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ABSTRACT. 

The present paper considers the process of transport of a conservative solute in random fields. 

Here we present new examples of exactly averaged multi-dimensional equation for the mean 

concentration when the components of random flow-velocity are the functions of time. We 

assume that local dispersion exists. The functional approach and technique for decoupling the 

correlations are used. 

The exactly averaged differential equation is linear and is first order in time, and in general 

infinite order with respect to the spatial variables. The coefficients of the derivative are 

dependent on the cummulants function of flow-velocity random process. In general the averaged 

equation is non-local. We study the special cases where the averaged equation can be localized 

and reduced to differential equation of finite order, and the problem of evolution of the initial 

plume (Cauchy problem) can be solved exactly. 

We present in detail the results of nUD?-erical analyses of two cases (for Gaussian and telegraph 

random flow-velocity with the identical exponential correlation function) of exactly averaged 

problems. We studied the behavior of different initial plumes for all times (evolutions and 

convergence) and showed that they approach the same asymptotic limit for the both stochastic 

distributions of flow-velocity. 

A comparison between exact solutions and solutions derived by the method of perturbation is 

discussed. 
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1. INTRODUCTION 

Effective description of flow and transport in irregular porous media involves interpretation of 

the porosity and permeability fields as random functions of the spatial coordinates and the flow 

velocity as a random function of the spatial coordinates and time. It also involves averaging of 

the stochastic system of flow and transport equations containing these functions (conservation 

laws, Darcy's law and closing relations). The averaging problem consists offmding the relations 

between the non-random functionals of the unknown and the given fields - means, variations, 

distributions, densities, etc. The greatest interest attaches to the averaged description in which the 

equations for the functionals are invariant with respect to a certain set of conditions that uniquely 

determines the process in the framework of such a description. 

It is apparent that in general this splitting is impossible and thus an averaged description is 

used for computing the nonrandom characteristics (functionals) of random flow and transport 

processes for estimating the uncertainty of the processes. 

Different variations of this approach and many results have been widely developed. For example 

see books by Shvidler[1964 and 1985], Matheron [ 1967], Dagan [ 1989] and Gelhar [1993] . 

Basically the methods of averaging are approximate. It should be noted that the approximate 

methods of averaging and derivation of the averaged equations of transport, using either 

Lagrangian or Eulerian approach, are connected with one or another modification to the method 

of perturbation. Obviously the similar approach is not always successful because the solution is 

only approximate due to the truncation of the perturbation series. It is well to bear in mind that 

the convergence of the perturbation series for transport problem is not clearly understood nor the 

accuracy of the approximate averaged equations. In this instance it is common to use: 1) 
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comparison of the solutions of approximate averaged equations with the results by Monte-Carlo 

procedures that, strictly speaking, are also approximate 2) comparison of the solutions of the 

approximate averaged equations with the exact results using the theory of averaging. Of course 

besides this function the exact equations have independent values in themselves . 

The number of the exact results in stochastic transport theory is very small. Exhaustive 

examples of averaging one-dimensional transport were described by lndelman and Shvidler 

[1985]. For a special distribution of random porosity Jndelman [1986] derived one-point and 

two-point probability density, first four moments, and the correlation function for the position of 

moving particles. The exact moments for the travel time of moving particles in one-dimensional 

. field with random porosity were derived by Cvetkovic and a/.,[1991]. The quasi one-dimensional 

transport in stratified media (longitudinal advection along homogeneous layers with longitudinal 

and transversal local dispersion) was described by Matheron and de 'Marsily [1980] . In the 

multi-dimensional case it is well known that the classical Einstein-Fokker-Plank diffusion

advection equation is only valid if the flow velocity is a Gaussian random field and delta

correlated in time (for example see Klyatskin,[1980], Rytov, Kravtsov and Tatarskii ,[1989 ]. 

Later we will study some problem of stochastic transport for which the exact averaging is 

accomplished. As is often the case we can obtain the desired results by analyzing special 

processes~ For example in this paper we consider that the flow-velocity is a random function of 

time, which essentially simplifies the problem. But the problem of the averaging remains 

sufficiently complicated and only relatively simple solutions can be found for some special 

examples. 

