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ABSTRACT

Complex Behavior in Simple Spin Systems

by

Seth Daniel Bush
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Professor Alexander Pines, Chair
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Research over the past five years has focused on using simple spin

systems to develop interesting new nuclear magnetic resonance techniques in

solid and liquid samples, as well as achieve.substantial gains in both the contrast

and resolution in magnetic resonance imaging. Specifically, this work reports on

the development of soft radio frequency (RF) pulses that can be used to



selectively excite different spectral features as a function of transverse relaxation

Abstract Page 2
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n
(T

2
) properties. Soft RF pulses designed to selectively excite resonances with a

specific physical property (e.g. resonance frequency) have found many

applications in both magnetic resonance imaging and NMR. Here, research

focused on the design and implementation of a new class of RF pulses that are

sensitive to the relaxation properties of a sample. Soft RF pulses that create a

final magnetization response that is parameterized as a function of T2 and act as

effective 'notch' filters for T2 were designed by treating the solutions of the Bloch

equations as an inverse scattering problem. Examples of one and two

dimensional maps of proton density as a function of T2 were obtained in model

samples of aqueous MnCh and CUS04 solutions.

A second project reported here in considers the highly non-linear

interaction between the NMR detection coil and sample (radiation damping) to

create a sensitive detector of magnetic resonance. This radiation damping is

proportional to the current induced in the NMR detection coil following a RF

pulse, a quantity dependent on the size of a sample's magnetization. This

current produces a RF reaction field that drives the sample back towards

equilibrium. Consequently, radiation damping is often viewed as a nuisance as

it can broaden spectral features, thus lowering the overall resollJtion. In the

course of developing a new theory for this phenomenon in an inhomogeneous

magnetic field, it was realized that several new applications directed towards

improving NMR detection sensitivity could be made. After a 1t pulse and under

conditions of strong radiation damping, thermal noise in the NMR detection coil

is capable of creating transverse magnetization that can feed back into the coil
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and sample thus initiating a nonlinear and somewhat unexpected burst of signal.

Using this phenomenon, one can in principle detect any signal, larger than the

coil noise, as a perturbation on the burst induced by radiation damping. This

idea was tested theoretically and experimentally in water and in solutions of 13C

labeled benzene in benzene. All of these experiments involved the design of

several new pulse sequences specially tailored to use radiation damping instead

of eliminating it.

The final thesis project investigates an apparent second-order recoupling

of the chemical-shielding and dipolar-coupling tensors that occurs under magic

angle spinning conditions when continuous wave decoupling is used in a simple

two spin system. This second-order effect is investigated both theoretically and

experimentally. This recoupling results in an information rich broadening that

can be fit to determine the relative orientations of the chemical-shielding and

dipolar-coupling tensors. Simple symmetric decoupling sequences will be

presented which remove this recoupling leaving narrow spectral features with

enhanced resolution.
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Chapter 1: Introduction

1.1 Introduction

CHAPTER 1

INTRODUCTION

Page 1

From its modest beginnings in 19461
'2, nuclear magnetic resonance (NMR)

has evolved to fill a central role in modern chemistry. Finding applications from

material science to molecular biology, magnetic resonance has the ability to

examine complex systems and return useful chemical information. Advances in

NMR, like many other fields, come from the bottom up. Only through

understanding the complex behavior of relatively simple systems can one hope

to design experiments to gain insight into the chemistry of larger, more

interesting, molecular systems. This thesis will report on three continuing

avenues of research which seek to advance the field of NMR by exploring and

exploiting the rich physics in simple model systems.
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This thesis has been broken up into four sections. The first chapter will

outline the basics concepts of NMR used throughout this text. For more detail

the reader is referred to 3AandS. The second chapter will focus on the development

and use of relaxation-selective radio-frequency pulses. The first relaxation-

selective magnetic resonance images will be presented using a series of aqueous

salt solutions. The next section will present our initial attempts at harnessing the

non-linear nature of radiation damping to push the detection limitation of NMR.

The final chapter will focus on the second-order recoupling of the chemical­

shielding and dipolar-coupling tensors seen in a powdered sample of

Tri(trideuteromethyl)-amine hydrochloride.

1.2 The Interactions

Following a time honored Pines lab tradition, this section will outline the

interactions fundamental to NMR. One can begin by constructing a general

NMR Hamiltonian as a sum of individual interaction Hamiltonians,

f~

t

L
I

t--

f -

(1.1)

While useful as a launching platform, equation 1.1 gives no real physical insight

into NMR. As such, to follow each interaction will be given its due. I '
i .
! .

l.i
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1.2.1 Zeeman

Page 3
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The Zeeman interaction, Hz, describes the direct coupling between a

magnetic moment, [L, and an external magnetic field B

(1.2)

In the special case where B is chosen to lie along the z-axis and Ji is the

magnetic moment of a nuclear spin, I, equation 1.2 becomes a scalar product,

(1.3)

Here we have chosen Bo to define the z-axis and 'Y is the gyromagnetic ratio, an

intrinsic property of a given nuclei. Taking the expectation value of Hz, we can

calculate the Zeeman energy, Ez,

where,

(Iz) =(m,Il/zl/,m) =m,
mE {-/,-/+l, ...,I-l,+I}

(1.4)

(1.5)

Here m is the azmuthal quantum number and I is the spin quantum number. For

a spin 1/2 nucleus, such as IH or 15N, m=±1/2, and Ez becomes
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I

(1.6)

This describes a two level system with tillz = (J) = 1tBo' where 0) is the Larmor

frequency. In standard superconducting magnets, Bo is on the order of 10 T (105

Gauss), Ez is far and away the largest contribution to equation 1.1. As an

example, for 15N, y = -2.7 x107rad/Tsec, ~Ez = -2.7 x 108 rad/sec or 43 MHz. As

we will later see, the dipolar coupling energy for a directly bound 15N_1H (r=10.5

nm) spin pair is about 66 kHz. This is three orders of magnitude smaller than the

Zeeman interaction.

Returning to the two level system above, for nuclei with a positive y value,

the lower energy level corresponds to spins that align parallel Bo and the upper

energy level corresponds to spins that align anti-parallel to Bo. The opposite is

true for spins with negative values of y. The sensitivity of NMR is proportional to

the difference in population between the upper and lower energy levels. From

Boltzmann statistics we know,

rr-
L_

I

n/OW = e-E,ol>' / kT

Ntotal

nh,' -E,·/ kT--=e "
Ntotal

(1.7a)

(1.7b)

Where nlow and nhi are the population of the lower and upper states respectively.

We can then define P as the polarization, or population difference,
f
L

U

L
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P = nlow - nhi

N
total

•

We can the expand equation 1.7a in a power series,

( )

2Elow

nlow = I _ Elow + kT
Ntotal kT 2!

Page 5

(1.8)

(1.9)

Taking note of the fact that Elow «kT we can truncate equation 1.9 to include

only terms linear in kT. This simplification is known as the high temperature

approximation and is used to describe most NMR experiments. A similar

expansion and truncation can be made for equation 1.7b. We can now recast P

as,

till
P=.-

kT' (1.10)

Returning to the example of 15N spins in a 10 T field, at room temperature, the

net polarization, is -7 ppm or 7x10-6
• In comparison to optical experiments

where P:::::1, NMR suffers from an inherently low sensitivity.

While the Zeeman Hamiltonian clearly plays a central role in the overall

NMR experiment, by itself it holds very little structural information. The

gyromagnetic ratio is inherently insensitive to its local environment and little

information of chemical import can be gain from its measurement. NMR

becomes a viable tool for determining local structure when one includes smaller

interactions that are sensitive to local environment.
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So far we have noted that in the presence of a large external magnetic

field, our spin system is split into two energy levels. Transitions between spin

levels can be induced with the application of an oscillating magnetic field

perpendicular to the static magnetic field. In practice this oscillating field is

generated with a linearly polarized radio frequency (RF) field that is applied

perpendicular to the static external magnetic field. The RF Hamiltonian can be

written as,

(1.11)

Where B1 is the strength of a magnetic field RF component perpendicular to Bo,

co, is the Larmor frequency, and <I> is the phase of the RF. Thus our Hamiltonian

can be written as the sum of two terms, the time independent Hz and the time

dependent HRF,

H =OJ/z - 2')1iBI cos(OJt - ¢)lx (1.12)

It is convenient to move into a reference frame where equation 1.12 is time

independent. This is readily achieved if we choose a coordinate system that is

rotating about the Z-axis at the frequency of the applied RF, 00. In this rotating

frame of reference the RF contribution to the overall Hamiltonian appears static,
! '
L
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~, -

~-

(1.13)

Here, Am =mo - m, where 0) is the frequency of the rotating frame and the RF,

and AO)« 0), 0)0. Let us now tum our attention towards chemical shielding.

1.2.3 Chemical Shielding

Chemical shielding describes the interaction between an applied magnetic

field and the electronic environment surrounding a magnetic moment. If one

imagines a bare spin 1/2 nucleus, the magnetic field felt by the spin is simply the

applied magnetic field. For real chemical systems, the electronic cloud "shields"

the nucleus from the external magnetic field. The actual field felt by a spin is

dependent not only on the applied field but also the local electronic environment

surrounding it. We can then write,

(1.14)

where (; represents the coupling between the magnetic field B and the spin

vector 1. In its most general form, (; is a second rank tensor and can be

described by a 3 x 3 matrix. As will be the case for many NMR interactions,

moving into an irreducible tensor representation is helpful. For the case of

chemical shielding in the laboratory frame, Res can be written as,
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HCS =}fiI I(-1)m R2mT;~S
/=0 m=-2

Page 8

(1.15)

r
r
L-=

Where R2m are spin-state independent coupling constants written in terms of the

cartesian matrix elements of a and T;~s are tensors constructed from the spin

vector Yand the external magnetic field vector iJ. Here 1represents the tensor

rank and m takes on values of ± 1. For symmetric tensors, which all the

interactions we will discuss are, the 1 = 1 terms are zero. The utility of spin

tensor representation becomes apparent when we calculate our Rl~Sn~lab) values in

the laboratory frame, from R2~paS)in the principle-axis. Such a transformation

can be readily achieved by using the Wigner rotation matrices 6.

n=1
RCS(lab) =~ D(l) RCS(pas)

/-m £.. n,-m /,n
n=-1

(1.16)

Where D~~~m are the Wigner rotation matrices, and the reduced Wigner elements

d(l) for 1=2 are outlined in table 1.1.n,-m

The principle-axis system (PAS) can be thought of as the Hamiltonian's

"frame of referencel/. In the PAS a is diagonal and can be written as,

o
cr)l)'

o
(1.17)

If we look at a powder pattern resulting from a chemical-shielding interaction in

figure 1.1 we can determine each component O'run directly.
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N 2 1 0 -1 -1
M

2 (1 + cos.8r -
(1 + cos 13) sin 13 j{sin

2 13 -
(1- cos f3)sin 13 (1- cos 13/

4 2 2 4

1 (1 + cos 13) sin 13
cos2 13- (1- cos 13) j{'2f3 (1+ cos 13)

cos2f3 (1- cos 13) sin 13
2 2 - 8sm

2 2

0 ~ sin
2 13 #.213 3(cos 2 13 -1) H.213 J{sin

2 138sm
2 - 8sm

-1 (1- cos 13) sin 13 (I +cos 13)
cos2 f3 Hsin

2 13 cos2 13- (1- cos 13)
-

(1 + cos f3) sin f3
2 2 2 2

-2 (I + cos 13/ (1- cos 13) sin f3 j{sin
2 13 (1 + cos 13) sin 13 (I + cos13/

4 2 2 4

Table 1.1 Reduce Wigner rotation matrix elements, taken from 6.

Fig 1.1 Cartoon of a typical asymmetric chemical shielding powder

pattern. The three principle values, (lyy' (lxx" and (lzz are sufficient to

define the chemical shielding tensor in its principal axis system.
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Here we have followed the convention azz ~ axx ~ ayy ' We can write our Rl~~pas)

values in terms of the (jnm components,
T ­
!---­; -

1
RfS(pas) = -(a +a +a )

,0 3 xx yy zz,

l)CS(pas) = rI(a _1. (a +a +a ))
~'2,0 ~"2 zz 3 xx yJ' zz,

l)CS(pas) - 0
~'2 +1 -

,- . I

l)CS(pas) = 1/2(a - a )
~'2,~ n' xx.

(1.18a)

(l.18b)

(1.18c)

(1.18d)

Typically at this point one rewrites equations 1.18 a-d in terms of (jiso , <>, and 11

where,

(1.19)

(1.20)

(1.21)

Here, (jiso is the isotropic chemical shift (observed in liquids), <> is know as the

anisotropy parameter, and II is known as the asymmetry parameter. With these

substitutions equations 1.18 a-d become

l)CS(pas) = a.
~'O,o ISO,

~S(pas) = (38
,0 ~"2,

~~(pas) = 0
, ,

l)CS(pas) = .!. 8'T}
~'2,2 2

(1.22a)

(1.22b)

(1.22c)

(1.22d)
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Turning our attention to the spin portion of equation LIS, we can write out our

I;;S values in the laboratory frame as,

(1.23a)

(1.23b)

(1.23c)

(1.23d)

Noting that the chemical shielding anisotropy is much smaller than the Zeeman

contribution, we can move into the rotating frame and make the secular

approximation. As such we keep only terms that commute with Hz. Thus terms

that contain I;~:'l are dropped. Putting this all together we can recast equation

1.15 as,

(1.24)

Where pand a are Euler angles that result from a transformation of R~;)PAS to the

laboratory frame. In liquids molecular motion averages pand a and equation

1.24 looses its angular dependence resulting in,

(1.25)

an isotropic scalar quantity.



The chemical shielding interaction gives us our first taste of how NMR can
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L

be a useful structural tool. Chemical shielding is inherently sensitive to its local

environment, and in solids carries with it an implicit orientational dependence.

Our attention now will turn towards how spins interact with each other.

1.2.4 Dipolar Coupling

The dipolar-coupling interaction describes the through space coupling

between two nuclear spins. Here we are interested in how one dipole moment

affects a neighboring dipole moment. For a g~neral spin system, HD can be

written as,

E
l

r=
I

1 .

(1.26)

Where the summation accounts for each spin pair and Djk is a second rank tensor

describing the coupling between the yh and k th spin. Following our treatment of

chemical shielding, we can move into a convenient spherical tensor

representation. Limiting our discussion to the interaction of two spins, HD in the

laboratory frame can be written as,

!,
,
j

~ .-"

! ,d

n
Ii
Ui

1i2 2 2
H = YIYSf.lO ~ ~(_l)m RD T,D

D 2 £.J £.J l-m 1m
11: 1=0 m=-2 •

(1.27)
l.

·."0_~i

j

f '1II
lJ
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As with chemical shielding we can utilize the Wigner rotation matrices to

transform Rl~m from the principle axis system to the laboratory frame,

n=!
RD(lab) = "n(l) RD(pas)

I-m .k.J n,-m I,n •
n=-l

(1.28)

Here n,;~~m are the Wigner rotation elements, not to be confused with Djk the

dipolar coupling tensor. Just as in the case of chemical shielding, the dipolar

coupling tensor is symmetric and as such I = 1 terms are zero. Unlike the

chemical shielding interaction, the dipolar coupling tensor Djk is axially

symmetric and traceless. In the PAS system we can write Rl~~:as) as,

Rfj(pas) = ~(pas) = ~(pas) = 0
,0 ,±l ,±2 ,

llD(pas) = [3r-3

L'2,O ~2'

(1.29a)

(1.29b)

Because the isotropic component of the dipolar coupling is zero, there is no direct

manifestation of dipolar coupling in liquids. Continuing, we can write our two

spin r;~ components as,

(1.30a)

(1.30b)

(1.30c)

(1.30d)
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Noting that the dipolar interaction is several orders of magnitude smaller

than the Zeeman interaction, we can again move into a rotating frame and make

a secular approximation. Keeping only terms that commute with Hz, Le. terms

proportional to I;~o' equation 1.26 becomes,

F
h
r=­
!

(1.31)

where ~ is the angle between the z-axis defining the PAS and the z-axis of the

laboratory frame set by the direction of Bo. For heteronuclear dipolar coupling,

where 1,S represent nuclei having very different larmor frequencies, the second

portion of equation 1.31 simplifies to,

(1.32)

Of practical significance, dipolar coupling is dependent upon the

internuclear distance between spins. Thus in our arsenal of structural tools,

dipolar coupling can be used as a "molecular ruler". Because the isotropic

portion of the dipolar coupling is zero, measurements of dipolar coupling in both

liquids and solids under magic angle spinning conditions (to be discussed

shortly), can only be achieved via indirect means.

l.
fl.,

J1
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1.2.5 I-Coupling
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J-coupling describes the indirect coupling of nuclear spins mediated

through the local electrons. Where dipolar coupling is a through-space

interaction, J-Coupling is a through-bond interaction. We can write a J-Coupling

Hamiltonian, HJ as,

N N

HJ = LLI .JIS·S.
j k

(1.33)

Where in principle lIS is a second rank tensor. In practice, the anisotropic

portion of lIS is negligible and only the isotropic portion of lIS is kept. For a two

spin system, J = Tr{ lIS} , and equation 1.33 can be rewritten as,

(1.34)

Isotropic J-couplings are on the order of 1-100 Hz so we can safely make a secular

approximation, leaving,

(1.35)

Because J-(wupling is isotropic, it is not averaged away by the molecular motion

in liquids and plays a central role in liquids NMR. However, due to the fact that

J-couplings are relatively small compared to dipolar coupling and chemical

shielding, it has to date found only limited use in the solid state.
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1.2.6 Quadrupole
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The last interaction that we will briefly outline is the electrical quadrupole

moment. An asymmetric nuclear spin, 1>1/2, couples to the electric field

gradient at the site of the nucleus generating an orientational dependence. For a

single spin in an external field we can write HQ,
I .

eQ - A -

H = I·V·I
Q 2/(21 -l)/i . (1.36)

j ­
L~

Where e is the elementary charge, Q is the quadrupole moment, and V is a

second-rank tensor that describes the electric field gradient at the nucleus.

