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ABSTRACT 

Effective description of flow and transport in irregular porous media, adequate 

understanding and prediction of dispersion phenomenon and reliable estimation of the 

uncertainty, all require stochastic approach. The primary problem is finding the relations 

between the non-random functionals of the unknown and the given random fields, i.e., means, 

variations, probability distribution densities, etc. The present paper considers the process of 

transport of non-reactive admixture in random porous media with non-random sources of flow 

and solute. The paper attempts to develop the methods of finding the probability density function 

of the concentration of the solute. We introduce the random functional p ( x, t; c) , the density of 

distribution function (DDF) of the local random concentration c(x,t) in the one-dimensional 

phase space of possible values of c, where x can be multi-dimensional vector, and t is time. By 

using the stochastic transport equation in the (x,t) space, we can write the stochastic equation 

for the functional p(x,t;c) in the (x,t;c) space. We show that this equation bears the 

mathematical form of the transport equation in the (x,t,c) space, with p(x,t;c) in place of 

concentration. In this fictitious transport equation, the c axis velocity is non-random and 

depends on the densities of flow and solute sources in the (x,t) space. It is also shown that the 

velocity field in the(x,t;c) space is non-divergent, and that the p(x,t;c) field, the fictitious 

solute, has no sources and is reactive. The averaging of the new transport equation in the (x,t;c) 

space with special initial conditions that are dependent on the variable c ( in the case where the 

closed-form averaging is possible) leads to describing P(x,t;c) = < p(x,t;c) > -the probability 

density function (PDF) for c(x,t) in c phase space and the corresponding power moments. We 
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present and analyze a number of example PDFs for the concentration c(x,t) in several different 

cases of flow velocity fields and initial concentration distribution. 
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1. DENSITY DISTRIBUTION FUNCTION (DDF) OF CONCENTRATION 

c(x,t) IN ONE-DIMENSIONAL PHASE SPACE 

It is clear that merely describing the behavior of the mean concentration in space and time is not 

enough to understand the transport process in details. One must at least also examine the 

probability density function (PDF) of the local concentration c(x,t) in space for its possible 

values of c or the set of highest momentum of the concentration c(x,t). 

It should be noted that these characteristics are not yet enough for a full description of the 

random concentration field c(x,t). It is well known that for this purpose it is necessary to obtain 

the characteristic functional of the field c(x,t) or its infinite-dimensional probability density 

function. 

· Following the works by Klyatsldn[I980], Shvidler[I985], Indelman and Shvidler[l985], Shvidler 

and Karasaki[l995, 1996 and 1997], we will study the probability density function (PDF) ofthe 

concentration c(x,t) in one-dimensional phase space of its possible values of c and the power-

moments of the random function c(x,t). 

Let us now assume that the field of local concentration in infinite D-dimensional space is 

described by the equations: 

8c(x t) o [ ] (J(x) ' +- v;(x,t)c(x,t) = rp(x,t) at ax; . 
(1) 

c(x,t0 ) = f(x). (2) 
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The density of solute sources <p(x,t) and the density of liquid sources If!( X,!), where 

( ) 
8v;(x,t) 

"' X I = ___:... __ 
'f' ' Ox 

I 

(3) 

are considered as non-random functions. 

We introduce the DDF -the density of distribution function of the local concentration c(x,t) in 

one-dimensional phase space c : 

p(x,t;c) = o[c(x,t)-c] (4) 

Differentiating the equation (4) over timet and over Xi we can write: 

op(x,t;c) op(x,t;c) oc(x,t) 
= 

ot oc at 
(5) 

()p(x,t;c) ()p(x,t;c) iJc(x,t) 
= 

Ox; Oc Ox; 
(6) 

And after combining the equations (1), (5) and (6), we obtain the so-called Liouville equation- a 

closed form of the stochastic equation for the density p(x,t;c): 

"'( )op(x,t;c) (- )op(x,t;c) ( . )op(x,t;c) ( ) ( . )-O 
'I' x + V; x,t - + v x,t,c -lfl x,t p x,t,c -

at ax; c ac (7) 

where the non-random function vc (x,t;c) IS 

vc (x,t;c) = <p(x,t)- Clfl(x,t). (8) 

The initial condition for the density p(x,t;c) can be found from (5) and (2): 

p(x,to;c) = o[f(x) -c]. (9) 

