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Abstract 

A five-dimensional solution to Einstein's equations coupled to a scalar field has been 
proposed as a partial solution to the cosmological constant problem: the effect of 
arbitrary vacuum energy (tension) of a 3-brane is cancelled; however, the scalar field 
becomes singular at some finite proper distance in the extra dimension. We show 
that in the original model with a vanishing bulk potential for the scalar, the solution 
is a saddle point which is unstable to expansion or contraction of the brane world. 
We construct exact time-dependent solutions which generalize the static solution, and 
demonstrate that they do not conserve energy on the brane; thus they do not have an 
effective 4-D field theoretic description. When a bulk scalar field potential i.s added, 
the boundary conditions on the brane cannot be trivially satisfied, raising hope that 
the self-tuning mechanism may still give some insight into the cosmological constant 
problem in this case. 

*Unite mixte de recherche UMR n° 8627. 



1 Introduction 

The idea that our world is a 3-brane embedded in extra spatial dimensions has been widely 
discussed as a solution to the weak-scale hierarchy problem [1, 2). More recently, attention 
has been focused on the possibilities for understanding the cosmological constant problem 
within this setting [3-23) (see [24) for an earlier treatment). A partial solution was proposed 
in [7, 8) (ADKS-KSS), where the addition of a bulk scalar, ¢, plays a crucial role (see 
also [25-27) for a discussion of the physics of a scalar field coupled to gravity). The scalar 
is a free field in the bulk, but has nontrivial couplings to fields living on the brane. Ref. [7) 
found static solutions of Einstein's equations with the property that ¢ becomes singular at 
a finite distance in the extra dimension, and the warp factor for the metric vanishes at the 
singularity. If one assumes that the extra dimension terminates at the singularity, or that the 
warp factor remains integrably small beyond it, then gravity appears to be four dimensional 
on large distance scales. Most importantly, the scalar field is supposed to adjust itself to any 
arbitrary value of the tension on the brane, which represents the four-dimensional vacuum 
energy-or at least that part of it which comes from nongravitational vacuum fluctuations. 
The fact that the metric is static means that the effective cosmological constant observed 
on the 3-brane is zero, regardless of the size of the brane tension. This could constitute 
significant progress toward the solution of the cosmological constant problem. 

The self-tuning mechanism is incomplete in several ways. In its original form in [7,8), the 
orbifold solution requires a very particular exponential coupling of¢ to the matter fields on 
the brane, ehs<P, requiring just the right coefficient "'s in the exponent, where "'s is related to 
the 5-D gravity scale M 5 by "'~ = M53

. As understood by ADKS, and explicitly realized in 
refs. [9), different choices of the coupling function f ( ¢) give de Sitter or anti-de Sitter branes 
in a Z2 bulk. Furthermore, the scalar potential in the bulk was assumed to vanish. Ref. [8) 
extended the analysis to non-vanishing potentials, and [28) gave the procedure for finding 
solutions with arbitrary potentials in the bulk (see [29) for an analytic solution associated to 
a bulk cosmological constant and see [30-32) for a discussion of exponential potentials which 
can be associated with Neveu-Schwarz dilaton tadpoles in non-supersymmetric string theo
ries [33]). Actually, as recently pointed out in Ref. [34), the Z2 symmetric and 4D Poincare 
invariant solution is unstable under bulk quantum corrections: indeed with a conformal cou
pling allowing flat solution with a vanishing bulk potential, the brane becomes curved as soon 
as a bulk potential is turned on and the jump equations relate the curvature of the brane 
to the value of the potential on the brane by R40 = K~V(¢0). Supersymmetry in the bulk 
may prevent from such instability. Another difficulty anticipated by [7, 10, 11), and explicitly 
shown by [34, 35), is that any procedure which regularizes ("resolves") the singularity in the 
solutions causes the reintroduction of the fine-tuning which self-tuning is supposed to avoid, 
unless some more explicit dynamical mechanism which automatically relaxes the effects of 
the brane tension can be demonstrated. A further possible problem is the claim that when 
normal matter is added to the brane tension, the brane remains static, in contradiction with 
cosmology [36) (however, see [37) for a recent tentative to recover usual cosmology). 

