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We discuss dynamics 0¥ = 2 supersymmetriSU (n.) gauge theories with ; quark hypermultiplets. Upolv = 1
perturbation of introducing a finite mass for the adjointrahimultiplet, we show that the flavdr (n ;) symmetry is
dynamically broken td/(r) x U(ny — r), wherer < [ny/2] is an integer. This flavor symmetry breaking occurs
due to the condensates of magnetic degrees of freedom wiiglira flavor quantum numbers due to the quark zero
modes. We ﬁrﬂefly comment on tlhéSp(2n.) gauge theories. This talk is based on works with Giuseppkn@amd
Ken Konishitl:

1 Introduction lino and Ken Konisrﬂvﬂ. Surprisingly, this ques-

) ~_tion had not been addressed systematically so
There. have been at I.east two main dynamical iseyr - Seiberg and Witten themselves studied the
sues in gauge theories: confinement and flavqtyqe \with fIavoH but there were only two exam-
symmetry F’feak'ng- The.former is an obvious reyjes which exhibited dynamical flavor symmetry
qguirementin understanding the real-world Stro”%reaking GU(2) with n; = 2,3) and it was not
Interaction dynamics, namely the lack of Ob.Ser'possible to draw a general lesson. Later works on
vation of isolated quarks. The spectrum of lightgeneral gauge grmﬂ)ﬂ focused on the appear-

hadrons demands a linear potential with respecl,ce of the dual gauge group, and did not discuss
to the distance beween the quark and the antine issue of flavor symmetry breaking.

quark in meson boundstates. The latterisa more \ye start with N = 2 supersymmetric

subtle issue. Nambu pointed out that the 'ight'SU(nc) QCD with n; hypermultiplet quarks in

ness of the pions can be understood if they arge fundamental representation. We later add a
what we now call Nambu—Godstone bosons OfJerturbation which leaves onlyy = 1 super-

spontaneously broken symmetries. We need thseymmetryW — utr®?, a mass term for the ad-
SU(3)1 x SU(3)r flavor symmetry of the QCD jqint chiral superfield in theV = 2 vector mul-

to be dynamically broken down 88U (3)v by  tipjet. This theory had/(n;) flavor symmetry.
quark bilinear condensates We found that the flavor symmetry is in general

() = (dd) = (35) # 0. (1) dynamically broken as

An important question is what microscopic Ulng) = Ulr) x Ulny — 7). ©)
mechanism is behind the confinement and dyThere are isolated vacua for< r < [n;/2]. We
namical flavor symmetry breaking. The seminahave shown that this dynamical flavor symme-
work by Seiberg and Wittﬁ”showed that, using try breaking is caused by condensation of mag-
N = 2 supersymmetric gauge theories, confinenetic degrees of freedom. For the vacuum 0,
ment can be understood as a consequence of ttteere is no breaking of the flavdy(n,) sym-
magnetic monopole condensation as conjecturedetry. For the vacuum = 1, what condenses
a long time ago by ‘t Hooft and Mandelstam. is nothing but the magnetic monopoles, which
Our aim is to bring the understanding of the dy-belong to the fundamental representatin of the
namical flavor symmetry breaking to the same/(n) flavor group. For the vacua> 1, mag-
level, done in collaboration with Giuseppe Car-netic monopoles “break up” into “dual quarks”
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before reaching the singularities where they being the number of vacua, by further perturb-
come massless; it is the “dual quark” which con4ng the theory by finite masses of hypermulti-
denses and breaks the flavor symmetry. In anglet quarks. Quark masses make the vacua dis-
case, the flavor symmetry breaking and the corerete and countable, and we must obtain the same
finemenff are both caused by the condensation ohumber of vacua in different limits. In fact,
magnetic degerees of freedom. we considered four such limits in total. Two of

Thanks to holomorphy, there is no phasehem have large:. In the limit (1A), we regard
transition by varyingu from small (@ < A) to  both p andm; large and solve for vacua semi-
large (+ > A). Therefore one can study the classically {.e, including the effects of gaugino
theory in both limits and compare the resultscondensates in unbroken pure Yang-Mills fac-
this would not only provide us non-trivial cross tors). In the limit (1B), we integrate oub and
checks but also insight into the dynamics of theuse knownV = 1 dynamics together with the ef-
theory. We can also resort to completely differenfective superpotential Eq[|(3), further combined
techniques to analyze the theory in the differenwith the mass terms for the quarks. The other
limits. two have smallu, namely settingu = 0 first,

In the limit (1) (» > A), we can integrate and then reintroducg # 0 later on. In the limit
the adjoint chiral multiple® out from the theory, (2A), we approach singularities from largeon
and study the resultiny = 1 low-energytheory. the Coulomb branch. In the limit (2B), we ap-
The low-energy theory has a superpotential ternproach singularities from larg@, Q on the Higgs