Clearly, the following interpretation can be made: The Liouville equation (7) is the transport 

equation of the reactive "solute" in the D+ 1 dimensional space (x; c) with the field of velocity 

V(x,t;c) = {[v;(x,t)], vc(x,t;c)}. The field V(x,t;c) in the fictitious space depends on v;(x,t) -
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field of velocity in the real space and the densities <p(x,f),f//(X,f) and the parameter c 0 We can 

see that the "flow" in D+ 1 space does not have sources because: 

divx,c V(x,f;c) = av;(X,f)l Ox; -l!f(X,f) = 0' (10) 

and the reactivity of the "solute" depends on If/( X, f) -the density of flow in real space. If the real 

flow does not have sources, the "solute" in D + 1 space is non-reactive and it travels by the field 

V(x,f;c). In this case we have the transport equation: 

"'( ) 8p(x,f;c) V( or x,f + x,f;c) Vx cP(x,f;c) = 0 0 

of · 
(11) 

It should be noted that in contrast to (11), the transport equation (1) in the real space has 

sources, <p(x,f), distributed in space when f//(x,f) = 0 and <p(x,f) :t:- 0 0 And only when 

f//(X,f) = 0 and <p(x,f) = 0, are the transport equations (11) and (1) identical, and we can write: 

"'( ) op(x,f;c) ( ) op(x,f;c) 0 
y X + V; X, f _::._:......:._.:..-..:... 

of &x; 
(12) 

p(x,fo;c) = o[f(x)- c] (13) 

2. PROBABILITY DENSITY FUNCTION (PDF) OF CONCENTRATION 

Given the different variants of the equation for the random density p(x,f;c), we can study the 

PDF-the probability density function of the local random concentration c(x,f) in the phase space 

c. According to the definition, the probability density function (PDF) is: 

P(x,f;c) =< p(x,f;c) >, (14) 

where the symbol < > denotes the ensemble averaging of the realization of the random fields 

v(x,f) and t/J(x) 0 The primary problem is averaging the system described by (7) and (9) and 

finding a closed-form equation for P(x,f;c). Obviously the averaging of this one system is 
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similar to averaging general transport equations, which is a well-known, very difficult problem. 

We assume that the averaged system exists and has the form: 

LP(x,t;c) = 0 

P(x,t0 ;c)=8[f(x)-c], 

(15) 

(16) 

where L is a non-random linear operator defined in the space of functions of variables x , t and 

c. Let G(x,t;cl x;c) be the solution of the problem: 

LG(x,t;cl x,c) = 0 

G(x,t0 ;cl x;c) = 8(x- x)8(c -c) . 

Then obviously the PDF is: 

P(x,t;c) = Jacx,t;cl x;c) o[f(x)- c) ]ax dC, 

or after integration over c : 

P(x,t;c) = jG(x,t;cl x;f(x)) ax. 

(17) 

(18) 

(19) 

(20) 

If for example the operator L does not depend on c, and if rp(x,t) = 0 and '1/(x,t) = 0, the 

function G also does not depend on the parameter c , and we have the problem for G reduced 

to: 

LG(x,t,x) = 0 

G(x,to, x) = 8(x- x). 

Then we can write: 

P(x,t;c) = Jacx,t,x)o[f(x) -c]ax. 

(21) 

(22) 

(23) 

It should be remembered that the 8 -function in the integrals (19) and (23) are defined in one-
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dimensional space c and c respectively. If the x -space is also one-dimensional, and suppose 

that xt is the i-th root of the equation: 

f(x)=c, (24) 

we can write: 

n -1 . 

o[f(x)-c] = L:lf'cxnl o(x -x-n. (25) 

From (23) we find the PDF, 

n -1 

P(x,t;c) = L:IJ(xt)l G(x,t,xn. 
i 

(26) 

If D > 1, we can solve the equation ( 24) with respect to any variable x; where j <D. In this 

case the i- th root x;i depends not only on c' but also on all variables xk except xj. 

