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Abstract 

A Supersymmetric Grand unified model is constructed based on SO(lO)xSO(lO) symmetry 
in which new types of Yukawa matrices couple standard and exotic fermions. Evolution of 
these couplings from the Grand Unified scale to the electroweak scale causes some of them to be 
driven to their fixed points. This solves the supersymmetric alignment problem and ensures that 
there are no observable flavor changing neutral currents mediated by supersymmetric particles. 
Fermion hierarchy and neutrino mixing constraints are automatically satisfied in this formalism. 
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1 Introduction 

Supersymmetry (SUSY), an as yet undetected but highly promising additional symmetry of nature, 
offers a possible solution to the hierarchy problem [1]. SUSY still has a tremendous amount of 
theoretical freedom in constructing models: the over one hundred free parameters in the theory 
must be fixed. Models of supersymmetry breaking can be invoked to reduce the number of arbitrary 
parameters. In gauge mediated models [2, 3] the pattern of SUSY breaking parameters leads to a 
low energy theory that has no dangerous flavor changing neutral currents(FCNCs). Models based 
on gravity mediation of SUSY breaking [4], reduce parameter space considerably, but have no 
compelling reasons for the absence of flavor changing neutral currents. 

It is possible that some of the low energy parameters are determined independent of their 
values at the Grand Unified Theory (GUT) scale [5, 6]. This happens if the renormalization group 
equations (RGEs), governing the evolution of the parameters of the theory as one lowers the energy 
scale, drive some of the parameters to their fixed points. The fundamental values at the GUT scale 
are then irrelevant. A dynamic reduction of parameter space in this manner automatically solves 
the FCNC constraint [7], also known as the "SUSY Flavor Alignment" problem. 

In this paper, we propose a new model which is "complete"· in the sense of being both SUSY 
and a GUT and illustrates how the idea might work in practice. We revive the Pati-Salam Left­
Right idea [8] in an SO(lO)L x S0(10)R framework, enlarging the particle spectrum of the MSSM 
to include an extra three generations of exotic particles, too heavy to be seen at the electroweak· 
scale. As pointed out previously [7], it is not possible for the standard Yukawas coupling ordinary 
matter to be close to their fixed points at the weak scale: the fixed point solutions are all 0(1), yet 
mu < < mt, implying a large hierarchy of Yukawa couplings. The main function of the exotics is 
to provide Yukawa couplings to ordinary (super)matter which do run to their fixed points, leaving 
the usual Yukawas free. In addition, these exotics provide a natural setting for a seesaw effect [9] 
in the mass matrices, establishing the observed mass hierarchies in the quark and lepton sectors. 

The layout of this paper is as follows: in Section 2 we review the SUSY Flavor Alignment 
problem and its resolution via the RGE fixed-point running; Section 3 introduces the specifics of 
the model we propose, including the symmetry-breaking structure, the particle representations, and 
the couplings that emerge from the superpotential; we discuss the vacuum structure of the theory 
in Section 4 and demonstrate how the gauge coupling constants evolve from the GUT scale to the 
weak scale; in Section 5 we verify fermion mass hierarchies and mixings and make some general 
comments regarding signatures of this model in future experiments. Section 6 summarizes the main 
conclusions of this paper. · 

2 SUSY Flavor Alignment 

The MSSM for 3 generations of matter, represented by the superpotential 

(1) 

with the chiral matter superfields for quarks and leptons U, D, Q, E, L, and Higgs H1,2 charged 
under SU(3)c x SU(2)L x U(1)y assigns the 3x3 Yukawa matrices Ye,d,u to the coupling between 
particles of different generations. If supersymmetry were an unbroken symmetry of nature, then, 
after the Higgs fields obtain VEVs, 0(3) rotations in generation space on the quark superfields 
diagonalize the mass terms and gives rise to the usual CKM matrix in the (s)quark-(s)quark gauge 
interactions; experiments would report the same CKM matrix for quarks and squarks. However, 
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since SUSY is broken at an energy Msusy, the theory admits generic soft-breaking Yukawa terms 
in the Lagrangian below this scale: 

£ :J (auUQH2 + adDQH1 + a.eELHdscalar + (M3gg + M2WW + M1BB) 
+('L;xi=Q,u,'d,eXfm~ Xi+ 'L;i=1,2mkiHi Hi+ bp.H1H2)scalar + h.c. 

(2) 

where (g, W, B) are the superpartners of the Standard Model gauge bosons and where scalar 
implies that only the scalar component of each superfield is used. Note that the SUSY-breaking 
parameters au,d,e and m~ are matrices with a priori unknown structure. The squarks have therefore 
additional sources of inter-generational mixing beyond that for the quarks. At the EW scale the 
quarks' and squarks' mass terms are not in general diagonalizable by the same rotations and 
we have separate "CKM" matrices. Experiments such as neutral K-meson mixing constrain the 
squark-CKM matrix to be a fraction of a percent deviant from the quark CKM [10]. Since such 
a high degree of alignment between independently chosen matrices is unlikely, the MSSM is by 
itself insufficient to naturally account for low-energy flavor structure; this is termed the 'SUSY 
Alignment Problem'. 