1. 5 branch. All these approaches should give the

W =——(QTQ)(QT*Q), (3) identical number of vacua, and the consistency

K among them tell us, for example, which singular-
where@ (Q) are the quark chiral superfields in ity on the Coulomb branch corresponds to which
the fundamental (anti-fundamental) representasymmetry breaking pattern.
tion of the gauge group. Then we can use analy- | will not discuss the limit (1A) in this talk
sis by Seibefgjon N = 1 supersymmetric QCD and simply refer interested parties to our paper.
together with the above effective superpotential first discuss the limit (1B) and identify the flavor
(E). It is then easy to identify the vacua of thesymmetry breaking patterns. Then | will briefly
theory by solving for the extrema of the superpo+eview how the monopoles acquire flavor quan-
tential with respect to the gauge-invariant comtum numbers. | will move on to the analyses
posites such a3/ = Q'Q7 or Bivine =  with small u next, first on the Coulomb branch,
QiQ™ ... Qire, Bivine = Qi1Q%...Qin-, and next on the Higgs branch. The consistency
This makes it easy to identify the flavor symme-among different approaches gives us full under-
try breaking patterns. standing of the dynamics.

In the other limit (2) (¢ < A), we start with
N = 2limit (2 = 0) where the low-energy effec- 2 Large u Analysis
tive theory is known exactly. In this limit, we can
identify monopole degrees of freedom etc whichV = 2 supersymmetric QCD can be viewed as a
become massless at singularities. We then turpecial version ofV = 1 supersymmetric gauge
onu # 0. This way we obtain information on theories with the following superpotential
the microscopic dynamics of magnetic degrees of 13, _ V20,8Q; + mi0:Q; + utrd?,  (4)
freedom.

When considering the theory in various lim-
its, a very powerful check is provided by count-

where the last term breaks = 2to N = 1.
When p is large, we can integrate odt field,
and obtain

2\We use the terg‘n “confinement” somewhat loosely, as in “s- W= — (QTQQ)(Q .TQQ )-l—mQQ (5)
- ) ) 7 7 (AN AN

1
confinement” ird. 1




For Publisher’s use

Doing Fierz transformation on the first term, wemass of the magnetic monopole is given roughly
obtain as M ~ 4ma/g, while the mass of thdV-
1 , 1 ) boson ismw ~ ga. Therefore for the weakly-
W= % trM* — n_c(trM) +trmM, (6)  coupled case, the magnetic monopole is heavy
~ andW (electric monopole) is light, while for the
whereM;; = Q;Q; is the meson chiral super- strongly-coupled case, the magnetic monopole is
field, and the mass: = diag(mi, -+, mn,) @and  |ight and thel¥’-boson is heavy.
the meson field are in the matrix notation. The case with flavor is quite interesti%.
Due to lack of time, | concentrate on the caserhe cancellation of th&U(2) Witten anomaly
ny < ne. | refer to our papetst for larger num- - requires an even number of flavorsn; dou-
ber of flavors._In this case, the non-perturbativey|et quarks. They can couple to the adjoint Higgs
superpotentiﬂ is added to Eq[{6): as Lyukawa = ¢:®Pg;, which produces Majorana-
ABre=ns)/(ne—ny) type mass terms. The largest possible flavor sym-
AW = (ne — ny) =4 (7)  metry isSO(2n;). Solving Dirac equation for
( the quarks in the monopole background, there
where A"~ = pneA2nens s the scale of is one zero-energy mode for each flavor. The

detM)l/(nc—nf) ’

the low-energyV = 1 theory. important question is what statistics the fermion

By solving for the meson matrix)/ = zeromodes follow. Surprisingly, they are bosons.
diag(A1,---,An;), we find that \; satisfy The reasoning is simple. The way to judge if an
guadratic equations and hence there are two sexcitation is bosonic or fermionic is by studying
lutions for each of them. We obtain the 27 rotation of space and asking if the ex-