. We studied the problem of exact averaging of the evolution equations for stochastic transport 

in random fields. The paper considers the process of transport of neutral admixture in porous 
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media. The functional approach and the technique of decoupling the correlations is used. A 

number of exact functional equations corresponding to the distributions of the random 

parameters of special forms are obtained. In some cases the functional equations can be localized 

and reduced to differential equations of fairly .high order. We present and analyze the solutions of 

exact equations. 

2. Mathematical Statement of the Problem 

The concentration distribution of a non-reactive solute c(x,t) in the region t;::: t0 ,lxl < oo 

is described by the equations: 

(1) 

c(x,t0 ) =I (x) (2) 

where ¢ is the porosity , d is the local dispersion tensor , v ( t) is the vector of the random 

Darcy- velocity , I ( x) is the non-random initial concentration . Here we assume ¢ and d are 

constant. 

After averaging (1) and (2) we have the following non-closed system 

"'au(x,t) v () au(x,t) ~( '() ( )) = ~[d au(x,t)] 'f' _.:..__~ + ; t + V; t c x, t iJ -..!...--~ 
at axi axi . axi axj 

(3) 

u(x,t0 ) = l(x) (4) 

here u ( x, t) = ( c ( x, t)) is the mean concentration, where symbol ( ) represent the ensamble 

mean, and v; (t) = (v; (t)), v; (t) = V; (t)- ~ (t). 
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According Klyatskin [1980], Rytov et. al[I989] the correlation moment between random function 

v; ( t) and the functional c ( x, t) from function v' ( t) can be written in the form: 

(5) 

is the variational derivatives of the functional c ( x, t) and 

K~~r·J. ( t, '~' ... , rn) are the cumulants of the random process v' ( t) that is described by 

following equations: 

(6) 

F[l(r)J = In<l>[l(r)], (7) 

Taking into account the structure of the functional c(x,t) = s[ z(t, r ),t J , where s[ z(t, r ),t J 
I I 

is some non-random function ofthe random variable z(t,r)=x-¢-1JV(r)dr-¢-1 Jv'(r)dr 
~ I 

and t we can calculate the variational derivatives in the following manner. 

(8) 

Now we can write the closed equation for the mean concentration u(x, t) 

,t._ou--'-(x,___,_t) V-')ou(x,t) ~(-It an+Iu{x,t) f1 J1 K;,j1, ••• J.I )d d =~[d .. -ou~(x,~t)] 
'I' + ,\f + L..J ••• n+l \f,TI, ... ,Tn Tl ... Tn IJ 

. of OX; I ¢n nl OX;OX jl ••• ax j. lo lo ox i ox j 
(9) 

Thus in the general case the averaged equation is first order in the time and infinite order with 

respect to the spatial variables , which means non-local. Moreover, the coefficients of the 
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derivatives with respect to the spatial variable depend on time t and time t 0 • This circumstance 

renders the problem of not being 

invariant with respect to the initial condition. This noninvariance is due to the fact that the 

system at time t0 is deterministic, but for t Y t0 , it is stochastic. 

In exceptional cases the exact averaged equation is a differential equation of a finite order and it 

can take various forms depending on the property of the random velocity. Therefore, the 

approximate averaged equations that only utilize the first moments or cummulants for the 

random fields can not provide a universal model of the process in the general case. 

3. FLOW-VELOCITY- GAUSSIAN PROCESS 

If v; (t) are the Gaussian processes, the cummulants 

(5) where 

Bii (t;r) = ( v; (t )v; ( r)) are the correlation tensor-function of the velocity v' (t). 

Now we have from ( 4) the second order equation 

au(x,t) ( ) au(x,t). [ _, 'J ii ( ) - ] a2 u(x,t) 
¢ +V; t = dij +¢ B t, T d T 

at a xi '· . a xi axj 
(10) 

and the initial condition u(x,t0 ) = /(x) . 