Because spin-1/2 nuclei are symmetric they do not experience quadrupole

coupling. The work presented in this chapter focuses on spin-l 12 particles and

as such the quadrupole moment plays a very small role and further attention is

eliminated.

1.3 Bloch Equations

The Bloch equations, developed by Felix Bloch in 1946 7, provide a

classical description of the evolution of a spin-systems' magnetization, M(t),

( .

! .

I
J

I .

f
'~
~

U

U

f
'~,.,ioj

JJ

I, ~Lj



Chapter 1: Introduction Page 17

f ~

T -

during a typical NMR experiment. In the absence of relaxation, the evolution of

M(t) can be written as,

dM(t) = rM(t) x B(t)
dt

We can write M(t) in terms of its components as,

Similarly we can write B(t) in terms of in its components as,

(1.37)

(1.38)

(1.39)

Expanding equation 1.37 we obtain three differential equations, each describing

the evolution of one of the components of M(t):

dMx(t) =yM B -yM B
dt Y z z Y,

dM/t) =yMB -yM B
dt z x x z,

dMz(t) =yM B -yM B
dt x Y Y x

(1.40a)

(1.40b)

(1.40c)

We can then make a number of simplifications. B(t) can be broken down into

time-independent and time-dependent terms.. The static magnetic field, Bo, and
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the small "offsetting" magnetic field caused by the presence of the sample, Bof£(t),

is time-independent and can be arbitrarily chosen to lie along the z-axis. The RF

irradiation used to perturb the spin system from equilibrium is intrinsically time­

dependent and can be represented as a small oscillating magnetic field, Bx/y(t),

with components, perpendicular to Bo. With this in mind we can write the

components of B(t) as,

Fe:::
I
i -
c­, -

! '

rEx(t) = -cos(mrjt),

rEy(t) = -sin(mrjt)

(1.41a)

(1.41b)

(1.41c)

Where we have substituted {Ooff (the offset frequency) for yBoH, cos(<:orfl:) (the real

component of the applied RF field) for yBx(t), and sin(ffirfl:) (the imaginary

component of the applied RF field) for iyBy(t). We can further note that if we

move into a frame of reference-rotating at the Larmor frequency,
r -

rEz(t) = -moff

rE/t) =-OJrea/(t)

rE/t) = -OJ/mag (t)

(1.42a)

(1.42b)

(1.42c)

We can now incorporate the effects of relaxation into equation 1.40.

Phenomenologically, we know that M(t) should tend towards its equilibrium

state as t gets large,

M(O) =( ~ J
Mo - (1.43)
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Consequentally, Mx(t) and My(t) should tend towards zero with time, while

Mz(t) should tend towards Mo. This evolution can be described with the

following three differential equations, which introduce two time constants, T
I

and Tz,

dMx(t) =-Mx
dt 1;

dM/t) = -My

dt 1; ,
dMz(t) _ -(Mz- Mo)

dt 1;

(l.44a)

(1.44b)

(1.44c)

T
I
, or spin-lattice relaxation, involves the exchange of energy between the spin

system and the lattice as the system returns to the equilibrium Mo along z. This

is in contrast to Tz, spin-spin relaxation, which involves only energy exch~ges

between spins in the system, during the systems return to its equilibrium Mxand

We can now reconstruct equation 1.40 with the effects of relaxation, in

matrix form as,

(1.45)

Here, r
l

and r z have been substituted for l/T
I

and 1/ Tz respectively. This very

general form of the Bloch equations will serve as a starting point for our

discussion of the inverse scattering problem in section 2.2.1.
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At this point a brief note about the relative magnitudes of the time

constants T
1

and T
2

is in order. In general, T
1
> T

2
• In the liquid state, as we will

see in the next section, strong intermolecular interactions are averaged. This

leads to T
1

and T
2

values on the order of 0.1 to 10 sec. On the other hand, in

solids, where there are strong interactions between spins and hindered molecular

motion, T
1

values are very long and can be anywhere from seconds to hours

while T
2
values tend to be very short, in the msec regime.

1.4 Making Solid State Measurements

Making meaningful measurements in solid state can be difficult in multi

spin systems. While the broad spectral features resulting from chemical

shielding and dipolar coupling are information rich, they can be difficult to

disentangle. With broad lines the potential for spectral overlap is high and

overall resolution is correspondingly low. A further result of the broad line

width is that the signal is spread out over a large spectral range, lowering the

overall sensitivity. This section will outline some of the techniques used to

overcome these resolution and sensitivity problems to make measurements in

the solid state. In this section there is an implicit assumption that we are

concerning ourselves with powdered samples. In a powdered sample we can

envision small micro-crystals that have identical structure, but have random

orientations with respect to the static magnetic field. While this section is by no

no
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means comprehensive, it will describe the tools used for this study. We will

begin by outlining "spin-space" averaging, or decoupling.

1.4.1 Decoupling

Continuous-wave decoupling (CW) is the simplest example of a spin­

space averaging technique. Taking an 15N_1H spin pair, the CW decoupling

experiment amounts to applying a long RF pulse at (or very near) the resonance

of one of the spin species during acquisition. The spin species being irradiated

precesses perpendicular to the RF field. Thus the spin pair evolves under a

Hamiltonian reflecting both dipolar couplings and the RF field. If the

decoupling field is stronger than the dipolar interaction, the dipolar coupling is

dynamically averaged to zero. Conversely, if the decoupling field is weaker than

the dipolar interaction, the second spin will evolve under a partially averaged

dipolar coupling. More complicated decoupling schemes exist, and will be

discussed as needed. A second means of gaining spectral resolution and

sensitivity involves spatial averaging.

1.4.2 Magic Angle Spinning

Mechanical sample spinning offers a second means of spectral

deconvolution. Dipolar coupling and chemical shielding both contain terms
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which impart a spatial dependence upon the orientation of the spin's magnetic

moment with respect to the external magnetic field,

(1.46)

Again, ~ is the angle of the magnetic moment with respect to the external field Bo'

There thus exists a "magic angle" where these interactions are averaged, when

(1- 3cos2 f3)=O. This particular angle is 54.7°. Spinning a sample about a solid

angle (in this case the magic angle) averages components that are not colinear

with the rotor axis. This can be seen pictorially in figure 1.2.

Figure 1.2 A an arbitrary crystallite spinning about an axis at the
I

magic angle. The magnetization components perpendicular to the

axis of rotation are averaged to zero while the magnetization

components parallel to the axis of rotation are left unchanged.
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Here we see that spinning averages the components of the magnetic moment that

are not parallel to the spinning axis. The net effect spinning at the magic angle is

to incline, on average, all the magnetic moments at the magic angle. This results

in an averaging of both chemical shielding and dipolar coupling.

As with spin decoupling, when the magic angle spinning speeds are larger

than the interaction being averaged, one sees complete averaging and is left with

only isotropic contributions. In the case of dipolar coupling this is observed to be

zero. For chemical shielding this is the isotropic chemical shift. Again, when the

spinning speed is less that the interactions being averaged, we see only a partial

averaging. This results in series of lines separated by the spinning speed or

spinning side bands. Next our attention will turn towards techniques which

clarify spectra by simplifying the spin-systems being observed.

1.4.3 Isotropic Enrichment

Isotropic enrichment allows one a direct means of increasing sensitivity in

heteronuclear (l3e and 15N) experiments. At natural abundance, l3e and 15N, the

spin 1/2 species commonly used in NMR, compose only 1.1% and 0.37% of the

carbon and nitrogen in the sample. By artific~ally enriching samples with spin

active isotopes one raises the number of active spins in the system and hence the

overall sensitivity of the experiment.

Often complete isotropic enrichment is spectrally cumbersome. One

introduces a multitude of coupling that may lower the overall resolution of the
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spectrum with the addition of extra active spins. Site selective isotropic

enrichment is one means of both increasing sensitivity and resolution. With site

selective enrichment specific sites within a given molecule are enriched. This has

the effect of making these sites more sensitive than their un-labeled counterparts

and as such increase the over all resolution.

1.4.4· Cross Polarization

The final solid state NMR tool that we will address is cross-polarization.

Before we delve into the mechanics of cross-polarization, let us develop a

qualitative picture. From 1.2.1, we know that the overall sensitivity of a nuclei is

proportional to it gyromagntic ratio, y. As y is raised the energy difference

between the "spin up" and "spin down" energy levels increases (at constant

temperature) the net polarization increases. This polarization dictates the overall

sensitivity of a nucleus. In comparing spins with different y values, one could

describe a system of nuclei with a high y and correspondingly high polarization,

as a "cool" spin reservoir. Similarly a low y spin system could be described in

relative terms as a "hot" spin reservoir. This thermodynamic analogy is known

as the spin-temperature hypbthesis8
• The spin-temperature hypothesis is

predicated on the notion that for times t such that T2<t<T1 the probability of

finding a spin in a given energy level is dictated by the Boltzmann distribution.

The Boltzmann distribution in turn dictates the spin temperature, Ts• This type

of thermodynamic description can be immediately useful. If two thermal

reservoirs are placed in contact, at equilibrium they will reach a common

R
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temperature. In terms of spin systems this can lead to a sensitivity enhancement

for the spins that were initially "hot".

Cross polarization describes experiments that establish a contact between

a "cold" spin reservoir and a "hot" spin reservoir. With this contact the

reservoirs equilibrate, effectively "cooling" one spin system and increasing its

sensitivity. This contact is mediated through the dipolar coupling and depicted

graphically in figure 1.3.

yB1CIH) =

yB 1CI5N)

Lattice

15N Spin
Reservoir

Figure 1.3 Cross polarization block diagram. The IH and 15N spin

reservoirs are normally only coupled to each other via the lattice.

When a RF field is places on both the carbon and the proton spin

systems such that the Hartmann-Hahn condition 9 is matched, the

spin reservoirs can mix. This effectively "cools" the carbon

reservoir while "warming" the proton reservoir.

For our purposes we will be discussing IH_15N cross polarization in which the

overall sensitivity of the lSN spins is increased by transferring polarization from

the IH to the lSN. The question then becomes, how does one allow these

reservoirs to mix.
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Effective thermal contact can occur between two spin reservoirs 1 and 5

when the Hartman-Hahn9 condition is met such that,

(1.47)

where BlI and B15 are the strengths of the oscillating RF field applied to each

nuclei. This describes a situation where, in the double-rotating frame, each

species is nutating at the same frequency. During this mixing time the spin

polarizations begin to equilibrate. With a sufficiently long mixing time, the spin

temperature of each spin species is equilibrated. A general pulse sequence can

be seen in figure 1.4.

rr'/2

IHJ] CP Contact
'-- --L.. _

15N~ CP Contact ~"""';_---

Figure 1.4 Simple Hartmann-Hahn cross polarization sequence.

Here we see that after a rt/2 degree pulse on the I spins, an effective field of BlI

and B15 are applied to I and 5, respectively, to initiate the cross-polarization

thermal contact. In the case of IH_15N spin pair, Bl
15N -10* B/H. Under ideal

conditions, one can expect an 15N sensitivity enhancement of 500%.
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An indirect advantage of the cross polarization technique is seen when

one signal averages many spectra. The delay between acquisitions is mandated

by the time it takes the system to return to its equilibrium magnetization.

Because the polarization being monitored is transferred from the IH spin bath,

the recycle delay is dictated by the IH relaxation dynamics. In general the IH

relaxation times are much faster than 15N (or l3C) relaxation times. As such,

under cross polarization conditions, one is able to take more acquisitions in a

given amount of time than under directly detected conditions. This has the effect

of reducing experiment time, and increasing the signal to noise. The later

statement is a direct result of the fact that when signal averaging, the signal-to-

noise scales as the square root of the number of acquisitions.
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Tz-SELECTIVE PULSES; INVERSION OF THE BLOCH EQUATIONS

2.1 Introduction to Magnetic Resonance Imaging

Over the past few years considerable progress has been made towards

improving Magnetic Resonance Imaging (MRI) as both an analytical imaging

tool and as a non-invasive medical diagnostic 1,2. The basic MRI experiment

relies on the fact that, for a nucleus with a non-zero spin such as IH in water,

the resonance frequency, (0, is linearly dependent upon the size of the

external magnetic field, Bo,

(0 = J'Bo , (2.1)
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where 'Y is the gyromagnetic ratio. With the incorporation of a magnetic field

gradient, G, a spatial dependence can be imparted upon the resonance

frequency,

(2.2)

In this manner, one is able to create a map of spin density as a function of

position.

One of the drawbacks of the basic magnetic resonance spin density

imaging scheme is that it is intrinsically non-selective. As can be seen in

figure 2.1, it is often difficult to image one spin species in the presence of a

second. In this example we have depicted an imaging phantom with two

parallel sample tubes.. Each tube has a different spin species. In the idealized

case, figure 2.1a, each spin species has nearly the same resonance frequency

and relaxation times. As such, imaging either tube in 2.1a is rather straight

forward. In the more realistic case, 2.1b, each tube has a spin species with

different physical characteristic. As is readily apparent, the species depicted by

the lighter shade, has faster relaxation properties (broader line) and a different

chemical shift than the species depicted by the ,darker shade. In constructing

an image, all spins within a given resonance frequency range will be lumped

together to give a local spin density. Such background spin density often

masks the spins of interest, making imaging problematic. This is seen in the

image depicted in figure 2.1b. To combat this a number of techniques have

been developed to create spin selective images 3,4,5.
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hzhz

b.) Real

o

a.) Ideal

Sample

'- -

1 -

2D-images (top view)

Figure 2.1 Cartoon of a simple imaging experiment. The sample

phantom consists of two parallel tubes, containing potentially

different spin systems. a.) depicts a mock spectrum and 2D­

image of an idealized system. Here each spin system has almost

the same physical characteristics. b.) depicts a mock spectrum

and 2D-image of a more realistic system where the physical

properties of each spin system are different.

Differences in resonance frequency offer one means of creating spin

selective images. Two examples of frequency selective excitation are depicted

in figure 2.2. To first order, the frequency excitation profile of a RF pulse is

simply the Fouier transform of the pulse profile. Thus, the longer an

excitation pulses is made, the narrower its excitation profile becomes. This

leads to the use of long low-power soft pulses. Clearly these techniques work

best for species with very different resonance frequencies. This can become a

practical problem for typical medical imaging experiments that operate at low

external magnetic field strengths. Under these conditions there is little

chemical shift dispersion.
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Soft Pulse

Sinc Pulse

Excitation Profile

Excitation Profile
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Figure 2.2 Frequency selective pulses and their resultant

excitation profiles.

Externally introduced agents offer a second means of spin density

contrast. These fall into two categories: those which alter their local

environment, such as the addition of Ga3
+ which augments local relaxation

dynamics6
, and those which function as "spies" such as polarized noble gases7

and fluorine-rich compounds such as C2F4 8, which offer a selective group of

spins to image. These techniques have the advantage that they enable one to

include only spins of interest in a given spin density image. A disadvantage

inherent in many of these techniques is that using ex-vivo agents may detract

from the relative non-invasiveness of the basic MRI experiment.

A third method for creating differential spin images relies on the use of

the relaxation dynamics of the spins as an internal contrast agent 9. As

t
i
I
I 1

i,

n
U

n
LJ

L



Chapter 2: Tz-Selective Pulses . Page 33

- !'
i,
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rc/2 Wait .,.

Figure 2.3 Vector diagrams for experiments that incorporate a

"wait" period to differentiate spins with different relaxation

properties. The vectors with the shaded arrow heads represent a

species with slow relaxation dynamics and the vectors with open

arrow heads represent species with fast relaxation dynamics,

corresponding to the dark and light species depicted in figure 2.1.

The cartoon below each experiment is a mock spectrum in

which magnetization from the fast relaxing species has been

removed.

outlined in section 1.3, after excitation, the return to equilibrium for an

ensemble of spins, can be described by two exponential relaxation processes:

spin-lattice relaxation, TlI and spin-spin relaxation, Tz. Relaxation

differentiation is achieved by incorporating a "wait" domain in the basic MRI

experiment. For example, for spins differentiated by T2' during this wait

period, spins that relax quickly are nulled leaving only spins with slow

relaxation to add to the overall spin density image 3,10. A series of vector

diagrams that outline the fundamental of T2 weighted experiments are

shown in figure 2.3.
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While these relaxation-weighting techniques offer a non-invasive

means of selecting which spins are imaged, this selectivity is quite inflexible.