(27) 

and we have the expression: 

kAx) . -1 

ojf(x)-cj= L:IJ~(x;, ... ,x;, ... ,xv)l o(xj-xJ;). 
i=l 

(28) 

After using (28) and (23) we can finally write: 

k1(i) -I D 

P(x,t;c) = f L G((x~> ... ,xv),t,(x;, ... ,x;, ... ,xv) )!J;(x;, ... ,x;, ... ,xv)l I1 dx1 • (29) 
i=l /,/~ j 

3. POWER MOMENTS OF THE CONCENTRATION c(x,t) 

If the operator L does not depend on C, after multiplying equations (15) and (16) by en and 

integrating them over C, we can write for any power moment: 
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un(x,t) =(en (x,t)) =fen P(x,t;c)dc, (30) 

the equation and the initial conditions for power moment un are 

Lun = 0 (31) 

4. ONE-DIMENSIONAL TRANSPORT 

Now we consider one-dimensional transport problems where the flow velocity v(t) is Gaussian 

or the telegraph processes. Shvidler and Karasaki, [1995 and 1996] derived the exact equations 

for the mean concentration and their exact solutions. Later [Shvidler and Karasaki ,1997] they 

presented the exact expressions for the probability density functions (PDF) and the exact power 

moments ofthe random concentration c(x,t). 

In the one-dimensional case for the random density p(x,t;c), when ¢(x) = ¢ = const, we have: 

¢ o p(x,t;c) + v(t) o p(x,t;q) = 0 ot ox 
(33) 

p(x,to,c) = o[f(x) -c] . (34) 

Let f(x) = C0 exp[ _lx ~ x.Jl Thus for 0 < c < C0 the equation f(x) = c has two roots 

and the initial condition (34) can be rewritten as: 

(35) 

for the exponential initial function we find IJ'(xJI =cIa and we have the form: 
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a[ c c ] p(x,t0 ;c)=- b'(x-x0 -aln-)+b'(x-x0 +aln-) . 
c Co C0 

(36) 

If the velocity v(t) is a Gaussian random process with the exponential autocorrelation function 

(37) 

-so called Ornstein-Ulenbeck random process [Yaglom,I987], we can use the expression of the 

mean concentration derived by Shvidler and Karasaki [1995], (see also the formula (53) from 

Shvidler and Karasaki [2000]) and find P(y,r;c) = C0P(y, r;c) -the dimensionless PDF: 

P (- r·c) = a {ex [ (y +alnc)2 ]+ex [ (y -alnc)2 ]} 
G Y' ' c ~ 1rA-(r) P A-(r) P A-(f) 

(38) 

A,(f) = e-2-r + 2f -1 

For the velocity v(t)- the telegraph process with the same mean V and correlation function B(t) 

in (37), the appropriate solution derived by Shvidler and Karasaki [1995], ( see also the 

formulas (48)-(51) from Shvidler and Karasaki [2000]) should be used again , and after 

transformation we can write 

Pr(y,r;c) = ~[<D(.Y;,f")+<D(y2.f)], 
c 

(39) 

where for IY; I :$; r, i =I, 2: 

Here 1
0 
(Z;) and 1

1 
(z;) are the modified Bessel's function of the first kind of order zero and one, 
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respectively and y1 =y-alnc, and - ~-2 -2 z; = r - Y; . 

For I.Y;I > 'T, we have: 

(41) 

The PDF's PG(.y, r;c) and ~(y, 'T;c) are clearly even for the variable y. Also obvious is that 

the PDF Pc(y,'T;c) is continuous in space C. On the other hand ~(y,'T;c) can have 

discontinuities depending on the variables y and f. Rearranging the 0 -functions in (39) for 

'T < y and y > 0, we have the expressions: 

(42) 

- ( y +'T) c1 =exp --_-, 
- y-'T 
c2 = exp(--_-), (43) 

a a 

(44) 

If c < s or c > c2 , we have 

~ (.Y,"T;c) = o (45) 

Thus if y > 'T, the PDF in the phase space outside the interval (q,c;) is equal to zero, at 

points S and c2 the PDF has 0 -function components, and inside the interval the PDF is 

continuous. 

