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Abstract

Atomic Processes for Heavy Ion Inertial Fusion

by

Michael Scott Armel

Doctor of Philosophy in Engineering - Nuclear Engineering

University of California, Berkeley

Professor Per Peterson, Chair

Heavy ion beams which may be used as drivers for inertial fusion energy power generation

exhibit a wide array of atomic phenomena in connection to their penetration through the

chamber environments and into the target materials associated with current heavy ion fusion

(HIF) scenarios. The modeling of many of these atomic processes has been complicated

due to uncertainties, including many diÆcult-to-quantify atomic processes of ion-plasma

interactions. This work has been directed to address some of the issues of greatest import

to HIF and atomic physics in general.

A comprehensive model is presented in this dissertation which enables calculation

of important atomic reactions and an improved understanding of the processes responsible

for errors in previous calculations. This work demonstrates that the standard binary en-

counter models (BEM) for direct ionization can be used reliably in HIF-related calculations

of beam ionization in gaseous chambers and the charge evolution of ions penetrating solids.



2

Much of the miscalculation of enhanced ionization previously encountered is shown not to

be due to shortcomings in the BEM, but rather to incomplete application of the Lotz free

electron formula to highly-charged ions. Included are recommendations for obtaining bet-

ter HIF-related ionization cross sections experimentally. This can be done by reversing the

target and beam frames, using nuclear or electron beams to ionize heavy ions, which can

have an initial charge state as high as 10+ [50].

Herein is demonstrated for the �rst time the successful use of �rst-principle charge-

changing reaction models to replicate the Bohr semi-empirical formula for equilibrium

charge states of ions penetrating cold solids. This success, along with an improved un-

derstanding of the ionization and capture processes in beams penetrating plasmas are com-

bined to establish trends in the charge state evolution of heavy ions in plasma targets. This

enables the development of a new equilibrium charge state formula giving the equilibrium

charge evolution of a beam penetrating a dense, partially ionized plasma target.

Professor Per Peterson
Dissertation Committee Chair
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To the cathedral builders, who toil in love for that whose culmination they may

never know,
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Chapter 1

Introduction and Heavy Ion Fusion

The Earth in all of its nearly �ve billion years has been powered by fusion energy.

Ninety-three million miles away seethes a ball of fusion generating almost 4� 1026 joules of

energy every second with philanthropically anthropic precision and bene�cence. The mass

of the sun, a third of a million times greater than that of our planet, creates the gravitational

conditions necessary to sustain astrophysical thermonuclear reactions and contains enough

nuclear fusion fuel for billions more years. With epic determination to replicate jealously

that orb which was once worshiped, many members of the world's scienti�c community have

endeavored to fashion a golden calf of brilliant fusion energy here amongst ourselves.

1.1 The Challenge of Fusion

In order to achieve fusion energy, a great hill must be ascended. This hill is the

barrier of electrostatic repulsion which acts to repel the nuclei which fusion scientists aim

to bring together. That `hill' is in fact much too great to be conquered by ordinary kinetic
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collisions. Even the sun, if it were to rely on brute-force mechanical collision to bring

two light elements together, would collapse cold. Only by a trick of quantum mechanical

tunneling can the barrier of Coulomb repulsion be breached e�ectively enough to allow

energy to be produced in any signi�cant manner.

This struggle to unite light elements is in contrast to the relative ease with which

nuclear �ssion occurs. The �ssioning of a heavy nucleus occurs not by a mad melee among

particles, but by the subtle assumption of a slowly moving neutron. The subatomic instabil-

ity which results enables a chain reaction of more �ssions which can continue in a sustained

manner if the conditions should be appropriate. Nuclear �ssion is in principle so easy to

achieve that it once occurred naturally on earth in places such as the Gabon province of

Africa. The now-famous Oklo natural reactor simmered there billions of years ago before

the Earth's supply of precious 235U decayed, leaving mostly the less �ssionable 238U [12].

Yet fusion, as currently understood, requires a struggle. In hydrogen powered `H-

bombs', thermonuclear fusion produces signi�cant amounts of energy, usually having been

initiated by a primary explosion generated with facility by nuclear �ssion. This only truly

successful terrestrial fusion represents well some components of the conditions required to

create signi�cant quantities of thermonuclear energy.