They can act either as a 'high pass' or a 'low pass' filter, removing signal from

spins with relaxation parameters below or above a certain threshold. These

methods then tend to be quite inflexible when imaging one spin species in

the presence of two or more other spin species, where each species has unique

relaxation behavior. A second disadvantage of these relaxation-weighted

techniques is that during the "wait" domain, one is throwing away signal.

For many MRI experiments, one is limited by signal-to-noise and thus the use

of these relaxation weighting techniques becomes problematic.

Presented in this chapter are the first relaxation selective images.

Using theory detailed in the next section, in which the inversion of the Bloch

equations is treated as a scattering problem, we were able to design and

implement Tz-selective RF pulses for imaging. These RF pulses create a final

magnetization response that is parameterized as a function of Tz, and as such

act as effective 'notch'filters for Tz. To follow will be a brief explanation of

the theory behind the pulse design, a description of our experiment and our

results compared to theory.

2.2 Theory

This section will outline how inversion of the Bloch equations was

used to create Tz-selective pulses. It will start by introducing scattering theory.

Then it will show how the Bloch equations can be written as an invertible

scattering problem. Finally, it will describe how this process was used to

1 --~,

, "
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create relaxation-selective pulses capable of creating a final magnetization

parameterized by T2' For a more detailed discussion of this theory the reader

is refereed to 11.

2.2.2 Scattering Theory

Prior to launching into a description of the inner workings of inverse

scattering theory, it would be fruitful to pause and address what we hope to

gain by inverting the Bloch equations. To do this we will first develop a

qualitative picture of the forward scattering problem.

The coupling of the Sun's light and the Earth's atmosphere is a classic

example of a scattering problem. The apparent white light of the Sun is

"scattered" by Earth's atmosphere leaving, on a clear day, blue skies. We can

depict this more generally in figure 2.~.

S(O)

.....- - ~

, .
:' ~ I" ,

\ I' I

\, ', .. .,.,"

-.) V(t) (:'j~J\f0'S(t)
, ,· '· /· ,, ,. ,

..... "
. ... -."",,, ...... ".... .. ...

!
L

I
i
I .

Figure 2.4 A graphical depiction of the general scattering

problem. S(O) is the initial state of the system, S, Vet) is the

potential the system is passed through and S(f) is the final state

of the system. We have neglected to include the back scattered

contribution.
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Here we see that our system, S, which corresponds to the Sun's light, begins

in an initial state, S(O), or white light. It is then passed through, a potential

V(t), the atmosphere, leaving the system in a state S(f), in our example the

blue we see on a clear day. The forward scattering problem amounts to

determining the S(f), given S(O) and V(t). The inverse scattering problem is

to determine V(t) given S(O) and S(f). Extending the example of Sun's light

and the Earth's atmosphere, the inverse scattering problem would ask, given

the white light of the sun, and the fact that I want to observe a sunset with

green, red and purple, what contaminants should I place in the Earth's

atmosphere? Where this becomes of practical interest is when one chooses a

clever S(f).

Inverse scattering theory allows the "inversion" of systems of the

form,

f
r
r-
I -

r

a; = [i~J + V(t)]<I>(~,t)
(2.1)

where <I>(~,t), J, and V(t) are n x n matrices, and ~ is a scalar (the scattering

parameter). Given initial and final values of <I> as functions of ~, inverse

scattering theory allows the determination of V(t) 12. This inversion is

particularly straightforward for "pure-soliton" type systems, where V(t) may

be determined (in principle, in closed-form) using the dressing method 13.

2.2.1 Recasting the Bloch Equations

As introduced in section 1.3, the Bloch equations offer a classical

description of the evolution of the bulk magnetization of a spin system
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r e

- t during a typical NMR experiments. In matrix form we wrote the Bloch~ ! -

_ [e equation as,,
Ir--:

_ t' (M,(t)J [ -r, -(J)of! ro~(t) r,(t)] [ 0 ]d
- M/t) = (J)of! -rz -(J)rea/t) M/t) + 0
dt Mz(t) -(J)imag(t) (J)real (t) -rJ Mz(t) MZ(O)r1 (2.2)

This very general form of the Bloch equations will serve as a starting point

for our discussion of the inverse scattering problem. Since we will want to

design "relaxation-selective pulses", it is helpful to separate out the relaxation

terms in this equation. This gives,

(2.3)

Which looks somewhat like equation 2.1, here a relaxation matrix has taken

the place of J and the potential V(t) is the driving fields or the (0 terms.

To get equation 2.3 into a form that we can easily invert we need to

make four simplifications. First we will assume that T1 » Tz•

,
!
I
l ~

i

L
!

L

Experimentally in the samples used in this work, T 1 tended to be -5 x Tz, so

this assumption is justified. Then we assume that we are on resonance and

that we are only using a real RF source. Thus (Ooff = (Oimag =0. Finally we

note that at equilibrium our initial magnetization is along the. Z axis and is

Mz(O). Thus equation 2.3 becomes,
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r=
d(M'(t)] [-r, 0 o r,(t)] I _

Ie ~

- M/t) = 0 -r2 -wreal(t) M/t)
f"'dt

Mz(t) 0 wreal (t) o Mz(t) (2.4) L
1-;

This further simplifies when we note that initially, i.e. at t=-oo, Mxis zero and

hence Mx = a for all time. Also, the behavior of My and Mz does not depend
r -

(2.5)

Hence,
[ -

(2.6)

But,

and, from equation 2.5,

(2.7)

I _

er2t/2 .!!:...(My(t)] = -[ -~2
dt MzCt) W (t)real

Hence equations 2.6, 2.7, and 2.8 yield,

(2.8)
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(2.9)

, -

This is a special case of the Zakharov-Shabat (ZS) eigenvalue problem13
,

dv [-it; q*Ct)]v
dt = -q(t) i~ (2.10)

t -

I _

identifying ~=-ir2/2 and q(t)=q*(t)=mreal where *mean complex conjugate.

The ZS problem has been extensively studied both as a forward

problem, where the behavior of v is determined, given the parameter ~ and

function q(t), and as an inverse problem. Here, the behavior of v is specified

by giving the "scattering data" of the system. For each set of scattering data, a

"potential" q(t) may be uniquely determined 13,14,15,16. Thus given an M(a) and

a M(f), a real RF pulse ffireal(t), can be constructed that takes us from M(a) to

M(f).

2.2.3 Choosing M(f)

To achieve T2 selectivity, we chose a M(f) that was parameterized as a

function of T2• M(f) was chosen to be,

M(!) =

a
a

nr r2 ~gj

j=l r
2
+g;

(2.11)
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Parameters gj may be chosen arbitrarily, as can the number of parameters, r,

except that all gj must be in the right half complex plane, and any gj off the

real axis must be in a (gj,gn pair. For such final responces, the inverse

scattering problem can be solved using a tool from scattering theory - the

"dressing method." 13. Hence a pulse corresponding to responses of equation

2.11 will be referred to as an rth order dressing pulse.

Figure 2.5 gives a geometric picture of how spin species with different

T2 values evolve during a selective pulse. The magnetization of each T2

species is moved by the pulse from its initial value, taken to be (0,0,1) to a

final scaled value along the z-axis.

I .

I
I ~

i
I .
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Figure 2.5 Theoretical plots of M for a series of Tz species, during

a third order dressing pulse designed to null a species with a Tz

of 1 msec. The trajectory of each species is plotted on a unit

sphere.

The final magnetization is therefore encoded according to its Tz relaxation

time. For a particular T2, which may be chosen as desired, the final

magnetization is zero, and this spin species is "nulled" by the pulse. A second

spin species will have a non-zero M(f), the size of which is determined by the

"filter-function" given in equation 2.12. Optimizing the M(f) becomes a

question of optimizing the values of the gj parameters.

Figure 2.6 shows a theoretical plot of the final Mz as a function of T2 for
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a third order dressing pulse designed to selectively null a species with a Tz of

6.5 msec.

1

~ 0 -----------------

-1 '.-----,..-.====-~---...__..:..--___._---...__--___,

-4 -2

log IIT2

o 2

Figure 2.6 Theoretical plot of Mz as a function of Tz following a

third order dressing pulse designed to selectively null species

with a Tz of 4.5 msec.

msec. Of particular importance is the fact that a species with Tz longer or

shorter than 4.5 msec have a non-zero final Mz. Thus this pulse acts as a

"notch" filter in Tz.

t .:.::
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This section will outline some of the more utilitarian aspects of the

creation of Tz-selective pulses. We will start by describing how to translate a

theoretical pulse shape into an experimental tool. We will then delve into

the dressing pulse's physical tolerances. Some attention will be paid towards

choosing the ideal samples to highlight the selective properties of dressing

pulses. Finally the hardware and pulse sequences used for collecting data in

these experiments are described.

2.3.1 Dressing Pulses

Selective pulses were constructed as follows. A theoretical pulse

backbone for nulling species with Tz = 1 msec was produced. As can be seen

in figure 2.7, the amplitude of the RF takes on both positive and negative real

values.
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Figure 2.7 A plot of nutation frequency as a function of time for

a 3rd order dressing pulse designed to selectively null the

magnetization from species with a Tz of 1 msec.

This backbone can serve as a template for nulling any species by adjusting the

pulse length and the pulse power. To make these adjustments, the pulse

backbone is broken into 800 steps of equal length with a normalized value

between a to 1 indicative of the relative nutation frequency at that point in

the pulse. This enables us to control the pulse length and the relative pulse

power. Next, with a Tz measurement, an estimate of the power and pulse

length required to null the sample of choice was made. With these as starting

conditions, the pulse length and power were iteratively adjusted to find the

best null on the sample to be selectively removed. To illustrate this, figure 2.8

is a plot of the final Mz, following a dressing pulse, as a function of pulse

length for a sample with T2=1.1 msec.

l .

!
l
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As a small digression, we should address how Mz is measured, and

thus how a null is found. The integrated area of a spectral peak is

proportional to the number of active spins, or Mz before a hard rt/2 "read"

pulse. Thus, experimentally Mz is measured by applying a hard "read" pulse

to the sample, Fourier transforming the resultant free induction decay, and

integrating the peak.

I .
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N
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0.2

0

0 5 10
,
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I .
~
I
[

Pulselength (ms)

Figure 2.8 A plot of Mz as a function of dressing pulse length.

The null for this sample occurs with a dressing pulse that is 6.9

msec long.



Chapter 2: Tz-Selective Pulses . .. Page 46

1

0.8

0.6

f
0.4

0.2

0

100 600

Maximum Power (hz)

1100

f
r
F
i

Figure 2.9 A plot of Mz as a function of maximum dressing

pulse nutation frequency. The null for this sample occurs with a

dressing pulse that has a maximum nutation frequency of 600

Hz.

The first thing to note about figure 2.8 is Mz=O for an optimized

dressing pulse, and thus the species is effectively nulled. One can also see that

the nulling capability drops off dramatically as the pulse length is

misadjusted. A similar plot, figure 2.9, can be made of the final Mz, following

a dressing pulse, as a function of pulse power. Again an optimal nutation

frequency can be seen and as one deviates from this position, the nulling

capability declines.

One of the assumptions made in designing these pulses is that any

species to be nulled is on resonance, (00££=0. The

L
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Figure 2.10 A plot of Mz as a function of resonance offset, WoH,

for an optimized 3rd order dressing pulse. The bandwidth of the

dressing pulse is approximately 250 Hz.

bandwidth of a real dressing pulse can be seen in figure 2.10. There we see a

plot of the final Mz, following an optimized dressing pulse, as a function of

resonance offset. The pulse efficiency falls of sharply as we stray from

resonance. The functional bandwidth is approximately ± 125 Hz. This of

course is a mixed blessing. In terms of selectivity, it means that not only is

the dressing pulse potentially T2 selective, it is also resonance frequency

selective. The advantages of this property are not exploited in this thesis.

The disadvantage is that for fair comparisons between samples with different

T2 values, we must make sure that the resonance frequency of each sample
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falls within a narrow range. This leads us directly to our next section,

samples.

2.3.2 Samples

Choosing the "correct" sample, that will provide a clear explicative

vehicle to the fundamental idea you wish to test out, can be a bit tricky. Our

primary goal was to demonstrate the T2-selectivity of the dressing pulses

described above. The ideal system, would be a series of samples in which T2

varies while all other attributes are held constant. In this case, other

attributes include resonance offset, sample size, couplings, and Tl' Of these,

we need to pay particular attention to the resonance frequency, as figure 2.10

shows that the dressing pulses excite a finite bandwidth.

Our first attempt to design such a system was a series of aqueous CuS04

solutions. It is well known that paramagnetic ions act as relaxation agents.

Thus by varying the concentration of CuS04 we could impart unique

relaxation dynamics to a series of nearly identical samples. This series, as will

be shown later, was used. to experimentally show the band pass nature of the

dressing pulse. This system had two distinct drawbacks. . While Cu2
+ is a

good relaxation agent, it is also a good shift reagent. Thus each sample had a

concentration-dependent resonance condition. This prohibited CuS04's use

in exhibiting the selective aspect of the dressing pulses. The second drawback,

which we could correct for, was T1 is also concentration dependent.

The system used for the selectivity studies was a pair of aqueous MnCl2

(15 and 1.9 mmol) solutions. While T1 still varied with concentration, Mn2
+

was seen to be a rather poor shift reagent. Because of this, each sample had
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- ~
t _ nearly the same resonance conditions. With the incorporation of a sample

holder comprised of two concentric tubes, figure 2.11, we were able to

simultaneously observe two species with the same resonance condition, but

with different T2 values.

I

1

Top View

j

5

Side View

Figure 2.11 The sample phantom. It consisted of two concentric

tubes: outer tube 7 mm inner diameter and 9 rhm outer

diameter, inner tube 3.5 mm inner diameter and 5 mm outer

diameter.

Tz relaxation times were estimated from the full width at half height of the

water spectra, using,

~ -

'E = 1
2 J'C.(FWHH) (2.22)

!
I

and taking into account the 10 Hz broadening due to residual field

inhomogeneity. They were 0.45 msec and 3.3 msec for the 15 and 1.9 mmol

MnClz solutions respectively. Thus producing an image of just one tube, in
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the presence of the second, is the ideal model system to demonstrate T2

selective pulses.

2.3.3 Hardware

no

R, ~

\ j

Chemagnetics CMX Infinity spectrometer as modified above.

Selectivity experiments were performed in a wide-bore Nalorac magnet

(4.2 Tesla) using a home built imaging probe capable of producing linear

magnetic field gradients (0.65 Tesla/Meter). These experiments used a

Chemagnetics CMX Infinity spectrometer with computer controlled radio

frequency (RF) power levels. In order to obtain the rather low nutation

frequencies required for the dressing pulses (~1 rad/msec), a few

modifications of the spectrometer had to be made. First, the amplifiers were

removed and the preamplifier was used as the RF amplification source. Next,

a secondary attenuation source capable of lowering the RF power by 100 dB,

was added after the preamplifier. Finally, the peak voltage of many dressing

pulses was far below 0.7 V. This meant that the crossed diodes in parallel,

that are usually inline directly after the amplification stage to prevent signal

from being reflected and lost in to the rf amplifier, had to be removed.

Experiments to show the band pass nature of the dressing pulses were

performed in a wide-bore magnet (9.4 Tesla) using a commercial two channel

(HX) liquid probe. These experiments were also performed with a
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The pulse sequence, used to obtain one dimensional selectivity data

and bandpass data, is a dressing pulse, which parameterizes the initial Mz

magnetization as a function of Tz, followed by a hard "read" pulse, which

measures the resultant M z magnetization. This is depicted in figure 2.12.

a.) rc/2

! -
1

b.)

Selective Pulse

Figure 2.12 The basic pulse sequences used to measure Mz. a.) is

a normal rc/2-detect experiment, used to measure "un-dressed"

magnetization. b.) includes a dressing pulse which

parameterizes Mz as a function of T2'

The spin-warp imaging pulse sequence17
, used to acquire a "normal" two­

dimensional map of spin density, is shown in figure 2.13a. The addition of a



relaxation selective preparatory pulse, figure 2.13b, allows one to acquire a

relaxation selective map of spin density.

Chapter 2: Tz-Selective Pulses . .. Page 52 r

f
[
f

a.) Hard Pulse

--D------4"O~~.b----
b.) ~

Selective Pulse

f

Phase Encoding

Gz

Frequency Encoding

Gy

Figure 2.13 Two-dimensional imaging pulse sequences. The

basic imaging sequence was adapted from spin-warp imaging 17.

a.) The sequence used to acquire a normal map of the total spin

density, b.) The sequence that incorporates a preparatory 3rd

order dressing pulse to selectively null the magnetization of a

given T2 species.
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This section will detail the results of three experiments. First it will

report on the bandpass experiment, which experimentally supports our

theory and shows that dressing pulses are able to create a final magnetization

that is parameterized as a function of T2' Next we will present one­

dimensional studies, which highlight the selective nature of the dressing

pulses. Finally this selectivity is used as the preparatory stage to create

relaxation-selective two-dimensional images.

2.4.1 Bandpass Experiment

The bandpass nature of the 3rd order dressing pulse, as described above,

was tested experimentally with, the CuS04 series. First a species with a

midrange value of T2=4.5 msec, was chosen as the species to null. The

dressing pulse length and RF intensity were then iteratively adjusted to find

an optimal null for this sample. The optimal pillse length was found to be

14.5 msec. Mz, following this optimized pulse, was then measured for each

sample in the CuS04 series. This was accomplished in a three step process.