In this letter we demonstrate a shortcoming which is more severe than the foregoing ones; 
namely, starting from the very same Lagrangian which gives the static self-tuned solutions, 
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there also exist dynamical solutions, which either begin or end with a singularity as time 
evolves. In section 2 we will review the static solution, and discuss the conformal symmetry 
which allows construction of the dynamical solutions. These constitute a family of solutions, 
of which the static one is a special example. In section 3 we emphasize that, even starting 
arbitrarily close to the static solution within this family, the brane world inevitably collapses 
to a singularity or else expands starting from one, with a Hubble parameter of H"' ±l/(4t) 
as t --+ =fOO. The interpretation is that the static solution is a saddle point, unstable to small 
perturbations. The solution on the brane is shown to violate the positive energy condition, 
reflecting the loss of energy from the brane into the bulk via the scalar field. These remarks 
apply in the case when the scalar bulk potential, V ( ¢), vanishes. In section 4 we show that for 
V ( ¢) =/:- 0, our construction cannot be trivially applied to generate dynamical solutions. This 
gives further motivation for studying the stability of self-tuning solutions with a nonvanishing 
scalar bulk potential. 

The solutions we constructed were independently found by Horowitz, Low and Zee in 
Ref. (38] and were interpreted as describing a phase transition. We will argue in the final 
section that they actually rather signal an instability of the static solution. 

2 Dynamical Self-Tuning Solutions 

We will consider solutions arising from the action1 

S =I d5x Vf9sj (aR- ,B\7M¢\7M¢ -1V(¢))- I d4x VfiJJ(¢0 ) T, (1) 

where 95 and 94 are, respectively, the determinants the 5-D metric 9MN and the 4-D metric 
induced on the brane, 911v, and T is the bare tension. The brane is supposed to couple to the 
bulk in a conformal way defined by the function f ( ¢). The physical tension is thus given by 

T = f(¢o)T, (2) 

where ¢0 is the value of the scalar field on the brane. There are many conventions for 
the normalization of the terms in the bulk part of the action; to facilitate comparison with 
other papers we will leave a, ,8, 1 unspecified. We will be primarily concerned with the 
case of vanishing bulk potential, V(¢) = 0, but we shall also consider nonzero V(¢) below. 
Einstein's equations and the equation of motion for the scalar field read 

(4) 

1 Our conventions correspond to a mostly positive Lorentzian signature (- + ... +) and the· definition of 
the curvature in terms of the metric is such that a Euclidean sphere has positive curvature. Bulk indices will 
be denoted by. capital Latin indices and brane indices by Greek indices: x" are coordinates on the brane ( r 
or twill be the time coordinate and xi the spatial ones), andy (or z, if the metric is conformally flat) is the 
coordinate along the fifth dimension such that the brane is located at y = 0 (or z = 0). 
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and, for a conformally fiat metric with the form ds2 = 0 2 (z)( -dr2 + dxr + dz2 ), the jump 
conditions for the derivatives of the fields at the brane are 

[ 
dO] z=o+ T o-2
- = --f(if>o) and 
dz z=O- 6a [

0-1 dif>] z=O+ = !_ df (if>o). 
dz z=O- 2(3 dif> 

(5) 

For a vanishing scalar bulk potential, the self-tuning solution of [7,8] with a Z2-symmetric 
bulk orbifold is given by 

ds2 = 0 2 (y) ( -dr2 + dxn + dy2 = Q2 (z) ( -dr2 + dx; + dz2
) ; (6) 

if>= if>o ± ..Ji ln(1 -lyi/Yc) = if>o ± lfg ln(1-lzl/zc), (7) 

where y is the proper distance coordinate, z is the conformal coordinate for the bulk and 

O(y) = (1 -IYI/Yc)114
, O(z) = (1 -lzl/zc)113

. (8) 

However, this solution satisfies the jump conditions (5) only if the conformal coupling is an 
exponential function with the particular form 

!(¢>) = exp(":f#. ¢>). (9) 

Then the integration constant, Yc or zc, is related to the brane tension by 

(10) 

and ¢>0 remains unconstrained-which is important for what follows. A notable peculiarity 
of this conformal coupling is that it satisfies the following equations everywhere in the bulk: 

· 12a dO df 4(3 d¢> 
!(if>(y)) = -rsgn(y) n-1 (y) dy and dif> (if>(y)) = rsgn(y) dy (11) 

or, in conformal coordinates, 

f(if>(z)) =-
1
T
2
a sgn(z) n-2 (z) dO and ddj (if>(z)) = 

4
Tf3 sgn(z) n-1 (z) dd¢>, (12) 

dz if> - z 

Hence, the relation between the field derivatives and if> required by the jump conditions at 
the brane are satisfied not just there, but everywhere in the bulk. 

