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Abstract 

In this paper we investigate the tachyon instability of open bosonic string theory 
applying methods of boundary conformal field theory. We consider compactifications 
on ,maximal tori of various simple Lie algebras with a specific background coupled to 
the string boundaries. The resulting world-sheet CFT is a free theory perturbed by 
a boundary term that is marginal but not truly marginal. Assuming that the theory 
flows to a nontrivial infrared fixed point that is similar to the one in Kondo model, 
we calculate the new spectrum and some of the Green's functions. We find that in 
some of the sectors the tachyon mass gets lifted that can be interpreted as a result of 
switching on appropriate Wilson lines. Various compactifications and patterns of flows 
are investigated. 
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1 Introduction 

The perturbative vacuum in the pure bosonic string models is known to be unstable because 
of the existence of the tachyonic mode, leaving open the possibility of the existence of 
another stable vacuum. This question was first investigated for open strings in references 
[1], [2], [3], and later, using string field theory techniques, in [4], [5], and the indications 
are that there is such a vacuum. More recently, Sen [7] has revived interest in this subject 
by his investigations of the brane-antibrane complex in the superstring, which also has a 
tachyonic instability, due to the breaking of supersymmetry. Since then, there has been 
numerous papers on this subject ([11], [12], [13], [14] and references therein). All of these 
papers reach the conclusion that in the end, tachyon condensation takes place, and as a 
result, the supersymmetric vacuum is restored. Some exact results on tachyon condensation 
were recently obtained in [15], [16] by applying methods of background independent open 
string field theory. 

In this paper, we revisit the problem of tachyon condensation for the open bosonic string, 
using conformally invariant boundary interactions to probe the vacuum structure. A certain 
class of boundary interactions of this type were already studied [22], [23], [24], [25], and they 
were shown to lead to solvable conformal models. The results obtained for these models were 
used in a study of tachyon condensation in papers [8], [9], [10] where truly marginal boundary 
perturbations were of the main interest. In [26] condensation of open string tachyons was 
considered using world sheet boundary RG flow induced by a relevant boundary perturbation 
(see also [27]). In our approach, we consider a different boundary probe: We first compactify 
a number of extra dimensions at self-dual radii, thereby generating an internal affine algebra. 
This algebra is then coupled to external Chan-Paton factors in various represantations of 
subgroups of the affine algebra. In this fashion, the direct product of the external and 
internal groups is brqken down to the diagonal subgroup, and the resulting models are 
various generalizations the Kondo model. Although the boundary interaction is mediated by 
a conformally marginal operator in these models, the models themselves are not conformal for 
arbitrary coupling constant. Following the work of Affieck and collaborators [17], [18], [19], 
[20] on the Kondo model, we assume that under the renormalization group flow, the coupling 
constant flows into a unique value demanded by conformal invariance. Consequently, one 
obtains a conformal model with a specific boundary interaction, which can be solved exactly 
by various methods. The resulting physics is well known from the example of the Kondo 
model: The boundary spin (Chan-Paton factors) fuses with the internal spin and leads to a 
reordering of the levels. A possible relation of a different sort between Kondo-like problems 
and the tachyon condensation on branes was suggested in [6]. 

The method of solution we choose makes use of what we call the singlet operators, which 
are combinations of the Chan-Paton wavefunction with the standard twist operators (e.g. 
see [35]), which explicitly exhibit the fusion of the boundary "spin" into the bulk. These 
are most conveniently constructed in terms of the bosonic string operators. In many cases, 
simple fermionic representations also exist, and they are also of some interest. In this way, 
we are able to treat a variety of problems, involving both single and double boundaries, and 
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several different compactifications, resulting in symmetry groups ranging all the way from 
8U(2) to 80(32). We consider several examples, and for these, we compute the spectra, 
and exhibit both the states and the vertex operators for low lying levels. In the case of 
8U(2), we also work out some of the 4 point amplitudes. The result of these calculations 
can be summarized very simply: The momenta in the compactified dimensions, which were 
integerly spaced in natural units at the beginning, flow into half integer values. In the 
fermionic language when it is applicable, such as in the case of 80(4), this often means a 
change in the fermionic boundary conditions: The NS fermions flow into the R fermions. 
All of this is in agreement with the results of Affieck and collaborators [17] - [20]. The mass 
of the original tachyon is lifted up, in some cases all the way up to zero, and in other cases 
only part of the way. Unfortunately, consistency requires that integer valued momenta must 
always be present, and so, although the tachyon mass may be lifted in some channels, it will 
reappear unchanged in other channels. 

Next, we generalize from 8U(2) to higher groups such as 80(4), 80(8), 80(16) and 
80(32) by compactifying in increasing number of dimensions. In these cases, one has more 
options with the choice of the group representations for the Chan-Paton wave functions, 
and compared to 8U(2), more complicated pattern:s of shift in the spectrum emerge. In the 
fermionic picture, when it exists, the general rule is a flow from NS to Ramond fermions. 
We also consider the 8U(n) groups, and discuss the case 8U(3) in detail, pointing out the 
simple description of what is happening in the T -dual picture in terms of D-branes. We end 
the paper with some speculations about flowing into a superstring. The most favorable case 
is the full compactification of 16 coordinates, resulting in the 80(32) group. In the fermionic 
picture, after the flow from NS to Ramond fermions, one has the full world sheet fermionic 
structure needed to construct the superstring. This possibility of the bosonic string leading 
to a superstring has been suggested before [28], [29] (see [30] for some of the more recent 
suggestions) and remains to see whether it can be fully realized. 