If :r > y, the PDF has the form: 

~(y, :r;c) = e~r- { b'(c- s) + b'(c -c;) +; ['I'r (f,zr) + '¥ 2 (f,z2)J}, (46) 



If 0 < c < c; , we find 

Pr (.Y, r;c) = o 

And if 0 < c < c; , we find 
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.{47) 

(48) 

Thus if r > y, the PDF in the interval (0, c;) is equal to zero. At points c; and c3 , the PDF has 

o-function components and inside the interval (G;, I) , the finite part of the PDF has a finite step 

at c = G; . To note, the existence of the o -components is associated with the fact that for any 'f 

the part of realization (the rate is e -'f) of the velocity v(t) has no jumps. One half part of them 

has a velocity (V - a0 ) and the other half has - (V + a0 ) • Thus at point y among the 

concentration transport realization with velocity jumps, we find two concentrations that transport 

with the constant velocity (V -a0 ) and (V +ao), respectively. In the initial moment these 

concentration are located at points (jl- f) and (jl + f), and their values are exp[-j.Y- fj I a] 

and exp[-j.Y + fj I a], respectively. Obviously if y < f these concentrations are c1 and c2 , if 

.Y > f they are cl and c3 . 

Now we consider the behavior of the higher moments of the concentration c(x,t). Earlier we 

showed that when rp(x,t) = 0 and lf/(x,t) = 0, the equation for any power moment does not 

depend on the power and coincides with the equation for the probability density function, or 

with equation for mean concentration u(x,t). The difference is contained only in the initial 
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conditions for the moment and the n-th moment has the form shown in (32). If the initial 

concentration is exponential, so will the u n ( x, t 0 ) be also exponential: 

(49) 

Therefore, to compute the higher moments of c(x,t) it is possible to utilize the explicit 

expressions for the mean concentration derived for the Gaussian and telegraph velocity random 

processes by Shvidler and Karasaki[1995],( see also the formulas (56) and (57) from Shvidler 

and Karasaki [2000]). All it is necessary is to change the parameter a to a/n . 

For the Gaussian velocity we have: 

u,a(F)~~exp(~ ){exp( -~)[I-erf( ~-ak )]+expm[I-erf( fi+ ak )]} 
(50) 

In the case of the telegraph random velocity and for the same exponential initial condition we 

can write the following expression : 

where z = .J:r2 -A 2 

Now we study the behavior of the PDF by examining the following important parameters of the 

distributions: dimensionless mean concentration i1 (.Y, :r) , dimensionless mean square deviation 
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of the concentration s(y, f) , coefficients of asymmetry e (.Y, f) and excess ke (.Y, f) for the 

PDF. These parameters are defined [HCramer, 1963] as: 

(52) 

(53) 

In Figures. I~ 16 we show the P DFs for the Gaussian and telegraph velocity for various sets of 

parameters a, y and f . For each of these figures we calculate the moments u1 , u2 , u3 and u 4 , the 

mean square deviations, and the coefficients ka and ke. All this information is in Table I. 

Figures 1 ~5 show the PDF's evaluated with a= I andy = I at different values of f . It can be 

seen in Fig. I that the densities Pa(l,O.l;c) and J>;.(l,O.l;c) are very different For the Gaussian 

random velocity the distribution is almost symmetric and bel~-shaped. For the telegraph velocity 

random process the probability density outside the interval (0.3329, 0.4066) is equal to zero. On 

the borders of this interval the density is a 8- function multiplied by 0.4524. Inside the interval 

the density is decreased and it is almost linear. It is interesting that despite these strong 

differences in the distributions, the mean concentration u1 = u(l,O.l)- (the first moment of 

concentration c(l,O.l)) and other moments for both distributions are practically equal. The 

asymmetry for the telegraph velocity is less than that for the Gaussian velocity because at small 

time the essential part of P;. is the two symmetric spikes. 

For f = 0.3 and f = 0.5 (Fig.2 and 3) the behavior of the PDF's are similar to those when 

f = 0. L For example, when f = 0.5 the probability density function Pr (1,0.5) is non-zero inside 

the interval (0.2231, 0.6065). On the borders of the interval the density is a o -function 

multiplied on 0.3033. Inside the interval the PDF is decreased. As before the mean concentration 
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ii1 = u(1,0.5) for both distributions of velocity is practically the same. The difference between 

higher moments is a little more. 

When f" = 0.99 (Fig.4) the PDF is non-zero inside the interval (0.1367, 0.99). The coefficient of 

the delta-function on the borders of the interval is 0.1858 and the mean .concentration 

ii1 = u(l, 0.99) does moderate depend on the velocity process. The higher moments are more 

sensitive to the velocity distribution. 

For f" > y in accordance with the previous analysis, the behavior of the PDF for the telegraph 

velocity process is different from that of the Gaussian. For example when f = 1.2 (Fig.5) the 

PDF is non-zero for c ~ 0.1108 . At the points c = 0.1108 and c = 0.8187 the distribution is a 

delta-function with a coefficient 0.1506 and at these points the function undergoes finite jwnps. 

