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Abstract 

A left-unilateral matrix equation is an algebraic equation of the 
form 

ao + a1x + a2x2 + ... + anxn = 0 

where the coefficients ar and the unknown x are square matrices of 
the same order and all coefficients are on the left (similarly for a· right
unilateral equation). Recently certain perturbative solutions of unilat
eral equations and theirproperties have been discussed. We present a 
unified approach based on the generalized Bezout theorem for matrix· 
polynomials. Two equations discussed in the literature, their pertur- .. 
bative solutions and the relation between them are described. More 
abstractly, the coefficients and the unknown can be taken as elements 
of anassociative, but. possibly noncomqmtative, algebra. 
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1 Introduction 

In a discussion of generalized Born-lnfeld theories [1, 2] the construction of 
the Lagrangian was reduced .to the solution of certain unilateraLalgebraic · 
matrix equations and it was conjectured that the iterative solution of those 
equations is a sum of symmetric polynomials in the coefficients and of terms 
which are commutators. Equivalently, that the trace of the matrix solution is 
equal to the sum of traces of symmetric polynomials in the coefficients. The 
conjecture was later proven in [3] and by A· Schwarz in [4] using different 
methods and a slightly different form of the equation. 

In the present note we combine Schwarz' s idea of expressing the trace 
of the solution as a contour integral in the complex plane of the trace of the 
resolvent of the corresponding matrix with the idea used in [3] of using the 
basic property of the trace of the' logarithm of matrices. 

The two approaches can be easily combined by using the generalized Be
zout theorem for matrix polynomials. The qualitative algebraic fact that the 
trace of the solution is given by a sum of traces of symmetrized polynomials 
in the coefficients emerges almost .without any computation. The coefficients 
in the expansion are not hard to compute and we give an explicit expres
sion for them. · 1 The method used here applies equally to the two different 
equations considered in [3] and [4]; in the last section we clarify the relation 
between the two equations and their solutions. 

Before closing this section we recall the statement of the generalized Be
zout theorem (see e.g .. [5]). Lek 

(1.1) 

be a polynomial with square matrix coefficients a,. and x a square matrix of 
the same order. Define 

2 · n 
P(x) =ao+a1x.+a2x +·~·+anx (1.2) 

with the coefficients all on the left. It is easy to verify that 

P(>.)- P(x) = Q(>.,x)(>. -x), (1.3) 

where 

Q(>.,x) = E>.l ( t Earxr-l-1) 
____________ l=O r=/+1 

(1.4) 

10ur contour integral formulas are very similar to Schwarz' s, but there seem to be 
some minor discrepancies between ours and his. · 
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In other words >.- x is a divisor of P( >.) - P( x) on the right (if we had taken · 
all the coefficients on the right, then >.- x would have been a divisor on the 
left). . . 

We shall study matrix equations of the type 

P(x)=O, (1.5) 

which we shall call left-unilateral matrix equations (meaning that all the 
coefficients are on the left). If x is a solution of (1.5), the characteristic 
polynomial P(>.) of the equation can be factorized as 

P(>.) = Q(>.,x)(>.- x). (1.6) 

It is clear that the Bezout theorem applies more abstractly ifone considers ar 
and x as elements of an associative, but possibly noncommutative, algebra. 
The same remark applies to the rest of this note, if one uses an appropriate 
algebraic definition of the trace as cyclic average (see [2]). 

2 The Trace of the Solutions of Unilateral 
Matrix Equations 

A. Schwarz [4] considers the unilateral matrix equation 

(2.1) 

where t: is a small parameter. For t: = 0 the equation has n solutions in the 
complex plane, the n roots of 1. For t: #- 0 each of these solutions admits a 
perturbative expansion as a formal power series in t:. A. Schwarz proves that 
Tr x 5 can be expressed as a power series whose coefficients are symmetrized 
products of the ai and gives an expression for the coefficients in terms of 
contour integrals in the complex plane. 