The paper is organized as follows: In section 2, we consider the compactification of one 
extra dimension of the open bosonic string at self dual radius, with the resulting 8U(2) 
current algebra. In addition, we introduce external U(2) Chan-Paton factors, and couple the 
two SU(2)'s into the diagonal subgroup. We then study in detail the the conformal theory 
into which this model flows. In section 3, we construct the corresponding vertex operators 
and compute some four point amplitudes explicitly, and we also show how to extend the 
computation to higher amplitudes. These calculations show that the originally integerly 
moded momenta of the compactified dimension flow into half integer values. In section 
4, we discuss the compactification of two extra dimensions, with the resulting SU(2) x 
SU(2) or 80(4) current algebra. Coupling one of the SU(2)'s to Chan-Paton factors, we 
again find a shift of half a unit in the bosonic momenta. We also reconsider the same 
problem using fermionic fields, and show that the half integer shift in the bosonic momenta 
corresponds to a flow from the NS fermions to Ramond fermions in the fermionic picture. 
These results agree with the well-known results in the Kondo model. In section 5, we 
consider the compactification of extra dimensions all the way up to 16, and the resulting 
more complicated conformal models based on bigger groups are studied by the same methods 
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as before. Finally, in section 6, we list some· interesting problems that our work naturally 
suggests. 

2 Compactification of one dimension 

In string theory there are two different ways of introducing gauge symmetry. One way is via 
Chan-Paton factors putting charges, called quarks, on the ends of the open string. The other 
way is using current algebras when the charge is distributed along the string. At the source 
of the second possibility is the effect of gauge symmetry enhancement emerging at special 
compactification radii. The simplest example of this kind of compactification is the bosonic 
string compactified on a circle of the self-dual radius R = vf(;i. In this case the massless 
spectrum contains additional states forming SU(2)L x SU(2)R multiplets. More precisely in 
the closed string case we have gauge bosons living in the uncompactified 25 dimensions and 
a (3, 3) multiplet of massless scalars. The SU(2)L x SU(2)R symmetry is exhibited by the 
world-sheet currents 

±( ) ±i 2 X25(z) J z =: e ...rar :, (1) 

and their antiholomorphic counterparts. 
For open strings there are no SU(2) gauge bosons in the spectrum but there is an SU(2) 

triplet of massless scalars. This means that we have only global SU(2) symmetry in space
time. Before we write down the corresponding currents let us introduce some notations and 
fix the conventions. The open string mode expansion for the fields X~-'( a, r) satisfying the 
Neumann-Neumann boundary conditions reads 

where 0 ::; a ::; 1r is a spatial coordinate along the string and r is Minkowski world sheet 
time variable. The Virasoro generators are 

1 +oo 
Lm = 2 L : a~-na~-tn : 

n=-oo 

where a~ = p~-'. Here and everywhere below we set a' = 1/2. By mapping this theory on 
the upper half plane with a complex coordinate z = exp(r + ia) we can further consider an 
equivalent chiral theory obtained by the standard doubling trick. Namely, one defines Tzz 
in the lower half of z-plane as the value of Tzz at its image in the upper half plane under 
the reflection given by complex conjugation. This way we get 26 chiral holomorphic fields 
X~-'(z) (by abuse of notation we will denote these fields by the same symbol X~-') with a mode 
expansion 
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and the energy-momentum tensor of the standard form 

1 
T(z) = - 2 : 8XP.(z)8Xp.(z) : 

The Hilbert space of the open string compactified on the circle of self-dual radius in the 
X 25-direction furnishes a level one representation of an SU(2) current algebra generated by 

(2) 

We use the normal ordering convention in which the zero modes are also ordered: pP. stands 
to the right of x~~>. In general it is known that the only level one ground state representations 
(integrable in mathematics terminology) of SU(2) current algebra are those with spin j = 0 
or j = 1/2. They both can be realized in terms of vertex operators (2) acting in the Fock 
space of o:!5 modes. The highest weight state for the singlet representation is the string 
SL(2, R) vacuum IO), whereas the j = 1/2 representation is built on the doublet of states 

I 1 ) ± i x25l ) ± .../2 = e 72 0 . The representation spaces are spanned by the states 

J~~l · · · · · J~~k lw) 

where J~ stand for the Laurent modes of Ja(z) and lw) stand for the vacuum vectors IO) 
or I±~). We will denote the corresponding representation spaces :F0 and :F1; 2 respectively. 
Then the Hilbert space of the compactified string states that we have at hand coincides with 
:Fo. 

Let us put U(2) Chan-Paton factors on one end of our string (say at CJ = 0). Then we 
obtain a total global symmetry group isomorphic to SU(2) x U(2). The Chan-Paton degrees 
of freedom can be coupled to the local SU(2) currents at CJ = 0. Namely we can consider a 
background characterized by the following (total) stress energy tensor 

1 
T(z) = -2: 8Xp.(z)8XIL(z) : +g L L sa J~ 

a nEZ 

(3) 

where sa are matrices of the fundamental representation of SU(2) acting in a two-dimensional 
complex vector space E of the Chan-Paton degrees of freedom; g is a coupling constant. This 
background breaks the symmetry group down to SU(2)diag x U(l). Note that the conformal 
dimension of the perturbation term in (3) is 1 so formally we are dealing with a marginal 
perturbation. However it turns out not to be truly marginal. One can show that the coupling 
constant g starts to run at higher orders of perturbation theory. This is in contrast with the 
model considered in papers [23) , [22] in which one couples only the U(l) subgroup generated 
by the current J1(z) to an end of the string. As it was shown in [23] , [22] the perturbed 
theory is conformal for any value of the coupling constant. 

The Hamiltonian that governs the dynamics of X 25 can be rewritten solely in terms of 
the SU ( 2) currents as 

(4) 
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At the special point g = 2/3 we can rewrite the Hamiltonian as 

(5) 

where we dropped an infinite additive constant. We see that at this point the conformal 
symmetry is restored and is given by the current algebra with generators r:: = J~ + sa. 
Note that the operators T0 generate the global (on.the world sheet) part of the surviving 
symmetry group SU(2)diag· The hypothesis is that the renormalization group flow brings 
the theory to this conformal point. Assuming this we can further investigate what happens 
to the physical state space of the theory. 

