = R() + S. The matrix j is nondegenerate if the matrix f +A - 1 R is nondegenerate. 
One can check that there exist SO(d, djZ) transformations such that the matrix A-1 R is 
invertible and its matrix norm can be made arbitrarily large. It follows from this that 
f + A - 1 R can be made nondeg(merate. 

In the Z4 case we can choose a basis in which a.Z4 generator has a form 

( -l~x2 1202 
) 

where for simplicity we set d = 4. An arbitrary Z4 invariant matrix then has a form 
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where A, B are arbitrary 2 x 2 matrices. In particular we see that we have a big supply of 
invariant matrices with integral entries. This allows one to repeat the argument made above 
for the z2 case. 
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