There is a simple procedure for transforming static bulk solutions into dynamical ones. 
As emphasized in [39], bulk symmetries can be used to construct new solutions involving 
a singularity interpreted as a brane. Starting from any regular static solution to the bulk 
equations of motion, written for simplicity in conformal coordinates, 

(13) 
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we obtain a physically equivalent solution by applying a diffeomorphism 

¢(x1\ z) = <f>(z(x~', z)) and ds2 = YMN(x1\ z) dxM ®diN. (14) 

However if we orbifold the new solution in the z direction, it becomes singular and describes 
a brane located at z = 0. The orbifold projection and diffeomorphisms do not commute: 
in general an orbifold solution constructed from (14) is not equivalent under a change of 
coordinates to an orbifold solution constructed from (13). The difficulty consists in finding a 
diffeomorphism such that the singularities introduced in the right hand side of the equations 
of motion by the orbifold projection can be associated with the brane components deduced 
from the action (1). 

In order to preserve the geometry of the brane embedded in the bulk, we want to restrict 
ourselves to diffeomorphisms (14) that keep the metric diagonal, 

(15) 

A particular subgroup is provided by the 5-D conformal transformations under which the 
metric remains conformally flat 

The infinitesimal conformal transformations are generated by the Killing vectors 

t;,M =aM+ a[MN]XN + A.xM + (xPxp 'TJMN- 2xM xN)kN 

(16) 

(17) 

where the parameters aM, a[MNJ, A., kN correspond respectively to translations, Lorentz 
transformations, dilations and special conformal transformations. 

In the present case, a combination of a boost in the z direction and a dilation provides a 
suitable diffeomorphism that will lead to a dynamical solution also satisfying the boundary 
conditions on the brane. If ¢(z) and n(z) is a regular solution in the bulk, then it is simple 
to show that 

¢(z, r) = </>(lzl + Zchr) and f2(z, r) = n(lzl + Zchr) 
J1- z~h2 

(18) 

is a Z2-symmetric solution to the bulk equations of motion. This can be checked from the 
explicit form of the bulk part of the action (1), which looks like 

Here the contractions of aM are performed with the Minkowski space metric. This action has 
the additional symmetry that, for any constant (,leaves the equations of motion invariant: 

(20) 

In the case of a vanishing bulk potential, this symmetry implies that 

¢(z, 7) = </>(lzl + ZchT) and f2(z, 7) = n(lzl + ZchT) (21) 
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is a solution in the bulk. Applying the procedure to the regular solution corresponding to 
(6)-(7), we obtain 

ds2 = (1 - lzl/ Zc - hr )213 
( -dr2 + dx~ + dz2

) ; 

</> = </>o ± fij ln(1- lzl/zc- hr). 

The nontrivial step is to satisfy the jump equations at the brane, which read 

- 2 dfi n-
dz 

T -= -- !(</>) 
12a 

z=O+ 

(22) 

(23) 

(24) 

These equations are more difficult to satisfy when the solutions are dynamical, because they 
must remain true for all conformal times T. However, in the present case of a vanishing bulk 
potential, we notice that, due to eqs. (11)-(12), the conformal coupling f of the scalar to the 
brane satisfies the relations (12) for any value of z, which ensures that the dynamical solution 
we construct satisfies the jump equations for any T, as can also be explicitly verified. So from 
the same Lagrangian which gives the static self-tuned solutions, there also exist dynamical 
solutions for which the induced metric on the brane exhibits time dependence, as will be 
discussed in the next section. The original 4-D Poincare invariant solution corresponds to 
a very particular value of the parameter h that characterized our more general family of 
solutions. This evades the no-go result of [7, 9] which excluded the possibility of de Sitter or 
anti-de Sitter branes in this case. 

3 Physical Interpretation 

The dynamical solution (22)-(23) represents a singularity which is either approaching or 
receding from the brane, depending on the sign of the continuous parameter h. Assuming 
the extra dimension is simply truncated at the singularity, the strength of gravity is therefore 
time-dependent because of the growth or collapse of the extra dimension. The 4-D Planck 
mass Mv is related to the 5-D analogue M5 by 

rc(l-hr) 

M; = 2Mt Jo 0 3 (z, r) dz = Mtzc(1- hr). (25) 

Moreover, an observer on the brane will see that his universe, although spatially flat, does 
not have 4-D Poincare invariance, but it is growing or shrinking with a scale factor given 
by O(z = 0, r). In FRW time, dt = Odr, the scale factor and the corresponding Hubble 
parameter are given by 

a(t) = (1- hr) 113 = (1- ~ht) 114 ; H= ~ =- h 
a 3(1- ~ht) · 

(26) 

The universe either begins or ends in a singularity, depending on whether h < 0 or h > 0. 
For the case h = 0, the static solution of ADKS is recovered. Therefore one can interpret h 
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as the parameter determining how far away from the unstable saddle point solution one is, 
in the space of all solutions. 