Let us show how to construct a highest weight state of the current algebra generated by 
T,::'s within the original Hilbert space :F0 ® E that is the string oscillator space tensored with 
the representation space of Chan-Paton degrees of freedom. The last one is spanned by two 
fermions denoted X+ and X-· We will assume that 8 3 is diagonalized in this basis. The r.;: 
highest weight state can be written as 

(6) 

where the operator in the brackets acts on a highest weight state lw) of the current algebra 
generated by J~'s. When we omit the vector index of XP. we refer to the compactified 
direction X 25 . It is convenient to introduce a notation 

S ( 
_i_X(l) _ _i_X(l) ) = : e v'2 : ®X-- : e v'2 : ®X+ . 

We will refer to this expression as a singlet (or screening) operator. For the term "operator" 
to make sense one should consider S to be acting from the Fock space :F of the modes a~5 to 
:F ® E. It is not hard to check that the operator S satisfies the following important relation 

r::s = sJ~. (7) 

This relation makes it obvious that the construction (6) indeed gives aT;: current algebra 
highest weight state . The question now is what state lw) should we take if the original 
Hilbert space :F0 ® E was built on the string vacuum IO)? Note that the original Hilbert 
space contains states whose momenta are quantized as p = n.../2, n E Z that corresponds 
to integer values of the isospin projection. Whereas the operator in (6) contains factors 

of e±~x shifting the momenta by ±1/../2 and isospin projections by 1/2. Assuming that 
the renormalization group flow cannot change the moding of momenta the only possibility 
we arrive at is taking for lw) the j = 1/2 highest weight state. Then the momenta of the 
representation space built on IW) is quantized as before, although the r;: algebra isospin 
is quantized in half integers. Strictly speaking as the states (6) have an infinite norm we 
cannot argue that we stay exactly in the old Hilbert space. So the above assumption is more 
a conjecture than a rigorous result. It is of the same nature as the assumptions on the RG 
flow in the Kondo model, which seem to be thoroughly tested ((17] and references therein). 
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The new physical state space of the string is thus built on the doublet of states 

I±) = 8 1± ~). (8) 

With this notation in mind the above assumption is that the RG flow acts inside :F ® E and 
maps the two-dimensional subspace IO) ® E to the subspace spanned by 1±). 

Now we can calculate the new spectrum. The energies are lifted by the eigenvalue of Lo 
evaluated on the new vacuum states 1±). Since the Hamiltonian (5) is given by the standard 
Sugawara construction the energy shift is determined by the value of the Casimir operator 
for the SU(2) fundamental representation. The shift in the masses squared comes out to be 
equal to 1/2 versus the tachyon mass squared being -2. (Below we will see that for some of 
the more general compactifications the tachyon mass can get lifted all the way up to the zero 
value.) Thus the lowest energy state is tachyonic with the mass squared -3/2 and forms a 
doublet under SU(2)diag· Below we call the corresponding particle a quark. There are no 
massless states, the triplet of scalar states and the photon acquire mass squared of the value 
1/2. Moreover each of those states splits into an SU(2)diag doublet because of the vacuum 
splitting. 

So far we have discussed the situation when only one end of the string is coupled to the 
background. It is not hard to modify the whole picture above to the case when both ends are 
coupled. We assume that the string is oriented and one end carries Chan-Paton degrees in 
the fundamental representation and another one in the antifundamental. The Hamiltonian 
now takes the form 

H = ~ L : J~ Jc:_n : +g L sa J~ + g L ( -1 )n §a J~ 
n,a n,a n,a 

(9) 

where §a represent the SU(2) algebra action on a two-dimensional space E of the Chan
Paton degrees at the second end (a= 1r). This basis in E will be denoted by X±· By locality 
argument we assume that the theory flows to the conformal point g = g = 2/3 at which 
the energy-momentum tensor is given by the Sugawara construction corresponding to the 
currents r:: = J;: +sa+ ( -1)n§a. 

The construction ( 6) of highest weight states generalizes in a straightforward manner 

IW) = SSiw) (10) 

where 
S- ( _i_X(-1) - _ _LX(-1) - ) = : ev'2 :®X--: e ../2 :®X+ . 

We see that now the expression SS that acts on the "old" highest weight state lw) contains 
the allowed momenta p = nvf2 and thus one should choose lw) = IO). As far as the whole 
representation space of the current algebra T;: is concerned we believe that is the correct 
assumption. However, since the "screening" of quarks by the X 25-modes takes place locally 
at each end, the old vacuum subspace state IO) ® E ® E should flow to a subspace that 
is a tensor product in some sense of the vacuum subspaces at each end of the string. The 
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last one splits into a sum of a singlet and a triplet representation. More precisely the four
dimensional subspace IO) ® E ® E should flow to a subspace spanned by the highest weight 
state Is) = SSIO) and descendant states 

± - ±"¥2 3 I - 1 2s > T_1 ls) =SSe ' 2xl0), T_1 s) = SS V2a_1 IO . 

The above three states form a zero mass triplet representation of the global SU(2)diag sym
metry group. The last one is generated by operators T0. 