First a 1t/2-detect experiment was run. This allowed us to set the carrier on

resonance. As noted above, the integrated area of a spectral peak is

proportional to Mz before a hard "read" pulse. Thus a second 1t/2-detect

experiment was run and the integrated area of the Fourier-transformed signal

was used to measure the "un-dressed" Mz of the sample. Essentially this was

a normalization run. The final step was to use the optimized dressing pulse

to parameterize Mz as a function of T2 and use a 1t/2-pulse to then measure
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the resultant Mz' as shown in figure 2.12. T1 for these samples was not

negligible and was approximately three times longer than T2• The solid line

in Fig 2.14 shows the numerically calculated response for the optimized

dressing pulse, as given by equation 2.21 and shown in Fig 2.6, with T1=3T2

included in the calculation. This curve compares very well with the

experimental results, shown as crosses. These results are published in 11 and

served as the impetus to begin the selective experiments below.

1

~ 0

-2
log Iffz

o

x

2

·1
I

f -,

Figure 2.14 The solid line is a theoretical plot of M z as a function

of T2' following a third order dressing pulse designed to

selectively null species with a T2 of 4.5 msec. Crosses represent

experimental measurements of Mz following the above dressing

pulse, for a series of samples with different T2 values.
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The results of the one-dimensional selective experiments are shown in

figure 2.15. The sample, as described above, consisted of two concentric

cylinders, with the long T2 species (1.9 mmol MnCI2) in the outer tube and the

short T2 species (15 mmol MnC12) in the inner tube. The optimized dressing

pulse for nulling the species with a T2 of 0.45 msec was 3.31 msec long and

had a peak power of 1.18 Watts. The optimized dressing pulse for nulling the

species with a T2 of 3.283 msec was 24.5 msec long and had a peak power of

12.5 mWatts.

Figure 2.15a shows the spectra following a hard pulse. This spectrum

indicates that both species have nearly the same resonance frequency. This

near equality ensures that this is an ideal test sample. Upon expansion, the

line shape shows a broad base, indicative of the fast relaxing sample in the

inner tube, and a sharp central peak, indicative of the slow relaxing sample in

the outer tube. The pulse sequence used to acquire relaxation selective data is

shown in figure 2.12. Figure 2.15b shows the spectrum obtained following a

3rd order dressing pulse designed to selectively null the magnetization of the

fast relaxing species. Figure 2.15c shows the spectrum obtained following a 3rd

order dressing pulse designed to selectively null the magnetization of the

slow relaxing species.
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Figure 2.15 One-dimensional spectra taken at 4.2 Tesla. The

inner tube contained a 15 mmol MnCl2 solution and the outer

tube contained a 1.9 mmol MnCl2 solution. a.) The spectrum

resulting from both tubes, following a hard pulse. Note the

resonance condition for each tube is nearly identical. b.) The

spectrum resulting from both tubes following a 3rd order

dressing pulse (3.31 ms), designed to selectively null the species

in the inner tube with a T2 of 0.45 msec and a hard read pulse. c.)

The spectrum resulting from both tubes following a 3rd order

dressing pulse (24.5 ms), designed to selectively null the species

in the outer tube with a T2 of 3.3 msec and a hard read pulse.
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The integrated area of 2.15a should result from the sum of the active

spins in the inner tube and the outer tube. Following this example, the

integrated area of 2.15b should represent the sum of the active spins in the

inner tube (zero, following the dressing pulse) and the active spins in the

outer tube (non-zero and scaled, following the dressing pulse). As such, the

integrated area of the spectrum of 2.15b (i=-0.49) should be equivalent to the

integrated area of just the slow relaxing species in the outer tube scaled by the

application of a dressing pulse optimized to null the fast relaxing species.

Similarly, the integrated area of the spectrum of 2.15c (i=0.28) should be

equivalent to the integrated area of just the fast relaxing species in the inner

tube scaled by the application of a dressing pulse optimized to null the slow

relaxing species. Using the above argument one can calculate the

theoretically expected integrated area values for 2.15b and 2.15c using equation

2.21. Theoretically, 2.15c should have an integrated area i= -0.50 and 2.15c

should have an integrated area i=0.26. Experiment and theory match very

well and offer direct evidence of the pulse's ability to selectively null' the

magnetization of one species in the presence of a second.

The narrow line shape of 2.15b is further qualitative evidence that the

fast relaxing species, which would have resulted in a broadened base, has been

removed. Further, the broad lineshape of 2.15c is also qualitative evidence

that the slow relaxing species, which would have resulted in a narrow line,

has been removed. At this point, we attribute the sharp negative feature in

the center of 2.15c to the,spatial distribution of the water in the sample.
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The results of the two dimensional experiments are shown in figure

2.16. Using the imaging pulse sequence described in figure 2.13a, a "normal"

map of the spin density as a function of position for the concentric tube

sample holder, figure 2.11, was obtained (figures 2.16a and d). Figure 2.16a is a

one dimensional slice taken from the center of the sample. Note that there is

appreciable spin density in both the outer and inner tubes, signifying signal

from both the fast and slow relaxing species. However, because an echo i~

being detected, the relative intensity of the inner and outer tube is scaled by

Tz. This explains why in a "normal" image, the outer tube has higher

intensity than the inner tube. Tz-selective images, figure 2.16b, c, e, and f, were

recorded using the pulse sequence described in figure 2.13b with appropriate

3rd order dressing preparatory pulses. In the one dimensional slice depicted

in 2.16b one can see that the signal from the inner spin density was

successfully nulled and an image of just the outer tube was created.

Conversely, in 2.16c the outer spin density was nulled and an image of just

the inner tube was created. Figures 2.16 d-f are the corresponding two

dimensional images. Figure 2.16d shows the full "normal" two dimensional

image while 2.16e and f are relaxation selective images. Each is plotted on the

same scale, with the same maximum and minimum cutoffs. From these

images it is clear that the relaxation selective preparatory pulses were

successful and the first Tz-selective images were acquired.
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Figure 2.16 Two dimensional images taken at 4.2 Tesla. With

the sample cell described in figure 2.11, the inner tube contained

a 15 mmol MnCl2 solution and the outer tube contained a 1.9

mmol MnCl2 solution. a.), b.), and c.) are one dimensional slices

through the centers of images d.), e.), and f.) respectively. All

raw data sets for these images were taken under identical

conditions with 128 phase encoding steps with 128 time domain

points. During processing, free induction decays were zero filled

. to 256 by 256 points, apodized with a Gaussian, and then Fourier

transformed in both dimensions. a.) and d.) The "normal" image

of IH spin density. b.) and e.) The image acquired using a
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preparatory dressing pulse (24.5 ms, 12.5 mWatts maximum

power) designed to selectively null the outer species with a T2 of

3.3 msec. c.) and f.) The image acquired using a preparatory

dressing pulse (3.31 ms, 1.18 Watt maximum power) designed to

selectively null the inner species with a T2 of 0.45 msec .

2.5 Conclusions

Relaxation selective pulses have the potential to be extremely useful in

both MRI and NMR spectroscopy. Described above is an application of this

powerful new tool to create contrast in magnetic resonance images. Without

impinging upon the non-invasive aspects of the basic MRI experiment, one is

able to create a selective map of spin-density based on the intrinsic dynamics

of the system of interest. This is of particular importance in selective in v i v a

imaging of damaged tissue as it has long been known that many pathologies

give rise to areas of biomatter with dIstinct relaxation dynamics.
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CHAPTER 3

HARNESSING RADIATION DAMPING

3.1 Introduction
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Nuclear magnetic resonance is an inherently insensitive spectral

technique. This limitation arises because at room temperature there is sufficient

thermal energy to populate both the lower and upper Zeeman spin states. The.

sensitivity of the NMR experiment is proportional to this population difference,

or polarization, which typically is on the order of parts per million. Thus in a

sample of 1023 spins only 1017 spins contribute to the signal in an experiment.

A tremendous amount of effort has been directed towards pushing the

boundaries of sensitivity in NMR. Increasing the external magnetic field

strength is a direct means of attacking this problem. As we saw in section 1.2.1,

the Zeeman energy difference is proportional to the strength of the external
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magnetic field. Thus by moving to higher fields one can create a larger

polarization and in turn increase the overall experimental sensitivity.

With these advances, come new, and often troublesome, challenges.

Radiation damping, the central topic of this chapter, is one such effect. NMR

signals are detected as an induced current in a tuned LCR circuit. Following

excitation, this current is generated as the sample spins presses coherently in the

x-y plane. The initial Zeeman spin polarization dictates the magnitude of this

signal current and hence the overall sensitivity of the NMR experiment.

Radiation damping describes the effect that the current induced by the sample

has on the sample itself. To the sample, the signal current generates a highly

non-linear low power RF "reaction" field, which drives the system back to

equilibrium. Thus, as experiments utilize higher magnetic fields, radiation

damping becomes more pronounced.

Primarily seen as a nuisance in high-resolution liquid state NMR, the

nonlinear distortions of the free induction decay (FID) lead to a broadening of

spectral features. This can be seen in figure 3.1 where FIDs are shown for a

idealize single resonance sample with and without radiation damping. In a.) we

see a long lived, FID that is only damped by Tz. Upon Fourier transformation

this leads to a narrow spectral feature with high resolution. Conversely, in b.)

we see the damped Fill decays quickly. Upon Fourier transformation this leads

to a broad spectral feature with lower resolution.
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a.) n/2

b.) n/2
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Figure 3.1 The effect of a radiation damping reaction field. a.)

shows a long lived free induction decay following a n/2 pulse and

the subsequent narrow Fourier transform. b.) depicts a damped,

short lived free induction decay and its broadened fourier

transform.

Most work on radiation damping has focused on its removal. One such

approach utilizes a feedback scheme to directly"correct" the effect of radiation

damping 1. Measuring the current induced in the coil between points they create

a compensation field which is used to negate the radiation damping reaction

field. A second strategy reduces the effect of radiation damping by lowering the

bulk magnetization of the sample. This is achieved by utilizing perdeuterated

solvents such as DzO.

While these approaches offer a stop-gap mechanism for of dealing with

radiation damping, they do not address the central question of understandingits

nonlinear effects. This chapter will present recent work that addresses the rich
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physics of radiation damping. It will begin with a theoretical outline of radiation

damping in an inhomogenous magnetic field. Following a brief description of

our experimental set up; attention will be directed towards a series of

experiments that seek to capitalize on the sensitivity of radiation damping.

There, we will not only outline an experiment which removes the effect of

radiation damping, we will describe a family of experiments which seek to

exploit the non-linear nature of radiation damping as a potential super sensitive

indirect detector of dilute spins.

3.2 Theory

This section will detail the theoretical treatment of radiation damping in

an inhomogeneous magnetic field used in this chapter. Our discussion will focus

on a symmetric distribution of magnetic isochromats described by g(8) where

8=0 on resonance. For our purposes we will take g(8) to be a normalized

symmetric Lorentzian distribution

r
L

l _-,

i -

(3.1)

I )

Here, T2* describes the dephasing of x-y in an inhomogeneous field.

As motivated earlier, coherent magnetization oscillating in the x-y plane

induces a current in a tuned LCR circuit. This current in turn creates a reaction

field, on the order of 100 Hz. In the absence of field inhomogeneity, this non­

linear reaction field will drive the magnetization back to the z-axis. The problem

becomes more complicated when one incorporates the effect of an

I •
I:
u

{ "
lj
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inhomogeneous magnetic field. As the x-y magnetization dephases with T2*, the

induced current responsible for the radiation damping reaction field decreases.

Thus, there is a dynamic interplay between T2* and the reaction field. Instead of

driving the central magnetization vector of g(8) distribution all the way back to

z-axis, the reaction field is only able to drive the magnetization an angle ,18.

This is depicted in figure 3.2 for the central vector of the distribution g(8) at 8=0.

a.)

v

u

z b.)

v

u

Figure 3.2 Evolution of central magnetization vector due to

radiation damping reaction field in following a rr,/2 pulse. a.)

describes the angle .18, the degree to which the magnetization

vector is pushed back towards the +z-axis. In b.) the phase angle <1>

that central vector accumulates in the u-v plane if it is part of an

asymmetric distribution.

There we see that following a n/2 y pulse the central magnetization vector lies

along the x-axis (gray vector). The reaction field then pushes the central vector

away from the x-axis by an angle ,18 (black vector). If viewed along the z-axis,

b.), we see can see that reaction field may also impart a phase <1>. The primary
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goal of this section will be to develop a means of determining this angle ~8 and

phase <1>.

Our theoretical treatment of ~8 and <I> will follow the model presented by

Augustine and Hahn2
,3,4. We will start by relating the current I(t), which induces

the reaction field, and the laboratory frame magnetization, Mx(t) in an LCR

circuit,

I .
!,
i

d2 d 1 d2
L-2I(t)+R-I(t)+-I(t)=-4n~1JA-2Mx(t)

dt dt C dt (3.2)

Here L is the inductance, R is the resistance and C is the capacitance in a tuned

LCR circuit. The resonant coil is described by 11, the number of ampere turns, A,

the cross-sectional area, and ~ the filling factor. I(t) can be expressed as,

r .
i
! ­I _

let) = ~ Vc HI (t)cos(mt + 4»
. nL '

where Vc is the coil volume and H1(t) is the time dependent reaction field.

can then express Mx (t) as,

M(t) = u(8,t)cos(mt) + v(8,t)sin(mt)

i

(3.3)
! -

We

i

(3.4)
! -

I "

Here, u(<5,t) and v(<5,t) are the in-phase and out-af-phase magnetization

components of g(<5) respectively. Where g(<5), as stated above, describes a

symmetric Lorentzian distribution of isochromats. Our next task is to expand

equation 3.2 by inserting our definitions of M(t) and I(t). To do this we will need

the following derivatives,

f
I
U

f 'i ;

U
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jet) ~[H H . ]-2 = .-£. -+cos(cot + ljJ) - -'sm(cot + ljJ)
co 1d.., co co '

jet) ~[R 2H . ]-2 = .-£. -+cos(cot + ljJ) - -'sm(cot + ljJ) - HI cos(cot + ljJ)
co 1d.., co co '

M~) = [~ii(8,t) - u(8,t) +2:v(8,t)]cos(cot)-
co co co

[~2 v(8,t) +v(8,t) - ~ u(8,t) ]sin(cot)

Page 69

(3.5)

(3.6)

(3.7)

We can simplify these 'equations by making the slowly varying modulus

approximation and keeping only the largest terms. In equations 3.5 and 3.6 we

note that terms proportional to ro-2 are small and can be dropped leaving,

jet) ~Vc HI .,-=- --sm(cot+ljJ)
co 2

1d.., co '

jet) ~[ 2H.. ]-2 = .-£. - -'sm(cot + ljJ) - HI cos(cot + ljJ)
co 1d.., co .

(3.8)

(3.9)

Equation 3.7 is simplified when we make the approximation u, v » iii0/ ,vico2

and u/co,v/co,

M~) =-u(8, t) cos(cot) - v(8,t)sin(cot)
co (3.10)

- , ­

1
i .

! ­
!
l

Plugging equations 3.3 (divided by ro2
), 3.8,3.9, and 3.10 into equation 3.2 we get,

[11;[( 2LH RH J. ( 1 ) ]f;{i -~-a; sm(cot+ljJ)+ co2C!i,(t)-LH, cos(cot+ljJ) = .

4Jrg1JA(-u(8,t)cos(cot) - v(8,t)sin(cot)]

(3.11)
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Equation 3.11 in turn simplifies when we note that on resonance, ro=1/(LC)1/2,

~~ [(-zr;:! -~! }in(mt+¢)] =4n;1JA[-u(o,t)cos(mt) - v(o,t)sin(mt)1.

(3.12)

At this point we will introduce,

, -,

e= yHt(t),

j:j = rHl (t) ,

(3.13)

(3.14)

and multiply both sides of equation 3.12 by (OJy/L)(nL/Vct/ 2
• After expanding

the sin(rot+<j» as sin(rot) cos(<j» + cos(rot) sin(<j» and inserting the relation,

equation 3.12 can be written as,

R OJ
-=-
L Q. (3.15)

(3.16)

The only way equation 3.16 can be zero for all values of rot is if both the sin(rot)

and cos(rot) terms are zero. After multiplying through by 2Q/ro, this leads to,
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( Z~ii + 9}os¢ =-Z,,~(0,1),

(Z~ii +9}in¢ =-z"eJQu(o,t).
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(3.17a)

(3.17b)

We simplify 3.17a and b by noting that 2Qe/m« iJ and by introducing the

radiation damping constant TR = 21C~'}QMo' With these modifications we are left

with,

(3.18a)

(3.18b)

At this point we can take the distribution of isochromats into account and

integrate equations 14a and b over g(5). For a symmetric distribution <1>= 0 and

we are left with a contribution only from v(5,t) as,

. 1 f8 = --- v(8,t)g(8)d8
TRMo . (3.19)

In the absence of relaxation, we can then write a set of Bloch equations for M z,

v(5,t) and u(5,t), as

f -
i
i

,,
i
L

r -

L

d .
-Mz = -8v(8,t)
dt '

d . .
-v(8,t) =8Mz (8,t) - 8u(8,t)
dt . '

d
-u(8,t) = 8v(8,t)
dt

Integrating equation 3.19 with respect to time will then give us de,

(3.20)

(3.21)

(3.22)
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(3.23)

r~

I

C
I '

Augustine and Hahn have shown3
,4 that equation 3.23 can be simplified by

incorporating a manipulation used to explain self-induced transparency 5. Here

they took note of the relationship between d/u(8,t)dt and 8v(8,t) described in

equation 3.22 to solve the time integral on the right hand side of equation 3.23,

i18 =--l-fd8j it(8,t')g(8)dt' =--'-l-f u(8,t =00) - u(8,t = 0) g(8)d8
TRMo 0 8 TRMo 8 .

