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Particle Methods for Dispersive Equations 

Alina Chertock* Doron Levyt 

Abstract 

We introduce a new dispersion-velocity particle method for approximating so
lutions of linear and nonlinear dispersive equations. This is the first time in which 
particle methods are being used for solving such equations. . 

Our method is based on an extension of the diffusion-velocity method of De
gond and Mustieles [SIAM J. Sci. Stat. Camp., 11 no. 2, (1990), pp.293-310] 
to the dispersive framework. The main analytical result we provide is the short 
time existence and uniqueness of a solution to the resulting dispersion-velocity 
transport equation. 

We numerically test our new method for a variety of linear and nonlinear 
problems. In particular we are interested in nonlinear equations which generate 
structures that have non-smooth fronts. It is remarkable to see that our particle 
method is capable of capturing the nonlinear regime of a compacton-cotnpacton 
type interaction. 

Key words. Particle methods, dispersive equations, diffusion-velocity, dispersion
velocity, compacton equations. 

AMS(MOS) subject classification. Primary 65M99; secondary 35Q53, 35Q51. 

1 Introduction 

In recent years, particle methods have become one of the most useful and widespread 
tools for approximating solutions of partial differential equations in a variety of fields. In 
these methods, a solution of a given equation is represented by a collection of particles, 
located in points Xi and carrying masses Wi· Equations of evolution in time are then 
written to describe the dynamics of the location of the particles and their weights. Due 
to the Lagrangian nature of the method, small scales that might develop in a solution 
can be easily described with a relatively small number of particles. This property is 
what made particle methods so attractive in practice. 

In this work we present the first particle method for approximating solutions of 
linear and nonlinear dispersive equations. Our method is based on the diffusion-velocity 
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2 A. CHERTOCK AND D. LEVY 

method, which was introduced in [11] for approximating solutions of parabolic equations, 
and we therefore name our new method the dispersion-velocity method. The dispersion
velocity method is the first particle method to be proposed per se for approximating 
solutions of such equations. Mo13t importantly, this is the first attempt to'use pa~ticles 
for directly simulating interactions between solitary waves. 

Since our starting point was a particle method for parabolic equations, we briefly 
describe some of the ideas that are used for such equations. It is generally possible 
to divide the particle methods for approximating parabolic equations into two classes: 
stochastic methods and deterministic methods. 

The most widely used treatment of diffusion terms, the random vortex method, was 
introduced by Chorin in [6]. There, diffusion was introduced by adding a Wiener process 
to the motion of each vortex. Numerous works followed that pioneering paper (see, e.g., 
[1, 2, 3, 4, 17, 18, 19, 14, 28, 30]). For a comprehensive list we refer to the review paper 
of Puckett (31] and the book by Cottet and Koumoutsakos [8]. 

A different approach in which particle methods were used for approximating solu
tions of the heat equation and related models (such as the Fokker-Planck equation and 
a Boltzmann-like equation :_ the Kac equation), was introduced by Russo in [37, 39]. 
In these works, the diffusion of the particles was described as a deterministic process 
in terms of a mean motion with a speed equal to the osmotic velocity associated with 
the diffusion process. In a following work, [38], the method was shown to be successful 
for approximating solutions to the two-dimensional Navier-Stokes (NS) equation in an 
unbounded domain. In this setup, the particles were convected according to the ve
locity field while their weights evolved according to. the diffusion term in the vorticity 
formulation of the NS equations. 

Another deterministic approach for approximating solutions of the parabolic equa
tions with particle methods was introduced by Degond and Mustieles in [11]. Their 
so-called diffusion-velocity method was based on defining the convective field associated 
with the heat operator which then allowed the particles to convect in a standard way. 
For example, the one-dimensional heat equation 

Ut = Uxx 

is rewritten as 

Ut + (a(u)u)x = 0, 

where the velocity a(u) is taken as -uxfu. Particles carrying fixed masses will be then 
convected with speed a(u). The convergence properties of the diffusion-velocity method 
were investigated, e.g., in [23, 24], where short time existence and uniqueness of solu
tions for the resulting diffusion-velocity transport equation were proved. The diffusion
velocity method serves as the basic tool for the derivation of our particle methods in 
the dispersive world. 

We focus our attention on linear and nonlinear dispersive partial differential equa
tions. Our model problem in the linear setup is the linear Airy equation, 

Ut = Uxxx· 
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The success of particle methods in approximating the oscillatory solutions that develop 
in this dispersive equation, provide us with valuable insight regarding the potential 
embedded in our approach. 

In the nonlinear setup, we focus on equations which generate compactly supported 
solutions with non-smooth fronts, the prototype being the K ( m, n) equation, which was 
introduced by Rosenau and Hyman in .[33]. In this equation, a nonlinear dispersion 
term replaces the nonlinear dispersion term in the Korteweg-de Vries (KdV) equation, 
resulting with · 

I<(m,ry:): m > 0, 1 < n ~ 3. 