For c > 0.8187 the two probability densities Pa(l,1.2;c) and Pr(l,l.2 ;c) are relatively close. 

When f" = 2 (Fig.6) we can see that these tendencies intensify. The coefficient of the delta­

function is decreased to 0.0677, for c > 0.3679 both distributions are practically equal. Although 

for small c the difference between the distributions is still significant, all moments are close. 

Finally when f" = 5 (Fig.7) and the more so when f" = 10 (Fig.8), both PDF's are congruent in 

the entire interval of the variation parameter c. The moments, the mean square deviation and the 

coefficients of asymmetry and excess are practically the same. 

In summary, for a= I the densities I{; and Pr are strongly different at small times, although the 

first moments are nearly identical. For larger times the tendency is noticeable for these PDF to 

come together. (They are practically identical for f = 5 and more so when f" = 10 .) It should be 

pointed out that for the case discussed above when a = 1 , the moments of the concentration are 

weakly sensitive to the distribution of the random velocity. Now we consider the behavior the 

probability distributions when the parameter a= 0.1. In this case if y = 0 (Fig.9-13) and v(t) is a 
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telegraph process, the points c; and c2 coincide. Therefore, the probability density function 

Pr (0, r; c) is zero in the interval 0 < c < c1 = c3 , at point c = c1 = c3 the PDF contains two delta­

functions with each coefficient being e _, I 2 , and for c1 = c3 < c < 1 the PDF is continuous. 

When f" = 0.1 (Fig.9) we have c; = c; = 0.3679 , the coefficient of each delta-function is 0.4524 

and hence the fraction of the velocity realization without jumps is 0.9048. For all these 

realizations c(0,0.1) = 0.3679 and therein lies the reason for the appearance of the delta -

functions in the PDF at c = 0.3679. The functions Fa and 1{. are essentially different and in 

contrast to the case where a= 1 the moments are sensitive to distributions of random velocity. 

When f" = 0.2 (Fig.10) the behaviors of the functions PG(0,0.2;c) and Pr(0,0.2;c) are similar to 

the case when f" = 0.1 but the tendency for the two curves to come together is noticeable, which 

is well expressed by the times f"=0.5 (Fig.11) and f"=l (Fig.12). When f"=5 (Fig.13) the 

PDFs for the Gaussian and telegraph velocity, the moments and mean square deviation are all 

very close. Of interest to compare is the behavior of the probability density functions at 

different points of y for the same time f" . Fig.1 0 and Figures.l4~ 16 show the 

distributionsFa(y,0.2;c) and J{.(.Y,0.2;c) for y = O,y = 0.1,y = 0.2 andy= 0.4, respectively. 

For the Gaussian velocity the PDF's for different y are similar, whereas for the telegraph 

process the PDF's are essentially different, because the type (shape) of PDF's depends on the 

relation between y and f" . 

Thus when y = 0 and y = 0.1, that is y < f = 0.2, the density Pr(Ji,0.2;c) is equal to zero when 

c < c
1 

= e-<y+r)ta. At points c
1 

and c
3 

= e<y-r)ta the distribution has a delta-component with a 

factor e -r I 2 and inside the interval (cpl) the distribution has a jump at c3 • Therefore when 
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ji = 0 (Fig. I 0) the points c; and c3 coincide. In fact the distribution has only one delta-

component with the factor e -r and for c > c1 it is continuous. 

Wheny = 0.1 (Fig.l4) the PDF for the telegraph velocity has two delta-function components at 

c = c; = 0.04978 and c = c3 = 0.3679 and at these points the PDF has a final jump. 

When j/=0.2 (Fig.15) we have ji=f and c; =0.01831 andc3 =1. The factor for each delta­

component is 0.4094, but does not have the final jump because c3 = 1. 

When j/=0.4 (Fig.16), that is ji>f 'for c<cl =0.006738 and for c>c2 =0.1353 the 

probability density P, (0.4,0.2; c) is equal to zero. At the points c; and c; this PDF has a delta­

component and inside the interval (c1, c2 ) it is continuous. 

In Figs.l7-28 we present the distributions of the dimensionless mean square deviation of 

concentration and dimensionless mean concentration U (ji, f) = u (y, f) I C0 for exponential 

initial distribution, of concentration for a = 1 at different time f . 