We conclude that in the case when both boundaries are coupled to the background the 
spectrum of the theory at the fixed point stays the same as that of the original free theory. 
This agrees with the results of [23], [22]. · 

Let us discuss now a possible space-time interpretation of the resulting model. First note 
that since we switched on a boundary perturbation the bulk central charge remains the same, 
c = 1, in the course of the RG flow (otherwise we would be in trouble with string theory 
applications). Moreover, the resulting CFT should be describable as a free theory supplied 
with new conformally invariant boundary conditions. As we have seen the sole effect of the 
flow in a sector with only one boundary coupled to the background is in the shift of zero 
mode of momentum. This can be accounted for by switching on a U(l) Wilson line with 
the value 0 = 1r. Then on the T-dual circle we have a system of two D24 branes, call them 
"I" and "II", that seat at opposite points on the circle. The I-II sector of the DD boundary 
conditions then corresponds to the "one boundary sector" of our theory with the vacuum 
space spanned by I±) states (8). The degeneracy of the new vacuum corresponds to the 
two homotopically nonequivalent paths of minimal lengths between the positions of the two 
D24-branes (two semi-circles). The unshifted 1-1 and 11-11 sectors can be match~d with the 
"two boundary" sector having the vacuum SSIO) and with the original Fock space of the 
compactified states built on IO). The last one can be thought of as a sector carrying trivial 
U(l) Chan-Paton factors on both ends. (As we will see in the next section, once we introduce 
a one boundary sector in consideration both the two boundary and the trivial Chan-Paton's 
sectors need to be added not to violate the unitarity.) 

3 Vertex operators and 4-point functions 

In this section we will discuss the vertex operators for the two cases considered above, i.e. 
when only one boundary carries Chan-Paton factors and when both ends carry them. We 
begin with a construction of the SU(2) current algebra vertex operators creating the states 
I±) in the "one boundary" sector. This vertex operators can be written as 

V±(z) = (1- z)±1
/

2 
: exp ( ~(±X(z) + X(1))) :X-

(1- z)'F1
/
2

: exp ( ~(±X(z)- X(1))) :X+. 
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This construction becomes almost obvious when rewritten with a help of the singlet operator 
s 

· ± i X(z) 
V±(z) = S : e ./2 : • 

The vertex operator (11) can be thought of as an operator creating a quark in a doublet 
representation out of an isospin zero state. The opposite process is governed by the vertex 
operator 

Vl(z) - (z -1)±1
/
2

: exp (-~(±X(z) + X(1))) : x~

(z -1)1=1
/

2
: exp (- ~(±X(z)- X(1))) :X~. 

It can be also written as 

where 
st = (: e- ~X{l): ®X~- :.e~X{l): ®X~). 

(12) 