For certain values of m and n, the K(m, n) equation has solitary waves which are 
compactly supported. In particula~, the variant K(2, 2), 

K(2, 2): Ut + (u 2 )x + (u 2 )xxx = 0 , 

has a fundamental "compacton" solution of the form 

4>. [ ( >.t) ]
2 

. u( X, t) = 3 COS X ~ , lx- >.ti ~ 2?r . 

After the first appearance of the compactons in [33], it turned out that similar structures 
emerge as solutions for a much larger class of nonlinear PDEs (see [25, 26, 34, 35]), among 
which is, e.g., 

m=n+1, 

which we consider with m = 2, n = 1 as our non-linear model problem. 
In this work we are mainly interested in developing tools for approximating numeri

cally solutions of equations which generate non-smooth structures. Due to the disconti
nuity in the derivatives on the fronts of these emerging structures, standard numerical 
methods such as finite-differences and pseudo-spectral methods generate spurious os
cillations on the fronts. Controlling these oscillations calls for a numerical filtering of 
the higher modes, which might result in the elimination of fine scales from the solution. 
Moreover, in cases where a positive solution should remain positive in time; the spu
rious numerical oscillations might cause the solution to change sign. In this case, one 
can fall into an ill-posed region of the equation, and the numerical solution will cease to 
represent the solution of the equation at hand (see the discussion in [13]). 

There have been several attempts in the literature .to address the complex numerical 
issues. For example, in [13] and [21] solutions of the compacton equation, K(2, 2), were 
obtained with finite-difference methods. In [13], these finite-difference methods were 
shown to generate instabilities on the discontinuous fronts, which were interpreted there 
as shocks. In [33], the solution of compacton equations was generated by pseudo-spectral 
approximations while filtering out the high modes. None of these works presented a 
comprehensive study of the properties of the numerical scheme used. We would like to 
offer here a different approach using particle method approximations. 

The structure of the paper is as follows: we start in §2 by introducing the new 
dispersion-velocity method in the context of linear equations. The main analytical 
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result in this section is Theorem 2.1, where we prove (in the spirit of [24D a short time ·· 
existence and uniqueness for solutions of the dispersion-velocity transport equation. 
This theorem requires the initial data to have only one bounded derivative and provides 
the same regularity for the resulting solution. . 

We then proceed in §3, where we show how ·to make the adjustments required in 
order to adapt our dispersion-velocity method~ to nonlinear problems. Followi:b.g the ·· 
discussion above, the derivation of our method is done on compacton-type equations, 
which develop structures with non-smooth interfaces. 

Our numerical method is summarized in §4. For completeness we discuss several 
issues relating to various aspects of the implementation of the method, such as, e.g., the 
initialization, the cutoff functions and the accuracy of the method. 

We conclude in §5 with several numerical examples, for linear and nonlinear equa
tions. In the linear examples we are able to verify the' accuracy and the L2 conservation 
properties of the scheme. In the nonlinear examples, it is remarkable to see how the 
particles that are spread over two compactons (moving with different velocities} areca
pable of going through the nonlinear compacton-compacton interaction and emerging 
from the interaction, while preserving the phase shift which is typical with this type of 
interaction. 

Acknowledgment: We would like to thank Professor S. Mas-Gallic for bringing the 
diffusion-velocity method to our attention. We would like to express our gratitude to 
Professor A. J. Chorin and Professor 0. H. Hald for the constructive discussions and for 
making helpful suggestions. We would also like to thank Professor G. I. Barenblatt and 
Professor P. Rosenau for their valuable comments. This work was supported in part by 
the Office of Science, Office of Advanced Scientific Computing Research, Mathematical, 
Information, and Computational Sciences Division, Applied Mathematical Sciences Sub
program, of the U.S. Department of Energy, under Contract No. DE-AC03-76SF00098. 
Part of this research was done while D.L. was affiliated with UC Berkeley and the 
Lawrence Berkeley Laboratory. 

2 The Dispersion-Velocity Method: Linear Prob
lems 

In this section we present the new dispersion-velocity method for approximating solu
tions of linear dispersive equations. Extension of this method to nonlinear problems will 
be presented in §3 below. 

The dispersion-velocity method is based on the diffusion-velocity method which was 
i:J?.troduced by Degond and Mustieles in [11). There, a deterministic particle method was 
used to approximate solutions of the linear heat equation, Ut- \7 · (S(x, t) · \?u) = 0, by 
rewriting it as an advection equation, Ut + \7 ·. (A(x, t)u) = 0, and advecting particles 
with a speed A(x, t) = -S(x, t) · \?u(x, t)fu(x, t). 

Our starting point is the scalar, linear dispersive equation in one space dimension, 

(2.1) 
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subject to the initial data u(x,t = 0) = u0(x)., Boundary conditioi;ts will be specified 
below. 