It should be noted that the question of the invertibility of the averaged equations is discussed by 

Indelnan and Shvidler[1985] . They considered a simple example where the process of 

dispersion is invertible. Here we consider different example. Let v(t) = V + vcosmt where v is 

a Gaussian random number \\lith { v) = 0 and aJ is non-random and constant. It can be seen that 

au(x,t) au(x,t) (d (v2
) • 2 Ja2u(x,t) ¢ + V = + -- sm mt 2 at ax 2¢m ax 

(11) 
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Thus for 2tjJ{J)d I { v2
) < 1 and any number k the coefficient of dispersion is negative if time t 

satisfies the inequality (2k -1)1r 12{J) < t < k1r I {J) . In this case the Cauchy problem for equation 

( 11) is improperly posed. 

4. FLOW-VELOCITY-THE TELEGRAPH PROCESS. 

Now we consider the one-dimensional transport along the x-axis by neglecting the local 

dispersion d. Let the random velocity v ( t) have the form 

v(t) = V + a{-1Y(r;ro) (12) 

where V is constant and the random variable a has the probability distribution 

(13) 

Then n(t;t0 ) is the number of the jumps, the random process of Poisson point flux, in the 

function v ( t) in the interval ( t, t0 ) • In this case for any t1 < 12 < t3 we have the following 

For any integer number m ~ 0 the probability is: 

(14) 

In this case the velocity v ( t) (so called telegraph process) is a Markovian stationary process 

with the correlation function: 

B ( t , -r) = ag exp {-2u It - -rl) (15) 

Fig.1 shows the typical realization of the fluctuation in the telegraph process v(t)-V. 

Following Klyatskin [1980] and taking into account that in one- dimensional case when d =0 the 
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concentration can be written as c(x,t)=1 x-~-',[v(u)du) , we can find the correlation moment 

for the telegraph process v' ( t) . and the functional c ( x, t) : 

(16) 

And after using (16) in equation (3) we can write the closed equation and the initial condition as: 

;/,au (x,t) au (x,t) -1 a If ( au[ x-V l/J-1 (t- -r) '-r] 
"' + V = ¢J - B t,-r) d-r 

a t ax ax lo ax 
(17) 

u(x,t0 ) = f(x) (18) 

The equation (17) is non-local. The integral summarize the derivatives of u ( x, t) with the 

weighting function B (t, -r). It is obvious that the non-local measure of the integral is the 

"memory" of the function B ( t ;z-) and that the expression (1 0) depends on the scale of 

correlation, which is {2u t 1 
• 

Note the equation (17) is similar to the averaged equation of transport obtained by 

Shvidler[l975], who used the second order perturbation method. For the one-dimensional 

transport if the velocity is a telegraph process, the both equations are identical, i.e., the method of 

perturbation leads to the exact result in this case. 

It is interesting to add that Dagan and Neuman [1991] examined equation (17) and 

concluded that this equation was unsuitable for describing the transport proc~ss. On the contrary 

we show in this paper that the equation (17) is exact for the random velocity wich is one-

dimensional telegraph process. 
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The exponential correlation B(t;r) in (15) and the linear shift -V¢-1(t-t-) from t provide a 

way of localizing the equation (17). To eliminate the integral from this equation we differentiate 

the equation with respect to t and x and obtain the differential equation of second order in time 

t and second order in x , where the coeffidents of the derivatives are constant. 

The set of initial conditions for (19) is: 

( . ) - /( ) au(x,to) - - v J'( ) u x,t0 - x , - x 
at ¢ 

(20) 

(The second initial condition is obtained from the equation ( 17) by setting t = t 0 ) 

Since the discriminant for (19) is a~ > 0 the equation (19) is hyperbolic an has two real families 

of characteristic lines: 

x- ~t = canst , x- ~t = canst (21) 

The change of variables y = x - V ¢-I ( t - t0 ) and r = t - t0 transform the equation of transport 

(19) to the classical telegraph equation in the canonical form: 

(22) 

The initial conditions in terms of the new variables are 

au(y,O) 
u(y,O) = f(y), o-r = 0 (23) 
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The parameter b =lao I I¢ determines the finite velocity of the propagation of perturbation in the 

moving coordinate system. The parameter x 2 specifies the dispersion of perturbation. It is 

pertinent to note that the parameter z2 in the hyperbolic equation (22) is, strictly speaking , not 

the coefficient of solute dispersion. On the contrary, it easy to show after computing the first and 

second space moments of the mean concentration u (y, -r), the coefficient of solute dispersion is 

If z2 = const for u ~ oo and ja0 I ~ oo , the equation (22) is parabolic as the telegraph 

process in some respect becomes equal to delta-correlated Gaussian process [K.lyatskin, 1980]. 