We will refer to the vertex operator {11) as a quark vertex operator and to (12) as an 
~~~~. . 

We can calculate a four-quark tree level amplitude with these vertices. Up to cyclic 
permutations there is a single tree level process. It can be represented by the following 
diagram 

Figure 1: Four quark scattering 

where the solid line denotes the quark boundary and the dashed line is for a nonquark 
boundary (singlet state). The correlation function corresponding to this process is 

(13) 

where the indices ei are each + or -. The minus signs in front of ~i in (13) are inserted so 
that the isospins of the incoming quarks (that are opposite of those for the antiquarks) are 
precisely the values of ei· The internal momenta carried by the quarks are Pi = ei(1/-J2). 
The vertex operators can be expressed as '\.'e;(z) = Svp;(z), ~~(z) = Vp;(z)St where vPi(z) =: 
eipjX(z) :. Using these expressions and (8) we can rewrite (13) as 

(14) 
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This expression is divergent and the source of divergence is the infinite norm of states 1±) 
coming from contractions of X(1) with itself. To make sense of expression (14) we will employ 
a mode cutting regularization in which the operators of the form : eikX(z) : are regularized 
as 

"kX( ) k "'N "'-n n k "'N '"-n -n "k k : e' z :N= e L...r1 -n-z e- L...r1 -n-z e' Xz p. 

The product of regularized operators st and SN takes the form 

where 

s1sN = CN(X~X- + xtx+)- C.N1(: e-v'2X(l) :N X~X+- : ev'2X(l) :N xtx-) 

1 "'N 1 CN = e2 L...r1 n 

(15) 

is a constant that tends to infinity as N --too. After contracting the Chan-Paton factors in 
the above expression we end up with the formula 

(16) 

That is the regularized product of these two operators is proportional to the identity operator. 
Using this result in the regularized expression (14), rescaling the whole correlator by 1/ ( 4CK,) 
(that effectively normalizes the states I±)) we obtain after sending N to infinity the following 
simple result 

that is just a correlation function of "old" vertex operators calculated for the states of nonzero 
momenta ± ~- This result illustrates best that the sole effect of the RG flow is the shift in 
the vacuum momenta, i.e. the shift of the zero modes of 8X25 (z). 

The tree level four-quark amplitude A(~i, ki} depends on the isospin projections ~i of the 
incoming quarks and on the energy-momentum vectors kf, J-L = 0, ... , 24 in the transverse 
1 + 24 directions. Depending on the values of ~i we get three possible types of amplitudes 
A(~i, ki) = <525 (Ei ki)Ai(s, t) : 

Ao(s, t) = fo1 
dx(1 - x)-s/2-c

2x-tf2- 2 , 6 = -6 = 6 = -~4 

A1(s, t) = fo1 
dx(1- x)-s/2-lx-t/2- 2 , 6 = 6 = -6 = -~4 

A2(s, t) = fo1 
dx(1 - x)-sl2- 2x-tf2- 1 , 6 = -6 = -6 = ~4 (17) 

where s = -(k3 + k4)2 , t = -(k1 + k3) 2 . Evidently these amplitudes satisfy the duality 
relations A0 (s, t) = A0 (t, s), A1(s, t) = A2 (t, s). The total tree level amplitude is obtained 
by summing up over all noncyclic permutations over the external states (ki, ~i)· 

It is clear from the picture that different factorizations of the process represented on 
Figure 1 will contain as intermediate states strings with quarks running on two boundaries 
as well as strings with no quarks on either end. Thus, there should be vertex operators 
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emitting "two boundary strings" (strings carrying Chan-Paton factors on both ends) from 
the "one boundary" strings. We should think of three different sectors of the same theory 
rather than of the three isolated cases. By three sectors we mean "one boundary strings", 
"two boundary strings", and strings with no Chan-Paton degrees of freedom (except for 
trivial U(l) factors) on either end. The lowest state of the first sector is a quark whose mass 
is tachyonic, and the rest of the states are all massive SU(2)diag doublets. The other two 
sectors have identical spectra, containing the usual tachyon, triplet of massless scalars (a 
meson) and a photon. 

We start by constructing meson (quark-quark) vertex operators. These operators should 
create strings with quarks running on both boundaries. The corresponding diagram of a 
four-meson scattering looks like that depicted on Figure 1 with all solid line boundaries. It 

. follows from the results of the previous section that a general physical state in the case when 
both ends of the string carry Chan-Paton degrees of freedom has a form SS\s) where \s) 
is a physical state in the "old" Fock space. Thus, we see that the vertex operators we are 
looking for should satisfy 

(18) 

They create a massless particle in the adjoint representation of SU(2) to which we will refer 
as a meson. If we are looking for a vertex operator that emits a meson from the boundary 
a = 0 we can omit the operator § from the above formulas. Looking at formula (7) we 
see that the modes T;: satisfy the necessary relation. However the local operator with these 
modes is singular, it contains a delta function. To obtain a regularized version of va(z) we 
may start with the following formal expression 

(19) 

One way of obtaining this expression is by fusing the vertices V±(z), Vj(z) we obtained 
before. To be careful one has to fuse the regularized vertices and keep all terms in the 
regularized expression after the fusion. Another, much more practical way to make sense of 
the expression (19) is by defining its action on a general physical state 8\s). In the expression 
SJa(z)(StS)\s) we may start by regularizing (StS) as in (15) and then use (16). We see 
that after a proper rescaling the regulated vertex satisfies 18. 

In order to calculate ann-point meson scattering amplitude we regularize the correlator 
by cutting the modes as 

(0\St (SJa 1 (zl)St) · ... · (SJan (zn)St)S\O)reg = 

(O\(S~SN)Ja1 (zl)N(S1SN) · ... · Jan(zn)N(S1SN)\0). 

Now formula (16) can be applied to each factor (SiSN) that results in an overall diver
gent numerical factor. After rescaling and taking the limit N --+ oo we obtain that the 
contribution of the compactified modes boils down to a correlator of currents 
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that can be easily evaluated by algebraic methods. Note that in the above discussion for 
brevity we omitted the operators S present in the "two boundary" string states. Contractions 
between S and S lead to trivial constant factors. The derivation above can be modified to 
include operators S in a straightforward way. The result is the same. All other amplitudes 
can be calculated in the same fashion. For example two quarks - two mesons amplitude 
contains a correlator 

(pooiSt(sJa1 (z1)St)(SJa2 (z2)st)Sipo) 

where Po and p00 are ±1/ ...f2 according to quark isospin projections. After regularization 
and rescaling we have 

(poolla1 (zi)Ja2 (z2) IPo) · 

We see that whenever we have states in the "one boundary" sector we should include a zero 
momentum shift for the compactified mode. With the above examples in mind constructions 
of all other possible amplitudes should be quite clear. 

4 Compactification of two dimensions. Relation with 
Kondo model 