We have found that a more explicit expression for Tr x 5 is provided by 

~ t:k "" TrS(a~o ... a:nll) k-1 (: n-1 ) 
Tr X 5 = Tr 1 + s ~ k , ~ 1 . . ~ IT . s + L lnt - rn 

n no .... nn-1· 
k=1 no+···+nn-1 =k r=1 1=1 

(2.2) 
This formula holds for positive as well as for negative values of s. Here the 
expansion is made around 1. · A similar expansion could be derived for all the 
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n iterative solutions of the equation. The normalization of the symmetrized 
product S( a~o ... a~n) is chosen in such a way as· to give the ordinary product 
if the factors commute [3]. 

If we introduce the notation 
k ' ' 

rra-rr+1 fork= 1,2, ... 
r=l (·~) = (2:3) 

1 fork= 0, 

which reduces to the usual definition of ( ~ ) for a E N, then the result (2.2) 

can be rewritten 

Tr X 8 = (2.4) 

s ~ k(k )I '"" r ao ... an-l ·oo. T s. ( no. nn-1) .. (· ~(. s -'n + 2:7:1
1

. ln1)) 
Tr 1 + - L...J E - 1 . L...J 1 1 . . • 

n no .... nn-1· k 1 
· k=l no+···+nn-1 =k ; - . 

As a first step to prove (2.2), we apply the generalized Bt:zout theorem. 
For (2.1) the characteristic polynomial is · . 

P(A) ::::: 1- An+ € ( ao + a1A + ... + an-!An-'l) (2.5) 

and, if P(x) = 0, 
P(A) = Q(A,x)(A- x) ,(2.6) 

with 

Q(.X, x) = ~ ( ~ €arxr-1-l _ Xn-1~1) A1. 
1=0 r=1+1. . 

(2.7) 

Let x be one of the solutions of (2.1), e.g, the one which reduces to 1 for 
vanishing t. (For the other solutions a similar procedure can be followed). 
We take the logarithm and then the trace of (2.6), and obtain 

Trlog P(.X) = Trlog(Q(A, x)) + Trlog(A- x). (2.8) 

Differentiation with respect to .X yields 

Tr Pt.X) P'(A) = Tr Q(~, x) Q'(A, x) + Tr A~ x . (2:9) 
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More generally, we can multiply the above equation by any function J(>..) of 
>.., which is regular in a neighbourhood of 1, so as to get 

. Tr P~>..) P'(>..)j(>..) = Tr Q(~, x) Q'(>.., x )J(>..) + Tr >.. ~ xj(>..). (2;10) 

As a next step, we follow Schwarz' s idea of using a contour integration 
to isolate the relevant part in the trace. We consider a small circle r around 
1 in the complex plane, or more generally a small dosed, curve winding once 
around 1, and containing no other solution of (2.1) for t: .:... 0. Then we 
compute the integral of equation (2.10) along it for small t: 

(21ri)-1 id>.. Tr P~>..) P'(>..)J(>..) = (2.11) 

(2~i)-1 i d>.. TrQ(~,x)Q'(>..,x)J(>..)+ (21ri)-
1 i d>.. Tr>.. ~xf(>..). 

The two integrals on the right hand-side can be evaiuated through th~ Cauchy 
theorem in the following way. We are considering the case of small t:, and then 
Q is a polynomial in X and A, ~hich vanishes for A near e

2::k, k = 1,~ ... , n-1, 
so that in this case its inverse Q-1 has no singularities near 1. Q' and f are 
regular functions riear 1 and therefore the Cauchy theorem guarantees that 
the first te~m on the right hand-side vanishes: 

{21rW
1 :£ d.l Tr Q{~, x) Q'( .1, x )f(.l) - 0. (2.12) 

On the other hand Tr >.~xf(>..) has poles for>.. near 1 with total residue Trf(x). 
As x is close to 1 for small t:, the Cauchy theorem yields 

(2rri)-1 1 d>.. Tr~ J(>..) = Trf(x). !r A-X , 
(2.13) 

. Finally, we obtain 

Trf(x) = (21ri)-
1 i d>.. Tr P~>..)P'(>..)J(>..). (2.14) 

Therefore, the problem of computing Trf(x) amounts to evaluating the in
tegral on the right hand-side of (2.14). 
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We can factorize 
(2.15) 

where 
n--:1 

T(A) = 1- t:(An -1)-1 L a1A1. (2.16) 
1=0 

Then I. 