Now we study in detail the transport problem in the case where the mean concentration satisfies 

the equation (22) with the initial conditions (23). 

Using the Rieman's method [see for example Rubinstein and Rubinstein ,1993], we find the 

mean concentration 

where z = u ...) -r 2 
- .4? and / 0 ( z) , 11 ( z) are the modified Bessel's functions of the first kind 

of order zero and one respectively. 

Let the initial plume be extremely small, that is f ( x} = qt5 ( x- X0 }. 

Then for jx ~ x0 - V -rj ~ b-r we obtain from equation (24) 
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For lx-x0 -¢-1V-rl>b-r wehave: 

u(x,t) = 0 (26) 

Then if lx- x0 -¢-1 V -rj << b-r and b-r >>I , we obtain 

(27) 

This solution shows that the plume remains in a finite spatial interval . At the front and rear 

boundaries of the moving plume there are spikes of infinite concentration. For -r >> v-1 these 

portions of plume are very small. Between and far from the spikes the distribution of 
,J 

concentration is like Gaussian for large values of v -r. 

For small v -r the portion of the plume in the spikes IS dominant and the movement 

approximately that of a wave mechanism. 

5. FIELD WITH SOURCES OF SOLUTE 

Let us now assume that the field have non-random solute sources and the local concentration is 

described by the stochastic transport equations 

o c(x,t) ( } o c(x,t) ( ) 
¢ + V; t = lf/ X, t 

0 t OX; 
(28) 

c(x,t0 ) = f(x) (29) 

We can use the same functional approach and after averaging the equations we find that :I) If 

the flow-velocity v(t) is Gaussian process 
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I 

where "f=X-t/J-1 Jv(r)d-r 
)J 

For any x , t and f.L the parameter r is Gaussian and in one-dimensional case we can calculate 

(31) 

I I 

where (r)=x-Vt/J-1(t-p) and a: =(r-(r))2 =t/J-2 JJB(B,B')dBdB' 
)J)J 

2) If the flow velocity v(t} is the telegraph process , we obtain the averaged equation 

(32) 

·c ) ( ) 1 [,.alff(x,t) valff(x,t)J If/ x,t =If/ x,t +- 'I' + 
2¢Jv at ' ax 

(33) 

(34) 

In general we have the new additional fictitious sources to compensate for the solute particles 

introduced into the system at different times. 

6. TRANSPORT IN THE SPACE WITH BOUNDARY 

Let the concentration distributions in the region x ~ x0 , t ~ t0 is described by the one-

dimensional equation of transport 

"'ac(x,t) ( )ac(x,t) ( ) '1'-----'___;_+v t =If/ x,t ; x > x0 , t > t0 ot ax 
(35) 

and the initial condition 



We consider two types of boundary conditions : 

a) c (x0 ,t)=g(t), t~t0 

b) v(t )c(xo ,t) = q(t) t ~ t0 

14 

(36) 

(37) 

(38) 

We assume that the given non-random functions f(x} , g(t) and q(t) satisfy the conditions 

f(x0 ) = 0 , g(t0 ) = 0 , v{t0 ) f(x0 ) = q(t0 ) = 0 . 

We use the analysis method that leads from the boundary problem to a Cauchy problem in an 

unbounded space: 

1. We consider the continuation of the concentration c(x, t) in the region x < x0 • For v(t) ~ 0 

the natural conclusion is 

c(x,t)={ c(x,t), if x~x0 and 0, if x<x0 } (39) 

2. We introduce a new function 

(40) 

where h+ (y) = { 1, if y ~ 0 and 0, if y < 0 } so-called . asymmetric Heavisade function. 

3. For random function c(x,t) we obtain the stochastic equation and the initial condition in all 

space ,i.e., that is the Cauchy problem . 