(3.24)

Upon integration over 0, leaves us with a simple transcendental expression for

the magnitude of i18,

P
II -

, '

! .

I .

r:
1i181 = __z sin(8 -1i181)

TR '
(3.25)

i ,

where 8 is the initial tip angle between of the isochromatic central vector M(O,O)

att=O chosen to lie between 0 and n. The interplay between Tz* and the radiation

damping time constant TR now becomes clear. In a homogenous field, where Tz*

is long, i18 is large, conversely in an inhomogenous field, Tz* is short and i18 is

small.

Solutions to transcendental equations can be calculated graphically. To

accomplish this one plots both the left and right hand sides of the equation on a

similar axis as a function of the dependent variable. Where the plots intersect are

solutions to the transcendental equation. In our case one plots Yl= Ii18 I and

I .

,
I •

u
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Y2 = cn(sin(1t/2-I~el)

Yl =I~el)

1t/2
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L

I~el

Figure 3.3 Graphical solutions to equation 3.25 for an initial 8 pulse

of 1t/2. Depicted are five evenly spaced values of Cn where Cn+1=2cn-

Y2 =cn(sin(1t-1~81)

Yl =I~el)

-;>,

I~el 1t
Figure 3.4 Graphical solutions to equation 3.25 for an initial 8 pulse

of 1t. Depicted are five evenly spaced values of Cn where Cn+l=2Cn.

Nonzero solutions exist for C3-CS•
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yz=cn(sin(8- I~8 I) against I~8 I. With Cn = 1;* /TR • This type of graphical
f'",

solution can be seen in figures 3.3 and 3.4. ~

In figure 3.3 we see the result of an initial tip angle of TC/2. To model

changing experimental circumstances (varying external magnetic field strength

or homogeniety) we have included a number of different values of cn • As

predicted, when Cn is large, ie a very homogenous field, I~e I is large.

Perhaps more interesting, in figure 3.4 our initial tip angle is TC. Here we

see that as we vary Cn we change the number of potential solutions. For values of

Cn < 1 there are no non-zero solutions and the system does not experience the

effects of radiation damping. However, when Cn :2: 1 we predict two solutions to

equation 3.25. In this case, after the application of a TC pulse, a small transverse

component (v) can seed the start of the radiation damping reaction field causing

the system to jump from the zero solution to the non-zero solution. Once seeded,

the system thus behaves like a maser coherently driving the magnetization to its

final position described by I~eI. This results in a "burst" of signal as the

magnetization swings through the x-y plane as depicted in figure 3.5.

TC
f-Tw-l

(msec)

Figure 3.5 Radiation damping burst following a TC pulse. The full-
I

width at half-height is Tw and TB is the time between the excitation

pulse and the maximum of the damping burst. .
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The condition where en ~ 1 thus defines an effective maser threshold for the

system. It is this behavior that we will seek to exploit to create a supersensitive

detector. If we can create a coherent seed from a dilute spin subsystem that

induces a damping burst, measuring changes in TB we will give us mechanism

for detecting that dilute spin system. The question remains, how small can the

seed magnetization be?

In theory our detection is only limited by the size of the natural seed

mechanisms. If our coherent seed magnetization is larger than these natural seed

mechanisms, the coherence should be detectable. To address this question of

detector limits, we need a better understanding of the nature of the natural seed

magnetization. In normal situations a natural seed is created via two

mechanisms; inaccuracies in initial pulse length and accumulation of thermal coil

noise. Inaccuracies in pulse length can be minimized by the application of a

magnetic field gradient pulse. A magnetic field gradient pulse following a RF

pulse of 1t + £, where £ is a small error, will cause the transverse components of v

to quickly dephase. Once incoherent this error can not act as a seed and will not

induce a reaction burst. This process of applying a magnetic field gradient

following a RF pulse effectively IIcleans up" the transverse magnetization. Coil

noise thus serves as the fundamental detection limitation. In typical high­

resolution commercial probes coil noise is on the order of nanogauss. This

means that we should be able to lower the detection limitation of NMR to ~1015

spins.



Chapter 3: Harnessing Radiation Damping

3.3 Experimental

Page 76

This section will outline the experimental details of the studies presented

in this chapter. It will begin by describing the various spectrometers used to

produce the data presented in the next section. Then some attention will be paid

to our choice of model samples. Finally pulse sequences used for collecting data

in the~e experiments are described.

3.3.1 Experimental Set

Experiments were performed on one of three commercial instruments to

be designated AI, A2 and A3. Al is a Chemagnetics Infinity spectrometer

operating at 9.4 Tesla. It utilized a Bruker, single resonance, direct detection

probe, tuned to 400 MHz and capable of producing 5 ~sec nl2 pulse. We found

that this 9.4 Tesla magnetic field was a lower limit for performing radiation­

damping experiments. While this spectrometer did not have an attached

gradient stack, a linear Z-axis pulsed magnetic field gradient of 56 G/ m could be

initiated with the Zl shim coil. This gradient had the distinct disadvantage of

long rise times (1-10 msec) and long ring down times (1-10 msec).

A2 and A3 are Bruker DRX 500 and DRX 600 spectrometers operating at

11.4 Tesla and 14.1 Tesla respectively. Each utilized a Bruker triple resonance

probe capable of producing 7 ~sec n/2 pulse. Both were equipped with a

gradient stack capable of producing linear pulsed field gradients of arbitrary

duration and shape along the X, Y and Z axis. The maximum gradient strength

I .

I
J\ -

!
I
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L

L
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of A2 and A3 was 0.5 T/ m. The rise time and ring down time for both probes

was on the order of 0.01 msec.

3.3.2 Samples

The radiation damping time constant, TR, is directly proportional to the

sample magnetization, Mo. Thus we sought to choose simple systems with high

spin density. This requirement is met when one uses protonated solvents such as

water and benzene. In the case of water we have an approximately 110 molar

proton concentration where in the case of neat benzene we have an

approximately 74 molar proton concentration. For all of our "just solvent"

studies we relied on a deionized mixture of 90% water and 10% DzO. The

deutererated water was incorporated to insure a sufficiently strong deuterium

lock signal for shimming.

Our studies developed to push the NMR detector limitations necessitated

a model solvate. As will be seen in the next section, this solvated species needed

to have a lH -13
C J -coupled spin pair. This was accomplished with 13C enriched

benzene. We utilized the largest coupling, JHC = 154 Hz, for our investigation.

We used a 5% labeled benzene in benzene solution with 10% D6C6• Again,

deuterated solvents insured a sufficiently strong deuterium lock signal for

shimming.

All studies were performed in susceptibility matched Shigami NMR tubes.

The susceptibility matching reduced artifacts that broaden spectral features,

effectively raising Tz* and increasing the damping efficiency. These tubes also

allowed us to restrict the sample volume. In this way we could be sure that the
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sample was directly in the middle of the receiver coil here reducing pulse

imperfection artifacts.

3.3.3 Pulse Sequences

This section will outline the pulse sequence used in this study. Actual

experimental parameters will be given as needed. As might be expected,

calibrating inversion time in the presence of the radiation damping reaction field

can be problematic. We developed a simple protocol where by the reaction burst

is used a 1C metric.

3.3.3.1 Simple Gradient Clean-up

As noted earlier, imperfect 1C pulses leave a small magnetization

component in the x-y plane. This small transverse magnetization can seed a

damping burst. To ensure that this does not induce the seeding process, we need

a mechanism for removing the pulse imperfections. A linear magnetic field

gradient causes transverse magnetization to dephase quickly. Once dephased it

can not seed the damping burst. Figure 3.6 depicts the general "clean up" pulse

sequence. Here we see that following a e pulse of arbitrary length a linear

magnetic field gradient along the z-axis is applied. For eclose to 1C this sequence

simply produces a noise-seeded damping burst. This sequence can also be used

to measure damping bursts as a function of cn • Taking note that en =T; /TR and

TR·oc 1/Mo we see that Cn is proportional to Mo. Thus, by varying e before the

gradient we can adjust the initial Moand in turn cn •

f'
~

, ~, ~
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Figure 3.6 Clean up gradient pulse sequence. Following a pulse of

arbitrary length a linear magnetic field gradient is placed along the

z-axis to quench the transverse magnetization. We found that a 0.5

T1m gradient applied for 1 msec sufficiently dephased all

transverse components.

3.3.3.2 Hole Burning

In equation 3.19 we found that for a symmetric distribution of isochromats

<1> = O. Because of this, there is no phase accumulation during the radiation

damping reaction pulse. One should be able to detect if this symmetry is broken

as a modulation of the damping burst. This could be useful in cases where a

dilute solvated spin system has a resonance line under a solvent peak. Figure 3.7

shows a hole burning pulse sequence used to induce an asymmetric distribution.
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Figure 3.7 Simple hole burning experiment used to create an

asymmetric lineshape. Prior to inversion, a field z-field gradient is

placed across the sample while a low power RF field selectively

saturates a portion of the magnetization. The gradient can be

extended during acquisition to acquire a one-dimensional image.

Here while a magnetic field gradient pulse is applied along the z-axis, a long,

low power, RF field is used to saturate one portion of the resonance line. This in

breaks the symmetry of the distribution. A 1t pulse is then applied to induce a

radiation damping burst modified by <1>.

3.3.3.3 Sphere Hopping

The application a 1t pulse at the maximum of the damping burst offers us a

means of reversing the radiation damping evolution. Figure 3.8 shows the

evolution of the central isochomate following a 1t pulse.
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Figure 3.8 Evolution of the central isochromat during a sphere

hopping experiment. After the application of the first 1t pulse the

magnetization lies along the -z-axis. The system then evolves

under the damping field for a time 't. A second 1t pulse inverts the

system and at a time 't the central isochromat returns to the +z-axis.

A second 1t pulse, at the burst maximum depicted in figure 3.9, "hops" the

system to the right hand evolution sphere of figure 3.8, where the system evolves

back towards the +z-axis. As will be reported later, this two 1t-pulse sequence is

able to remove some of the spectral broadening caused by radiation damping.
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f •
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Figure 3.9 Basic sphere hopping sequence. At the maximum of the

radiation damping burst a 1t pulse is used to reverse the isochromat

evolution.

The application of a series of sphere-hopping sequences, figure 3.10, offers

us a more sensitive means of monitoring the cumulative effects of <1>, due to an

asymmetric isochromat distribution. In 3.10a we see series of simple sphere

hopping two 1t-pulse sequences linked together, with every odd 1t pulse centered

at the maxima of the damping burst. In b.) and c.) we see two preparation stages.

b.) is basically no preparation and c.) depicts the preparation of a asymmetric

isochromat distribution. As in section 3.3.4.3, a field gradient is used in

conjunction with a long, low power pulse to selectively saturate a portion of the

solvent magnetization and break the symmetry of the isochromat distribution.
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Preparation

~
~'~H t

------------------
c.)

IH

G

Burn Pulse

Figure 3.10 Sphere hopping train. a.) depicts a series of two pulse

sphere hopping sequences with every second 1t pulse applied at the

subsequent damping burst maximum. b.) no preparation of the

magnetization prior to the pulse train. c.) a hole burning sequence

applied to prepare an asymmetric distribution.

3.3.3.4 Injection Seed

As noted earlier, we hope to detect a small transverse magnetization by its

ability to coherently seed a radiation damping burst. To test the validity of this

idea and gain some insight into the practical detection limits, we designed the

pUlse sequence depicted in figure 3.11.
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Figure 3.11 Injection seeded maser. Following a clean up gradient

sequence a short low power pulse 82 is applied to act as a coherent

seed for the damping burst.

The first portion of the injection seed experiment is the simple gradient clean up

sequence in section 3.3.4.1. Following this preparation a second, very small, IH

seeding pulse is applied. By yarying the length of 82 we can adjust the

magnitude of the coherent seed.

3.3.3.5 Modified Inverse Inept

To test whether a solvated spin system can be detected as a modulation of

a damping burst we need a pulse sequence which affords transverse

magnetization from the solvated spin system while leaving the solvent

magnetization along the -z-axis. This was accomplished with a modified inverse

inept6 sequence seen in figure 3.12.
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Figure 3.12 Modified inverse inept sequence. The e pulse followed by the field

gradient acts as a clean up gradient sequence, leaving the solvent magnetization

scaled along the -z-axis. Dilute 13C_1H pairs induce a small proton coherence

through their J-couplings, that triggers the damping burst.

The pulse sequence begins with a n/2 pulse on the 13C that moves the carbon

magnetization into the transverse plane. Ignoring the gradients for the moment,

the system is allowed to evolve under J-coupling and chemical shift (set to near

zero) for a period of time t1 at which point simultaneous pulses are applied to

both the proton and carbon channels. For the special case where 't1=1/2JHc and

both the second pulse on both channels is n/2 (normal inverse inept), proton

magnetization from the J coupled pair will be detected at a 't2=1/2JHc. Using

product operators7
,8 we can follow the magnetization evolution, figure 3.13.
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M1lz+MSSZ -----.,. M1IZ+MSSX------... MIIZ+MSIZSX

lrc/2(X)S

rc/2(x)I

(M1+MS)Iy .......1------Mlly+MSlySZ

Figure 3.13 Magnetization evolution during normal inverse inept sequence. By

choosing 't j ='tz=1/2Jrs we can generate Iy magnetization from the J coupled spins.

Here we see that the two spin anti-phase operator generated at the end t1

becomes coherent IH magnetization following the simultaneous pulses. This

coherence is what we had hoped to use to seed the damping burst. However,

only half of our problem is solved. The non-coupled IH solvent spins end up in

the transverse plane following the IH rc/2 'pulse instead of being along the -z-

axis.

Clearly we need the proton pulse to act as rc pulse for the solvent and a

rc/2 pulse for the solute. To accomplish this we use the same clean up gradient

method described in section 3.3.4.1. We adjust the proton pulse length between

rc/2 and rc followed by a clean up gradient (xl). The transverse components of

the solvent magnetization are dephased leaving the solvent magnetization scaled

along the -z-axis. This also dephases the two-spin anti-phase coherence which in

principle leave us without our coherent seed. To combat this a preparatory

gradient (x4) is implanted prior to the proton pulse. The first gradient effectively

pre-wraps the anti-phase magnetization. The net effect of the second gradient is

to rephase (rather than dephase) the anti-phase two-spin coherence. The relative

magnitudes of the gradients are 4:1 compensating for the difference between the

carbon and proton gyromagnetic ratios.
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This section will present our preliminary results 9. The first portion will

be dedicated to building and testing the experimental modules described in

section 3.3.3. Here we will seek to better'understand the practical manifestations

of the damping burst. The second portion will report our initial attempts at

utilizing radiation damping to detect isolated spins. Here we will outline two

types of experiments. The first is geared towards detection of a solvate spin that

disrupts the distribution of the solvent isochromats. The second describes our

attempts to induce a damping burst with a coherentsolute seed.

3.4.1 Understanding the Burst

To utilize the damping burst we must insure that our theoretical

suppositions are founded. First we need a mechanism for making sure that our

clean-up gradients are able to create a situation where the damping burst is

seeded by noise. Next we will test the validity of equation 3.25 and its solutions

in figure 3.4 by adjusting the ratio cn • Then we will report a simple mechanism

for removing the broadening due to radiation damping in an inhomogenous

field.
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Page 88
[

I

The purpose of the clean-up gradient is to ensure a noise induced

damping burst. Our first order of business is to develop a metric whereby we
F
!
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o

(sec)

I
2

Figure 3.14 On resonance damping burst using a clean up gradient

pulse sequence with an initial tip angle of n. Each FID was taken

under identical conditions with a 25 second delay between trials.

The random burst phase implies that the damping event is induced

by an incoherent source.
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can differentiate between a noise-seeded burst and a burst seeded by coherent

stray x-y magnetization. To accomplish this we take advantage to the fact that

any seed generated by noise will have random phase. As such any damping

burst resulting from a noise seed will also have a random phase. Thus a quick

check to determine the origin a damping burst is to monitor the burst phase

following the application of the magnetic field gradient for a number of identical

experiments. Figure 3.14 depicts a characteristic series of four such

measurements taken on spectrometer A2 with a sample of 90% HzO/lO%DzO.

Here we see that each burst has a distinct and different phase. We can thus be

sure that the damping burst has been induced by noise. A similar set of spectra

is taken in each of the following experiments that utilize a gradient clean up

module.