The situation is qualitatively similar to a 4-D field theory analogy, in which a cosmological 
"constant" A is coupled to scalar fields through the Lagrangian 2 

. (27) 

This system also has a saddle point solution, at ¢>2 = A and </J1 = 0; which could be construed 
as a self-tuning of the cosmological constant to zero. However, it is not a good solution to the 
cosmological constant problem because it is unstable against small perturbations. In figure 
1(a) we show the time dependence of the Hubble parameter for both the 5-D self-tuning 
solution and the 4-D toy model, in the case of a collapsing universe, which is the generic 
outcome for the 4-D model. Although H(t) looks rather similar in the two cases, for the 4-D 
model H starts positive and crosses zero, while for the 5-D solution it is always negative. 
The differences are more clearly seen in figure 1 (b), showing the scale factors a( t) in FRW 
time. 

.... 
Q) -

1 
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Q) -1 
E 
~ 
[ -2 
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-- 4-D field theory 

',. 

..0 -3 
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-5 
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~ 
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<U 
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en 0.5 
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0 
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', 
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\ 

-- 4-D field theory ~ 
\ 

5-D self-tuning solution : 

1 2 
time 

3 4 

Figure 1. {a) Comparison of the Hubble parameter as a function of time for the 5-D self-tuning 
solution and the 4-D toy model {27), for the case of a collapsing brane-world. {b) Same, but showing 
the respective scale factors versus time. 

A further difference between the 5-D solution and any attempt to describe it in a 4-D 
effective theory is that the 5-D solution appears to violate energy conservation when viewed 
from the 3-brane. If we were in 4 dimensions, the scale factor dependence in eq. {26) would 
correspond to a 4-D stress energy tensor 

( 

-
1 

5 ) TIL- Po 3 
v - aB(t) ~ ~ 

-----------------------------

{28) 

2We thank Nima Arkani-Hamed for making us aware of this concept, through a related example. 
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where p0 = Mih2 /3. This has the equation of state p = (5/3)p, which implies that there 
exists a null vector ~~-' which, when contracted with Tt, gives a spacelike vector, contrary 
to the requirement of positivity of Tt. This is due to the nonconservation of energy on the 
brane, which can be explicitly demonstrated in the 5-D theory, by computing the singular 
part of the divergence of the 5-D stress energy tensor3 

!'· i> + 3H(p + p) = !{p- 3p)y1> (29) 

In this context, p- 3p = 4T, and in the dynamical solutions, as long as his non-vanishing, ~ 
is nonzero on the 3-brane, so the right hand side of (29) is nonzero. More simply put, since 
the physical tension T = f(¢>)T is time-dependent,4 energy is not conserved on the brane. 

4 Nonvanishing Bulk Potential 

An interesting question is whether our procedure can be generalized to the case when the 
bulk potential is nonvanishing. We do not have a definitive answer, but we can argue that, 
if dynamical instabilities of the static solution exist, they are much more difficult to find 
than when V(¢>) = 0. We are interested in orbifold solutions that can be constructed from 
a regular bulk solution, O(z) and ¢>(z), which satisfies the jump equations (5) at z = 0. 
An important property of the vanishing potential solution that facilitated finding dynamic 
solutions was that the jump equations were actually satisfied for any z, not just at z = 0. 
This property cannot be maintained when the scalar potential is turned on, while still having 
a self-tuning solution. Indeed, it is easy to verify that if the relations (5) are satisfied for 
any arbitrary values of z, the bulk equations of motion imply the relation 

(30) 

between the bulk scalar field and the conformal coupling. This relation is incompatible with 
the self-tuning mechanism unless the bulk potential vanishes; otherwise either V ( ¢>) or f ( ¢>) 
would have to depend on T, rather than ¢>0 . One way to overcome this difficulty might 
be to consider diffeomorphisms r, z ------t f, z such that z = 0 implies z = 0 independently 
of f. But it seems difficult to find such a diffeomorphism that leaves the,metric diagonal. 
Another possibility would consist in relaxing the Z2 symmetry in the bulk since a naive count 
of parameters (28] shows that an integration constant remains unconstrained by the jump 
equations and could be promoted to a time-dependent function. However the continuity 
of the solution on the brane is no longer guaranteed at each time. These observations may 

3In this equation p and p are the physical energy density and pressure describing the matter living on 
the brane and conformally coupled to the scalar field. 