The simplest solution to this problem is to impose a universality on the soft-breaking terms, 
forcing the SUSY-breaking Yukawas B.e,d,u to be proportional to the corresponding SUSY Yukawas 
Ye,d,u· This is useful for computational purposes yet it lacks any physical motivation. Some models 
of SUSY breaking such as gauge-mediation [2, 3] have automatic flavor alignment. ' 

There is however an elegant solution [7].: the alignment arises inevitably from the RGEs running 
to their fixed points. The reason why this occurs is simple: first instead of the explicit soft-breaking 
terms in the Lagrangian as in (2) , we can redefine SUSY-breaking terms as spurious [11] which get 
0-space dependent vacuum expectation values (VEVs). These VEVs are interpreted as parameters 
in the superpotential and gauge couplings after making the substitutions: 

g2 -'---7 g2 (l + M02 + M7P + 2M2027P) 
yiik -t yiik _ aiik02 + ~(ynikm2~ + yinkm2~ + yiinm2~)02(J2 (3) 

Here the 0202-dependent terms contribute to the effective action starting at the 1-loop level. Now 
let the Yukawa couplings all run down to their fixed points; since the RGEs are gauge-dominated, 
we expect the fixed point solutions for the Yukawas to have a structure that is only a function of 
the gauge couplings. In particular, each fixed-point solution should factorize into a 3x3 matrix of 
constants and a gauge-dependent piece since gauge interactions do not depend on flavor: 

(4) 

When we switch to the basis where the Yukawa matrix above is diagonal; performing rotations 
Q -t OQ on the left-handed quark fields and separate rotations on each right-handed field, we 
diagonalize y J.p.Yt J.p. as well, obtaining from (4) 

I tt _ C' X nl•( ,2) Y f.p.Y J.p. - '1-' Yz (5) 

where y' J.p.Y't J.p. = Oy J.p.Yt J.p. nt and C' = ncnt , both of which are diagonal in flavor space. By 
using the symmetry-breaking rule (3), we can evaluate yyt after SUSY breaking and quark-field 
rotation at the fixed point: 

t -t ' 't a' 't 02 + 0(0) Y J.p.Y J.p. Y J.p.Y J.p. - J.p.Y J.p. (6) 
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As (5) and (6) must agree at each order in 0, we obtain 

a' y't = -C' x j ·'·(g·2)d2(} J.p. J.p. '(/ t (7) 

By design C' andy' are diagonal, and so a' is too (likewise one may check ym2 ): SUSY breaking 
matrices are simultaneously diagonalizable with SUSY Yukawas on the fixed point. This solves 
the SUSY alignment problem if the amount of RGE running is sufficient to let the fixed-point 
properties emerge near the electro-weak scale. In this scenario the overwhelming arbitrariness of 
the soft-SUSY breaking matrices vanishes: a and m 2 are proportional to y, the proportionality 
constant being some function of the various coefficients in the RGEs. 

However, since the RGEs' fixed points are functions of 0(1) coefficients we would expect the 
Yukawa fixed points to all be of order unity, giving a nearly degenerate mass spectrum. Since huge 
mass hierarchies exist at the EW scale (mt/mu ~ 104 (12]), the simplest implementation does not 
work. Taking a cue from [7], we propose a model to address this. 

3 The SO(lO)L x SO(lO)R Framework 

A model with only MSSM fields may be immediately ruled out because the Yukawa couplings are 
·much too small to have reached 0(1) fixed points. The simplest variant is to let the alignment 
mechanism discussed above proceed through exotic Yukawas running. Schematically the total 
Yukawa structure in the low energy Lagrangian would appear as: 

(8) 

Here f, fH denote vectors of standard and exotic fermions, respectively, which need not share the 
same dimensionality for the general mechanism to operate. The VEV of the Higgs coupling to 
y is essentially fixed to be VL ~ mw from experiment, but the magnitudes of the other VEVs 
VI, v2, A are free parameters. Provided Y1,2 run to their fixed points an alignment can be obtained. 
A suitable hierarchy among the VEV s, v L < < VI, v2 < < A may provide a seesaw solution of the 
fermion hierarchy problem. A possible hierarchy ofVEVs puts the usual O(mw) in they corner, 
0(10 TeV) VEVs in the Yx entries, and perhaps VEVs as large as 0(10I7 GeV) in theY corner. 

Possibly the most elegant realization of (8) involves a left-right symmetry which, upon breaking, 
yields three generations of exotic SU(2)L singlets which couple to themselves through Y and to 
MSSM fields through Yx [13]. The naive breaking pattern SU(5)L x SU(5)R-+ SU(3)c x SU(2)L x 
SU(2)R x U(l) -+ (standard model) cannot readily accomodate the low-energy values of the gauge 
couplings: sin20w invariably turns out too small [14]. 

To address this failure we suggest that the low-energy SU(3) x U(1) color-electromagnetic 
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symmetry is the survivor of the following breaking chain: 

80(10)L X 80(10)R 
..!. McUT 

8U(5)L X U(1)L X 8U(5)R X U(1)R 
..!. ML 

8U(3)L X 8U(2)L X U(1)L X 8U(5)R 
..!. Ma 

8U(3)L X 8U(2)L X U(1)L X 8U(3)R X 8U(2)R X U(1)R 
..!. ALR 

8U(3)c x U(1)L+R x 8U(2)L x 8U(2)R 
..!. va 

8U(3)c x U{1)y x 8U(2)L 
..!. VL 

8U(3)c x U(1)EM 

{9) 

with the appropriate energy scales noted at the breaking points. In this scheme the scales in the 
Yukawa matrix (8) correspond as VL "'VL, v1,2 "'VL,a, and A"' li.LR· The scale of SUSY breaking 
cannot be much larger than 1 Te V as we assume SUSY solves the hierarchy problem. 

All of the standard model quarks and leptons are unified at the GUT scale in three generations 
of 80(10)L x 80(10)R spinor representations 

{ XL(16; 1) E9 XR(1; 16) } X 3 {10) 

The Higgs particles necessary for each stage of the symmetry breaking scheme (9) are contained in 
the bispinor and tensor representations 

q,(16; 16) E9 q,(16; 16) 
~L(10; 1) E£) ~R{1; 10) 
~L(10; 1) E£) ~R(1; 1o) 
~H10; 1) E£) ~1t{1; 10) (11) 
eL(45; 1) E£) eR{1;45) 
eL(45; 1) E£) 8k{1;45) 

E£) 8{45;45) 

These choices of representations are not unique, but they are the minimal set necessary to avoid 
fine-tuning in the superpotential, as we demonstrate later. 