One can rewrite equation (2.1) as a convection equation 

Ut + (a(x, t)u)x = 0, (2.2) 

where the coefficient a(x, t) in (2.2) has to satisfy ;·f' 

a(x, t)u(x, t) = -Uxx(x, t), 

which, in turn, leads to 

( ) 
__ Uxx (X, t) 

a x, t - ( ) . 
u x, t 

(2.3) 

If a(x, t) is a known function, then (2.3) is a convection equation. A "standard" 
particle method for approximating solutions of (2.3) when a(x, t) is known is based on 
introducing a distribution of the form 

N 

uN(x, t) = L wi8(x- Xi(t)), 
i=l 

where the initial data is approximated by 

N 

uN(x,O) = LWi8(x- xi(O)) ~ uo(x). 
i=l 

Here Xi(t) is the characteristic curve associated with a(x, t), which starts at the point 
0 . xi, I.e. 

{ 

dxi di = a(xi(t), t), 

x~(O) = x?. 

(2.4) 

According to (2.3), a(x, t) depends on u and on its second derivative, Uxx, and, 
therefore, it can not be considered as a given function. Moreover, since the product of 
8 functions is not well defined, the standard particle D?-ethod has to be modified. 

Following (11], we introduce a smoothed approximation, u]v(x, t), 

N 

u]v(x, t) = (uN * (f)(x,t) = L Wi(€(x- Xi(t)). (2.5) 
i=l 

The function (f(x) (which is also called "cutoff function") is taken as a smooth approx
imation of the 8 function which satisfies 

and j ((x)dx = 1. (2.6) 
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Given an appropriate smoothing function (f(x), we can approximate a(x,t) in,(2~3} 
by 

(2.7) 

resulting with the dispersion-velocity transport equation 

{ 

au a 
' at+ ax(a,u) = o, 

u(x, t =0) = u0 (x ). 

(2.8) 

The resulting dispersion-velocity method is obtained by considering a particle approxi
mation as a distribution of the form (2.5), where xi(t) are the solutions of 

l 
dxi = _ (uN-(xi, t))" 
dt uN-(xi, t) 

Xi(O) = x?. 

Lf:t Wi(;'(x- Xi(t)) 
Lf:t Wi(E(X- Xi(t)) l (2.9) 

Local existence and uniqueness of a solution for the system of ODEs, (2.9), result 
from standard ODE theorems. In order to switch from the solution along these char
acteristics back to the solution of the dispersion-velocity transport equation (2.8), one 
typically requires certain regularity of the equation and the initial data. More specif
ically, if a first-order (nonlinear) PDE is written as F(t,x,u,ux,ut) = 0, a standard 
requirement is that F will have a continuous second-order derivative with respect to its 
arguments (see [22, 12}). In our case, such a condition will amount to requiring, e.g., 
that the initial data, u0 , has three continuous derivatives. While this might be accept
able in the linear case, it will be unacceptable in the nonlinear case, where we will be 
interested in initial data that has only one derivative. 

The following Theorem provides a short time existence and uniqueness of a solution 
to t~e dispersive-velocity transport equation (2.8) under the assumption that the initial 
data has only one bounded derivative. This result and the technique used to prove it are 
similar to the result presented in [24] for ,the diffusion-velocity equation (see also [23]). 
Here, however, we improve the result of (24] by observing that the resulting solution has 
the same regularity as the initial data. 

Theorem 2.1 (Local Existence and Uniqueness) Assume ( E C 4 (R), Uo E W1
•
00(R), 

and that there exist constants a, f3 > 0 such that a :::; u0 :::; (3. Then there exists T0 such 
that {2.8} has a unique solution in W1•00 (R x (0, T0 )). 

Proof: The proof follows the arguments of (24] with the required adaptations to the 
dispersive framework and additional bootstrapping arguments regarding the regularity 
of the solution. It is based on a fixed point argument on the functional ¢> E DX>(R x 



PARTICLE METHODS FOR DISPERSIVE EQUATIONS 7 

(0, T)) that maps any V E L00 (R x (0, T)) to the unique solution of t·he linear advection 
equation, v, by 

{ 

av a 
at+ ax(vac(V)) = 0, 

v(x, t=O) = u0 (x), 

namely, for every suitable V, the unique solution of (2.10) is denoted by v = c/>(V). Due 
to the smoothness of ac(V), given u0 E W 1•00

, vis also in W 1•00
• Utilizing the method 

of characteristics, the solution of (2.10) can be written as 

v(x,t) = c/>(V)(x,t) = u0 (X(O))exp (-fat a((V)(X(s),s)ds), (2.11) 

where the characteristic curve X ( s) is the solution of 

{ 

dX 
dt . ac(V)(X, t), 

X(t=O) =X. 