1 • · · nAn-1 · 1 . · 
P(A) P'(A) = -I-"-- An + T(.X) T'(A) (2.17) 

and ( 2.14) becomes 

Tr J(x) = 2~i idA~::~ Tr /(A)+ 2~i i dATrTtA)T1(~)/(A). (2.18) 
' 

The first integral on the right halid-side equals Tr /(1). To evaluate the 
second term we integrate by parts 

2~i idA Tr T!A) T'(A)j(A) = ~ 2~i i ~A Trlog(T(A))f'(A). (2,19) 

This is justified, because Trlog,T(A) and j(A) are regular on T, so that 

1 1 . d '' . . ' 

21ri fr dA Tr dA (log(T(A))f(,A)) = 0. (2.20) 

In this way we obtain 

Tr f(x) = Tr /(1)- ~'j•dAT~l~g(T(A))/'(A). (2.21) 
21TZ h 

We expand the logarithm 

00 k 

-log(1- a)= L: for a small 
k=1 

(2.22) 

· and then make the following change of va,riable 

(2.23) 
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This is possible, because if we start with a small closed curve r winding once 
around 1, then after the variable transformation (2.23) we.still have a closed 
curve winding'once around 1. We restrict ourselves to the case j()..) = A8

• 

-~ J d).. Trlog (1- cl:~:o1 al)..l) )..s-1 = 
27rZ Jr )..n - 1 

. . 

(2.24) 

s ~ ~ J d)..Tr (E;:o1.al)..l) k )..s-1 = 
~ 21rik h )..n -'- 1 k=1 

~ ~ _1_ i d T (E~~o1 alyk) k *-1 
b 2 ·k· y r 1 y ·. · 

n k=1 7rz r Y-

Notice that yk is regular in a neighbourhood of 1. In this form we can already 
see that theresult is symmetrized in the coefficients {ai}, because they ente"r 
through expressions ofthe type 

1 
n-1 

-l:tnl 
""""" k! no nn-1 n l-1 ~ I ,S(ao ... an-1 )y -

no .... nn-1· 
no+ ... +nn-1 =k 

(2.25) 

We obtain 

Trx8 (2.26) 

oo k T S( no nn-1) k-1 ( n-1 . ) 

= Tr 1 + s L ;- 2::· . r ~0 • • • an~1 II · s + L ln1 - rn 
n no .... nn-1· k=1 no+···+nn-l=k r=1 1=1 

Here we have applied the Cauchy theorem in its more general form 

( ·)-1 1 d f(y) r dk-1 ( )I , 
27rz : Jc .· y (y- Yo)k = k - 1! dyk-1 f y y=yo ' 

(2~27) 

where C a closed curve winding once around y0 , and f(y) is a function which 
is regular inside C. 
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In the simplest case n = 2 it is :possible to solve the classical equation 
(i.e. the equation for commuting ai) and this provides a closed expression 
for (2.2) 

(2.28) 

where we again have chosen the solution which reduces to 1 for E = 0. In 
the appendix we show how expanding the square root in (2.28) near 1 we 
actually recover (2.2) in this case. 

3 Relation between two unilateral matrix 
equations 

The same procedure which we have used to prove (2.2), namely applying the 
generalized Bezout theorem and then the Cauchy theorem, can· be equally 
well followed for the equation 

<I>= Ao + A1<I> + ... An<I>n, 

which is studied in [3]. If we define 

(3.1) 

(3.2) 

the characteristic polynomial of (3.1) is >.-A(>.) and the result which cor
responds to (2.21) is 

Tr/(<I>) ~ -~ 1 d>. Tr10g(1- A\>.))f'(>.). 
21rz fc 1\ 

(3.3) 

Here C is a closed curve winding once around 0. We consider the particular 
case J(>.) = A8 and expand the logarithm 

Tr <I>s =Sf (k 2- ~)! L Tr S(~~·o .. ·1~n) 1 d). ).L~o(l-l)n,+s-1 . 
1rz no ... . nn. fc . · 

k=l · no+ ... nn=k 
(3.4) 

The Cauchy theorem has the effect of selecting the words of dimension 
I:~=0 (l- l)n1 = -s in the expansion of the logarithm, i.e. 