For small time f = 0.2 with v(t) be Gaussian random process (Fig.17), the distribution U(ji, f) 

is close to the initial distribution . The mean square deviation s(ji, f) is relatively small. At point 

ji = 0 the minimum is evident, which is a consequence of relatively small deviation of the initial 

concentration near the point ji = 0 . 

For telegraph process v(lj (Fig.l8) the maximum of U(j/,0.2) has a plateau, but the minimum of 

s(j/,0.2) at ji = 0 is sharper. 

Similar behavior is still retained for the larger times f . As this takes place the mean 

concentration decreases monotonically and the mean square deviation increases as time goes on. 

For r = 2 (Fig.l9, 20) and ji;?: 2 the standard deviation s(ji,2) is larger than U(ji,2) for both 
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distributions of the velocity v(t) .The minimum s(Y,2) at pointy= 0 is weakly expressed, more 

likely for I.YI < 2 the standard deviation has the plateau. 

For i = 5 (Fig.21, 22) the functions U(y,5),s(y,5) depend only slightly on the behavior of the 

velocity v(t) that attained the preasymptotic phase of the transport process. For both cases except 

area I.YI < 2 the standard deviation s(Y,5) is larger than mean the concentration U(y,5). 

Furthermore we consider the case when the initial concentration c ( x, 10 ) is exponential but 

parameter a= 0.1. Fig.23, 24 show values for U(y,O.l) and s(Y,O.l). It should be mentioned 

that for both distributions of velocity, when I.Y ~ 0.11 the mean concentration practically 

coincides with the standard deviation. However, when I.YI < 0.1 the behavior of the distributions 

is different. For the Gaussian random velocity at pointy= 0 the mean concentration is maximal 

but the standard deviation has a weak minimum. For the velocity-telegraph random process the 

functions U(y,O.l),s(y,O.l) at point y = 0 are minimal and at points I.YI = 0.1 both functions 

are maximal. 

For :r = 1.0 (Fig.25, 26) when velocity v(t) is Gaussian random process, the behavior of the 

distributions U(y,1),s(y,1) are similar but for any y the standard deviation of the concentration 

is larger than the mean concentration. The difference between s{Y,l) and U(y,l) by y = 0 is 

waximal, but the relative difference- [s(y,l)-U(y,l)]lu(y,l) grows for larger values of I.YI 

and has reached a large value. 

For the velocity-telegr.aph process (Fig.26)both distributions are nonmonotone .At points I.YI = 1 

they are maximal and for any y the standard deviation is larger than the mean concentration. 
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For time i = 5 (Fig.27, 28) both distributions of the velocity v(t) are near-identical because they 

reach the preasymptotic phase of the process. For any y the function s(.Y,5) is larger -than 

u(.Y,5). The distributions for the telegraph process in the neighborhood of y = 0 are maximal at 

points IYI = 5 . 

Thus in all above cases examined we can see the convergence of PDF for random concentration, 

mean concentration and mean square concentration that are functionals of random concentration, 

derived for different (Gaussian and telegraph) random velocities v(t). This phenomenon 

discussed by Shvidler and Karasaki [ ] for mean concentration and have the same explanation 

for PDF of random concentration and the mean square concentration. 

It is clear that the random density function p(x,t;c) is a non-random function with the random 

I 

argument ~(t) = x-t/J-1 Jv(B)dB. If v(t) is Gaussian random process, ~(t) is also Gaussian 
lg 

for any time t , as a sum of Gaussian summonds. If v(t) is telegraph random process the 

argument ~(t) for v(t-t0 ) >>lis the sum of a large number of uncorrelated summonds and 

tend to a Gaussian by the central limit theorem. The asymptotical convergence of p(x,t;c) for 

different velocity fields leads to the convergence of functionals like PDF and moments. 

It is interesting to note that for both cases of a= 1 and a= 0.1 the PDF and functionals 

U ( y, 'f') and s ( y, 'f') practically converge to the same limit at numbers v'f' = 5 -1 0 . 
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SUMMARY 

1. We examined in detail the behavior of local random concentration c(x,t) by studying its 

density distribution- a random functional 

p(x,t;c) =8[c(x,t)- c] 

where the Dirak's 8 -function is defined in c -one dimensional phase space of possible values 

the random concentration c(x,t) . 