Whereas the Higgs sector is quite flexible in this model, the choice of three matter generations 
in {10) is more or less fixed, being tightly constrained by searches for a fourth neutrino at collider 
energies [12]. For ease of discussion in the following, we list in Table 1 (See Appendix) the types 
of particles present at each stage in the symmetry chain {9). 

First we note how the standard model fermions are embedded in the 80{10) rep's: each 16 of 
80(10) decomposes into a 1 EB 5 EB 10 of 8U(5). Each collection of 16 states, as in conventional 
80{10) theories [15], represents quarks U and D {12 states) and leptons LandE (3 states) plus a 
right-handed neutrino superfield, N (1 state). Let us show XL E9 XR, for example, in more suggestive 
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SU(5) language: 

dH 
dH 

WR= dH 
eR 

-VL -llR 
0 UH -UH -u -d 

-UH 0 UH -u -d 
0 UH -UH -UR -dR (12) 

-UH 0 UH -UR -dR 
WL= UH -UH 0 -u -d WR= UH -UH 0 -UR -dR 

u u u 0 -eH UR -UR -UR 0 -eH 
d d d eH 0 -dR -dR -dR eH 0 

NL NR 

All of the fields with an H-subscript will acquire masses of order ALRi they are "exotic" particles 
which are SU(2)L singlets at the weak scale. The neutrinos NL,R are likewise heavy, having masses 
O(Maur). The other particles in {12) form one standard model generation, including a right­
handed neutrino, VR· Note that the 'mirror symmetry' is not the usual one between standard fields 
and exotics [16]. 

SO(lO)L x S0(10)R breaks to SU(5)L x U(1)£ x SU(5)R x U(1)k by the singlet components of 
the Higgs sector (the (1;1) pieces of <I>, <I>) acquiring a VEV. The SU(5)L,R symmetries are broken 
by the SU(5) adjoint fields contained in eL,R, 8£,R and e when they get VEVs of the type: 

a 0 0 0 0 
0 a 0 0 0 

< 8x >= i a2 X 0 0 a 0 0 (13) 
0 0 0 b 0 
0 0 0 0 b 

where the particular values of a,b will depend on x E {L,L',R,R'}: for the breaking of SU(5)L,R, 
a ,.... ML,R, whereas b may be zero or non-zero (see the vacuum structure discussion below in 
4). The Dimopoulos-Wilczek mechanism [17] for splitting doublets from triplets· requires no 
fine-tuning among the VEVs and parameters in the superpotential and ensures that the col­
ored components (i = 1, 2, 3) of all the SU(5) fundamental and anti-fundamental Higgs ( Hxi, (/>i, 
see Table 1 ) get masses O(ML,R) whereas the b's are chosen to make the weak components of 
HL, HL, HR, HR, (/JL, ¢R remain light. 

When the SU(5)R symmetry breaks, it combines with the SU(3)L to form a vector SU(3)L+R 
which remains unbroken all the way down to low energies; this we interpret as color. At the same 
time, the U(1)'s in the theory combine to form a vector U(1)L+R· This vector U(l) is U(l)B-L 
for the standard model fields as is evident from the charge assignments in Table 1; the exotic 
particles which are absent in the low-energy regime have different charges. The above breaking to 
SU(3)c X U(l) is achieved by VEVs of the fields w, w, n, n at O(ALR); these themselves acquire 
masses and decouple from the theory, leaving the uncolored components of HL,HL,HR,HR (all 
from the ~L,R) and ¢L,R (from <I>) as light degrees of freedom. After the breaking of SU(2)R, the 
SU(2)L symmetry breaks as in the MSSM with HL, HL serving as H1,2 in (1). 

5 



3.1 Some Minimal Requirements 

The relative sizes of the VEVs in (9) are not completely arbitrary. Simple theoretical and phe­
nomenological considerations allow us to put constraints on the magnitudes of VL, VR, ALR, ML, MR, 
and MauT· First of all there must be enough RGE running for the Yukawas to reach fixed points 
and for the alignment to work. Since it is crucial that the Yukawas y 1 ,2 in (8) which mix exotic and 
standard generations run to their· fixed points, we must ensure that the running, roughly between 
ALR and Maur, is large enough. Of course in order for the RGEs themselves to remain predictive, 
we must also ensure that no coupling goes nonperturbative (i.e. g ~ 1) in this regime; typically 
this forces the GUT scale itsel:fto respect an upper bound just below the Planck scale. There are 
also important phenomenological constraints which all GUTs must satisfy: masses of new gauge 
bosons and proton decay. That no experiment has yet detected a W R, or right-handed version of 
theW-boson, sets a lower bound on its mass of about 1 TeV [18, 19). Since we expect mwR ~ VR, 
we must have v R > 1 Te V. As for proton decay in this model, the usual intermediate gauge boson 
channels are closed: left- and right-handed quarks are embedded in completely different SU(5) 
representations. Proton decay can proceed through colored Higgs' exchange; specifically, qqql oper­
ators arise from the exchange of Hx, <Px· However these operators will be suppressed by the masses 
of the colored components of these fields which are of order ML and MR. These masses can actually 
be as low as 1010 GeV [20) and still satisfy the proton lifetime constraint Tp > 5.5 x 1032yr [21). 