(2.12) 

We now let A denote the set of functions in L00 which are bounded in a strip away from 
the origin, 

A= { u E £CX>(R x (0, T)): ae-1 :=; u :=; f3e}, a,/3 > 0. 

In order to complete our proof, all that is required is to prove that A is stable under c/>, 
i.e., c/>(A) ~ A, and that ¢>is a strict L00 contraction on A (both results will be shown 
to hold for a short time). 

First, given V E A we would like to show that c/>(V) E A. We denote the L1 norms 
of (€ and its derivatives by Ci = ll(€11wi,l, i = 0, 1, ... , where due to the normalization 
(J (€ = 1), the first constant, c0 , equals 1. With this notation, the derivative of ac can 
be estimated by 

Hence, for T :=; T1 , 

and therefore by (2.11) one can conclude that since a:=; u0 :=; /3, c/>(V) E A which ends 
the first part of the proof. 

In order to proceed, we take U, V E A, such that u = c/>(U) and v ~ cf>(V). We will 
prove that ¢> is a contraction in L 00

, namely, that there exists a constant L < 1 and a 
time T such that VT < T, 

llc/>(U)- c/>(V)IIoo :=; LIIU- Vlloo· 
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Clearly, the difference w = u ·- v satisfies 

{ 

aw a 
at+ fJx(wac(V)) = J, 

w(x,t=O)=O, 

(2.14) 

where 

Once again, using the method of characteristics, the solution of (2.14) can be written as 

w(x, t) = kt J( r, x, t)f( r, x)dr, 

where 

J(t,x,s) = exp ( -1t a((V)(X(a),a)da), 

and the characteristic curve X is given by (2.12). 
Since V E A, it follows from (2.13) that l(ac(V))'I ::; 1/Tb and hence for T ::; T1 , 

IJI ::; e, which, in turn, carries llwlloo ::; Tellflloo· All that is left is to bound J, an 
estimate which will be obtained in two steps. We start by bounding 

llflloo ::; llu'[ac(U)- ac(V)]iloo + llu[a((U)- a((V)JIIoo := I1 + I2. (2.15) 

Since the difference ac(U)- ac(V) can be rewritten as 

(U) _ (V) = (V * C:')[(U- V) * (€]- [(U- V) * C:'](V * (€) 
ac ac (U * (E)(V * (€) ' 

the first term on the RHS of (2.15), It, is bounded by 

I1 ::; llu'lloo 
2{3e:c2 IU- VI , 

a 

which still leaves us with the task of bounding llu'lloo: 

lluxlloo ::; llu~e- I a((U)IIoo + 11-uo J a'((U)e- I a((U)IIoo :=In+ I12. (2.16) 

The first·term on the RHS of (2.16), I 11 , can be bounded by 

In ::; llu~lloo lie- I a((U)II ::; elluollw1 •00 • 

We also have 

lla'((U)IIoo < + 
00 
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and therefore for the second term of the RHS of (2.16), I 12 , we, have . 

T12 ~ ,HeTIIaZ(U)IIoo ~ f3eT[f3e2c4 +·f32(cr+ ;clc3)e4 + 2f33e6~~c2] ' 
a a a 

from which we can conclude that forT~ 1, 

,(2.17) 

We are now ready to estimate the second term on the RHS of (2.15), T2 • First, we 
rewrite the difference a((U) - a((V) as 

, (U)- , (V) = (V * C:")[(U- V) * (€]- [(U- V) * C'](V * (€) 
a< a< {U * (€)(V *(c) + 

Hence 

with 

(U * (;)(V * (c)2((U- V) * G'J + [(U- V) * (;](V * G')(U * (€) 2 

+ (U * (c)2(V * (€)2 
(V * G')(U * C:)[(U + V) * (€]((U- V) * (€] 

(U * (€)2(V * (€) 2 

Combining the estimates (2.17) and (2.18) we can finally conclude that 

11</>(U)- </>(V)IIoo = llwlloo ~ Tell/lloo ~ Te(I1 + T2) ~ T KjU- VI, 

(2.18) 

where K = K 1 + K 2 • The mapping ¢>is therefore a contraction in L00 assuming that 
T < min(T~, 1/ K, 1), which guarantees that it has a unique fixed point, V = </>(V) E A. 
Since¢> maps every element of A to a solution of the PDE (2.10), it also maps the fixed 
point of¢>, V to a solution of (2.10), and hence V = ¢>(V) E W 1

•
00

• This concludes the 
proof. -

Remarks: 

1. It is straightforward to extend the results of Theorem 2.1 to equations of the type 

Ut + (bu)x = Uxxx· 

2. The results of Theorem 2.1 also hold for periodic boundary conditions, with the 
suitable adjustments in the values of the constants, ci, i = 1, 2, .... 
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3. We would like to emphasize that Theorem 2.1 does not impl:t'the sta;b~lity''or'the ' 
convergence of the numerical scheme, (2.9). 'I'he, existence time provided by the 
theorem tends to zero as E tends to ~ero, ~hich is 'the limit in which otle Would liike 
the scheme to converge (together with N --7 oo). Convergence would therefore 
require a strong result of existence and boundedness for a period of time that does 
not go to zero with epsilon .. 