4. After averaging the modified transport equation when v(t) is the telegraph process we obtain 

the non-local equation for the mean modified concentration. u(x,t) = (c(x,t )) 

5. Localization of this non-local equation leads to a differential equation for u ( x, t) . 

6. The final step is the slope in space ii ( x, t) and u ( x, t) . After this we obtain the differential 

equation for mean concentration u(x,t) in the region x > x0 , t > t0 • 
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The averaged equation for u(x,t) in case a) is 

au(x,t) au(x,t) 1 [ a2u(x,t) a2u(x,t) V2 -a~ a2u(x,t)] ( ) ¢ +V +- ¢ +2V + =v/ x,t 
at . at 2v at2 axat ¢ ax2 (41) 

where 

The initial conditions are for x > x0 

u(x,t
0
)=f(x), 8u(x,to) =-V f'(x)+_!_lfi(X,t

0
) 

a t ¢ ¢ 
(42) 

and the boundary condition is 

u(x0 ,t) = g(t) (43) 

In case b) we have transport equation for region x > x0 , t > t0 

¢ au(x,t) + V au(x,t) + _1 [¢ a2u(x,t) + 2V a2u(x,t) + V
2 -a~ a2u(x,t )] = -(x,t) ( 44) 

at ax 2v at2 axat ¢ ax2 'I' 

where 

-c ) = ( ) _1 [~ a'l'(x,t) v alfl(x,t )] _ ag 11) ~ ( _ ) 'I' x,t 'I' x,t + VJ + 2 2 q~ u+ x x0 2¢v at ax v -ao 

The initial conditions are for x > x0 

(45) 

and boundary conditions are for t > t0 

(46) 
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We show that in both cases a) and b) the sources v/ (x,t) and VJ(x,t) are dependent on 

the boundary and the initial conditions for the stochastic equations and the initial conditions for 

the averaged equations are dependent on the initial sources . 

7. ANALYSIS OF THE EXACT SOLUTIONS 

The two cases discussed in sections 3 and 4 ( Gaussian and telegraph processes as the models for 

flow-velocity) were briefly studied by Shvidler and Karasaki [1995 and 1996]. In this paper we 

present the results of more detailed investigation. We compare u r - the exact solution of 

telegraph problem ( 22 ) and (23) with uG - the exact solution for the one-dimensional 

transport equation ( 11) when d = 0 and the exponential equation B(t, r) is defined by ( 15 ). 

Obviously the uG is the mean concentration of solute with the assumption that the velocity 

v(t) is a Gaussian random process and that by ( 15) it is so called Ornstein-Ulenbeck process , 

which describes the Brownian motion for particles with inertia. In this case the particle velocity 

exists and has a finite variance contrary to the Winer's process [ Y aglom, 1987 ] . 

To compare both distributions u r{x,t) and u G(x,t) we introduce the new dimensionless 

variables 

Y = (y- X0 ) fl , T = V T , U = ul/ q (47) 

where .I = b I v = a0 I (Jv is the scale of length 

In these variables with the initial condition f ( x) = qo ( x - X0 ) , we obtain from (24) the 

function U T (y, "f) in the form 

(48) 
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where the singular part u rs (.Y, f) 1s 

-r-

Urs (.YJ) = -TC o(.Y+r) + o(.Y-r)] (49) 

For the regular part u TR (y, r) when I.YI :::; f . , we have 

(50) 

and when I.YI > f 

(51) 

It is obvious that 77(f), the amount of solute in the boundaries at y = ±f , is: 

(52) 

From (14), we have that 77(r) is equal the probability P{n(O;f)= 0} -the fraction of realizations 

for with the velocity v ( t) has no jumps in the interval {0, f). For small f this term is 

dominant and describes the wave nature of the dispersion. However, with large f this term is 

small and the solute is dissipated from the boundaries to a regular distribution between 

boundaries. 

To solve for uG (.Y, f) we set d = 0 and substitute the exponential correlation function B(t, T) 

from (15) in to equation ( 11 ) and for the initial 8 -distribution we obtain the solution in the 

new dimensionless variables 

I 

uG(y,f)= 1'(-l/2 (e-2r +2f -}r2 exp[ -y2 f(e-2?" +2f -1)] (53) 

For r>> 1 and any y the distribution ( 53) tends to Gaussian limit 

(54) 
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wich is exactly the same as the main term of the telegraph equation solution when we use the 

dimensionless variables. It should be pointed out that the asymptotic solution (54) is valid for 

any y, whereas the expression for velocity- telegraph process tends to the Gaussian limit (54) 

with the additional condition I.YI >> 1 that is ihside the plume and far from the fronts y =±f. 