3.4.1.2 Noise and Start Up

To use TB as a metric we need to have a better understanding of the noise

initiated burst. A theoretical treatment of this problem is currently being

addressed 10. Our initial findings indicate that, under a given set of experimental

conditions, we can only derive an average noise induced burst time that

fluctuates from experiment to experiment with a characteristic jitter. We noted

that the noise induced burst time fluctuates from 1-5%. This can be seen in figure

3.15 and figure 3.16.
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Figure 3.15 Damping burst time for a series of identical inversion

experiments. The delay between experiments was 10 seconds.
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Figure 3.16 Damping burst time for a series of identical inversion

experiments. The delay between experiments was 25 seconds.
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There we see the burst TB plotted for a series of identical noise induced bursts

taken with the Al spectrometer using a sample of pure water. To ensure that

each experiment has the same initial starting conditions the delay time between

each experiment were a.) 10 sec and b.) 25 sec, both at least 5xT1• The average

burst time was 80 msec and 78 msec with a standard deviation of 4 and 5 msec

for figure 3.15 and 3.16 respectively. The standard deviation gives us a handle

on the magnitude of the burst jitter. We thus realize a finite limitation in our

ability to use TB as a diagnostic. We can only measure changes greater than the

burst jitter. This drawback can be minimized when we average the absolute

value of multiple scans.

3.4.1.3 Maser Threshold

In section 3.2 we developed a theory to determine the extent to which the

radiation damping reaction field will drive the central isochromat of a symmetric

distribution back towards the +z-axis in the presence of an inhomogenous field.

From this we derived the simple relationship between Ll8 and T2*/TR in equation

3.25. In the case where the initial tipping pulse is 1t, graphical solutions to 3.25,

figure 3.4, predict that above a threshold value of cn= T2*/TR>I, a coherent seed

can induce the system to mase. This maser action is detected as a damping

burst, as described above. Conversely, when cn>I, the system is below the maser

threshold, and no damping burst is predicted.

Here we will experimentally verify that this maser threshold exists. To

accomplish this we need to record a series of damping bursts as a function of Cn.

But the question arises, how does one vary Cn experimentally? As outlined in

section 3.3.3.1, we note that Cn oc TR-
1 and that TR oc MO-

1 and thus we see that
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varying the initial magnetization, Mo, is a mechanism for gaining experimental

control over cn• While this is by no mean the only way of adjusting cn, it is by far

the most experimentally expedient.

The simplest means of varying Mo is to use the gradient clean up sequence

described in section 3.3.3.1. By incrementing the initial tip angle, prior to the

application of the dephasing gradient, we can effectively scale Mo and in turn

r
i- ...:,'
H
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Figure 3.17 Plot of the magnitude of damping burst following a

gradient clean-up sequence as a function of the initial tip angle 8.

For 8 below 1720 the burst there is no damping burst indicating that

this is below the maser threshold.
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Figure 3.17 plots of a series of damping bursts taken on A2 with a water sample

using the gradient clean-up pulse sequence. The initial tip angle, prior to the

field gradient, is varied from 188° to 148°. To avoid complications due to burst

jitter, each damping burst is the average of the absolute value of ten independent

measurements. As expected, there is a threshold evalue, below which no burst

is generated. This directly supports our theory. This threshold effect can be seen

even more dearly in figure 3.18.

1
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Figure 3.18 plot of burst amplitude as a function of Mo for data.

This plot utilized the data presented in figure 3.17.

I

l
t .

Here we see a plot of the maximum intensity of the damping burst as a function

of a normalized Mo. The burst threshold cutoff is dramatic and occurs over a

very narrow range of Mo.

L
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3.4.1.4 Sphere Hopping and Narrowing
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As pointed out earlier, it is often advantageous to eliminate the

broadening due to radiation damping. To this end we have met with limited

success using the sphere hopping sequence detailed in section 3.3.3.3. In figure

3.19 a.) we see the Fill (black) resulting from a "normal" n/2-detect experiment

preformed in an inhomogenous field.

a.)
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Figure 3.19 Removing the effects of radiation damping using

sphere hopping sequence. a.) shows a FID for a pure water sample

following a n/2 pulse in the presence of radiation damping. b.) is a

FID for pure water following a two n-pulse hopping experiment

where the second n pulse is placed at the maximum of the damping

burst. c.) shows the corresponding Fouier transformed spectra

superimposed. The black spectra results from a.) while the gray

spectra results from b.). Both a.) and b.) were taken under identical

conditions using AI.

i .

r •
L~



Chapter 3: Harnessing Radiation Damping Page 95

['

L

_ L-

- f

This data was taken in the presence of a radiation damping reaction field, on a

sample of pure water using AI. In b.), with the same sample and spectrometer

set up/ we see a Fill (gray) resulting from a two-1t sphere hopping experiment.

3.4.2 Towards Detection Enhancement

Our overall goal is to utilize the sensitive non-linear nature of radiation

damping, to create a sensitive detector. This section will report our preliminary

results for two types of experiments. The first seeks to utilize the sensitivity of

the radiation damping field to the symmetry of the isochromat distribution.

Here we will report our initial finding using a train of sphere hopping modules.

The second family of experiments seeks to utilize the maser characteristics of the

radiation damping burst to detect small transverse magnetization components

induced from a dilute solute" spin system. To this end we will present data that

shows that a small coherent seed can induce the maser action and our

preliminary results detecting dilute 13C_1H spin pairs in benzene.

3.4.2.1 Sphere Hopping Train

One potential means of detecting dilute spins/ using radiation damping,

is to take advantage of the fact that dilute resonance, however small, near the

solvent resonance, will break the symmetry of the solvent line. As we have

noted, an asymmetric distribution leads to the accumulation of a phase <P/ that in.
principal should be detectable as an augmentation of a damping burst. To test

the utility of this idea we developed a method for artificially breaking the
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symmetry of the solvent resonance line. As described in section 3.3.3.3 we can

use a gradient and a long low-level hole-burning pulse to selectively saturated

one portion of a spectral feature. Figure 3.20 is a one-dimensional image of pure

water with (gray) and without (black), a hole-burning pulse taken on AI.

, ­,

-8 -4 o
( 100 Hz)

4 8

Figure 3.20. One-dimensional water images with and without hole

burning. The black image was obtained without a burning pulse.

The gray image was obtained with Al using a linear field gradient

of 56 Glm and a 10 msec bum pulse zot.

In figure 3.20 we see that the linear magnetic field gradient left on during

acquisition, imparts a spatial dependence upon the resonance condition. In the

gray image we see that the spins excited by the hole-burning pulse are saturated,

leaving a notch "burned" into our one-dimensional image. When we turn the
•

gradient off during acquisition we see the normal one-dimensional spectra
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depicted in figure 3.21.
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Figure 3.21. Water spectra with and without a pre-saturation pulse.

The gray line is a normal water spectrum. The black line is the

spectrum acquired when a hole burning preparatory pulse is

applied. The preparatory pulse is used to break the symmetry of

the initial distribution.

The gray spectrum depicts the case of no-hole burning where we obtain a

symmetric distribution. The black spectrum has been made asymmetric with a

hole burning pulse.

The question then becomes, can we detect this change as a modulation of

the damping burst? We accomplished this by utilizing a train of sphere hopping

experiments outlined in section 3.3.3.3. In this experiment series of two 1t-pulse

sphere hopping modules are linked together where every second 1t pulse is

placed directly at the maximum of the damping burst. Figure 3.22 depicts a train

of 16 pulse pairs applied to a sample of pure water on Al



Chapter 3: Harnessing Radiation Damping Page 98

a.)

I
o

b.) (sec)

A

n
II
j1

j

, 1
~J

!1
U

(sec)

Figure 3.22 Sphere hopping pulse train results for water sample.

a.) a symmetric initial distribution. b.) an asymmetric initial

distribution. The addition of a <1>, caused by breaking the

magnetization symmetry, induced a dramatic change in the

amplitude profile.

Figure 3.22 a.) depicts the series that results from a symmetric distribution and

b.) depicts the burst chain resulting from a the gradient-prepared asymmetric

distribution described above. Clearly the asymmetry induces a drastic change in

amplitude profile. Figure 3.23 is a plot of burst maximum as a function of time

with and without the hole burning pulse.
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Figure 3.23 Plot of pulse train maximum as a function of time.

Again, <l> induces a dramatic change.

Here we see a dramatic difference between the amplitude profile without hole

burning (ovals) and with hole burning (greW triangles).

Backing out useful information from this profile change has been, to date,

problematic. What we can see is that the sphere !lopping train is able to magnify

the effect of an asymmetric distribution. As such, its current use, is limited to

asserting whether there is or is not a reduction of symmetry.
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3.4.2.2 Injection seeded Maser

The second means of exploiting the damping burst to detect a dilute

solvated spin system relies on the dynamics of a coherent seed. If we can create a

coherence from a solvated spin system, while the solvent magnetization is

inverted, that coherence should induce the solvent magnetization to mase. As

such, we should be able determine the relative magnitude of this dilute

coherence by measuring its effect on TB• As an initial model of the dilute

coherence, we have incorporated a low power seed pulse as described in section

3.3.3.4.
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. Figure 3.24 Damping bursts for a series of injection seeded

experiments. The absolute value of the damping bursts is plotted

to simplify the plot.
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Figure 3.24 depicts a series of seeded damping bursts for a water sample

using A3 and the injection seeded pulse sequence in 3.3.3.4. The seed pulse

length for each experiment is given in table 3.1. The clean-up gradient length

was set to 2 msec to ensure that the damping bursts were not induced by

imperfections from the initialrc pulse.

Taking the seed pulse lengths from table 3.1 we can see that as the seed

length increases, the damping burst maximum, TB, decreases. This indicates that

in principle we can detect a transverse component of magnetization as a

perturbation of the reaction burst, just as we had hoped. Although it is not

presented here, it is important to note that the phase of the damping burst

becomes coherent even for the smallest seed pulse. This suggests that our metric

for ensuring a noise-seeded burst is valid.

Exp# e(deg) Exp# e(deg) Exp# e (deg)

1 l.7x1O-3 12 7.3x1O-2 23 0.55

2 3.4x1O-3 13 0.11 24 0.62

3 1.Ox10-2 14 0.14 25 0.69

4 1.7x10-2 15 0.18 26 1.1

5 2.4x1O-2 16 0.21 27 2.1

6 3.1x1O-2 17 0.24 28 3.1

7 3.8x1O-2 18 0.28 29 4.1

8 4.5x1O-2 19 0.31 30 6.9

9 5.2x1O-2 20 0.35 31 13.7

10 5.9x1O-2 21 0.42

11 6.6xl0-2 22 0.48

Table 3.1 Experimental seed pulse lengths.
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Figure 3.25 Plot of maximum burst time as a function of seed tip

angle. As hoped, the burst time is highly dependent upon the

magnitude of this seed pulse.
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Figure 3.25 plots TB as a function of seed tip angle. Of primary importance

we see, as suspected, TB decreases as the seed pulse length is increased. Even for

the smallest values of e, we see large changes in TB• This indicates that a small

coherent seed should translate into a large detectable change in TB' In addressing

our detection limits, the smallest value of e, 1.7xlO-3o
, can give us an idea of how

small a transverse magnetization we can detect.

A quantitative relationship between TB and ecan now be addressed. For a

narrow line one can solve equation 3.21,
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(
t - T. Jv = Mosec h T

R

B •

Letting t=O we can solve for TB,

But we know how v will evolve during a pulse,

v =Mosin8

Thus,

Page 103

(3.26)

(3.27)

(3.28)

(3.29)

I -
!

Weighting each point of 3.25 by the asech(sin8) we get the linear relation in

figure 3.26.

From this simple model of coherent burst seeding, we gain our first

experimental evidence that our radiation damping detection scheme is feasible.

Satisfied with these preliminary results, we then sought try this detection scheme

on a real system.
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Figure 3.26. Adjusted plot of damping burst time as a function of

seed tip angle. A linear plot is arrived at when each value of TB is

weighted by asech(sin8).

Inverse Inept
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Taking heart from our experimental evidence that changes in TB can be

induced via a coherent seed pulse, we turned our attention to the detection of a

dilute spin species. Using the modified inverse inept experiment detailed in

section 3.3.3.5, we attempted to create a coherent IH magnetization seed from IH_

13C J-coupled pairs in benzene. We should be able to scale the magnitude of the

proton seed by varying 't as seen in figure 3.27. Here we see that when

't=(2n+1)(1/2J) we generate the largest proton seed. In principle We should be

able to back out JCH by recording damping bursts as a function of 'to
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Figure 3.27 Plot of expected seed magnetization as a function of 'to

At odd multiples of 1/2J the seed magnetization is maximum.

Fourier transform of such a function will lead to a single line at J.

Figure 3.28 plots a series of damping bursts as a function of 't using a

benzene sample on A3. The largest heteronuclear J-coupling in benzene is 154

Hz. thus 1/2J = 3.25 msec. Unlike the case where the seed is generated from a

coherent pulse, here we see that the inept seeded bursts change both amplitude

and position as a function of seed strength. As a qualitative note, the phase of

each burst, not depicted here, is coherent. This implies that these damping

bursts are generated via a coherent mechanism. Because we have eliminated all

other coherences (random phase test) we can be sure that the J-coupled seed is

initiating the damping event.
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Figure 3.28 Damping bursts following a modified inverse inept

sequence as a function of 't for a benzene sample. The pre-wrap

gradient was 4 msec and the rephase gradient was 1 msec. The

absolute values are reported.

Unfortunately quantifying these results has been, to date, problematic.

Figure 3.29 is a plot of TB as a function of 'to We do not see the periodicity that

had been predicted. Rather unexpectedly, however, the burst intensity changes

dramatically as a function of 'to This can be seen more clearly in figure 3.31.
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Figure 3.30 Plot of TB as a function of 't' for an modified inverse
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Figure 3.31 Plot of normalized damping burst intensity as a

function of't' for an modified inverse inept sequence.
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Here we find that the maximum burst intensity occurs when 't=1/2JCH' At this

point we do not have a good explanation of why the burst intensity is modulated

and how its intensity is related to the seeding process. To this point we have

ignored the two and three bond J couplings. Because they are much smaller,

they are responsible for developing coherences on a much larger 't time scale.

While our initial results are inconclusive, we do see that in principle a damping

burst can be modulated by a dilute coherence.

3.5 Conclusions

As NMR hardware technology advances and experiments utilize higher

magnetic fields, radiation damping becomes a persistent source of line

broadening and spectral distortion. In this chapter we have endeavored to

understand and harness the non-linear nature of the radiation damping reaction

field.

In our attempt to understand this phenomena, we developed a theory to

predict, ~e, the extent to which the reaction field will drive the magnetization

back towards the +z-axis in an inhomogeneous magnetic field. Graphical

solutions to equation 3.25, for an initial tip pulse of 1C, figure 3.4, suggested that

for certain ratios of Tz'/TR=cn>l the addition of a small seed pulse will induce an

inverted system to mase. This is detected as a damping burst. For values of Cn

below this threshold, We do not expect to see the creation of a damping burst.

Using a simple protonated solvent this maser threshold was experimentally

verified in section 3.4.1.3.
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The broadening caused by the reaction field is a detriment to both the

overall selectivity and sensitivity of the NMR experiment. As such its removal is

often advantageous. In section 3.3.3.3 we presented a simple two 1t-pulse sphere

hopping sequence that is able to remove the broadening due to radiation

damping.

Next we turned our attention to developing a means of utilizing the

nonlinear nature of the reaction field as a sensitive detector. In section 3.4.2.1 we

showed that we can detect when the symmetry of an isochromat distribution is

disrupted as a modulation of a sphere hopping train profile. In principle this in

can be used to detect a solute resonance line that lies under or near the solvent

line. Clearly future work should concentrate on quantifying the effects of

asymmetry on the sphere hopping train profile.

For an inverted spin system, above the maser condition, a coherent seed

pulse should induce a damping burst. This was verified experimentally in

section 3.4.1.3 where a small tip angle pulse is used to seed the damping burst.

There we saw that as the seed pulse-length increased, the damping burst time,

TB, decreased. Next we attempted to create a coherent seed from a solvated 13C_

IH spin pair in benzene. Using a modified inverse inept sequence, section 3.3.3.5,

we collected a series of damping bursts in which the magnitude of the seed

magnetization created from the 13C_1H spin pair is varied. While we did not see a

straight-forward relationship between TB and the seed magnitude, we found a

qualitative relationship between the burst maximum and the seed magnitude.
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SECOND-ORDER RECOUPLING OF CHEMICAL-SHIELDING AND
DIPOLAR-COUPLING IN THE SOLID STATE

4.1 Introduction

Solid State Nuclear Magnetic Resonance (SSNMR) is a powerful method

for gaining local structural information, be it inter-atomic distances or bond

angles, in large molecular systems. In contrast to X-ray crystallography and

neutron diffraction, SSNMR is amenable to systems without long-range order.

This makes it possible to gain structural information in systems such as

membrane bound proteins 1, amaloydogenic plaques 2, and glasses 3.

In static powder samples, this structural information comes in the form of

broad spectral features which often overlap. This leads to spectra with poor

resolution in which the potential to gain useful structural information is low. A

number of methods have been developed to enhance spectral resolution. Among

these are spatial averaging (magic-angle spinning (MAS) and dynamic-angle
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spinning (DAS)), spin-space averaging (homo- and heteronuc1ear decoupling),

and site-selective isotropic enrichment.