Finally, for the exotic fields to have escaped detection, we impose the constraints on the mass 
of a fourth generation quark [12), giving ALR ~ 200 GeV. This is a lower bound, but in fact we will 
find it advantageous in Section 4 to consider much larger ALR· 

Altogether, we may list the various phenomenological constraints on the VEVs: 

Maur 
Maur/vR 

ML,R 
ALR,VR 

VL 

< 1018GeV 
> 1010 
> 1010GeV 
> 103GeV 
~ 102GeV 

3.2 Superpotential and Yukawa Structure 

(14) 

One way to make the Dimopoulos-Wilczek mechanism operate effectively [17) is to impose a Z3 
symmetry on the superpotential at the GUT scale with charges 

0: 
1: 
2: 

{XL,R flL,R 8 ci> ci>} 
8LR 

' 
{ fl~,R fl1,R 8£,R} 

The most general SO(lO)L x SO(lO)R superpotential is then 

where 
. 2 2 

Wy = AtXLXRci> + A2XLflL + A3XRflR 

WH= A4 ci>ci> + .Xsci>ci>8 + A6flL8Lfl~ 

+.Xsfl~8~D.1 + AgflR8 Rfln + A1QflR8Rfl'.R 

+.X1282 + .X138L8£ + .x14eRen 

6 

(15) 

(16) 

+ .X1D.Le L!:l.1 (17) 
+ .X D.' 8' D." 11 R R R 



· In the above the !:l' L,R, !:l" L,R provide a coupling which splits the doublets from the triplets 
in the physical !:lL,R fields which propagate at low energies (!:lt8L for example vanishes by the 
antisymmetry of the 45). The !:l' L,R, !:l" L,R are otherwise inert in the theory as we can arrange for 
them to have masses of O(ML,R) taking a, b"" ML,R as discussed earlier (see (13) ff.). 

Under SU(5)L x SU(5)R x U(1)2, the fields decompose as follows: 

XL --+ 'l/JL EEl WL EEl NL 
XR --+ 'lfJR EEl WR EEl NR 
f:lL --+ HL EBHL 
f:lR --+ HREBHR 
!:l' L --+ HL' EEl HL' 
!:l' R --+ HR' EEl HR' 
!:l" --+ H L'' EEl H L" L (18) 
!:1" --+ H R" EEl H R" R 
<1> --+ ~EBhEB~EBwffiflEB~EB~ffi~EB~ 
<1> --+ <iio EB ?> L EB ?> R m w m n EB a1 EB a2 m ag EEl a 4 

eL --+ 8Ll EEl 8L2 EEl 8L3 EEl :EL 

in accord with the branching rules 16 --+ 5 ffi 10 ffi 1 , 10 --+ 5 ffi 5, 45 --+ 1 ffi 10 EB10 ffi 24, 
and their conjugates. 

In this notation, the effective Yukawa terms just below MauT in (17) become 

Wy = )q('l/JL'lfJRw + WLWRO. + j(ai)) 
+>..2('1/JLWLHL + WLWLHL) 
+>..s('l/JRWRHR + WRWRHR) 

(19) 

Group theory indices are implicit; WLWRO. means WLOtf3wROt'{3'n~{, for example. Generation 
indices on >..1,2,3 are likewise hereafter suppressed. The first two >..1-terms give large masses to the 
exotic particles after w and n ·get VEV s. Note in particular that the exotic neutrinos N L,R get 
a GUT-scale mass given by the VEV of the SU(5)L x SU(5)R singlet ¢>o. Terms dependent on 
the ai-fields will not be phenomenologically relevant in the remainder of this study; we choose the 
vacuum structure of the theory (discussed in Section 4 below) to guarantee this. 

The >..2,3-terms of (19) play the role of the couplings Yx in (8) responsible for driving the 
alignment in the RGEs, with the uncolored components of the HL,R fields getting VEVs at VL,R 
respectively, e.g. >..2 W L W LH L mixes uH and u. Because the right-handed sector mixes the opposite 
chirality combination, e.g. >..sWRWRHR mixes u and UH, we see that YIVI =/:- Y2V2 in general and 
one of v1,2 is necessarily O(mw). As long as y << Y1,2 the alignment will work; small standard 
Yukawas y are guaranteed in this model both by symmetry and the choice of vacuum (see (23) 
below). 
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4 The Model:Vacuum Structure 

4.1 Minimizing the Scalar Potential 

The scalar potential receives contributions from the superpotential 

.\4<P<P + .\s<P<Pe + .\6.6.LeL.6.~ 
+.\8.6.~9~.6.1 + .\g.6.RE>R.6.R + .\10.6.R8R.6.n 

+.\1282 + .\1aE>L8~ + .\148R8R 

+ A7.6.LE>L.6.1 
+ -Xn.6.ReR.6.'R (20) 

For this choice of representations the D-term contributions to the scalar potential from .6.'s and 
<P, <P vanish in the limit where the VEVs from each conjugate pair of fields are equal, whereas those 
for 8's vanish according to their symmetry structure (13). Because we have a theory which remains 
supersymmetric all the way down past VR, the minimization of the effective potential implies 

aw =O 
a, 'f/ :::) {scalars} (21) 

Since in (20) the 80(10)2 symmetry is already broken by the (SU(5) x U(1))2 singlet fields 
4J0 , 4J0 , these fields are effectively non-propagating below Maur. The next symmetries to break are 
SU(5)L,R: as noted earlier in Section 3, thee, eL,R, and e~,R fields get diagonal VEVs as in (13), 
breaking the SU(5)s to the subgroup structure SU(3) x SU(2) x U(1) and splitting the colored 
triplets from the doublets in the H's and 4J's. We will obtain four sets of light (O(vL,R)) doublets 
HL,HL,HR,HR, 4JL,R, 4JL,R, four sets of heavy doublets HL',L", HL',L",HR',R",HR',R", and all color 
triplets heavy for the VEV structure 

ML,R 0 0 0 0 
0 ML,R 0 0 0 

< 8LR >= i 0"2 X 0 0 ML,R 0 0 
' 0 0 0 VL,R 0 

0 0 0 0 VL,R (22) 
ML,R 0 0 0 0 

0 ML,R 0 0 0 
< e' > < e >= i a2 x L,R ' 0 0 ML,R 0 0 

0 0 0 ML,R 0 
0 0 0 0 ML,R 

Below M R we find the following VEV structure accommodates a minimum: 