Next we would like to discuss the compactification of two dimensions on circles each having 
the self-dual radius. Obviously in this case we obtain an SU(2) x SU(2) current algebra. 
Take the representation sa to be a (1/2, 1/2)-representation. It is clear then how to extend 
our considerations for a single SU(2) to the case at hand. For example the analog of the 
construction (6) now reads 

...Lx2s(I) _...Lx2s(l) ...Lx24(l) _...Lx24(I) , 
IW) = (: ev'2 : ®x-- : e v'2 : ®X+)(: e¥'2 : ®x~- : e v'2 : ®x+)lw) 

. (20) 
where the Chan-Paton space is assumed to be spanned by vectors X±® X~· (Do not confuse 
the x' states with the states x used above for the two boundaries case.) By the same 
reasoning as before one should take lw) = I±~,±~) (now the state is marked by the 
values of momenta p25 and p24 respectively). The ground energy shift amounts to shifting 
the tachyon mass squared by 1 unit up. 

It is instructive to recast the construction of a new highest weight state in terms of free 
fermions. The 8U(2) x SU(2) current algebra is isomorphic to the 80(4) current algebra 
and the whole picture above can be represented in terms of 4 chiral Neveu-Schwarz (NS) 
fermions 't/}(z). The Chan-Paton factors Xi, i = 1, ... , 4 transform in a vector representation. 
The 80(4) currents have the form 

(21) 

The mode expansion for 'lj;i ( z) reads 

'1/Ji(z) = 2: b~zr 
rEZ+l/2 
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and the Fock vacuum is defined as b~IO) = 0, r > 0. The whole Fock space splits into a 
direct sum of two irreducible representations of the current algebra (21). The subspace of 
even fermion number corresponds to the singlet representation and the odd fermion number 
subspace is built on a vacuum space spanned by the vectors b~112 IO) transforming in a vector 
representation of 80(4). Notice that in (21) we have chosen half integer moded NS fermions 
rather than integer moded Ramond fermions. The reason for this is that the even fermion 
sector of NS fermions corresponds to integer moding of the bosonic X 24 and· X 25 momenta, 
which is required by the self dual radius compactification. In contrast, R fermions correspond 
to half integer moding of the bosonic momenta. The highest weight state construction (20) 
in the fermionic language reads as 

4 

IW) = (E 'I/Ji(1)xi)lw) 
i=l 

and staying in the same representation space requires the choice lw) = b~ 112 IO). 
Let us consider now a more interesting situation that is directly related to the Kondo 

model. Consider again the compactification on· two circles of self-dual radii. But instead 
of coupling the whole 80(4) ~ 8U(2)L x 8U(2)R to the Chan-Paton factors let us couple 
now only one of the 8U(2) subalgebras. (The subscripts L and R is just a convention here 
distinguishing two copies of 8U(2)'s.) The answer for the resulting flow is of course the 
same as the one we considered before for the one direction compactified. However the whole 
picture can be fermionized now. Let us work now with two chiral Weyl fermions '1/JO!(z), 
a = 1, 2. The currents of 8U(2)L read 

where aa are Pauli matrices. Currents of 8U(2)R chosen in a Cartan basis are 

1 . 
K 3 (z) = 2 :E : '1/Jl(z)'I/JO!(z) :, 

0!=1,2 

K+(z) =: '1/Jl (z)'I/J~(z) :, K- (z) =: 'lj;2 (z)'lj;1 (z) : 

The operator K8, where zero refers to the Laurent mode, is just one half of the charge 
operator. We thus start with a perturbed stress energy tensor 

This formula gives precisely the Kondo model stress-energy in the holomorphic representa
tion. In terms of the currents we have 
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i.e. we have the Sugawara construction for the group U(2) and the old perturbation term 
that involves only the SU(2) subgroup. 

We can work out now the new highest weight state in terms of fermion modes and the 
xa states. The mode expansions for '1/J and '1/Jt are of the form 

and commutation relations are 

'1/Ja = 2::: b~zr, 
rEZ+l/2 

'1/Jta = 2::: btaz-r 
rEZ+l/2 

... . {ba bt.B} = JO' JO'a,B 
r' s . Ur,sU • 

The standard vacuum state IO) in the Fock space ;:term is defined as 

b~ IO) = 0 , r > 0 

We can construct now two SU(2)L singlet operators 

S = 'I/J1(1) ®X++ 'I/J2(1) ®X-, 

S = 'I/Jt1(1) ®X-- 'I/Jt2(1) ®X+. 

(22) 

(23) 

If the Hilbert state we begin with has states of even fermion number only (that would be the 
case if we are interested in the string theory application) then we have four possible doublets 
of SU(2)L 

However, the second SU(2) perm.utes these multiplets. The true vacuum subspace should 
be invariant under SU(2)R· It is not hard to find that the correct vacuum space is a single 
SU(2)L doublet spanned by 

(24) 

Hence, we see that the vacuum subspace transforms now in a chiral spinor representation 
of the whole SO( 4) group. Also the moding of the new isospin operator T~ = J~ + 8 3 got 
shifted by 1/2. This means that the new representation space is described in terms of free 
Ramond fermions. This fits perfectly with the general expectation that the boundary RG 
flow results only in a change of boundary conditions for the fields. 

Conversely, suppose one starts with a Hilbert space with odd fermion number. {Although 
we do not see a string theory setup for this situation, it naturally arises in the Kondo 
model). We are forced then to start with a four-dimensional vacuum space spanned by 
b~ 1 ;2 IO), bi/2 10). The new vacuum subspace then is invariant under SU(2)L and is a doublet 
with respect to SU(2)R· It is spanned by SIO) and BIO). (As we started from a four
dimensional vacuum space times a two-dimensional Chan-Paton space and ended up with a 
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two-dimensional vacuum, presumably the rest of the states flow to descendants.) Again we 
end up with Ramond fermions. Two conformal towers, that of SU(2)L and SU(2)R being 
originally glued as 

(integer isospin, even fermion number) EB (half-integer isospin, even fermion number) 

get reshuffled after the flow resulting in 

(half integer isospin, even fermion number) EB (integer isospin, odd fermion number). 

These results regarding the Kondo model are originally due to Affleck [17], we just discuss 
them here from a somewhat different point of view. 

5 More general compactifications 

In this section we consider n-dimensional compactification on maximal tori of S0(2n) groups 
and discuss other poSsible setups. We refer the reader to paper [31] for a· review of the 
standard material about vertex operator constructions that we use in this section. 

We start with a discussion of S0(2n) groups and Chan-Paton degrees in the vector 
representation. Let ei, i = 1, ... , n be a standard ortonormal basis in Rn and let ARE Rn 
be S0(2n) root lattice generated by the roots ±ei ± ej, i -=f:. j. (In this section we will 
stick to the normalization in which the simple roots have length -/2. ) Consider a level one 
representation of the S0(2n) current algebra by means of the vertex operator construction: 

Ea±(z) =: e±arXi(z} : ca(p), Hi(z) = WXi(z) (25) 

where j runs from 1 to n, a E AR are positive roots, ca (p) are Klein cocycle factors. The 
Laurent modes of Ei± ( z) give us the ladder operators E~± corresponding to roots and the 