\. 00 1 
Tr <I> 8 

= sTr L k(Ao + ... An)kll:!=o(l-l)n1=-s (3.5) 
k=l 
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and we recover the result already stated in [3], where the concept of dimension 
of a word was introduced. It should be remarked that the solution to (3.1) 
for vanishing coefficients is <I> = 0. Consistent with that, as already noted in 
in [3], the result (3.5) only holds for positive integers s: it has no sense to 
invert the solution in this case, but see below. 

To study more closely the relation between equation (2.1) and (3.1) we 
make the Ansatz 

x = 1 + a<I>. (3.6) 

(Again, the same procedure could be followed for any of the roots of unity 
which are the solutions of (2.1) fort= 0.) 

We choose:the parameter a in such a way that 

an-1 = -n. (3.7) 

There is no reason for a to be real, since most of the solutions of (2.1) are 
not real, even for real coefficients. 

Then the relation between the n coefficients ai and the n + 1 coefficients 
Ai is easily found to be 

for l .....: 0, 1 

AI= (3.8) 

. for 2 :S l :S n . 

Some remarks can be made with respect to (3.8). First, observe that An= 1 
is fixed, but this had to be expected, because the equation (2.1) has one 
coefficient lessthan the equation (3.1). 

Moreover, {3.8) is a linear relation, and it is invertible, so that once the 
result that the trace of the powers of a solution depends ~nly on the sym
metrized products of the coefficients is proven for one of the two equations, it 
immediately fdllows also for the other. Negative powers of i can be expanded 
from (3.6) into a series o(positive powers of <I>. 

If t is small, only thefirst two coefficients A0 and A1 are automatically 
small, the other coefficients satisfy 

A1 €~0 a~-n ( ~ ) for 2 :S l :S n. (3.9) 

Therefore, the two expansions (2.2) and (3.5) do not necessarily hold for the 
same range of the coefficients. 

8 



Appendix 

In this appendix we check that (2.2) actually is theseriesexpartsion of (2.28) 
for s = 1, n = 2. We start by expanding the square root in (2.28) around 1 

Tr x = Tr [1 + t: a1 + ~( -1Y-1-
1
-(2r- 3)!!S (wo + (t: a1 ?)~] 

2 ~ 2rrJ 2 
r=1 

Tr a1 
=Tr1+t:-

2
- (A.l) 

00 
1 , r €2r-no · '( (a ) 2(r-no)) 

+ ~( -1y-1 2r (2r- 3)!! ~o no!(r- no)! Tr S a~o 21 . . . 

We introduce the new variables: 

n1 = 2(r- n0), k =no+ n! _:. 2r- no. (A.2) 

Then we can rewrite 
Tra1 Tr x = Tr 1 + t:-

2
- · ( A.3) 

oo t:k (n - 1)11 ·. 
+ "'- "' (-1)!f-+no-1 1 ""(2n +n' -3)"TrS(anoan1

) ~ 2k ~ 1 1 o 1 · • o 1 , no.n1. 
k=1 no+nt=k n1even 

where we have used the relation 
n1l , 

--=n:-:- = (n1- 1)!! for n1 even. (A.4) 
T!2T ' ' 

Due to the conditions n0 + n1 = k, n1 even, the following relation holds 
k-1. ' 

(-1)!f-+no-1(n1 -1)!!(2no + n1- 3)!! -.II (1 + n1- 2r) (A.5) 
r=1 

and so formula (A.3) can be brought into the more compact form 

00 €k 1 ' k-1 ' 
Trx=Tr1+ I:

2
k L - 1 -1 TrS(a~0 a~1)II(1+n1 -2r), (A.6) 

no.n1. . k=1 no+nt=k r=1 

which now coincides with (2.2) for s = 1, n = 2. It is no longer necessary to 
explicitly sum only over even values of n1, because 

k-1 
II (1 + n1- 2r) = 0 for n1 odd, 1 ~iii~ k, k > 1. '(A.7) 
r=1 
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