ALR 0 0 0 0 ALR 0 0 0 0 
0 ALR 0 0 0 0 ALR 0 0 0 

<w>= 0 0 ALR 0 0 <w>= 0 0 ALR 0 0 (23) 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 

a'~' . --a'~' < na~ >=< na~ >= ALR for 

( : ~ ) c ( ( ~ ~ ) , ( ~ ~ ) , ( ~ ~ ) , ( ! ; ) ) (24) 

= 0 otherwise 
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o'~' ~'o' ~'o' In the above it should be remembered that <no~ >=-<no~ >=< n~o > (and likewise for 
< n >) since both nand n are antisymmetric SU(5) X SU(5) tensors. Also, factors of 0(1) may 
multiply the above VEV s without upsetting the minimization. There is a vacuum degeneracy but 
we assume the particular vacuum in (24). Besides breaking the theory to a vector SU(3) x U(1), the 
VEVs above give masses to the exotic fields ( un, dn, en) of order ALR· This is a crucial ingredient 
of the seesaw mechanism which we discuss in more detail in Section 5. 

Since SUSY is assumed to be broken below VR we must include the SUSY-breaking terms when 
breaking SU(2)L· This is a standard exercise in the MSSM, where the scalar potential takes the 
form 

V = (l~-tl 2 +m~1 )1Hrl2 + (l~-tl 2 +m~2 )IH~I 2 -bHrHg- b* Hr* Hg* + ~(g2 +g'2)(1Hrl2 -IH~I2 ) 2 (25) , 

We ensure that a similar potential arises in our model at VL: simply rename H 1,2 to HL, HL in (25). 
The gauge couplings g,g' are understood as usual to be the coupling constants of SU(2)L x U(1)y. 
The low energy spectrum will match the MSSM except now FCNCs are naturally suppressed and 
a mass hierarchy is automatic (as discussed in Section 5). 

4.2 Beta Functions and Running Couplings 

Since we are working with a GUT, we require that the couplings unify at MauT· Each VEV is asso­
ciated with a threshold in the RGEs where the group symmetry and number of propagating particles 
change, so the running serves as an indirect constraint on the values of VL, VR, ALR, ML, MR, and 
McuT· We use 1-loop ,8-functions at each stage of the supersymmetric theory where the symmetry 
group takes the form G x G1 x · · · x Gn: 

.B = 1::2 ( ~ 02(-Ri)dt(-Ri) · · · dn(Ri)- 301(G)) + o(g
5

) 

Here 0 2 (-Ri) is the index of the irreducible representation -Ri, defined as 

02(R)8ab = Tr[TRaTRb] 

(26) 

(27) 

for generators TR in the representation R, Ot(G) is 02(Radj) with Radj the adjoint rep of G, and 
di(Rj) is the dimension of the representation Ri in the algebra Gi. We use the version of (26) with 
broken SUSY at energies below 1 TeV: 

/3n.s. ~ 
1
::2 ( ~ ~ C2(RJ )d, (RJ) · · · dn (RJ) + ~ ~ C2(R,)d1 (R,) · · · d, (R,) -

1
; C, (G)) + o(g5

) 

(28) 
with now separate sums over fermionic and scalar rep's. At each characteristic energy scale, the 
number of particle rep's to account for in (26) or (28) changes: below ML,R, the :E's, O"'s, b..''s and 
b.."'s decouple; below A, thew, w, n, and n decouple; finally below VR, </>R,ffiR,HR,HR decouple. 
The detailed derivation of the ,8-functions above for the present model appear in the Appendix. 
Here we present the result of a sample running in Figure 1 below, with the choices of parameters 

aahT = 10 
McuT 2:: 1016GeV 
ML = 1016GeV 
MR = 1015GeV 
ALR = 5 · 1012GeV 
VR = 5 TeV 
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Figure 1: One-Loop Running of the Coupling Constants with the choice of parameters in {29). In 
the interval (MR, ML), the runnings are for(top to bottom) U(1)L, SU(2)L, SU(3)L, and SU(5)R; 
just above ALR, the couplings are for (top to bottom) U(1)L, U(1)R, SU(2)L, SU(2)R, SU(3)L, 
and SU(3)R· The runnings are computed with non-SUSY {3-functions below the scale s"" 1 TeV. 
Threshold effects are neglected. 

These choices satisfy the constraints (14) and are not fine-tuned. From the figure it is clear 
that the coupling constants at the weak scale are in rough agreement with the experimental values, 
a;-1 = 8.33, a£1 = 29.69, and ay1 = 58.8 [12]; We expect the agreement to be much better after 
accounting for particle threshold effects and using two-loop RGEs, as studies of similar models 
confirm [22]. For the sake of our discussion, however, the qualitative agreement between the weak­
scale couplings predicted from this model and the experimental values is sufficient to consider the 
parameter choices (29) as 'typical'. 

4.3 - Low Energy Fermion Mass Matrices 

Putting together the Yukawa couplings in (8), the Higgs' VEVs (23), and the constraints (29), 
we obtain a seesaw-type mass matrix for the fermions at energies < VL· Interestingly, the matrix 
structure exhibits a dichotomy between quarks/ charged leptons and neutrinos. For the quarks and 
charged leptons the mass matrix takes the general form 

!I t I II fie 

12 o(<< VL) o(vL)A2 he 

h he 
(30) 

fH1 III IV fH1 e 

fH2 o(vR).As o(ALR).At fH2 e 

fH3 fH3e 

10 



· Here the f's represent standard model fermions, whereas the fH's are heavy exotic fields, all of 
which come in three generations. Strictly speaking, the entries in Quadrant I of {30) are zero in this 
model, but one can relax this with a VEV structure slightly differing from (23) or with radiative 
effects. Provided that these entries are small, our results are essentially unchanged. We have noted 
the matrix structure in the other quadrants in accordance with the notation of the superpotential 
{19). The exotics UH, dH and eH acquire heavy masses in Quadrant IV of O(ALR)· 

The neutrino sector exhibits a completely different mixing structure. In the basis 1/Jv = 
(VL,vac,NL,NRc) the 12 x 12-mixing matrix has the form 

{31) 

There are several interesting features of the above structure: 

• the seesaw for the neutrinos is more severe than for the quarks and charged leptons, since 
VLVR/Maur << V£VR/ALR· This results in much smaller masses for neutrinos than for 
charged leptons. This is in agreement with the tiny mass limits on neutrinos [23]. 