modes H~ are Cartan operators of our current algebra. The possible momenta in the Fock 
space of modes a~, j = 1, ... , n are constrained to lie in the weight lattice Aw = A'R. For 
the groups S0(2n) the weight lattice contains four cosets Aw / AR: 

Aw(S0(2n)) = AR U (.Av + AR) U (As+ AR) U (.As+ AR) 

where Av, As and ,\8 are the three minimal weights of S0(2n) corresponding to the vector, 
spi:~1.0r and conjugate spinor representations ( v, s, s) respectively. These cosets give rise to 
four possible highest weight representations of S0(2n) current algebra built on the highest 
weight states IO) - the Fock vacuum, I .A) = ei>.ixi IO) where ,\ = Av, As, ,\8• Proceeding as 
before we couple the currents (25) at one end of the string to the Chan-Paton degrees of 
freedom transforming in a vector representation of S0(2n). The perturbed stress energy 
tensor expressed in terms of the currents reads 
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where Si, s±o are matrices of the S0(2n) defining (vector) representation written in a 
Cartan basis. At the point g = 1/(2n -1) one can complete the square and get a Sugawara 
construction with the new S0(2n) currrent algebra generators having modes T~ = H~ + Si, 
T:!=0 = E~o + s±o. The singlet operator has now the form 

n 
S =I:: eiXi(l} :®X; 

j=l 

(27) 

where X; are Chan-Paton factors transforming in the vector representation. Also note that 
the operators eiXi (l} have the momenta corresponding to fundamental weights of the vector 
representation. In order to stay in the same Hilbert space after the RG flow we have to 
ensure that the momenta entering the new highest weight state are all in the root lattice 
AR· This condition is satisfied if one takes 

(28) 

i.e. chooses lw) corresponding to the vector representation. It is not hard to calculate the 
energy shift (see the general formula (31) below). For all n's we have 

1 
(flE)vector = 2 (29) 

which means that the. tachyon mass squared gets shifted half way up, i.e. from -2 to -1. 
In the case when both boundaries carry Chan-Paton indices one would expect a complete 
lift of the tachyon mass. However, as it was already discussed in the SU(2) case, the lifted 
states are descendants and the true vacuum (that will inevitably show up in other scattering 
channels) is tachyonic. In fact for t~e "two boundary" states the spectrum is the same as 
that of the original theory. 

The construction of the singlet operator (27) and the new highest weight state (28) 
generalizes straightforwardly to the case of arbitrary simply-laced simple Lie algebra. If we 
set aside for a moment the consistency conditions coming from string theory we have the 
following general pattern. Let g be a simply laced simple Lie algebra. Choose a minimal 
fundamental weight such that the corresponding highest weight representation of g gives rise 
to an integrable representation of the current algebra. Let .Xi be the fundamental weights of 
this representation. Assume also that the Chan-Paton factors transform in the conjugated 
representation. We then write a singlet operator as 

S = I: : ei.X;-X(l} : Xi . 
j 

(30) 

One should choose a suitable minimal representation with weights >.j of g for lw) so that the 
sums A;+).~ all belong to the root lattice. As it is well known (see for example [31]) there 
is a correspondence between Z( G) - the center of the universal covering group whose Lie 
algebra is the compact real form of g, the factor group Aw / AR and the cominimal weights 
of g plus the zero weight (a fundamental weight is called minimal if its dual Coxeter label is 
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one, and is called cominimal if its Coxeter label is one; see [33]). This correspondence holds 
even for non simply-laced groups. Thus, we see that the cosets of A.~ and Ai should represent 
inverse elements in the group Z(G). The construction of the vacuum subspace in the two 
boundary sector should satisfy the same requirement of having momenta in the root lattice. 
Again the choice of the new minimal weight can be deduced from the structure of the group 
Z(G). 

The ground energy shift can be expressed via values of Quadratic Casimir operators as 

Cv 
D.E = 2{k + Ca) (31) 

where Ca and Cv are the values of the quadratic Casimir for the adjoint representation and 
the representation in which the Chan-Paton degrees of freedom transform. 

For the remaining cases of simply laced groups and minimal representations there is of 
course a usual question of weather the Chan-Paton degrees are introduced correctly, i.e. in 
a way consistent with unitarity and factorization of amplitudes. It is well known ([34]) that 
Chan-Paton degrees of freedom can be introduced consistently only for the groups U(n), 
SO(n) and USp(2n) and Chan-Paton indices in defining representation. Note however that 
the usual restrictions come from considerations of the two boundary sector and in the case at 
hand the Chan-Paton degrees get completely absorbed into the new vacuum, i.e. they enter 
only in S and S combinations. So we do not think that the usual factorization arguments 
are applicable in our situation. Thus, in principle we can consider more general setups and 
representations. 

As an example consider now S0(2n) groups with Chan-Paton indices in the spinor rep
resentations. The center Z(S0(2n)) is isomorphic to the group Z4 when n·is odd and to 
Z2 x Z2 when n is even. Let us first consider the case of even n's. If .A~, a = 1, ... , 2n-l are 
fundamental weights of the conjugated spinor representation s then we have 

IWhbound. = Ia) = (2::: : ·eiAi·X(l) : x,a)eiA~·XIO). 
,B 

The resulting energy shift can be calculated by formula (31) and is equal to 

n 
( b.E) spinor = B · (32) 

Thus, for S0(4) we get the familiar 1/4 shift, for S0(16) the tachyon mass gets lifted all the 
way up to zero and for 80(32) it becomes massive. All states split into a spinor multiplets. 
So much for the one boundary sector. When we couple both boundaries we have Chan
Paton factors Xa transforming in the s representation running on one end and Xo in the s 
representation on another end. To satisfy our usual requirement of having all momenta in 
the root lattice we have to choose the vector representation for the new highest weight state: 

IWhbound. = li) =<I:: eiA~·X(l) : x,a)(I:: eiA~·X(-l) : Xu)eiAj-xiO) 
,B (T 
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and the energy shift in the two boundary sector is 1/2. To summarize we obtain Hilbert 
spaces built using all of the four minimal representations: s and 8 in the one boundary 
sector, v in the two boundary sector and the singlet representation in the sector with trivial 
Chan-Paton indices on both ends. 

The considerations for the groups S0(2n) with odd n are parallel to the ones made above. 
One should only take into account that [.As] + [.A8] = [0] in the group Aw / AR "' Z4 where 
square brackets stand for the corresponding cosets. Thus, we have the same. shifts in the one 
boundary sectors (the only difference is that Chan-Paton factors coupled to the boundary 
have the same chirality as the resulting highest weight representation versus the opposite 