High-power Cvy decoupling (spin-space averaging) with cross

polarization while spinning at the magic angle (CPMAS) is a very common

method of simplifying spectra of powdered samples in the solid state. Provided

that the decoupling power is greater than the dipolar interaction and the

spinning rate is greater than the chemical shielding anisotropy, under CPMAS

conditions one expects to see the narrow lines of an isotropic spectra.

This chapter will focus on an anomalous second-order recoupling of the

chemical-shielding and dipolar-coupling tensors that causes a splitting and

broadening when a combination of two of these methods is used. In particular,

we have investigated the effect of heteronuc1ear decoupling on an isolated two

spin system, lH_15N, in Tri(trideuteromethyl)-amine (TMA) 4.

4.1.1 The CW Decoupling Quandary

When one runs a CPMAS experiment without decoupling on a powdered

sample of TMA at spinning speeds considerably less than the dipolar coupling

frequency one obtains a "normal" pattern of spinning side bands indicative of

partial averaging. This can be seen pictorially in Figure 4.1.
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Figure 4.1 15N MAS spectra of fully 15N-labeled TMA with no

decoupling. a.) spinning at 1.31 kHz, b.) spinning at 5 kHz. a.) and

b.) show the evenly spaced sharp lines of a normal spinning

sideband pattern indicative of partial averaging.

In a.) we see an MAS spectrum where the spinning speed is 1.31 kHz. From this

we calculate the dipolar coupling constant to be 15.9 kHz which agrees very well

with the literature distance measurement 5. In b.) we see the result of increasing

the spinning speeds to 5 kHz. The side bands spread out, are relatively narrow

and are centered about the isotropic value.

This system becomes interesting when we apply a CW decoupling field

during acquisition. With the application of a CW decoupling field of 71.5 kHz,

while spinning at 5 kHz, we obtain the spectrum depicted in figure 4.2.
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Figure 4.2 15N MAS spectra of fully 15N-labeled TMA spinning at 5

kHz with a CW decoupling of 71.5 kHz. Under proton CW

decoupling the line is split and broadened. This spectrum clearly

illustrates that CW decoupling does not give the expected result in

isolated heteronuclear two-spin systems.

It is important to note that thedecoupling field is much stronger than the dipolar

interaction. Under these conditions one would expect to see a single narrow line.

What we see is a broad doublet.

We can explain this broadening and splitting as the second-order

recoupling of the dipolar-coupling tensor and the proton chemical-shielding

tensor. Experiments and theory will be presented to support this explanation.

This coupling is useful in that it contains structural information about the

relative orientation of the proton chemical-shielding tensor to the dipolar-

coupling tensor. This information can be extracted by fitting an experimental

spectrum with numerical simulations. If high spectral resolution is required,
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removal of this broadening is advantageous. To achieve this we developed more

efficient decoupling schemes for isolated spin pairs.

4.1.2 The System

We chose to model site selective isotropic enrichment by designing a

molecule with an isolated two-spin system. Here we have created an isolated

IH_ 15N spin pair in 15N-labeled tri-(trideuteromethyl)-ammoniumchloride

(TMA). Depicted in figure 4.3, the average directly bound inter-atomic lSN_1H

bond distance measured is 1.06 A.

Figure 4.3 Stick drawing of 15N labeled tri-(trideuteromethyl)­

ammoniumchloride (TMA). TMA serves as an model of isotropic

labeling with an isolated IH_15N spin pair.

This corresponds to a 15N_1H dipolar-coupling constant of 15.9 kHz. The intra-

molecular couplings, both heteronuclear and homonuclear, are much smaller.

From X-ray crystallographyS the average lSN_15N and IH_1H intramolecular
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distances are -6 A. In section 1.2.4 we saw that dipolar couplings scale as a

function of r-3
• As such 15N_15N dipolar couplings can be estimated as 87 Hz and

the lH_1H couplings are on the order of 800 Hz. This is two to three orders of

magnitude smaller than the directly bound species and as such can be safely

neglected in our discussion.

4.1.3 Theory

We will start our theoretical discussion of second-order recoupling with

the NMR Hamiltonian for a two heteronuclear spin system developed in section

1.3. Here we assume that we are in the double rotating frame and that we have

made the appropriate secular approximation. For two spin 1/2 nuclei we can

write our Hamiltonian under CW decoupling as,

(4.1)

Where we have neglected the J-coupling and have no quadrupolar coupling. We

can expand each term as,

HRF(I) =mRF(I) • Ix.

(4.2)

(4.3)

(4.4)

(4.5)

Iu
I -

U
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Here we have arbitrarily placed our decoupling field along the x-axis. The

spatial portions of each interaction are functions of the Euler angles (c:x,f3) and can

be written as,

m
D

=nYjYkf.lo (1- 3cos2 [3)
1tr3 ,

mCS(l,S) =~o((Jiso + ~ ((3cos2 [3 -1) -rysin 2 [3 cos2a)).
(4.6)

(4.7)

We can expand this Hamiltonian using the Pauli matrices into a 4 x 4 two spin

matrix, where the state labels IMpMs) are included for clarity,

1+,+) 1+,-) 1-,+) 1-,-)

mD+ms+mJ -mrf 0 0

H=l -mrf -mD+mS-m[ 0 0 (4.8)
2 0 0 -mD -ms +mJ -m

if

0 0 -mrf mD-mS-m[

Analytically diagonalizing this Hamiltonian we obtain the four eigenvalues,

I -
f

r
I
l "

E,,2 ~±,"l±±,"if 1+[,"D~,"S)'

£',4 ~±'"' ± ~ '"if 1+[ ,"D~'"s )'

that can be used to deduce the four transition frequencies,

(4.9a)

(4.9b)
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1 . lW1,2 = WI ± 2 wrf

llls. ~ llli ± ~ lll'l

1+(lllD~lllsJ+

1+( lllD:.lllsJ
1+(lllD~lllsn
1+( lllDlll~lllsn
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(4.10a)

(4.10b)

To address the relative importance of each transition, we can calculate the time-

domain signal. Given an initial density operator, 5x' and a phase sensitive

detection operator 5_, the time domain signal is given by,

4

S(D, CSt' CSs,t) = I,.Sm(D, CS
I

, CSs). ei.(O",(D,CS/,CSs )·/

m=J
(4.11)

Using the elements of the transformation matrix used to diagonalize the

Hamiltonian in equation 4.8, combined with the detection operator 5_, the

corresponding signal intensities can be written as,

(4.12a)

(4.12b)

I .

In the limit of strong decoupling, W~F > w~,wi, both 51 and 52 are smalL We will

therefore drop the transitions centered at COl and (02 in the rest of our discussion.

Conversely, the intensities of 53 and 54 tend towards 0.5 for strong decoupling

fields. These transitions thus play an important role in our discussion. To
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analyze the interference of the dipolar-coupling and chemical-shielding tensors

in equation 4.1Gb, we can expand the square root in a power series,

f
- f-

"" -

(4.13)

Here we have made the implicit assumption that the decoupling field is much

larger than either the dipolar-coupling or chemical-shielding tensors. Truncating

this equation after the first two terms, we obtain an approximate expression for

the transition frequencies,

(4.14)

I
I

I :

I
L

The OJDOJS term describes a second-order recoupling of the chemical-shielding

and dipolar-coupling tensors. A similar effect is well known in liquid-state NMR

as off-resonance decoupling. There an apparently scaled Jcoupling is obtained

by off-resonance irradiation of a coupled heteronuclear two-spin system 6,7. In

that case both J coupling and resonance offset are scalar quantities and as such

their product is also a scalar. Off-resonance decoupling in solids results in a

coupling of the scalar isotropic resonance offset and the second-rank dipolar­

coupling tensor which results in a purely second-rank interaction. This second-

rank tensor is averaged out under MAS conditions. The second-order recoupling

of the two tensors shows very different properties compared to the recoupling of

a tensor and a scalar in off-resonance CW decoupling in solid-state NMR. The



tensors has new and interesting consequences.

The product of two second-rank tensors can generally be described by a

fact that both the dipolar coupling and the chemical shielding are second-rank

weighted sum of a zeroth-rank, a second-rank, and a fourth-rank tensor 8. To

decompose the tensor products into the sum of tensors and calculate the

I
F
[

C
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influence of single-axis rotations of the different components, we have to

consider the transformations of both tensors from their respective PAS into a

common laboratory-fixed coordinate system.
r-

PAS of chemical-shielding
tensor

PAS of dipolar-coupling
tensor

I
I
1·

laboratory-frame coordinate
system

Rotor-fixed coordinate
system

Figure 4.4 Sequence of transformations and Euler angles necessary

to rotate the chemical shielding and dipolar-coupling tensors from

their respective principal-axis systems into the laboratory fixed

coordinate system. The chemical-shielding tensor is first rotated

into the PAS of the dipolar-coupling tensor (D2(aI'~I'YI))' and then

both tensors are rotated into the rotor-fixed frame (b2(a,~,y».

From there the tensors are rotated into the laboratory-fixed frame

(b2(O)rt'~m,O)).

L
L

L
L

L
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From the PAS of the dipolar coupling tensor both tensors can be rotated

into the rotor-fixed frame and subsequently rotated into the laboratory frame.

This is seen graphically in figure 4.4. This leads to the following time dependent

transformation for the two tensors,

(J)D(t) = ~ n~D;.o((J),t,f3r,O)Dg.n(a,{3, y). P~o, (4.15)

2 2 2 2

ws(t) =-J6 m~2m~2m~f~·o((J),t,{3r,O)D~,.m(a,f3, y). D~".m'(Ct/,{3/, y/). P;.m" . (4.16)

,

Here we have used the Wigner rotation matrices 8 described in section 1.3.3. The

angle ~r is the inclination angle of the rotation axis to the static magnetic field

and cor is the sample spinning frequency. The set of angles (a,~,y) describe the

orientation of a selected crystallite (powder average), and (aI'~I'YI) are the three

Euler angles describing the orientation of the I-spin chemical-shielding tensor in

the PAS of the dipolar coupling tensor. The dipolar coupling tensor is always

axially symmetric and is defined in its PAS in section 1.3.4 as,

(4.17)

L The chemical-shielding tensor components in their PAS as defined in section

1.3.3 are,

I
_ L

I
L

(4.18)
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(4.19)

r
I

r
r
I

where 01 and 111 are the anisotropy and the asymmetry of the chemical-shielding

tensor described in section 1.3.3 respectively. We are interested in the time-

averaged transition frequencies given by,

F

I

(4.20)

Where (- ..){3, represents the time average over a full rotor period. Equation 4.20

only has non-vanishing contributions under conditions where m=-n, where m

and n are the summation indices from equations 4.15 and 4.16. Under this

condition the time average in equation 4.20 can be recast as,

m3•4 = ~dg.o([3r)nt2D;,.o(lX,[3,0) x mtf;".m' (lX/,[3/,O)· P~.m"

±_1_. pf.o' 2:C(2,2,j;O,O) .d6.o([3r) x ±D~,.o(lX,[3,O).
3mRF j=O.2,4 m' =-2

2

.C(2,2,j;O,m')x 2: D;'''.m,(lXs,[3s'O). P~.m"
m"=-2

(4.21)

I
L..

Here, C(jl'j2,j;ml'm2) are Clebsch-Gordan coefficients9 and d~z.n are the reduced

Wigner rotation elements in table 2.1. Equation 4.21 shows that we indeed

obtain the sum of three different terms (j=O,2,4) which scale as a zero-rank, a

second-rank, and a fourth-rank tensor under single-axis rotation. Setting the
I ],;
i .
IdI

L
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angle of the rotation axis to ~r=O° gives the solution for the static spectrum. If the

inclination angle of the rotation axis to the static magnetic field corresponds to

the magic angle, all second-rank contributions to the transition frequencies will

be averaged. The chemical-shielding tensor of the S spin and the second-rank

contribution to the second-order term are thus scaled to zero. Under MAS

conditions, only the isotropic portion and scaled fourth-rank tensor contribution

will remain. These residual interactions give rise to an isotropic spitting of the

line described by the zeroth-rank scalar and an orientation-dependent splitting

described by the fourth-rank tensor contribution. It is possible to average both

the second-rank and the fourth-rank tensor components in equation 4.21

simultaneously by using either dynamic-angle spinning (DAS) or double rotation

(DOR) 10,11,12. In these experiments the sample is spun about two effective axis.

Under these conditions one is able to average both the second-rank and fourth-

rank tensor components. The second-order coupling is reduced to its fully

isotropic component and will give rise to a spectrum that consists of a sharp

doublet.

Although the second-orde,r recoupling contains interesting information

concerning the orientation of the two tensors, it is often desirable to remove the

splitting to increase the resolution and obtain a single sharp line for each

resonance. The simplest way to calculate the Hamiltonian under a multiple­

pulse sequence is to use average Hamiltonian theory 13,14. For CW decoupling

with the RF field placed along the x-axis, the average Hamiltonian to first order

is given by,
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(4.22)

(4.23)

r
r

The first term of equation 4.23 is the second-order isotropic dipolar shift. Since it

commutes with the I-spin subspace of the density operator it has no influence on

the time evolution of the I spin. The second term describes the second-order

recoupling of the chemical-shielding and dipolar-coupling tensors. In the limit

of strong decoupling, the result from average Hamiltonian theory is equivalent

to the result derived from second-order static perturbation theory. Using the

well known fact that symmetric pulse sequence eliminate all odd orders of the

average Hamiltonian13
, we can design very simple pulse sequences to remove the

secmld-order recoupling term (first-order average Hamiltonian). The simplest

such experiment consists of alternating 2n and -2n pulses. All multiple-pulse

sequences used in high-resolution liquid-state NMR also fulfill this symmetry

condition and could also be used. Under MAS conditions the length of the pulse

sequence is an important consideration. The repetition rate of the sequence

should be considerably faster than the mechanical spinning speed of the sample

to avoid interferences between the two different averaging processes, 14,15,16. The

phase-alternating sequence and other symmetric sequence will be experimentally

analyzed in section 4.4.

The reason that the second-order recoupling of the dipolar-coupling and

the chemical-shielding tensors is not as prominent in normal solids is the strong

homonuc1ear dipolar-coupling network among protons. The spin flip-flop terms

of the homonuc1ear dipolar-coupling Hamiltonian lead to an additional

I'
t
,.

1 _

I.
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j "

p
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modulation of the heteronuclear dipolar coupling which results in a narrowing

of the lines of the decoupled heteronuclear spin. This effect is known as "self-

decoupling" 17,18,19.

4.2 Experimental

This section will outline the experimental aspects of the work presented in

this chapter. It will start by describing sample preparation techniques and then

move on to detail the hardware and software used in both the MAS and DAS

studies.

4.2.1 Sample Preparation

Fully deuterated lSN labeled TMA was obtained from Herbert

Zimmerman. To produce the IH_1SN spin pair we needed to exchange the labile

amide deuterium for a hydrogen atom. To accomplish this the sample was

dissolved in a 0.07 M aqueous Hel solution (500 mg/ml). This solution was

allowed to stir at room temperature for 30 minutes while the labile deuterium

exchanged. After this period the sample was placed under vacuum overnight to

remove the excess solvent and recrystalize the now singly protonated TMA. This

process yielded fairly regular micro crystals that were used without any further

purification. Not surprisingly, we found the TMA to be very air sensitive. Upon



and the sample took on the smell of old fish. Thus, all manipulations of our

exposure to atmospheric water, the crystal could be visually seen to "moisten"
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sample were performed in a glove bag under an inert nitrogen environment.

After recrystalization the sample was pulverized using a small mortar and

pestle to form a fine powder. Powdered samples were then placed in either a 7

mm DAS rotor or a 4 mm MAS rotor and sealed. Between experiments the

sample rotors were stored in an evacuated round bottom flask to avoid

prolonged exposure to the atmosphere.

4.2.2 Magic Angle Spinning Experiments

Magic angle spinning experiments were performed with a home-built

spectrometer utilizing a Techmeg Libra pulse programmer and a 7.1 Tesla

Oxford superconducting magnet. These studies used a commercial 4 mm MAS

two channel Chemagnetics probe. The spinning frequency was controlled using

a home-built spinning speed controller.

The experiments under MAS conditions were performed using a standard

Harman-Hahn cross-polarization sequence in which the decoupling

characteristics were changed depending upon the experiment. This can be seen

in figure 4.5.
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Figure 4.5 The basic Hartmann-Hahn cross polarization

experiment with a.) no decoupling during acquisition, b.) CW

decoupling during acquisition, and c.) a simple symmetric 2mt

-2n1t decoupling sequence during acquisition. The basic CP

experiment applies a 1t/2 pulse to the IH spins followed by CP­

Contact pulses applied to both IH and 15N. The CP-Contact pulses

allow transfer of polarization from the 1H spin reservoir to the 15N

spin reservoir when they satisfy the condition 'YHB1H='YNBlN'

It should be noted that the relative efficiency of the Hartmann-Hahn matching

condition, in our experiments, decreases with increasing spinning speeds. We

opted to use standard Hartmann-Hahn matching to make sure that the cross-

polarization process does not favor certain crystallite orientations. The spectra

reported herein were recorded with a CP contact time of 0.5 msec. Each was

recorded as the sum of 1024 signal transients with 256 time points.
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4.2.3 Dynamic Angle Spinning Experiments

Page 128
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.
Dynamic angle spinning experiments were performed with a home-built

spectrometer utilizing a Techmeg Libra pulse programmer and a 7.1 Tesla

Oxford Instruments superconducting magnet. These studies used home-build

variable-angle probe 10,20 with a Doty Scientific 7 mm spinning module.