1 citation produces a minus sign (fermion) or not
Ai = §(Y £ VY2 +4pX) +O(m),  (8) (boson). In the presence of a ‘t Hooft—Polyakov

h monopole, a naiv@r spatial rotation is not a

i=1,---,n; and hence there ag#s possibili- symmetry because the isospin space is tied to the
ties. For the choice of plus signs andy; — r real space (“hedgehog”). Therefore one needs to
minus signs, we can further determige and Make & rotation both for the real space and the
Y, which can take(2n, — n;) possible phases. isospin (gauge) space to determine statistics. For
Avoiding double counting for o ng —r, e fermion zero modes in th6U (2) doublet repre-
find (2n, — n;)2"~1 vacua in total. The most S€Ntation, spatial rotation produces a minus sign,
important outcome from this analysis is that, mwhlle the isospin rotation produces another mi-
m — 0 limit, » eigenvalues with plus sign are "US SIgn. The fermion zero mode does not pro-
degenerate, and; — r eigenvalues with minus duce a minus sign under the tre rotation and

sign are also degenerate. Such a vacuum for tquence is aboson. Therefore monopole states with
meson field exhibits dynamical flavor symmetry®" without the fermion zero mode have the same

breaking/ (n) — U(r) x U(ny — ). statistics and the same energy.. In other words,
the monopole states form a multiplet.
For the SU(2) gauge theory, or in general
USp(2n.) gauge theories, we ha# (2n ;) fla-

As was shown by ‘t Hooft and Polyakov, there "% symmetry-. Fermion ;ero mofje Qpefat@*s
follow the anti-commutation relatiofig’, ¢’ } =

are solitonic solutions to the gauge-Higgs sys-_. ) o

tem which appear as magnetic monopoles unéj upon canonical quantization, and they are
P Y

der the low-energy gauge group. The Canoni[epresented as gamma matriges = 7'/v'2.

cal example is th&U (2) gauge theory with the The monopole Hllbgrt space 'S. the representa-
. . . tion space of the anti-commutation relation, and
adjoint Higgs ®, where the expectation value .

of & — aoy breaksSU(2) U(1). The is hence a spinor representation $0(2n ),
= 3 — .

where the signs: indicate two solutions for eac

3 Semi-classical Monopoles
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with 2" states. For theésU(n.) gauge theo- curv@

ries (o, > 2), however, the flavor symmetry is ne ny

only as large a#/(ny) C SO(2ny), and hence 42 = H(;c — pp)? AN H(x +my)
the monopole multiplet (spinor undsiO(2n¢)) k=1 i=1

is decomposed into irreducible multiplets under (14)

U(ny): totally anti-symmetric tensor represen-iS maximally degenerate.
tations. One can easily check that the the dimen- € non-baryonic branch is given by the fol-
sions matchy",. ,,C, = 2" using the binomial lowing field configurations:

theorem. K1 0 0

We have learned that the monopoles acquire
flavor quantum numbers of the ramktotally
anti-symmetric representations, while the theory Q= For 0)0 (15)
breaks thel/ (n ;) flavor symmetry dynamically 0 0 0
to U(r) x U(ny — r) in the previous section. - R
We are naturally led to a conjecture that the fla- 0 olo
vor symmetry breaking is caused by the conden-
. . . 0 K1 0
sation of the magnetic monopoles which causes
confinement at the same time. .
~ 0 K0
Q=15 5 5 (16)
4 Moduli Spaceof N = 2 Theories :
. . . 0 010
The classical moduli space of the theory is deter-
mined by solving the vacuum equations 0
Q:i® =0, (10) Pri1
- 1 ~ .
3 {QZ—Qi - —trQiQi} =0, (1) 0 '
i Me Pn,

. @, <I>~T} =0, (12 gecause both hypermultiples Q and the vec-
Q'T"Q - Q"T*Q* =0.  (13) tor multiplet® have expectation values, it is also
called the mixed branch. There are separate
There are three types of “branches” to thebranches for each choice of the integer The
vacuum solutior& (1) Coulomb branch, (2) integerr can range from 1 tanin{[%], n. — 2},
Non-baryonic (or mixed) branch, and (3) Bary-and hence this branch exists only foy > 2
onic branch. The baryonic branch appears onlgndn,. > 3. It is important to note that the

for ny > n. and we will not discuss it. limit x; — 0 recoverd/(r) gauge symmetry and
The solution to Eq.|ﬂ2) is given b = the branch touches the Coulomb branch (“root”
diag(¢1,-- -, ¢n,.) With the constrainttr® =  of the no-baronic branch). The theory at the

> x ®x = 0. This defines the complef:. rootis al(r) x U(1)"<~"~1 gauge theory which
1)-dimensional Coulomb branch. At a genericis asymptotically non-free, and hence the gauge
point on the Coulomb branch, the theory is dields survive as dynamical degrees of freedom
free U (1)<~ gauge theory while there appearin the low-energy limit. Along the root, there
massless particles on singular submanifolds. Thare special isolated points where we can find
singularities can be found where the auxiliaryn. — r — 1 massless monopole multiplets so that
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the curve becomes maximally degenerate. the roots, we have alsp. — r — 1 additional
magnetic monopole hypermultiplets, é; cou-
pled to thel/ (1) factors. The fundamental quarks
still couple to theSU (r) gauge factor as the fun-

