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Abstract

A. left-unilateral matrlx equatlon is -an algebraic equatlon of the:-v -
form
a0+a‘1a:+a2m +.-..+ana: =0

where the coefficients a, and the unknown z are square matrices of *

- the same order and all coefficients are on the left (similarly for a right-
unilateral equation). Recently certain perturbative solutions of unilat-
eral equations and their properties have been discussed. We present a

" unified approach based on the generalized Bezout theorem for matrix-
polynomials. Two equations discussed in the literature, their pertur--..
bative solutions and the relation between them are described. More
abstractly, the coefficients and the unknown can be taken as elements
of an associative, but.possibly noncommutative, algebra. -

*email address: BLCerchiai@lbl.gov.
temail address: zumino@thsrv.lbl.gov R



1 " Intr()duction

In a discussion of generalized Born-Infeld theories {1, 2] the construction of
the Lagrangian was reduced to: the solution of certain unilateral-algebraic -
matrix equations and it was conjectured that the-iterative solution of those
equations is a sum of symmetric polynomials in the coefficients and of terms
which are commutators. Equivalently, that the trace of the matrix solution is
equal to the sum of traces of symmetric polynomials in the coefficients. The
conjecture was later proven in [3] and by A. Schwarz in [4] using different
methods and a slightly different form of the equation.

In the present note we combine Schwarz’ s idea of expressmg the trace
of the solution as a contour integral in the complex plane of the trace of the
resolvent of the corresponding matrix with the idea used in [3] of using the
basic property of the trace of the logarithm of matrices.

The two approaches can be easily combined by using the generalized Be-
zout theorem for matrix polynomials. The qualitative algebraic fact that the
trace of the solution is given by a sum of traces of symmetrized polynomials
in the coefficients emerges almost without any computation. The coefficients
in the expansion are not hard to compute and we give an explicit expres-
sion for them.:! The method used here applies equally to the two different
equations considered in [3] and [4]; in the last section we clarify the relation

“between the two equations and their solutions.

Before closing this section we recall the statement of the generalized Be-

zout theorem (see e.g. [5]). Let:.

v'_P()\)_ao+a1A+a2)\2+ 4aXn,  AeC (L)

be a polynomlal with square matrlx coeflicients a;, and z a square matrix of
the same order. -Define 3 :

P(z) = a0+ alx + 4y + A+ anz” B (1.2)
with the coefficients all on the left. It is easy to verlfy that v
P(A) — P(z) = QA z)(A —z), (1.3)
where - . '
QO z) =S N (Z ea,m’_l'l) . - (1.4)
1=0 =i+1 : _

1Qur contour integral formulas are very similar to, Schwarz s, but there seem to be
some minor discrepancies between ours and his.



In other words A— 2 is a divisor of P(A) — P(z) on the right (if we had taken -
all the coeflicients on the right, then A — z would have been a divisor on the

left).
We shall study matrix equations of the type

P(z)=0, (1.5)

which we shall call left-unilateral matrix equations (meaning that all the
coefficients are on the left). If z is a solution of (1.5), the characteristic
polynomial P(A) of the equation can be factorized as

PQA) =@ z)(A - 2). (1.6)

It is clear that the Bezout theorem applies more abstractly if one considers a,
and z as elements of an associative, but possibly noncommutative, algebra.
The same remark applies to the rest of this note, if one uses an appropriate
algebraic definition of the -trace as cyclic average (see [2]).

2 The Trace of the Solutions of Unilateral
Matrix Equations -

A. Schwarz [4] considers the unilateral matrix equation
z"=1+4c¢ (ao +aiz+... +'an_1m"'1) . (21

where € is a small parameter. For € = 0 the equation has n solutions in the
complex plane, the n roots of 1. For € # 0 each of these solutions admits a
perturbative expansion as a formal power series in €. A. Schwarz proves that
Tr z° can be expressed as a power series whose coefficients are symmetrized
products of the a; and gives an expression for the coefficients in terms of
contour integrals in the complex plane. ' o

We have found that a more: exphclt expressmn for Tr z? is prov1ded by

O TeS(al ... nol
Trz® —Trl—l—sZ Z - ("10. ."' H(s-}-Zlnz—rn) .
k=1 no+ Anp-1=k no: .. . nn—l r=1 :
- (22)

This formula holds for positive as well as for negatlve values of s. Here the
expansion is made around 1.- A similar expansion could be derived for all the
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n iterative solutions of the equation. The normalization of the symmetrized
product S(ag° ...a"™) is chosen in such a way as to give the ordinary product
if the factors commute [3].