• the flavor mixing in the leptonic sector can be quite different from that in quark sector 

• the physical neutrinos will be Majorana particles 

In the next section we will investigate more fully the range of parameters in the above mass matrices 
which can accomodate the known masses and mixings of the standard generations. 

5 Constraints and Predictions 

5.1 Fermion Masses and Neutrino-Mixing 

The low energy manifestation of this model is essentially contained in the structure of the mass 
matrices {30), {31) and the mixing matrices derived from them in the presence of weak interactions. 
In this section we will demonstrate how the parameters of the model can accomodate the empirical 
bounds on these two sets of measurements. 

The most recent determination of quark masses [12] gives 

mu = 1 to 5 MeV 
me= 1.15 to 1.35 GeV 
mt = 174.3 ± 5.1 GeV 

md = 3 to 9 MeV 
m 5 = 75 to 170 MeV 
mb = 4 to 4.4 Ge V 

{3~) 

Our model must be able to replicate these hierarchies (as well as the leptonic ones). Fortunately 
the seesaw mechanism is a natural feature of the model, as is evident in the structure of {30). 
For a typical parameter set as in {29), the extreme range of the quark masses in (32) is replaced 
by two much smaller imposed disparities: first, some 0(1) inhomogeneity of the small Yukawas 
in Quadrant I of (30), and secondly, some favoring of the heavier quarks to mix more with the 
extremely heavy exotics. We reserve numerical details for the Appendix, where our results indicate 
that such mixing may occur at a level sufficient to drive up the heavy quark masses, yet still not 
contribute to FCNCs, as we now discuss. 

11 



Constraints on fermion mixing involve both quarks and neutrinos. Both types of mixing at 
present have fairly well measured bounds, yet have completely opposite structures: quarks are 
observed to mix minimally with each other, yet recent experiments seem to suggest that neutrinos 
prefer to mix in a maximal fashion [24]. 

Quark mixing is straightforward: upon diagonalizing MMt (hereM is the matrix in (30)), e.g. 
for up-quarks, denote the normalized eigenstates as 

lup >= L ailui > + L f3iluH; > 
i 

To obtain a quark eigenstate with mass mq, choose 

R > VLALR 
f-Ji- 2 + A2 2 VR LR -mq 

(33) 

(34) 

In the limit f3i ~ 0, the eigenvalues are dependent solely on the tiny Yukawas and such masses 
correspond to the lighter quarks mu,d,s,c· For the heavier quarks mb,t the f3i of the above magnitudes 
must be carefully selected taking into consideration the matrix structures in (30). We obtain fits for 
f3i as high as 0(10-2 ). This level of mixing with exotic quarks is completely within the bounds set 
by unitarity of the CKM. Furthermore the measured entries of the CKM matrix can be matched 
within their error-bars by adjusting the small entries in Quadrant I of the mass matrices (see 
Appendix). 

Neutrino data now seems to favor the Large Mixing Angle (LMA) solution to v-oscillation [24]. 
If this solution is correct, the lepton-neutrino mixing matrix UMNS (the analog [25] of the CKM 
matrix for quarks) which mixes (e,J.L,r) with (ve,vJL,vr) takes the form (26] 

( 

0.7 -0.7 < 0.2 •) . 
UMNS = 0.5. 0.5 -0.7 

0.5 0.5 0. 7 l+v 

The mass-splitting between the neutrino mass-eigenstates (vi, v2, v3) is also constrained [26]: 

..6.m~2 ~ 3 . 10-3 e V 2 

..6.m~l ~ 5 . 10-5 e V 2 

(35) 

(36) 

As in the quark sector, we encounter no difficulty reproducing this data with the given form of the 
neutrino mass matrix, making a suitable ansatz (see Appendix) for the masses of the observable 
neutrinos in the model. Note that only a tiny amount of mixing with exotics is necessary to drive 
the standard neutrino masses to very small values (replace ALR with McuT and mq with mv in 
(34)), leaving them the freedom to mix near maximally with each other as in (35). This model thus 
naturally predicts that mixing among the neutrinos is larger than among the quarks. 

5.2 Predictions at the Next Experiments 

Perhaps the two most testable signatures of this model are the existence of Majorana neutrinos 
and the appearance of a new vector boson, WR, mediat~ng a force between right-handed fermion 
currents which exactly mirrors the known properties of the Weinberg-Salam weak force. The most 
sensitive type of experiment at present to test both of these predictions is neutrino-less double-{3 
decay, the decay N ~ N' + 2e-. The strongest limit at present is for the half life of 76 Ge [27]: 

(37) 
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·The decay can proceed through either standard WL exchange (suppressed by neutrino helicity flip) 
or in the present model through the exchange of the WR boson or Majorana neutrino. Given the 
above bound on the lifetime and including present theoretical uncertainties in calculating nuclear 
physics effects, the limits on the mass mv of a Majorana neutrino or W R [18, 19] are: 

mv <(few) eV 
mwR > 1.6 TeV 

(38) 

which tells us that VR/Maur < w-11 and VR;::: 1.6 TeV, consistent with (29). If a decay is observed 
in upcoming double-,8 decay experiments (28, 29, 30], we will hopefully have more stringent tests 
of the current model. 