situation for even n's). In the two boundary sector carrying Chan-Paton factors of opposite 
chirality on the two ends we have no lift in the ground state energy. Note that in principle 
one can also consider two boundary sectors having Chan-Paton factors of the same chirality 
on both ends. The corresponding energy shifts are always given by either formula {29) or 
(32). 

Let us make here a remark about fermionization. For the case of the vector representation 
of SO(n) there is an equivalent picture of the flow in the Fock space of n real NS fermions. 
For the spinor representation although we do not know if there is a simple picture of the 
flow that stays inside the Fock space of the vectorial NS fermions (except for the S0(4) 
case considered above) we can always interpret the flow as a change from NS to R boundary 
conditions. For the group S0(8) due to the famous triality property one can alternatively 
recast everything in terms of spinorial fermions with NS boundary conditions [32]. In that 
case, if we start with the even fermion number subspace in the corresponding Fock space, 
then we flow in that subspace times the Chan-Paton factors and the final result is equivalent 
to the odd fermion number subspace in the Fock space. 

Let us now turn to the case of SU(n) groups. The center in this case is isomorphic to Zn. 
This means that the group of cosets Aw / AR is cyclic, generated by the coset corresponding 
to the highest weight of the fundamental representation. All of the elements of Zn give rise 
to some highest weight representation of SU ( n) current algebra. The construction of the 
new highest weight states follows the general pattern discussed above and we will work out 
explicitly only the SU(3) case. Let us label the Chan-Paton factors by the minimal repre
sentations: x!, x!. Then one has two types of singlet operators, S 3 and S3 resulting after 
fusing these factors with the twist operators : eiAaX(l) : of the conjugated representations. It 
is convenient to introduce a trivial singlet operator 8° = 1 that corresponds to the boundary 
carrying trivial Chan-Paton factors. Then, we have nine sectors in the theory (nine bound
ary conditions) the vacuum subspaces of which are constructed by using the combinations 
sA§B where A, B = 0, 3, 3. More explicitly we have 

(33) 

where .Af are weights of the minimal representation C such that the corresponding cosets in 
Aw/AR satisfy [.AA] + [.AB] + [.Ac] = 0. As usual the tilted quantities refer to the a= 1r end 
of the string and the untilted ones to a = 0. The sectors corresponding to A = 0, B = 0, 
A = 3, B = 3, and A = 3, B ,= 3 have the old, unshifted energy spectrum, whereas other 
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sectors give rise to triplets of vacuum states and momenta shifted by 113. These shifts can 
be accounted for by switching on the appropriate Wilson lines on the torus R 2 I Aw. The 
picture becomes more transparent on the T-dual torus R 2 I AR· Let us put three distinct 
D25 branes on the points corresponding to the positions of the minimal (and zero) weights: 

A0 = (0,0), 

written in the root basis. Oriented strings with DD boundary conditions stretching between 
these branes fall into nine distinct sectors that can be matched with the spectra of above 
representations lk) AB if we adopt a rule that strings stretching from the brane marked by 
the highest weight A A to the one marked by A B correspond to the combination of a pair of 
singlet operators with A' = A, B' = B. This rule is quite natural if one looks at the momenta 
carried by the states lk) AB· The triple degeneracy of the shifted vacuum states corresponds 
to three homotopically inequivalent paths of minimal length stretching between each pair of 
distinct branes. This results from the peculiar positions of the branes· that actually seat at 
the fixed points of Z3 action, defined on the roots r 1, r 2 as r 1 --+ r 2 , r 2 --+ -r1 - r 2 . 

6 Future directions 

We have considered above various setups in which the open string vacuum state is probed by 
various marginal (but not truly marginal) boundary perturbations of the world sheet CFT. 
In many interesting cases we made use of some unconventional Chan-Paton factors, such as 
the ones that are located only on one boundary of the string or the ones that transform in 
a representation of the symmetry group that differs from the fundamental representation. 
Although we did not run into any inconsistencies the true nature of these degrees of freedom 
remains to be understood. 

For the cases of SU(2) and SU(3) groups we proposed a space-time picture for the theory 
at the end point of the flow. In the case of SU(2) the result of the flow can be characterized 
by switching on a Z2 Wilson line, i.e. the one of the value 1r /2. This kind of Wilson line 
was used by Sen in [10] in the discussion of tachyon condensation in the bosonic open string 
theory. It would be interesting to see if there is some connection between the Sen's setup and 
our model, in which we naturally flow to a Z2 invariant configuration. The existence of such 
a connection is not obvious, for one reason, because of the nonstandard Chan-Paton indices 
we are using. Also it should be noted that Sen compactifies on a circle of half the self-dual 
radius versus us compactifying on the self-dual radius. Nevertheless a possible connection is 
not excluded. 

In the case of SU(3) group we also arrive at a very symmetric configuration of the branes 
that are located at the fixed points of a T 2 IZ3 orbifold. The connections of the boundary 
flows we consider with orbifolds need to be better understood. 

Although under the boundary RG flow the bulk central charge stays the same, there is 
a quantity called the boundary entropy (see [19] or [21] for a precise definition) that plays a 
similar role to that of a central charge in the c-theorem. It was proved by Affleck and Ludwig 
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[19], [20] that at least at the lowest order in conformal perturbation theory the boundary 
entropy g decreases along the RG flows. It is a general believe that this kind of behavior 
is always the case. The values of g for c = 1 conformal field theories with Dirichlet and 
Neumann boundary conditions were calculated in [21]. It would be interesting to calculate 
explicitly and compare the boundary entropies for the initial and the end points of the RG 
flows that we considered. 

Finally let us mention possible connections with superstring theories. One can speculate 
that the bosonic string theory is dynamically driven by tachyon condensation process to some 
supersymmetric theory or a fermionic theory related to a supersymmetric one. In the case of 
80(32) theory the flow from NS toR fermions shows a possible way of how various sectors 
in the spectrum of type I or heterotic superstring theories can be dynamically generated 
in the bosonic string. One can try more sophisticated schemes by using 80(16) or 80(8) 
subgroups and coupling them to various Chan-Paton factors. We leave these questions for a 
future investigation. 
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