If we introduce the notation

k e '
- 1
[[2" fork=1,2,...

| (:): =t S o CE)

1 ' for k=0,

QY

which reduces to the usual definition of ( 3 ) fora € N, then the result (2.2)

can be rewritten
Tra® = ‘ o S (2.4

5 — TeS(ad ...ar"7") | 28 —n+ 300 i)
Trl+;Zek(k—1)! > n(," - = .
: k=1 ‘no+....+nn_1=k' ‘0. e n—‘l- k — 1

As a first step to prove (2.2), we apply the generalized Bezout theorem.
For (2.1) the characteristic polynomial is I

PO)Z1— N +e(sotar+...+a, A1) (25)
and, if P(z) =0, |

PO)=Q\z)A-2) (26)
with o , : , ..
Q) =Y (Z ea,zr—'—l—w"-lti)x; e

Let z be one of the solutions of (2.1), e.g, the one which reduces to 1 for
vanishing €. (For the other solutions a similar procedure can be followed).
We take the logarithm and then the trace of (2.6), and obtain :

‘Trlog P()) = Trlog(Q()\,‘:c)}) +Tlogh-2). (28

Differentiation with respect to A yields

Loy o 1 / L1 L
TIWP (A) = Ter A z)+ Tr)‘—_—m . (2:9)

3 B



More generally, we can multiply the above equation by any function f(A) of
A, which is regular in a neighbourhood of 1, so as to get

, 1
PN

ANF(A) = Q'(A, x)f(/\) +Te—f(0). (210

Q(/\ z)

As a next step, we follow Schwarz’ s 1dea of usmg a contour integration
to isolate the relevant part in the trace. We consider a small circle I around
1 in the complex plane, or more generally a small closed curve winding once
‘around 1, and containing no other solution of (2.1).for ¢ = 0. Then we
compute the integral of equation (2.10) along it for small €

(2mi) ?(d)\TrP(A)P’(A) »n= e
(27rz) fd)\TrQ(/\ )Q()\ m)f()\)+(27rz) }{d)\Tr ;vf()\)

The two integrals on the right hand-side can be evaluated through the Cauchy
theorem in the following way. We are considering the case of small €, and then
@ is a polynomial in = and A, whlch vanishes for A near e*n" Jk=1,...,n—1,
so that in this case its inverse Q! has no singularities near 1. Q' and f are
regular functions near 1 and therefore the Cauchy theorern guarantees that
the first term on the rlght hand-side vamshes

omi fdATr Q'O z)f(N) =0 (212
(2ri)- Q(A)()()“_(.)
On the other hand Tr- 1—=f(A) has poles for A near 1 with total res1due Trf(z).
As.z is close to 1 for small €, the Cauchy theorem yields.

(2m3)~! ﬁd/\ Tr/\ — a:f()‘) = Trf(z) . S (2.13)

_Finally, we obtain

Trf(z) = (2mi)” f d) Tr ()P'(,\)f(,\) 2

Therefore, the problem of computing Tr f(z) amounts to eValuating the in-
tegral on the right hand-side of (2.14).




We can factorize

POY= (1=, (2.15)

where o ‘ i K
T(\) =1 —_e(,\" - ‘1)—1 Z . (2.16)
Then - R : -
——P’()\) An : -+ L T’(A) @
PO T(,\) o

and (2.14) becomes

T f(2) = % }{ dA /\’\H Tr f(0) + i f d\ Tr- iz )\)T’()\) F0). (2.18)

The first 1ntegral on. the rlght hand—81de equals Tr f(l) To evaluate the
second term we integrate by parts

o }{ DA Tr ( ST = 57 f D Trlog(T() (V). (2.19)
This is justified, because Tr log T(/\) and f(/\) are regular on T, so that
g fang aog(T(A)) <A)) e
In this way we obtain |
T f(e) = Te £(1) - —f ATogTONFQ). (220

We expand the logarlthm o
—log(1 — a) ; % for o small ‘ (2.22)

" and then make the followiﬁg_change of variable :



This is possible, because if we start with a small closed curve I' winding once
around 1, then after the variable transformation (2.23) we still have a closed
curve wmdmg once around 1. We restrict ourselves to the case f()) = )\5

fd/\ Trlog ( —;{%) Al = (2.24)

- Zl —0 'al)‘ s—1 __
Z?mk%d,\rﬁ( Ar 1 )‘

Notice that y# is regular in a neighbourhood of 1. In this form we can already
see that the result is:symmetrized in the coefficients {a;}, because they enter
through expressions of the type :

n—1

. /—1 ‘ A k : i . : nn_l %; lnl
(z) =X it eamy L 229)
We obtain o |
e e e

.. o0 . ' n D Mgy ) _ lnl + 5 — n
#Trl_l_fz-ek' z TrS(ay ... at"7') dF1 lzl:
'nO' Ny ’ dyk-—ly | vt

k=1 ot dnn1=k L

_Tr1+sz Z TrS(aO nn Zn_ll)H(s+Zlﬁle—rn>

no+ +nn 1=k ] - r=1

Here we have apphed the Cauchy theorem in its more general form

: dk-1 T
emiy? § ay S e W (22)

where C a closed curve wmdmg once around Yo, and f(y ) is a function which
is regular inside C.. ‘




In the simplest case no=2it is ?possible to solve the classical equation
(i.e. the equation for commuting ;) and this provides a closed expresswn

for (2.2)

Trz="Tr {e% + 8\/1 +eao + (6921)2 ] Y - (2.28)

where we again have chosen the solution which reduces to 1 for e = 0. In
the appendix we show how expanding the square root in (2.28) near 1 we
actually recover (2.2) in this case.