As pointed out in [7], SUSY models which produce flavor alignment through the RGEs gener­
ically predict that up-squarks are heavier than down-squarks, in contrast to the usual prediction 
of, e.g., the minimal supergravity MSSM [4]. This follows simply from matching the fF1P terms 
in (5), yielding a condition analogous to (6): 

mQ2 + mu2 + mH,. 2 = ~(gi) 
mQ2 + mi + mHd 2 = ~(gi) 

The conditions for EW symmetry breaking, 

IJLI2 + mH,. 2 = b cot,B + mz2 /2 cos2,8 
IJLI2 + mHd 2 = b tanf3- mz2 /2 cos2(3 

and the expression for the mass of the pseudo-scalar Higgs A 0, mAo 2 = 2 b/sin2,8, give 

(39) 

(40) 

(41) 

Requiring that the top Yukawa coupling Yt remain perturbative down to the electroweak scale forces 
tan,B > 1 which implies cos2,8 < 0. Under these assumptions (41) states m~ > m~ as claimed. If 
Supersymmetry can be found and measured with precision at the next collider experiments [31], 
( 41) is a quantitative prediction. 

6 Conclusions 

In this paper we have constructed a specific model which illustrates a solution to the SUSY flavor 
problem. The RGEs run to their fixed points, furnishing low energy Yukawa matrices that are 
independent of their GUT -scale values. It produces the pattern of flavor mixings in the quark sector 
consistent with experiment. Neutrino mixings and masses are also in agreement with experiment. 
Flavor violations in the squark sector are small. The unified scale group structure, S0{10)L x 
S0(10)R, is an extension of the original Pati-Salam unification ansatz SU(4)L x SU(4)R, and 
seems to be the minimal arrangement possible to achieve all of the features derived. 

The predictions this model makes at the next accelerator experiments will of course include 
observation ofSUSYparticles, but also a right-handed current, possibly at energies as low as 1 TeV, 
analogous to that coupling theW and Z particles to standard model doublets. Further, if enough 
of the the squarks are seen and measured, the squark mass spectrum will have a characteristic 
pattern of up-squarks being heavier than down-squarks, the opposite of conventional predictions in 
the MSSM. 
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·Table 1: Particle Representations at each Energy Scale. The symmetry group (left column} breaks 
due to fields (center column} getting VEVs; see (9} for breaking scheme and scales. Prior to the 
breaking (left column}, fields (right column} describe the matter content. Fields which play little 
phenomenological role, e.g. the O"i 's in {18) , are omitted for brevity but may be determined from 
the rep's in the first row of the table and 80(10) branching rules (see discussion following {18}} 

Symmetry Fields getting VEV s Matter 
S0(10)L X S0(10)R {x£(16; 1) XR(1; 16)} X 3 

/}.L, !}.[_, t11 (10; 1) 
q,(16; 16) q,(16; 16) I II ( -) !:::J.R, !}.R, !:::J.R 1; 10 

eL, e~(45; 1) 
eR, e'n(1; 45) e (45; 45) 

SU(5)L X U(1)~ 1/J£(5; 3; 1; 0) 1/JR(1; 0; 5; -3) 
xSU(5)R x U(1)'n WL(10; -1; 1; 0) W R(1; 0; 10; 1) 

EL, E~{24; 0; 1; 0) w(5· -3· 5· 3) 
' ' l 

w(5; 3; 5; -3) 
ER, E'n{1; 0; 24; 0) f2(10·1·10· -1) 

' l l 
n{1o· -1·10·1) l l l 

ELR(24; 0; 24; 0) (P£(5; -3; 1; 0) (h(5; 3; 1; 0) 
c/JR{1; 0; 5; 3) ifJR(1; 0; 5; -3) 
+a terms (see (18)) 
HL(5; -3; 1; 0) H£(5; 3; 1; 0) 
HR{1; 0; 5; 3) HR(1; 0; 5; -3) 

SU(3)L X SU(2)L X U(1)L q(3· 2·1·1·1· 0) UH(3·1· -4·1·1· 0) 
' ' l ' ' l l l l l 

xSU(3)R x SU(2)R x U(1)R dH(3·1· -2·1·1· 0) l l l l l 1(1·2·3·1·1·0) ' ' ' ' , 
eH(1·1· 6·1·1· O) 

' ' ' ' ' UH(1·1·0· 3·1· 4) 
' ' ' ' ' w w q(1·1· O· 3· 2· -1) l l l l l l(1·1· 0·1· 2· -3) 

' ' ' ' ' n n dH(1·1· O· 3·1· 2) l l l l l eH(1·1· 0·1·1· -6) 
' ' ' ' ' ifJL(1· 2· 3·1·1· 0) l l l l l ifJ£(1· 2· -3·1·1~0) ' ' ' , ' 

ifJR(1; 1; 0; 1; 2; -3) ifJR(1·1·0·1·2·3) l l l l l 

H£(1·2·3·1·1·0) l l l l l H£(1· 2· -3·1·1· 0) l l l l l 

HR(1·1· 0·1· 2· -3) l l l l l HR(1·1·0·1·2·3) 
' ' ' ' ' 

SU(3)c x U(1)L+R q(3; 1/3; 2; 1) UH(3; -4/3; 1; 1) 
xSU(2)L x SU(2)R dH(3; 2/3; 1; 1) 1{1· -1· 2·1) l l l 

eH(1; 2; 1; 1) UH(3;4j3; 1; 1) 
ifJR ifJR q(3; -1/3; 1; 2) 1(1·1·1·2) l l l 

HR HR dH(3; -2/3; 1; 1) eH{1; -2; 1; 1) 
ifJ£{1; -1; 2; 1) ifJ£(1; 1; 2; 1) 
HL(1; -1; 2; 1) HL(1; 1; 2; 1) 