The pulse sequence used to record the isotropic second-order recoupled

spectrum under DAS conditions is shown in figure 4.6. The experiment is

implemented as a pure-phase. experiment 21 in t1 and uses States-type

processing22 in COl to distinguish between positive and negative frequencies.

Since the second-order recoupled Hamiltonian is quantized along the decoupling

field for the S spins, additional storage pulses for the S spins before and after the

change of the rotor axis are needed compared to a standard pure-phase DAS

experimene.

For the 2D-DAS experiment 50 t1 times were recorded with 256 scans of

256 points in t2 for each of the two complex data sets. During t21 phase-

alternating 2n pulse decoupling was employed to obtain a narrow line in co2, The

flipping time to change the angle ~c37.38° to 79.19° was set to ~ = 100 msec.

During this time no noticeable loss of magnetization was observed because the

longitudinal relaxation times of both spins are considerably longer than 100

msec. The RF field strength during the CW decoupling in t1 was corf=35.7 KHz.

F
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Figure 4.6 Pulse sequence used to measure the DAS spectrum of

the second-order recoupling. The pulse sequence implements pure

phase21 during t1 by storing the appropriate orthogonal components

during the change of rotor axis and adding up two data sets

modulated as COS
2(ffitd2) and sin2(cot1/2). The RF field strength

during the two decoupling periods must be equal. The phase cycle

was as follows (phases are given in multiples of rr/2): Pl: 0,2; P2: 1,3;

P3 and P8: 0,0,1,1,2,2,3,3; P4: 1; Ps and P7: 0,0,1,1,2,2,3,3,3,3,0,0,1,1,2,2;

P6: 3. The receiver phase was: 2,0,3,1,0,2,1,3. To record the second

data set needed for the States-type processing in t1 the phase of P3

was shifted by rr/2 while keeping the phase of all other pulses and

the receiver unchanged.

E- r- -
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4.3 Results

This section will present our experimental results. The first portion of this

section will be dedicated to examining the recoupling phenomena. Here we will

attempt to add experimental justification for our assertion that the effect we are

seeing is due to a recoupling of the chemical-shielding and dipolar-coupling
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tensors. As we have stated earlier, it is often advantageous to remove this

broadening to raise the overall spectral resolution. In the second portion of this

section we will then turn our attention towards methods of removing this

broadening via the use of symmetric decoupling sequences and dynamic angle

spinning. Again, this data will be used as experimental support of our

theoretical assertions.

4.3.1 The Effect

In section 4.1.1 we presented data which at first glance did not make

intuitive sense. Under MAS conditions, in "normal" solids, the application.

sufficiently strong continuous wave (CW) spin-decoupling pulse, should lead to

a single sharp line for each resonance. When we introduced CW proton

decoupling spectrum showed a broad split line, figure 4.2. Here we will

experimentally investigate this deviation from expectation.

4.3.1.1 CW Power

To make sure that the splitting was not simply a result of insufficient

decoupling power and investigate the role decoupling power plays in spectral

lineshape, we ran a series of CW CPMAS experiments in which the CW

decoupling power was varied. These experiments are depicted in figure 4.7
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where decoupling field is varied from 8.6 kHz (less than the 15N_1H dipolar

coupling) to 71.5 kHz (much greater than the dipolar coupling).

COrf/21t

34.1 KHz

v..-__7....~_~f_~_1t_Z ..".. ._A.....~_..._~4_.......,1:

..... .~ A. ~7.1 kHz

60.0 kHz

.....~ .......... .__..._w...."fV\......__l_~.....,l.......k_H_~..,..

48, 1. kHz
.......... .......... .J \""-' --r<- 8.6 kHz

I
\
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i
!
! 0

I
!
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-'-1-,-----.(-.,.---,.--r---'I--,--r-I -'-1-,-----.\--r----,.--r---'I--,--r-,

8 4 0 -4 -8 8 4 0 -4 -8
cocs/21t (kHz) cocs/21t (kHz)

Figure 4.7 15N spectra of 15N-labeled TMA as a function of proton

decoupling power. The decoupling field strength was varied from

8.6 kHz to 71.5 kHz. Even for the highest decoupling power the

line is still split and rather broad.



fourth-rank tensor contributions to the second-order recoupling that are not

The spectra were recorded while spinning at 5 kHz. Even with the highest

decoupling field strength we see both a broadening and a splitting. It is our

contention that this splitting and broadening are due to the zeroth-rank and
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averaged out under MAS conditions. Evidence that supports this assertion is

seen in figure 4.8.

i .
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Figure 4.8 Plot of the second-order splitting ilcosplit as a function of

1/ COrf' The splitting scales linearly with the inverse of the

decoupling field strength (r=O.998), as expected from equation 4.14.

Here we see a plot of spectral line width as a function of the inverse decoupling

power. From equation 4.14 we expect the recoupling effect (and hence line

width) to be linearly related to the inverse decoupling power. This inverse

I ~
lJ

r"U
relationship is confirmed (figure 4.8) the data exibit a linear correlation



Chapter 4: Second Order Recoupling . .. Page 133

- r-'
l_

! .

coefficient, R=O.998. This is direct experimental evidence that we are justified in

our theoretical treatment of this problem. Further it shows that we were justified

in neglecting all terms higher than second order in the expansion of equation

4.13.

4.3.1.2 CW Spinning

In order to investigate the influence of the spinning speed on the second-

order recoupling and rule out rotational-resonance phenomena 23,,24,,25,,26 as a

source of observed splitting, we recorded a series CPMAS spectra, with and

without a CW decoupling field, as a function of spinning speed. In figure 4.9 we

have turned the decoupling field off and see a series of CPMAS spectra as a

function of spinning speed. Here we see that as we raise the spinning speed the

spinning side bands spread out and the center, isotropic line grows. Again we

should note that as the spinning speed increases the CP efficiency decreases

which accounts for the decline in overall intensity as we raise the spinning speed.

In figure 4.10, with the CW decoupling field held constant at 71.5 kHz, the

spinning speed is varied from 4 kHz to 9 kHz.
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Figure 4. 15N MAS spectra without decoupling at spinning speeds

ranging from 4 kHz to 10 kHz. The decrease in the relative spectral

intensity as the spinning speed is increased is due to lowered CP

efficiency at higher spinning speeds. Without a CW decoupling

field we see normal spinning side band pattern.
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Figure 4.10 15N MAS spectra under CW proton decoupling with

spinning speeds ranging from 4 kHz to 11 kHz. The decoupling

field strength was held constant at 71.5 kHz. The width of the line

is independent ofthe MAS spinning speed. Again variations in the

line intensities are due to varying cross-polarization efficiencies at

different spinning speed.



The spectra are unchanged over the full range of spinning speeds except for an
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overall decrease in intensity with increasing spinning speeds. This decrease in

intensity is explained as above. Most importantly, the line shape clearly is

independent of spinning speed. In "normal" solids, when the line width is not

dictated by the inhomogenity of the external magnetic field, one would expect

the line width to be inversely proportional to the spinning speed. From the

narrow line widths in figure 4.9, where we see a CPMAS spectrum without

decoupling, we know that in the CW decoupled spectra have line widths that are

not dictated by the inhomogenity of the external magnetic field. The

insensitivity to spinning speed seen in figure 4.10 is thus evidence that supports

the recoupling hypothesis: equation 4.14 shows no dependence on spinning

speed.

4.3.1.3 Fits and Simulations

Removing this second-order recoupling is important when one wants to

maximize spectral resolution. However, this splitting is inherently information

rich. It is dependent upon the relative orientation chemical shielding and diplar

coupling tensors. Thus one should be able to back out this orientation from the

second-order line shape. This dependence is illustrated in figure 4.11.
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Figure 4.11 Dependence of the second-order recouped spectrum on

the orientation of the chemical-shielding tensor relative to the

dipolar-coupling tensor. The chemical shielding tensor was

assumed to be axially symmetric so only one parameter (~l) is

needed to describe the orientation of the PAS of the two tensors.

The line shape of the spectrum depends very strongly on ~I'

suggesting that is should be possible to determine the ~l between

the two tensors from experimental spectra. The parameters used

for these simulations were: w rf /21t=70 kHz, 0ct/21t=20 kHz,

0r/21t=6.8 kHz, and 11r=O.O. The spinning speed was 5 kHz.



These simulations were done as frequency-domain simulations using a

decoupling field of 70 kHz using the NMR simulation environment GAMMA 27.

Chapter 4: Second Order Recoupling . ..

~l

Page 138

r
I

F
[
I

F
t

-1000 o 1000

Figure 4.12 Here we see three simulations (dashed lines) with

different ~l values superimposed over the experimental results

presented in figure 4.2. The most accurate match is for ~1=0 I or

colinear dipolar-coupling and chemical-shielding tensors. These

simulations used the same parameters described in figure 4.11 but

with a decoupling field of 71.5 kHz.

L
U

I'i .

U



Chapter 4: Second Order Recoupling . .. Page 139

L
\ .

I

- f ~,

i 0

- \-

t -

There is clearly a strong line shape dependence on the angle ~l' as expected from

equation 4.21. It is not straight forward to predict the line shape from equation

4.21 especially if the chemical-shielding tensor is not axially symmetric.

However, the simulations in figure 4.11 show that the variations should be

strong enough to allow the determination of the angle between the two tensors

from this type of second-order spectrum. Figure 4.12 shows a series of three

simulated spectra with varying B1 values superimposed upon an experimental

spectrum. From this were able to back out the relative orientation of the

chemical-shielding and dipolar-coupling tensors. We saw that they are colinear

in this sample. This geometry is well within the range expected from separated

local field experiments that measure the relative orientation of the chemical-

shielding and dipolar-coupling tensors in a IH_15N bond pair28
•

4.3.2 Solutions

As pointed out earlier, it is often advantageous to remove the second-

order recoupling to achieve higher spectral resolution. This section will offer

three mechanisms where by this effect can be either removed or modulated.

4.3.2.1 Symmetric Decoupling

We can eliminate second-order effects in the rotating frame by exchanging

standard CW irradiation for a symmetric decoupling. The simplest such pulse



sequence is a series of phase alternating 21tx, 21t-x pulses. Figure 4.13 shows a
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series of 1D spectra obtained with this type of synchronous phase-alternating

decoupling with an RF field strength of 71.5 kHz taken at different spinning

speeds. Here we see a narrow -45 Hz line that varies only slightly over a

spinning speed range of 4 kHz to 9 kHz. Clearly the broadening due to the

second-order recoupling is removed and we are left with "normal" solids

spectra.

A similar simple symmetric decoupling sequence can be constructed out

of phase alternating 41t -41t. Figure 4.14 shows a series of 1D spectra obtained

with this type of synchronous phase-alternating decoupling with RF decoupling

field strength of 71.5 kHz taken as a function of spinning speeds. Again we see

the same qualitative behavior. The line narrows, FWHH=45 Hz, but now we see

that at higher spinning speeds the decoupling efficiency decreases and the lines

broaden. We believe this to be a result of interferences between the spin-space

and real-space averaging mechanisms. That is as the decoupling "sequence"

begins to be comparable to the cyde time of the rotor interference effects can lead

to broadening of the line and give rise to sidebands. This type of interference

between two averaging processes is well know and has been described in the

literature 14,15,16.
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Figure 4.13 15N MAS spectra under proton decoupling using a

phase alternating 21t -21t sequence as a function of spinning speed.

The half width at half height is 45 Hz and is independent of

spinning speed. The narrowing (1 kHz to 45 Hz) is an indication

that the second-order recoupling has been removed. Again, the

variation in spectral intensity is due to varying cross-polarization

efficiency at different spinning speeds.
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Figure 4.15 15N MAS spectra under proton decoupling using a

phase alternating 4n -4n sequence as a function of spinning speed.

The half width at half height is 45 Hz and is independent of

spinning speed. The apparent broadening at 8 kHz may be the

result of interference between spin and spatial averaging processes.
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4.3.2.2 MLEV-4/WALTZ-4
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Other simple decoupling schemes have also been implemented. Here we

will report on the use of two such decoupling sequences, MLEV-4 29,30 and

WALTZ_4 31
,32. Each uses a four phase supercycle of composite pulses. The pulse

sequence for each decoupling scheme is depicted in figure 4.15.

n

a.)

b.)

I~~ " (;) 117x~ I =x(x)

BGB=2X

I
l

I
I c

Figure 4.15 MLEV-4 and WALTZ-4 decoupling sequences. Each

contains a repeating composite pulse with a four phase supercycle.

a.) depicts the three pulses used to form a composite 1t x pulse in

the MLEV-4 supercycle. b.) depicts the three pulses used to form a

composite 21t pulse in the WALTZ-4 supercycle.

Figure 4.17 and 4.18 show a series of MLEV-4 and WALTZ-4 decoupled

spectra as a function of spinning speed.
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Figure 4.16 15N MAS spectra as a function of spinning speed under

proton decoupling using MLEV-4 decoupling sequence. The half

width at half height for the slower spinning spectra is 30 Hz. When

the spinning speed is increased the line broadens due to the

interference between spin and spatial averaging processes.

! !•......'..
LJ



f ~

r-

- f ~

Chapter 4: Second Order Recoupling . ..

ror/2rt

4KHz________J '__ _

5KHz
J

Page 145

Figure 4.17 15N MAS spectra as a function of spinning speed uncler

proton decoupling using WALTZ-4 decoupling sequence. The half

width at half height for the slower spinning spectra is 30 Hz.

Again, the lines broaden at higher spinning speed due to the

interference between spin and spatial averaging processes.



While these give slightly narrower lines -30hz at lower spinning speeds, they

become fairly inefficient at higher spinning speeds when the time of the

decoupling pulse sequence cycle becomes comparable to the rotor cycle.
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4.3.2.3 Dynamic Angle Spinning

Dynamic angle spinning (DAS) and double rotation (DOR) offer a

mechanism for simultaneously averaging both the second-rank and fourth-rank

tensors components of the second-order recoupling. This has the net effect of

keeping only the isotropic zeroth-order component. DAS experiments were

performed as described in section 4.2.3. After a hypercomplex Fourier

transformation and phase correction, a slice through the highest point in co2 along

COl was taken and is shown in figure 4.19. A comparison with a MAS spectrum

recorded under similar conditions shows a significant narrowing of the line due

to the simultaneous averaging of the second-rank and fourth-rank tensors.

However, the DAS spectrum still has very broad lines. These may be due to

inaccuracies in adjusting the two DAS angles or differences in the CW-

decoupling field strengths at the two different rotor orientations. This narrowing

is direct support that the effect we are seeing is the result of a fourth-rank

interaction. This supports our assertion that we are dealing with second-order

recoupling. The spitting obtained by a fit of the DAS spectrum to two Lorentzian

lines is ~co=650±100 Hz. It would be advantageous to implement a similar

experiment under DOR conditions. Both problems with angle adjustments and

RF field strengths would not be present under DOR.
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Figure 4.19 MAS and DAS spectra 15N spectra for a decoupling

field strength of 35.7 kHz. The MAS spectrum was recorded as a

1D CP CW decoupling spectrum, while the DAS spectrum was

recorded with the pulse sequence described in figure 4.19. The 1D

spectrum shown is the slice through the highest point in co2 along

the COl dimension. The DAS spectrum is narrower due to the

simultaneous averaging of second-rank and fourth-rank tensor

contributions. The splitting of the two lines in the DAS spectrum

corresponds to the isotropic value of the second-order recoupling

of the chemical-shielding and dipolar-coupling tensors.

4.4 Discussion

. We have shown that the second-order recoupling of the dipolar-coupling

and the chemical-shielding tensors is an important source of residual broadening

in CW-decoupled spectra of isolated two-spin systems. Since this residual
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broadening results from the coupling of two second-rank tensors it will not

average out under MAS conditions because of the zeroth-rank and fourth-rank

tensor contributions. In the case of our model system we have seen a broadening

of nearly 1000 Hz when a CW decoupling field of 71.5 kHz is used. The use of a

simple phase-alternating sequence, which is symmetric in the sense of the

average Hamiltonian theory, removes the second-order broadening in spin

systems with weak homonuclear dipolar-coupling networks.

The impact of this second-order recoupling will most visibly be seen in

doubly labeled substances that are now more commonly used in the structure

determination of peptides in proteins by solid-state NMR. We can estimate the

magnitude of the broadening for a 13C_15N spin pair based on the analytical

results of equation 4.14. 'For a one bond distance, a carbon CSA tensor of 9750

Hz, and a decoupling field strength of 70 kHz one obtains a residuallinewidth of

approximately 200 Hz.

It is also possible to use the second-order recoupling to extract

information about the magnitude or the orientation of the principal-axis system

of the two interfering tensors from the second-order spectrum. In systems with

strongly dipolar coupled protons, the use of off-resonance decoupling, with the

effective decoupling field along the magic angle, can reduce the quenching of the

second-order recoupling by the homonuclear flip-flop modulations. Such

experiments may allow the extraction of structural information from the second­

order recoupled spectra even in systems with strong homonuclear dipolar-

coupling networks.
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