2. The functional p(x,t;c) satisfies so called stochastic Liouville equation in space of variables 

(x,t;c) .This equation may be interpreted as transport equation for "reactive solute" p(x,t;c) 

in D + 1 space (x;c) . 

The "flow" in fictitious D + 1 space is free of sources in spite of the fact that the real flow in D 

space have sources. The component of "flow'' velocity along the c -axis depends on the real 

flow soirrces, real solute sources and the variable c . 

3. The problem --of finding the PDF-probability density function for random concentration 

c(x,t), i.e., P(x,t;c) = (p(x,t;c)), reduced to averaging the stochastic Liouville equation and 

initial condition for p(x,t;c) and solving the averaged system. 

4. The method of computation the PDF and power moments of random concentration c(x,t) is 

illustrated for the case of one-dimensional transport with flow-velocity as Gaussian or telegraph 

processes of time. In these cases the exact averaging of the Liouville stochastic equation is 

possible and the equation for PDF is solved exactly. 
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Table 1. Statistical parameters ofthe PDFs in corresponding figures. 

a y Fig. r v ul u2 ii3 u4 s ka ke 
# 

1 0.1 G 3.70E-01 1.38E-01 5.19E-02 1.97E-02 4.81E-01 2.92E-01 1.52E-01 
T 3.70E-01 1.38E-01 5.19E-02 1.97E-02 4.81E-01 7.73E-03 -1.95E+OO 

2 0.3 
G 3.82E-01 1.57E-01 6.95E-02 3.32E-02 4.74E-01 8.41E-01 1.21E+OO 
T 3.82E-01 1.56E-01 6.76E-02 3.05E-02 4.75E-01 6.45E-02 -1.84E+OO 

3 0.5 
G 4.00E-01 1.89E-01 1.04E-01 6.45E-02 4.59E-01 9.62E-01 7.84E-01 
T 4.02E-01 1.89E-01 9.87E-02 5.48E-02 4.62E-01 1.65E-01 -1.72E+OO 

4 1 
G 4.18E-01 2.33E-01 1.55E-01 1.15E-01 4.30E-01 6.23E-01 -5.85E-01 
T 4.78E-01 3.35E-01 2.79E-01 2.51E-01 3.79E-01 5.17E-01 -1.30E+OO 

1.0 1.0 
G 4.14E-01 2.35E-01 1.60E-01 1.20E-01 4.23E-01 5.72E-01 -7.17E-01 

5 1.2 
T 4.49E-01 2.89E-01 2.17E-01 1.73E-01 4.00E-01 3.38E-01 -1.45E+OO 

6 2 
G 3.84E-01 2.20E-01 1.51 E-01 1.15E-01 4.05E-01 5.82E-01 -7.78E-01 
T 3.79E-01 2.16E-01 1.48E-01 1.12E-01 4.04E-01 5.71E-01 -7.58E-01 

7 5 
G 2.96E-01 1.62E-01 1.10E-01 8.33E-02 3.66E-01 9.03E-01 -3.03E-01 
T 2.86E-01 1.55E-01 1.05E-01 7.94E-02 3.62E-01 9.61E-01 -1.86E-01 

8 10 
G 2.27E-01 1.20E-01 8.10E-02 6.10E-02 3.27E-01 1.26E+OO 5.38E-01 
T 2.22E-01 1.17E-01 7.86E-02 5.92E-02 3.24E-01 1.30E+OO 6.47E-01 

9 0.1 
G 5.32E-01 3.45E-01 2.50E-01 1.95E-01 4.33E-01 8.62E-02 -1.04E+OO 
T 3.93E-01 1.64E-01 7.52E-02 3.99E-02 4.79E-01 4.26E+OO 1.81E+01 

10 0.2 
G 3.53E-01 2.00E-01 1.38E-01 1.05E-01 3.91E-01 6.60E-01 -6.98E-01 
T 1.89E-01 5.96E-02 3.23E-02 2.30E-02 3.60E-01 3.27E+OO 1.04E+01 

0.0 11 0.5 
G 1.77E-01 9.18E-02 6.16E-02 4.64E-02 2.92E-01 1.62E+OO 1.66E+OO 
T 8.34E-02 4.01E-02 2.67E-02 2.00E-02 2.08E-01 2.96E+OO 8.55E+OO 