SU(3)c x U{1)y x SU(2)L ifJL c/JL 
HL HL MSSM 

SU(3)c x U(1)EM SM 

Appendix 

1. Particle Representations 

15 



Table 2: Group Theory Indices 

G ~ 02(~) 
SU(5) 1 0 

5 1/2 
10 3/2 

SU(3) 1 0 
3 1/2 

SU(2) 1 0 
2 1/2 

2. Beta Functions 

To calculate the beta function expressions (26) and (28), 

f3 = 1!:2 ( ~ C2(R;)d1 (R;) · · · dn(R;) - a c. (G)) (42) 

/3n.s. = !::2 ( ~ ~ C2(RJ )d1 (RJ) · · · d, (Rt) + ~ ~ C2 (R,)di (R,) · · · d, (R,) - I; C1 (G)) ( 43) 

one needs to know the "indices" 02(~) ; in Table 2 below we list the indices for various rep's of 
SU(5), SU(3), and SU(2) (for a more extensive discussion, see [32]): 

If the group under consideration is U(1), the index 02(~) is the sum of the squares of the 
(normalized) U(1) charges, l::i Yi2 . . 

We have the further rule that C1 (SU(N)) = N. With all of this we can compute the beta 
functions (see Table 3). 

In addition to knowing the beta-functions, one must also use the matching conditions at each 
threshold where symmetries change. There are two basic rules to follow when the higher energy 
symmetry G + changes to G _ below the threshold: 

• If G _ c G + , then the matching condition is a_ = a+ 

• If the generators of G _ are linear combinations of the generators of several of the higher 
energy groups (labelled by j), T_ = Ei cjTj, then the proper matching condition for the 
couplings is a_ - 1 = l:j,kc/ai-1 

With this we have the following matching conditions: 

ac - 1 = ~ ( a3L - 1 + a3n - 1) 

a1,L+R-1 = ~(a1L-1 +a1n-1) 
-1 3 -1 + 2 -1 ay = gain ga1,L+R 

3. Quark and Neutrino Constraints 

Let us take the CKM matrix given as 

VcKM ~ ( 0~2 
0.002 

16 

-0.2 
1 

0.04 

at J1 = ALR 
at J1 =ALR 
at J1 = VR 

0.004 ) 
-0.03 

1 

(44) 

(45) 



Table 3: First Order Beta-Function Coefficients. The notation is defined so d~~~) = ,Bfs;~
3

• Here 
s"' 1 TeV is the scale where BUSY breaks. 

Energy Range G f3a 
MR < J.t < ML SU(5)R 19/2 

SU(3)L 29/2 
SU(2)L 37/2 
U(1)L 38 

ALR < p,< MR SU(3)R 29/2 
SU(2)R 37/2 
U(1)R 38 

SU(3)L 29/2 
SU(2)L 37/2 
U(1)L 38 

VR <p, < ALR SU(3)c -3 
SU(2)R 2 
SU(2)L 2 

U(1)L+R 8 
S < J.t < VR SU(3)c -3 

SU(2)R 2 
U(1)y 8 

VL < J.t < S SU(3)c -7 
SU(2)R -8/3 
U(1)y 5 
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where we are neglecting the small CP-violating pieces, and further make the assumption that the · 
exotic sector mixes in the same way; the total 6 by 6 "extended-CKM" matrix ( eCKM) looks like 

( 
VcKM < 10-3

) 
VecKM = < 10- VcKM (46) 

where the off-diagonal entries are bounded from above by unitarity. We assume that the exotic 
quarks mix in the same proportions as the standard quarks do only for simplicity; for a more precise 
fit it is necessary to treat the exotic quark mixing as a collection of free parameters. 

As in the standard model, one diagonalizes the quark mass matrix (30) by performing unitary 
transformations on the left- and right-handed quarks: 

UL ~ UuUL dL ~ UddL 

UR ~ VuUR dR ~ VddR. 
(47) 

Here the u's and d's are 6-vectors of standard and exotic quarks. The phenomenological constraints 
are 

VecKM = uutud 
AuAut = UuDu2Uut 
>.d>.d t = UdDd2Ud t 

{48) 

with Du,d being the diagonal quark mass matrices which must accomodate the measured quark 
masses in {32). There is a great deal of freedom of parameters in satisfying {48): the matrices 

. >.1,2 ,3 as well as the small ( < < 1) Yukawas in {30) permit a class of solutions that give flavor-basis 
mass matrices like 

I II 

III IV xmw {49) 

for the up-sector with the 'typical' parameters (29) of the model (tanf3 ~ 10), and similarly for the 
down-sector. The tiny couplings in Quadrant I have a significant effect on the mass eigenvalues; a 
typical pattern for U u might be t 

~o ~o ~o 

o(l) < 10-3 < w-3 < 10-3 

Uu 
~ 10-2 ~ 10-2 ~ 10-2 

(50) ~ 

<10 ~o 

~o < 10-3 o{l) 
~o < 10-3 

The mixing between exotic and standard quarks is tiny, well below unitarity and FCNC bounds, yet 
sufficient to give sizable masses to the heavier c, t-quarks since the exotics themselves are so massive. 
The matrix calculations are therefore rather sensitive to small changes, yet can accomodate the 
constraints in ( 48). 

t we do not furnish exact numbers here since these will depend upon the choice of V eCKM and the V u,d, both of 
. which entail not currently observable physics and therefore may follow as suits the taste of the model-builder 
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The only extra bit of analysis needed for the neutrino phenomenology is the value of the masses 
to insert in the analogue of Dv (the charged lepton masses D1 we know fairly well, of course). If 
the LSND experiment's results are genuine [33], then it may be reasonable to assume an average 
neutrino mass around 1 eV. The rest of the work closely parallels the above discussion for quarks, 
with the result that the constraints analogous to (48) for lepton masses and the BNS-matrix may 
be satisfied within this model. 
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