3 The Dispersion-Velocity Method: Non-Linear Prob
lems 

In this section we show how the dispersion-velocity method can be used for approximat
ing solutions of equations with nonlinear dispersion terms. We would like to demonstrate 
the advantages of our new techniques when compared with traditional finite-differences 
methods which lead us to start our research by focusing on problems which develop 
non-smooth fronts and are therefore difficult to solve numerically. We would like to 
stress that our methods are not limited to such equations only. They can be applied 
to a variety of other interesting problems, some of which we will comment on in the 
remarks below. To this extent, we consider the nonlinear dispersive equation, 

(3.1) 

subject to initial data, u( x, t = 0) = u0 ( x ). In this case, the "compacton" which is the 
fundamental solution of (3.1) has the compact form (see [34]), 

lx- .Xtl :::; 1r. (3.2) 

A particle approximation for equation (3.1) can be obtained in the following proce
dure. First we rewrite (3.1) as Ut + (a(x, t)u)x = 0, where 

a(x, t) = u(x, t) + Uxx(x, t). (3.3) 

We expect the solutions of (3.1) to develop non-smooth fronts of the form (3.2), and 
hence, we replace the velocity a(x, t) in (3.3) with the smoothe!' 

ac(x, t) = u * (" + u * C = u1v(x, t) + u1v(x, t)". 

A particle approximation for a solution of (3.1) is therefore given by 

N 

u1v(x, t) = L Wi(,;(x- Xi(t)), 
i=l 

(3.4) 

(3.5) 

where the cutoff function, (c(x), satisfies (2.6), and the characteristic curves are given 
by . 

l 
dx N N d/ = ~ Wi(E(X- Xi(t)) + ~ Wi(:'(x- Xi(t)), 

Xi(O) = x?. 

(3.6) 
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Remarks: { ' ; ~ ··. 

1. An an;:tlogous theorem to Theorem 2.1 for the short time existence and uniquen~ss, 
of a soll).tion to the dispersipn-velocity transport~quation. (2.8) hol<Js .also wh,~n 
a,(x, t) is given by (3.4). Even though equation (3.l) is no~linear the pro~fofsuch 
a theorem is much simpler than the proof of Theorem 2.1, and that is because 
a,(x, t) has no denominator. We skip the details. 

2. It was already pointed out in [13] that one can not expect the delicate balance 
between the nonlinear advection term and the nonlinear dispersion term (which 
allows the creation of compactly supported structures) to be preserved on the 
numerical level. 

From that point of view, one of the advantages of our method is that no splitting 
between the terms is required. One approach in particle methods for approximat
ing solutions to nonlinear problems, such as the Burgers equation or Navier-Stokes 
equations, is based on a fractional step method, in which the advection part of the 
equation is solved, followed by a solver to the dissipative part of the equation (see 
[7]). In the method we present, such a splitting is not required, and that seems to 
help preserve the properties of the solution. 

3. We chose to approximate solutions to (3.1) since this equation enjoys the richness 
of the features of nonlinear dispersive equations while, from the technical point of 
view, it is simpler to deal with. (The velocity a,(x, t) in its particle approxima
tion has no denominator). In principle, at least formally, the dispersion-velocity 
method can be easily extended to other equations ·as well. For example, a similar 
method can be written for the K(2, 2) equation, 

K(2, 2) : 

In this case, the transport velocity is given by 

( ) ( ) ( ) 
u:(x,t) 

a x,t =u x,t +2uxx x,t +2 ( ) . u x,t 

(3.7) 

(3.8) 

Another interesting example is a particle approximation for the Korteweg:..de Vries 
(KdV) equation, 

which can be rewritten as Ut + (a(x, t)u)x = 0 with 

( ) ( ) 
Uxx(x,t) 

ax,t =ux,t + ( ) . 
u x,t 

(3.9) 

Since we were mainly interested in this work in studying equations which develop 
solutions with non-smooth fronts, we leave the dispersion-velocity approach for 
the KdV equation for a future study. 



4 The Numerical Method 

In this section we would like to present the particle method in a general fohriulation 
and discuss some of the issues related to its implementation. We therefore consider the 
following problem 

{ 
~~ +! (a(u(x, t),x, t)u) = 0, 

u(x, t =0) = u0 (x ), 

( 4.10) 

with a velocity a(u(x,t),x,t) that depends on the problem. For example, the velocity 
a(u(x, t), x, t) in the linear equation (2.1) is given by (2.3), while for the nonlinear (3.1) 
it is given by (3.3). 