4 Curiously, if all the parameters of the Lagrangian (I) as well as the parameter hare of the order of the 
4-D Planck scale, with the age of the Universe estimated to fifteen billions years, today the physical tension 
would be of the order of (5 TeV)4 , close to the electroweak scale. 
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indicate that the self-tuned solutions in the case of a nonvanishing bulk potential do not suffer 
··· from the kind of instability we have found with the ADKS-KSS solution whose pathology 

comes from the massless and unstabilized scalar field. 

5 Conclusion 

We have shown that the ADKS-KSS self-tuning solution is unstable against eternal expansion 
or singular collapse of the brane-world. Interestingly, the dynamics on the brane cannot be 
represented by a 4-D field theory, since energy flows off the brane into the bulk and thus 
appears not to be conserved on the brane. We have suggested that these problems may not 
occur in the presence of a potential energy in the bulk for the scalar field. If this hypothesis is 
correct, then further indirect evidence would consist in perturbing the brane with matter or 
radiation, and checking whether it behaves according to normal 4-D cosmology. We expect, 
in analogy to brane models without a stabilized radion, that a nonstandard Friedmann 
equation on the brane, such as H ex p [40], will be a diagnostic of instabilities in the extra 
dimension, if they exist. Work along these lines is currently in progress [41]. 

In a closely related study, Horowitz, Low and Zee recently presented in [38] a general 
class of plane wave solutions where the metric is parametrized as ds2 = e2A(t,y) ( -dt2 + dy2 ) + 
e28(t,y)dxr, and B(t, y) = (1/3) ln(f(t- y) + g(t + y)) for arbitrary functions f and g. The 
corresponding expressions for A(t, y) and <P(t, y) are generally more complicated, but it is 
possible to find solutions where A(t, y) = B(t, y) and f and g are both linear functions, which 
are the same as our solutions.5 Interestingly, [38] interpret these solutions as describing a 
phase transition claiming that it is possible to start with the static ADKS-KSS solution, at 
times t < 0, and smoothly match it to the dynamical solutions for t > 0, provided there is 
a sudden change b..T in the brane tension at time t = 0. This would have demonstrated a 
physical mechanism for triggering the instability: an arl;>itrarily small change in the brane 
tension, such as would occur during a first order phase transition. However, it does not seem 
possible to have continuous time derivatives of the fields when such a gluing of the two kinds 
of solutions is attempted. 6 Such a solution would require that the tension on the bnine be 
proportional to c5(t), rather than simply having a discontinuous change. On the other hand, 
the property of having dynamical solutions evolving to or from a Big Crunch or Bang with 
the same value of the brane tension translates into an instability of the static solution with 
respect to initial time derivatives since a small perturbation in <P~ drives the solution to a 
nonvanishing value of h, and then unavoidably leads to a singularity in the time evolution. 

5When the warp factor is normalized to one on the brane at t = 0, the relation between the integration 
constants are zc =Yo/((,- 2), h = f,fyo and ¢o = d + dn IYol· 

6This can be seen in (V.18) of [38], where y~(t) must have a Dirac delta function at t = 0 if y* goes from 
being a constant to being linear in t at t = 0. 

8 



Acknowledgements 

We thank Nima Arkani-Hamed, Csaba Csaki, Joshua Erlich and Stephane Lavignac for 
stimulating discussions. P.B. thanks the Theory Group at LBNL for its hospitality and its 
support. C.G. is supported in part by the Director, Office of Science, Office of High Energy 
and Nuclear Physics, of the US Department of Energy under Contract DE-AC03-76SF00098, 
and in part by the National Science Foundation under grant PHY-95-14797. 