One can locate points on the Coulomb branc§lamental representatiop and g; because the
where the curve is maximally degenerate, so thdton-renormalization theorem guarantees the flat
the points survive aftes = 0 perturbation. They hyper-Kahler metric for the quarks. The unique
do lie on the roots of-branches. After mass per- €ffective Lagrangian obtained this waylis

5 Coulomb Branch Description

turbation for the hypermultiplets, one can count ne—r—1
the number of vacua by identifing the points onV' = V2360 +V200digi+v2 Y tréxer,
the Coulomb brach which coalese to the same k=1

. . (18)
point when the masses are turned off. This is @vheregb, W belong to thel/(r) vector multiplet

technically mvfolr\]/ed aFfKSIS W:'(lzh re?]uwed Tsandwk to each of thé/ (1) vector multiplets. The
many pages of the paperNonetheless the result 'y e ation then is given by

is simple. Starting from the maximally degener-

Nne—r—1
ate point on the-branch root, the mass perturba- ‘ 9
. . e ) AW = pA Wi + ptre?, 19
tion splits the point intg,, C,. vacua. Comparing K jgo Zj s+ ptrg (19)

this counting to the large analysis, we can say

that the vacuum at the-branch root breaks the wherez; areO(1) constants, and we find vacua

flavor symmetry a§/(ny) — U(r) x U(ny—r). 1 0
Therefore, the following picture appears g=q= NF _ﬂ’ (20)
true. The semi-classical monopoles far away 1(') V2r
from the singularities on the Coulomb branch ac-
quire the flavor quantum number of the ranto- exp =€k =/ —uA, Yo =1 =0.(21)

tally anti-symmetric tensor prepresentation undeggte that the expectation valuesgfj break the
the U (ny) flavor group. They become masslessiayor symmetryU (ny) to U(r) x U(ny — r),

at the maximally degenerate point along the \yhere the unbrokei/(r) is the diagonal sub-
branch root and condense uppnr# 0 perturba- group of the flavor groug/(n;) and theU (r)
tion. This picture, however, leaves a paradoxicaéauge group. And there afeC, choices to pick
situation. The low-energy effective Lagrangian;. flavors out ofn; quark flavors for vacuum ex-
of the monopoles would have a large aCCidenpectation values.

tal symmetryU(,,,C;), and upon condensation  The semi-classical monopoles in the rank-
of one of the components, all the others remain. anti-symmetric tensor representation therefore
massless. Even thoughitis logically notimpossiyyst have “broken up” into “dual quarks” in the
ble, it casts some doubts about this naive picturq,\,ay that the monopol@Z;,..;, = gqi, - qi. iS
Indeed, something non-trivial happens betweegatched to the baryonic composite before one
the semi-classical regime and théranch root reaches the singularities on the Coulomb branch.

themselves are the magnetic monopoles. The
6 Low-energy Effective Lagrangians evidence for this identification is the following.

The singularities, aftern; # 0 perturbation,
Now we aproach the singularities from the HiggshaveU (1)"<~! gauge group and one can study
branch. As remarked earlier, by turning offthe monodromy around the singularities. It can
kr — 0, we can approach the roots where webe seen that there are one massless magnetic
recover infrared-fre€/(r) x U(1)"<~"~! gauge monopole for eachU/(1) factors. By sending
theory. At the maximally degenerate point alongquark mass to zerq,,C, singularities coalesce
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into a point where the massless monopoles be-2. G. Carlino, K. Konishi and H. Murayama,

long to theU (r) quark multiplet. Therefore, the

qguarks, which are continuously connected to the 3.

“electric quarks” at the large VEVs along the

Higgs branches, are indeed magnetic degrees of4.

freedom at the non-baryonic branch roots.

7 Conclusion

We have studied the issues of confinement and 6.

the dynamical flavor symmetry breaking in gauge
theories, by starting wittv. = 2 SU(n.) QCD
with ns flavors and perturbing it by the adjoint
mass term. We have shown that both confine-
ment and flavor symmetry breaking are caused by

a single mechanism: condensation of magnetic 8-

degrees of freedom which carry flavor quantum
numbers.
We have also studied Sp(2n.) theories.

There the magnetic monopoles are spinors un-9-

der the SO(2ny) flavor group, and cannot

“preak up” into quarks. Therefore quarks and10.

monopoles coexist at the singularity on the mod-

uli space and the theory becomes superconforll.

mal. No local effective Lagrangian can be writ-
ten and one cannot discuss it along the same
line as in theSU(ny) gauge theories.
ever, the flavor symmetry is broken @(ny),
and this is consistent with the condensation of the
spinor monopoles. This strongly suggests that
the overall picture of flavor symmetry breaking
via monopole condensation is correct in this case
as well.
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