Given an appropriate smoothing function (E(x), we can approximate a(u(x,t),x,t) 
by . 

ac(u(x,t),x,t) = a(u(x,t),x,t)*(c(x). 

The dispersion-velocity transport equation then takes the form 

{ 

au a 
at +ax (acu) = 0, 

u(x, t =0) = uo(x). 

( 4.11) 

The numerical method is obtained by considering a particle approximation as a distri
bution of the form of 

N 

u1v(x, t) = L wi(E(x- xi(t)), ( 4.12) 
i=l 

where xi(t) are the solutions of 

{ 

dxi ( € ) 

dt =a( ouN, x;, t ' 

xi(O) =xi. 

(4.13) 

We are now ready to discuss several issues relat~d to the implementation of the 
method ( 4.12)-( 4.13). 

4.1 Initialization 

We would like to choose constants { wi} such that uN(x, 0) = l:i wJi(x- Xi(O)) approx
imates u0 ( x). This is done in the sense of measures on R. 

Take a test function ¢> E C8(R). Then the inner product 

(uo(·),¢>(·)) = k uo(x)¢>(x)dx 
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should be approximated by 

(UN(·), <P( ·)) = L wi<P(xi)· 
i 

In other words, the constants ·{ wi}, should be determined by solving the stand'ard nu
merical quadrature problem 

j uo(x)<P(x)dx ~ ~wi<P(xi)· · 
. ' 

(4.14) 

One way of solving ( 4.14) can be, e.g., to cover R with a uniform mesh of spacing h > 0. 
For j E Z we then denote Ii = {xi (j- 1/2)h ::=:; x ::=:; (j + 1/2)h}. For example, a 
midpoint quadrature is given by setting 

4.2 The Cutoff functions 

There is a big discussion in the literature on the selection of a cutoff function and its 
relation to the accuracy of particle methods. At that point we would only like to note 
that the first cutoff function was introduced by Chorin in [6]. These ideas were further 
developed in various works, out of which we would like to mention, in particular, the 
works by Beale and Majda, [2, 3, 4]. For a review on the role that cutoff functions play 
in vortex methods, we refer the reader to Hald [19] as well as the book by Cottet and 
Koumoutsakos, [8], and the review paper by Puckett, [31]. 

For completeness, we would like to present an example for a suitable cutoff function 
(( ( x). On the real line, a possible (( ( x) is a normalized Gaussian, 

(4.15) 

A similar cutoff function can be used in the periodic case if we assume a period 2L 
which is large enough compared to c. In this case, a normalized periodic Gaussian is 
given by . 

( 4.16) 

or in terms of its Fourier representation, by 

r ( ) 1 ~ (n1rx) _ln2(2(.!L)2 
':,( X = - L..J COS --· e 2 L • 

2L n=-oo L 
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4.3 Implementation 

• We would like to point out that similar to the diffusion-velocity method, the 
dispersion-velocity method, ·as formulated in this section, does-not allow the solu
tion to change sign. Unlike what happened in the case of the heat equation, the 
oscillation~ that the linear dispersive equation generates call: ca,use the soJu~ion_,to. 
change sign .. In order to avoid such undesirable situations, one can add a cons~ant 
to the initial data so that it stays away from zero, at least for short times. 

• There are cases were the veloci"ty a,(u]v, Xi, t) has a. denominator, V, which can 
vanish (e.g. in the linear problem, (2.9) ). In order to avoid division by zero, at 
least from a technical point of view, v-1 can be replaced by V/(V2 + 82

) with 8 
taken as a small constant, [20]. 

• It is straightforward to extend the dispersion-velocity method for multi-dimensional 
problems. Implementation of particle methods in more than one space dimension 
is computationally demanding, and there are a lot of methods that were devised 
in the literature in order to improve the efficiency of the implementation in such 
cases. We refer the reader to [5, 8, 15, 16, 27, 31] for a review of fast techniques 
for both particle and vortex methods. We will not deal with efficiency issues in 
this paper and will leave them for a future publication. A similar comment holds 
also for resampling issues. From the numerical examples we present below it is 
clear that when the particles change their location in time, there are situations in 
which redistributing the particles in space is desirable. Further discussion about 
redistribution issues can be found in the next section. 

5 Numerical Simulations 

In this section we present several examples in which we test our new numerical methods 
for linear as well as for nonlinear problems. For simplicity we used in all of our examples 
periodic boundary conditions. The time integration was done using a standard fourth
order Runge-Kutta method with a fixed time step that was chosen small enough to 
ensure the local stability of the Runge-Kutta method. 