References 

[1] I. Antoniadis, Phys. Lett. B246 (1990) 377; N. Arkani-Hamed, S. Dimopoulos 
and G. Dvali, Phys. Lett. B429 (1998) 263 [hep-ph/9803315]; I. Antoniadis, 
N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B436 (1998) 257 
[hep-ph/9804398]; N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Rev. D59 
(1999) 086004 [hep-ph/9807344]; N. Arkani-Hamed, S. Dimopoulos and J. March
Russell, [hep-th/9809124]; See also K. R. Dienes, E. Dudas and T. Gherghetta, · 
Phys. Lett. B436 (1998) 55 [hep-ph/98034?6] and Nucl. Phys. B537 (1999) 47 
[hep-ph/9806292]. 

[2] L. Randall and R. Sundrum, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] and 
Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064]. 

[3] P. J. Steinhardt, Phys. Lett. B462 (1999) 41 [hep-th/9907080]. 

[4] C. P. Burgess, R. C. Myers and F. Quevedo, hep-th/9911164. 

[5] E. Verlinde and H. Verlinde, JHEP 0005 (2000) 034 [hep-th/9912018]. 

[6] C. Schmidhuber, hep-th/9912156. 

[7] N. Arkani-Hamed, S. Dimopoulos, N. Kaloper and R. Sundrum, hep-th/0001197. 

[8] S. Kachru, M. Schulz and E. Silverstein, hep-th/0001206; 

[9] S. Kachru, M. Schulz and E. Silverstein, hep-th/0002121. 

[10] D. Youm, hep-th/0002147. 

[11] S. P. de Alwis, hep-th/0002174. 

[12] E. Witten, hep-ph/0002297. 

[13] J. Chen, M.A. Luty and E. Ponton, hep-th/0003067. 

[14] I. Low and A. Zee, hep-th/0004124. 

[15] S. P. de Alwis, A. T. Flournoy and N. Irges, hep-th/0004125. 

9 



[16] R. Bousso and J. Polchinski, JHEP 0006 (2000) 006 [hep-th/0004134]. 

[17] Z. Kakushadze, hep-th/0005217. 

[18] C. Schmidhuber, hep-th/0005248. 

[19] J. L. Feng, J. March-Russell, S. Sethi and F. Wilczek, hep-th/0005276. 

[20] Z. Kakushadze, hep-th/0006059. 

[21] S. H. Tye and I. Wasserman, hep-th/0006068. 

[22] A. Chodos, E. Poppitz and D. Tsimpis, hep-th/0006093. 

[23] A. Krause, hep-th/0006226. 

[24] V.A. Rubakov and M.E. Shaposhnikov, Phys. Lett. 125B (1983) 139. 

[25] 0. DeWolfe, D. Z. Freedman, S. S. Gubser and A. Karch, hep-th/9909134. 

[26] M. Gremm, hep-th/0002040. 

[27] S. S. Gubser, hep-th/0002160. 

[28] C. Csaki, J. Erlich, C. Grojean and T. Hollowood, hep-th/0004133, to be published in 
Nucl. Phys. B. 

[29] P. Kanti, K. A. Olive and M. Pospelov, Phys. Lett. B481 (2000) 386 [hep-ph/0002229]. 

[30] N. Alonso-Alberca, B. Janssen and P. J. Silva, hep-th/0005116. 

[31] S. Nojiri, 0. Obregon and S. D. Odintsov, hep-th/0005127. 

[32] C. Zhu, hep-th/0005230. 

[33] E. Dudas and J. Mourad, hep-th/0004165. 

[34] S. Forste, Z. Lalak, S. Lavignac and H. P. Nilles, hep-th/0006139. 

[35] S. Forste, Z. Lalak, S. Lavignac and H. P. Nilles, Phys. Lett. B481, 360 (2000) 
[hep-th/0002164]. 

[36] B. Grinstein, D. R. Nolte and W. Skiba, hep-th/0005001. 

[37] V. Barger, T. Han, T. Li, J.D. Lykken and D. Marfatia, hep-ph/0006275. 

[38] G. T. Horowitz, I. Low and A. Zee, hep-th/0004206. 

[39] C. Grojean, Phys. Lett. B479 (2000) 273 [hep-th/0002130]. 

10 



[40] P. Binetruy, C. Deffayet and· D. Langlois, Nucl. Phys. B565 (2000) 269 
[hep-th/9905012]. 

[41] P. Binetruy, J.M. Cline and C. Grojean, work in progress. 

11 



@IJ;J¢'1,_:fu' ~ l!:a$'.•J;Jjl:l!lil!: l=lj;J:tlliL@i? ~ ~ 

~~ ~ 0 ®i93iY31'2o ~~ 

ABY695 

1111111111111111111111111111111111111111 

LBL Libraries 