Figures 2, 3, 4 and 5 show the dimensionless concentrations iirR (y, :r} and iiG (y, :r} for times 

:z:- = 0.1, 1, 2 and 5 respectively. According the equation (49) for iirs (P.f) the fronts are at 

y = ±T" , where there is a spike. 

It is clear that for f = 0.1 (Fig. 2) the mean concentration is strongly dependent on the 

distribution of the random velocity v ( t). For f = 0.1 and for the telegraph velocity process the 

amount of solute remaining at the points y = ± 0.1 is 71 I 2= 0.4524 and only the amount 

1-q=0.095 is located between the fronts. 

For :z:- = 2 (Fig.3) the frontier portions of the solute is noticeably decreased: q/2=0.1839 

at points y = ± 1 . The concentration distribution in -:z:- < y < :r is slightly curved and we can 

see the maximum at y =0 .The amount of the solute between boundaries j/=±1 is 

1-q = 0.6321. It is possible to decide that the distributions of the mean concentration by setting 

f =1, however, there still exists significant difference between the Gaussian and telegraph 

distributions of the velocity. 

By f = 2 (Fig.4) the distributions of concentrations draw together in the central part of figure 

but the amount of solute at the boundary points y=±2 is still significant and is q/2=0.06767. 

The amount of the solute between boundaries is 1-q=0.8647. 
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For f = 5 (Fig.5) the difference between uTR (y, f) and i10 (y, f) is small. The amounts of 

solute at boundaries y = ±5 are small: 1]12 = 0.003369 . The amount of the solute in the 

interval -5 < y <5 is therefore 1]= 0.9933. However the distributions are different in the 

immediate neighborhood of the points y=O and .Y=±5 . 

Remember that both distributions of the concentration have the same Gaussian limit when 

r>>t and i.YI<<f. 

Now we examine the behavior of the mean concentration when the initial concentration 

f(x) is a continuous function. For example consider an exponential function with C0 = const. 

f(x)= C0 exp [-jx-x0 j Ia] (55) 

By using the initial concentration in the exponential form, with a constant q- (the initial amount 

of solute in space), we can find that C0 = q I 2a. 

It is clear that for the Gaussian velocity and for one-dimensional case when d=O , the function 

i10 (.YJ) in (53) is the Green's function for the equation (10) for f > 0. Therefore, the mean 

concentration for any initial function f ( x) is convolution of the i1 (.YJ) and f ( x). After 

calculating the convolution for the exponential f(x) m (55) we 

have: 

(56) 

( 

h - 12-2 -2f 2- 1 f~' 2 f -uzd w ere g = g a , g = e + r - , er '=' = 1 e u 
"'7r 0 
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In the case of the telegraph random velocity and for the same exponential initial condition we 

can write the following expression for Ur (y, :r) 

where z =.Jr2 -A- 2 

We calculate u r(Y, f) and u 0 (y, f) for a =aIl= 0.1 . In this case the scale of the initial 

distribution is essentially a little less than l - the scale length of the stochastic process v ( t) . 

In other words such initial distribution is similar to the delta - distributions in the sense that a 

significant part of solute in the initial time is located near the point y = 0 . However in contrast to 

the case where the initial distributions is Dirak's 8 -function, the mean concentration curves 

ur (y, f) for v ( t ) - telegraph process are continuous, but they are similar to the initial 

exponential distribution (55) and are not smooth. 