In our computations we used two types of smooth kernels. In the linear problems 
we used the Gaussian kernel given by ( 4.15). In the nonlinear problems we used a super 
Gaussian kernel, 

(5.1) 

The super Gaussian kernel was used in order to reduce the error, even though the 
overall order of accuracy of the method is observed to be one in both cases. Clearly, 
the accuracy of the dispersion-velocity method will depend on the choice of the cutoff 
function (c ( x) and on its width E. It is possible to improve the order of accuracy of the 
method by choosing more accurate kernel functions and an optimal choice of the width 
E of the kernel. For an analysis of accuracy of particle methods we refer the reader to 
[1, 2, 3, 11, 29, 30, 31, 32]. 
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Since we are dealing with dispersive equations, we do not expect any bounds on the 
distance between particles (both lower and upper bounds). In most of the nonlinear 
problems we tested such a problem was encountered. The technique used to address 
this issue was a redistribution of the particles in fixed times, 'which were selected such' 
as to prevent the particles froni spreading too far from each 'other. The new locations 
and weights of the particles were determined using a third-order spline jnterpolation. , 
This is not the only possible method, but it did seem to be more accurate than other 
methods we tried to use (such as redistribution according to (3.5)). It is important to 
note that local extrema can develop in such high-order reconstructions and therefore, 
the solution ·can be expected to change its sign close to zero. 

It is well known in particle applications that redistribution of the particles might be 
crucial for a successful implementation of the method, e.g. see [4, 30]. Without redistri
bution one might fail to capture the long time behavior of the solution. We encountered 
such a problem when trying to solve the nonlinear compacton type equations below. In 
particular, without redistributing the particles, we were not able to pass the stage of 
the nonlinear interaction between two compactons. 

5.1 Linear Equations 

We start with the linear equation 

t ~ 0, 

subject to initial data u(x, 0) = u0 (x) and periodic boundary conditions. 
First we used the initial data 

uo(x) = cos(x ), 

In this case the exact solution is a traveling wave u(x, t) = cos(x- t). 
The number of particles N is taken as 40, 80, 160,320. The width of the Gaussian 

kernel is taken as E = 0.5-Jh , with h = 211" / N. 
A convergence rate study is shown in Table 5.1. The entries in the table are the 

maximum norm llu- u~lloo and the L 2 norm llu- u~ll 2 of the absolute error at a 
fixed time T = 2 . Also presented are the convergence rate between two grids. The 
convergence rate is computed as 

(5.2) 

where u is the projection of the exact solution on the grid, u~ is the numerical solution, 
and llu - u~ll is a discrete norm of the absolute error. This table shows a convergence 
rate which is approximately one. The exact and the apprmdmate solutions of this 
problem at different times are displayed in Figure ( 5.1). 
. In the second example, we solved the same equation, Ut = Ux~x, subject to initial 
data u(x,O) = 5+exp(-x2) with periodic boundary conditions on [-1r,1r]. Without 
the constant in the initial data, the solution would change its sign. The constant does 



16 A; CHERTOCK AND D. LEVY 

Grid llu- u~lloo L00 Convergence Rate llu -u~ll2 L2 Convergence Rate 

N=40 9.8414e-3 0.01745 ,_ 

N=80 4.8967e-3 1.007 8.6792e-3 1.008 

N=160 2.4514e-3 1.003 4.3454e-3 1.002 

N=320 1.2424e-3 0.995 2.2021e-3 0.995 

Table 5.1: Convergence rate for the linear problem Ut = Uxxx with initial data u(x, 0) = 
cos(x). E = 0.5.../h., T = 2. 
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Figure 5.1: The solution of Ut = Uxxx with initial data u0(x) = cos(x) and periodic 
boundary conditions on [ -1r, n-]. N = 40, t: = 0.5.../h. The points represent the location of 
the particles. The solid lines represent the exact solution. 
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not change the solution but it enables us to use the particle method with weights that 
do not change their sign. 

Once again, the cutoff function is,,~akeh,·t~ be a Gaussian with width E = 0.5v'h , 
where h = 21T" /N and N = 80, 160, a2o,"'640. Since the L2 norm of of the exact solution 
is preserved, we show in Table 5.Zthat this fe~ture holds for the numerical solution as 
well. Figure (5:2) presents the numerical solution for different times and N-:- 320. The 
points represent the location of the particles at any giyen time. 

T·= 0 T= 1 T=2 

Grid llu~ll2 llu~ll2 llu~ll2 

N=80 . 13.26820 13.~6827· 13.26836 

N=160 13.26843 13.26844 13.26847 

N=320 13.26854 13.26855 . 13.26856 

N=640 13.26860 13.26859 13.26860 

Table 5.2: The L2 norm of the solution for the linear problem Ut = Uxxx with initial data 
u(x, 0) = 5 + e-x

2
• E = 0.5-/h. 

5.2 Nonlinear Equations 

We consider the nonlinear dispersive equation 

which generates compacton-type solutions as outlined in §3. In all of the examples, 
the boundary conditions are taken to be periodic in an interval much larger than the 
compact support of the initial data. The kernel is taken to be the super Gaussian (5.1). 