12 1 
G 1.04E-01 5.27E-02 3.52E-02 2.65E-02 2.27E-01 2.45E+OO 5.47E+OO 
T 6.71E-02 3.37E-02 2.25E-02 1.68E-02 1.83E-01 3.27E+OO 1.07E+01 

0.1 
G 3.75E-02 1.88E-02 1.25E-02 9.40E-03 1.37E-01 4.59E+OO 2.24E+01 

13 5 
T 3.47E-02 1.74E-02 1.16E-02 8.69E-03 1.32E-01 4.80E+OO 2.46E+01 

0.1 14 0.2 
G 3.18E-01 1.76E-01 1.20E-01 9.11E-02 3.77E-01 8.06E-01 -4.77E-01 
T 2.43E-01 9.86E-02 4.99E-02 3.00E-02 3.80E-01 8.44E-01 7.81E-01 

15 0.2 
G 2.34E-01 1.21 E-01 8.05E-02 6.03E-02 3.37E-01 1.27E+OO 6.10E-01 

0.2 T 4.61E-01 4.32E-01 4.24E-01 4.21E-01 1.71 E-01 2.22E-01 -1.89E+OO 

16 0.2 
G 7.36E-02 2.69E-02 1.62E-02 1.16E-02 2.16E-01 3.50E+OO 1.36E+01 

0.4 T 6.24E-02 7.91E-03 1.05E-03 1.41 E-04 2.34E-01 2.22E-01 -1.89E+OO 

*G and T denote Gaussian and telegraph velocity process, respectively. 



u. 
c 
a. 

Po • PT 
12 

9 I - 1 
I I 

a= 

6 I I \ y= 1 

I I \ ~ = 0.1 

3 

0 
A 

0 0.2 0.4 0.6 0.8 
c 
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c; = 0.2725 and c2 = 0.4966 . 
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s = 0.2231 and c2 = 0.6065 . 
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Figure 9. PG (y, i'"; c)for Gaussian velocity process and Pr (y, i'"; c) for telegraph velocity process at 

y = 0 and "f = 0.1 for 7i = 0.1. The symbol .A shows the value of the coefficient of the 8 -function at 
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Figure 17. The dimensionless mean concentration U (y, T") and the dimensionless mean square 

deviation s(y, :r) for Gaussian random velocity at T" = 0.2 and a= 1. 
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Figure 18. The dimensionless mean concentration U (y, r) and the dimensionless mean square 

deviation s (y, r) for telegraph random velocity at 'f = 0.2 and a = 1. 
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Figure 19. The dimensionless mean concentration U (y, :r) and the dimensionless mean square 

deviation s (y, :r) for Gaussian random velocity at :r = 2 and a = 1. ~ ,_. 
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Figure 20. The dimensionless mean concentration U (y, 'T) and the dimensionless mean square 

deviation s(y, -:r) for telegraph random velocity at 'T = 2 and a= 1. 
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Figure 21. The dimensionless mean concentration U (y, r) and the dimensionless mean square 

deviation ~ (y, r) for Gaussian random velocity at r = 5 and a= 1. 
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Figure 22. The dimensionless mean concentration U (y, :z:) and the dimensionless mean square 

deviation s(y, r) for telegraph random velocity at i"" = 5 and a= 1. 
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Figure 23. The dimensionless mean concentration U (y, r) and the dimensionless mean square 

deviation s (y, r) for Gaussian random velocity at i" = 0.1 and a= 0.1 . 
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Figure 24. The dimensionless mean concentratiol U (y, T') and the dimensionless mean square 

deviation s(y,T') fortelegraphrandom velocity at T'=O.l and a=O.l. 
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Figure 25. The dimensionless mean concentration U (y, r) and the dimensionless mean square 

deviation s (y, r) for Gaussian random velocity at :r = 1 and a = 0.1 . 
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Figure 26. The dimensionless mean concentration U (y, r) and the dimensionless mean square 

deviation s(y, r) for telegraph random velocity at T' = 1 and a= 0.1. 
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Figure 27. The dimensionless mean concentration U (y, :r) and the dimensionless mean square 

deviation s(y, :r) for Gaussian random velocity at :r = 5 and a= 0.1. 
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Figure 28. The dimensionless mean concentration U (y, :r) and the dimensionless mean square 

deviation s(y, :r) for telegraph random velocity at :r = 5 and a= 0.1. 
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