As noted above the definite part of realization of the telegraph process v ( t) , namely with 

fraction e -r , for time . f is free from jumps. Therefore one half of these realizations have 

velocity (V + a 0 ) and the second half has (V- a 0 ). The both parts are transported with the 

initial distribution of concentration without change of the velocity. For this reason on all curves 

ur (y, f) at y = ±f (see Fig.6, 7, 8, 9 and 10) we can fmd local maximums -the continuous 

analog of 8 - functions in the same border points discussed in the previous analysis. But if the 

initial concentration is 8 - distribution at point y = 0 , for any f the mean concentration has 

local maximum. For the initial distribution is exponential for f:::; 1 there exist a local minimum 

at point y = 0 (Fig.6, 7). If time :r > 1 we can see that at y = 0 the local maximum is the global 

maximum for large f (Fig.1 0, 11 ). 
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The distributions ua(y, f) and ~ (y, f) are relatively close even for f = 5 and only slightly 

different near y = 0 and y = ± 5 (Fig.1 0) .. For r = 10 both distributions are practically 

congruent (Fig.11 ). 

Now let the initial non-random exponential distribution of concentration be slightly sloping 

comparatively with the previous analysis. For this purpose we use the parameter a= 1, which 

means that the scale of initial distribution of concentration a and the length scale of random 

velocity l are the same. 

The functions ur (.y, f) and u a(.YJ) for a= 1 are plotted in Fig.l2-16. The corresponding 

distributions are similar in shape and close except in the interval - f < y < f ,where the 

differences are also small. 

Thus in all the above cases examined we can see the convergence of the mean concentrations 

derived for the two different (Gaussian and telegraph) random velocities v(t) . Of course this 

phenomenon is linked to a fact that in the above examined cases the random concentration 

I 

c(x,t) is anon-random function with the random argument z(t)=x-¢-1 Jv(B)dB. Ifv(t) is 
lo 

Gaussian random process, z(t) is also Gaussian for any time t . If v(t) is telegraph process the 

argument z(t) for v(t- t0 ) >> 1 is the sum of a large number of uncorrelated summonds and 

tend to a Gaussian by the central limit theorem. The asymptotical convergence of c(x,t) for 

different velocity fields leads to the convergence of the functionals like moments, . densities of 

probability etc. 

To note the comparison u r(x,t) and u a(x,t) as well as the corresponding probability 

density functions presented earlier by Shvidler and Karasaki [1997] is interesting also because 

both solutions are exact for different distributions of velocity v ( t) ; namely telegraph and 
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Gaussian (or so called Ornstein-Ulenbeck ) processes that have the equal means and exponential 

autocorrelation function. The solution depends on the full description of the flow-velocity v ( t ). 

If we study transport problem for v ( t) -telegraph process, the function u T(x, t) is the exact 

mean concentration and u G(x,t) is the approximation derived with the method of perturbation 

with an approximate localization in the same order. It is reminded that with exponential 

correlation function the method of perturbation leads to the exact mean concentration, if the 

localization is performed exactly. 

If the flow-velocity v ( t) is a Gaussian process, the function u G(x,t) is the exact mean 

concentration and the function u r(x,t) will be the approximation derived with the method of 

perturbation with exact localization. 

It should be noted that for the non-local transport equation derived with the method of 

perturbation was discussed in Shvidler[1975]. The method of approximation with the same order 

of localization was presented by Shvidler[l993] . 

The results reported in this paper and analysis thereof can not of course lead to a final 

conclusion about accuracy and practicality of the method of perturbation in general. It is obvious 

that the efficiency of this method essentially depends on the type of the problem (that we study) 

and the properties of the flow-velocity field. This is also true for estimation with any stable 

method of approximation. 

SUMMARY 

We presented new examples of an exactly averaged multi-dimensional equation for the mean 

concentration when the components of random flow-velocity are functions of time. The exactly 

averaged equation is a linear differential equation of first order in time and in general of infinite 

order with respect to the spatial variables. The coefficients of the derivatives are dependent on 
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the cumulants function of flow-velocity random process. In general the exactly averaged 

equation is non-local. In some exceptional cases the averaged equation is a differential or 

integra-differential equation of finite order. 

We presented and analyzed in detail two one-dimensional cases (for Gaussian and telegraph 

random flow-velocity with the identical exponential correlation function) where the exactly 

averaged equations are second order parabolic and hyperbolic types , respectively . We studied 

the behavior of different initial plumes, the evolutions and convergence of them for large time . 