5.2.1 Compacton initial data 

( 0) 
_ { 2cos2(x/2), lxl:::; 1r 

u x, - 0 ' lxl > 1T" 

In this case, the exact solution is a traveling wave given by (3.2) with velocity A :- 1. 
Figure 5.3 presents the results of the numerical method for different times, with N = 160 
particles taken initially to be equally spaced with spacing h. The width of the super 
Gaussian kernel is E = 0.5-/h. The convergence rate is shown in Table 5.3 and is 
approximately one for both the maximum norm and the L2 norm. 
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Figure 5.2: The solution of Ut = Uxxx (2.1) with initial data u0(x) = 5 + e-x
2

, and periodic 
boundary conditions on [ -7r, ·n']. N = 320, (]' = 0.5.../h. The points represent the location 
of the particles. 

Figure 5.3: The solution of (2.1) with initial data u0 (x) = 2cos2(x/2) on [-7r,7r] and zero 
elsewhere. N = 160, t = 0.5.../h. The points represent the location of the particles. 
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Grid llu -.u~lloo L00 Convergence Rate llu- u~ll2 L2 Convergence Rate 

N=40 0.03851 0.06826 

N=80 0.01945 0.986 0.03446 0.986 

N=160 9.7767e-3 0.989 0.01732 0.989 

N=320 4,9323e-3 0.988 8.7149e-3 0.989 

Table 5.3: Convergence rate for the solution of (2.1) with initial data u( x, 0) = 2 cos2 (x/2). 
c = 0.5Vh, T = 2. 

5.2.2 "Arbitrary initial data" 

u(x,O) = { 3cos
2

0
(x/4): 

In this case we expect the fundamental compactons (3.2) to split out of this initial data. 
In Figure 5.4 we plot the solution in times T = 0, 1, 2, 4, 6, 8, with N = 200,300 particles. 
The width of the super Gaussian kernel is taken as c = 1.25Vh, where h is the initial 
spacing between the particles. What can be clearly seen are compactons splitting out 
of the initial data. In time, the residual tail splits into more compactons (see [33]). 

In Figure 5.5 we show that the shape of the emerging compactons at time T = 8 
coincides with the canonical, fundamental compacton (3.2). The points represent the 
numerical solution at that time. The solid line represents two fundamental compactons, 
shifted to the center of the corresponding numerical humps and scaled so as to have the 
same amplitude. 

We also compare our particle method simulations 'Yith results that are obtained with 
a pseudo-spectral method in space and fourth-order Runge-Kutta method in time, see 
Figure 5.6. In order to avoid the numerical oscillations that develop in the pseudo
spectral method from the non-smooth boundaries we filter the solution every time step 
with a smooth exponential filter in the Fourier space (for further details see [34]). The 
number of points in the spectral simulations is taken as N = 128. Clearly, the results 
of the particle method do not suffer from the spurious oscillations that are present in 
the spectral methods. It is important to note, however, that the similarity between 
the results obtained with the two methods strengthens also the validity of th'e spectral 
methods as a tool for solving problems of this type. 
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Figure 5.4: The solution of (2.1) with initial data u0(x) 
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3cos2(x/4) on [-21r,21r] and 
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Figure 5.6: The solution of (2.1) with initial data u0(x) = 3cos2 (x/4) on [-21r,21r] and 
zero elsewhere. T = 8. The points represent the spectral method. The solid line represents 
the particle method. 



5.2.3 Compacto11-:~ompactoi1 .ipter~ction 

· Here the initial condition is taken as two compactons: 

{ 

4 cos2 (x/2) , 
u(x, 0) = cos2((x- 2.51f)/2) , 

0 ' 

-1f <X< 1f 
1.51f < X < 3.51f 

elsewhere. 

In Figure 5. 7 we plot the solution in times T = 0, 2, 4, 6, 8, 10, with N = 400, 500 
particles. The width of the super Gaussian kernel is taken as t: = Vh, where h is the 
initial spacing between the particles. The higher compacton (to the left) that travels 
with a higher velocity (.A = 2), passes through the lower compacton which travels slower 
(.A = 0.5) after going through a nonlinear interaction that generates a phase shift. It is 
remarkable to see how the particles are capable of capturing the non-linear interaction. 
We would like to note that the compactons seem to emerge from the interaction in 
the canonical compacton shape (3.2) whileleaving behind a small residue. A similar 
phenomenon was observed in the past when approximating solutions of related equations 
with other methods, see for example [33), [34). 

Finally, in Figure 5.8 we compare the solutions obtained at time T = 4 by both 
the particle and the pseudo-spectral method outlined above. The spurious numerical 
oscillations that were presented in the spectral computation (even though the solution 
is filtered in every time step) completely disappear in the particle computation: In 
this figure we also show the results obtained when the particle method is run without 
any redistribution of the particles. The region around x = 0 can not be filled with 
particles by increasing their number. Redistribution is therefore essential; without it 
the compacton-compacton interaction can not be captured. 
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