3 Relation between two unilateral matrix
equatlons
'The same procedure Wthh we have used to prove (2.2), namely applylng the

generalized Bezout theorem and then the Cauchy theorem, can be equally |
well followed for the equation

®=A+A10+... 4,07, (3.1)
which is studied in [3]. If we define V
A(X) = Ao + A1) + AN (3.2

the characteristic polynomial of (3 1) is A — A(X) and the result which cor-
responds to (2. 21) is

Trf(®) = —— }( d) Trlog(1 (;‘,)) 0y (3:3)

Here C is a closed curve Wlndmg once around 0. We consider the particular
case f ()\) = /\s and expand the logarithm '

_ 32 (k — 1)' Z Tr S(Ago Agn) % d)\ ,\Et o(l— 1)n,+s— .
. C .

nol...n,!

- not..np=k -

(3 4)

The Cauchy theorem has the effect of selectmg the words of dimension
Y 1o(l = 1)n; = —s in the expansion of the logarithm, i.e.

L oo

Tr ®° = sTrZ “(Ap+... A" lz, —Dm=—s (3.5)
k=1



and we recover the result already stated in [3], where the concept of dimension
of a word was introduced. It should be remarked that the solution to (3.1)
for vanishing coefficients is ® = 0.. Consistent with that, as already noted in
in {3], the result (3.5) only holds for positive integers s: it has no sense to

invert the solution in this case, but see below.
To study more closely the relatlon between equatlon (2.1) and (3.1) we
make the Ansatz
z=1+a®. : ‘ (3.6)

(Again, the same procedure could be followed for dny of the roots of unity
which are the solutions of (2.1) for e = 0.)
We choose-the parameter « in such a way that

a"l=_n o - (3.9

There is no reason for a to be real, since most of the solutions of (2.1) are

not real, even for real coefficients. _
Then the relation between the n coefficients a; and the n 4 1 coefficients

A; is easily found to be ' L

n—1 '
, —a""ez ( ; ) ar -~ forl1=0,1
A= r=l . ' (38)

_ n—1
al""(;l)—al‘"eZ(;)a,,forzglgn.

r=i
Some remarks can be made with respect to (3.8). First, observe that A, =1
is fixed, but this had to be expected, because the equa.tlon (2 1) has one
coefficient less than the equation (3.1).

Moreover,(3.8) is a linear relation, and it is mvert1ble, so that once the
result that the trace of the powers of a solution depends only on the sym-
metrized products of the coefficients is proven for one of the two equations, it
immediately follows also for the other. Negative powers of z ¢an be expanded
from (3.6) into a series of positive powers of ®.

If € is small, only the'first two coefﬁc1ents Ag and A, are a.utoma,tlcally
small the other coefficients satisfy

Therefore, the two expansions (2.2) and (3.5) do not necessarlly hold for the
same range of the coefficients.




Appendix

In this appendix we check that (2.2) actually is the series expamsion of (2.28)
for s = 1, n = 2. We start by expanding the square root in (2.28) around 1

_ LU S VP o ;n a2 |
Trz =Tr 1+62 +rz=;( 1) 2’1‘!(2r 3)..S(€ao+(e2)‘)}

Tr a;

= Tri+e 5 | 7 (A.1)
r 2r—mo : - 1\ 2(r—no)
1™~ 1 2 - —=Tr S — .
+Z( : T noz—o’%'("—%) ' ( (2) ' )
We introduce the new variables:
n1=2(r—ng), k=nog+n/=2r—mg. - : (A.2)
Then we can rewrite | . |
' T
Trz =Trl+e ;al (A.3)
1) S 4np—~1 (nl ) ) — 3T 10 ,™
’ Z 2t no-i-znl:--k( - nolng! ~(2no + my = BNTeS (o ai")
n1even
where we have used the relation _ _
! ) :
_T:l;—'— =(ny — 1)!! for ny even. (A.4)

Due to the condltlons ng+n; = k 1 even, the followmg relatlon holds

- =)
(—1)3+m0=1(ny — 1)!1(2ng + ng — 3! =[] +n~ 27‘) - (A5)
r= 1 Lo

and so formula (A.3) can be brought 1nto the more compact form

Trz=Trl+ Z '27; Z no'n ,Tf S(a0° ) H(l +ny - 2r-) , (A.6)
k=1 no+n1=k r=1 =~ : . S
which now coincides with (2.2) for s = 1, n = 2. It is no longer necessary to
explicitly sum only over even values of n;, because
k-1 '
[T@+ni—2r)=0fornsodd, 1 <ni<k, k>1. (A7)

r=1
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