We illustrated the process how the mean concentration distribution for both flow-velocity cases 

. approaches a unique asymptotic limit. 
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Figure 1. Typical realization of the fluctuation v (t)- V in the random telegraph process. 
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Figure 2. R egular part of the mean concfntration uTR (y, r) for the telegraph velocity and the mean 

concentration u0 (y, r) for the Gaussian velocity at r = 0.1. The initial concentration is the Dirac's 8 

function: uT(y,0)=u0 (y,0)=8(y). 
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Figure 3. Regular part of the mean concentration uTR (y, r) for the telegraph velocity and the mean 

concentration u0 (y, r) for the Gaussian velocity at :r = 1. The initial concentration is the Dirac's 8 

function: ur (y, 0) = u0 (y, 0) = 8 (y). 
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Figure 4. Regular part of the mean concentration urR (y, :r) for the telegraph velocity and ~he mean 

concentration uG (y, r) for the Gaussian velocity at f" = 2. The initial concentration is the Dirac's 8 

function: Ur (y, 0) = uG (y, 0) = 8 (y). 
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Figure 5. Regular part of the mean concentration ii.rR (y, :r) for the telegraph velocity and the mean 

concentration ii.0 (y, :r) for the Gaussian velocity at f" = 5. The initial concentration is the Dirac's o 
function: iir (y, 0) = ii0 (y, 0) = o (y). 
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Figure 6. Mean concentration u7 (y, r) for the telegraph velocity process and u0 (y, r) for the 

Gaussian velocity process for a = 0.1 at T = 0.2. The initial concentrations are 

u7 (y,O) = u0 (y,O) = exp( -I )I /0.11). 
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Figure 7. Mean concentration Ur (y, r) for the telegraph velocity process and u0 (y, r) for the 

Gaussian velocity process for a= 0.1 at r = 0.5. The initial concentrations are 

uT (y,O)= u0 (y,O)= exp(-I:Y/0.11). 
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Figure 8. Mean concentration iir (y, f) for the telegraph velocity process and u0 (y, :r) for the 

Gaussian velocity process for a= 0.1 at f = 1. The initial concentrations are 

iir (y,O) = ii0 (y,O) = exp( -jy /0.11). 
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Figure 9. Mean concentration ur (y, :r) for the telegraph velocity process and u
0 

(y, :r) for the 

Gaussian . velocity process for a = 0.1 at r = 2 . The initial concentrations are 
ur (y,O) = u0 (y,O) = exp( -jy /0.11). 
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Figure 10 . Mean concentration fir (y, r) for the telegraph velocity process and u0 (y, r) for the 

Gaussian velocity process for a= 0.1 at r = 5. The initial concentrations are 

iir (y,O) = u0 (y,O) = exp( -I:Y /O.II)· 
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Figure 11. Mean concentration iir (y, f) for the telegraph velocity process and u0 (y, f) for the 

Gaussian velocity process for a= 0.1 at f = 10 . The initial concentrations are 

ur (y,O) = u0 (y,O) = exp( -I:Y /0.11). 
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Figure 12. Mean concentration Ur (y, 1') for the telegraph velocity process and u0 (y, :r) for the 

Gaussian velocity process for a = 1 at 1' = 0.1. The initial concentrations are 

Ur (y,O) = u0 (y,O) = exp( -lyl). 
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Figure 13. Mean concentration 

Gaussian velocity process 

uT (y,O) = u0 (y,O) = exp( -I:YI). 
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ur (y, :r) for the telegraph velocity process and ii0 (y, :r) for the 

for a= I at r = 0.5 .The initial concentrations are 
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Figure 14. Mean concentration ii'T (y, :r) for the telegraph velocity process and u0 (y, :r) for the 

Gaussian velocity process for a= 1 at :r = 1. The initial concentrations are 

uT (y,O) = ii0 (y,O) = exp( -IY"I). 
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Figure 15. Mean concentration ur (y, r) for the telegraph velocity process and u0 (y, r) for the 

Gaussian velocity process for a= 1 at :Z: = 2. The initial concentrations are 

ur (y,O) = u0 (y,O) = exp( -jyl). 
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Figure 16. Mean concentration ur (y, r) for the telegraph velocity process and u0 (y, r) for the 

Gaussian velocity process for a= 1 at 1" = 10. The initial concentrations are 

ur (y,O) = u0 (y,O) = exp( -lyl). 
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