The challenge of con�ning and heating isotopes of hydrogen or other light ele-

ments in appropriate quantities for appropriate lengths of time is the pivotal challenge in

thermonuclear fusion energy research. The pre�x `thermo' implies that heat is involved in

the approach to generate fusion. The role of this heat is to provide the fuel atoms, usu-

ally hydrogen isotopes, with enough average kinetic energy (temperature) to enable them
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to tunnel through their associated Coulomb barriers. Another requirement intuitively ex-

pected is that collisions among nuclei should be frequent enough, relative to the time of the

containment of the ensemble, to allow enough reactions to occur.

Traditionally n� , the product of the number density of a fusion fuel and its con�ne-

ment time, is the primary measure of how well an ensemble of particles has been prepared

to undergo thermonuclear fusion. Broadly interpreted, its merit emphasizes that a combi-

nation of containment and density must be achieved in order for a substantial fraction of

collected nuclei to interact and fuse. According to the Lawson criterion, the product n�

must be of the order of 1014s=cm3 for successful fusion energy production.

1.1.1 Magnetic Con�nement

If the heated collection of fusing particles should be in the form of a relatively low

density plasma, whose ionic density n is much less than about 1018=cm3 it could produce

signi�cant thermonuclear energy if it were contained appropriately. The reduction of the

product n� due to the low density would be compensated by a larger con�nement time

� . This is the general approach of magnetic con�nement fusion. In magnetic con�nement

schemes, containment of a rare�ed fusion plasma is achieved by arranging magnetic �elds

within a large volume to contain the electrons and nuclei of the fusion plasma as they swirl

along magnetic �eld lines. This magnetic fusion energy (MFE) approach has been pursued

with increasing success over the last half-century.

The density characteristic to such MFE plasmas is low, of the order of 1014=cm3.

However, ambitious con�nement times are sought in such plasmas, from milli-seconds to

seconds. The complexities of magneto-hydrodynamics including a number of plasma insta-
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bilities have made the research associated with MFE a very rich endeavor.

1.1.2 Inertial Con�nement

Instead of creating the necessary combination of fusion fuel density and contain-

ment time by striving for an extensively contained but rare�ed ensemble, suppose that

the obverse conditions could be achieved. Alternatively, a small but dense ensemble of

thermonuclear fuel would be required to be con�ned only momentarily to achieve the con-

�nement criterion.

Recalling the explosion of an H-bomb, suppose that a small, dense capsule of fu-

sion isotopes were to be gathered and compressed, generating a miniature bang from which

energy could be extracted. The con�nement would be achieved by the slight but e�ective in-

ertial reluctance of the inwardly imploding shell to change its direction once thermonuclear

burn should begin. In the brief moment of thermonuclear propagation through the fuel,

it would adequately resist disassembly due to the momentum which it had received from

implosion. In more explicit terms, fusion can be achieved e�ectively since the characteristic

burn propagation time is less than the disassembly time of the compressed hydrogen iso-

topes. This approach to creating fusion energy, relying on the inertia of the fuel to provide

the con�nement of the elements to be fused, is known as inertial con�nement fusion, or

ICF. The extraction of energy from such ICF processes is known as inertial fusion energy,

or IFE.
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1.2 IFE Power Generation

There are at least four macro-components to a scheme to extract energy from ther-

monuclear reactions in ignited IFE fuel capsules [3]. (1)A driver energy source is required

to provide the energy which compresses and heats the capsules; (2)Fuel capsules must be

developed and fabricated for use in power plant systems; (3)A chamber for containing the

miniature fusion explosions must be designed to handle the energy of the thermonuclear

yield and the radiation generated; (4)Some suitable turbine system is required to convert

the heat energy from the chamber into electrical energy.

1.2.1 IFE Drivers and HIF

In order for a thermonuclear implosion and ignition to be generated in a small

hydrogen fuel capsule by compression, a large amount of energy must be directed onto the

capsule. This energy which drives the compression of the capsule would blast away the outer

layers of the capsule's shell resulting in a recoil of the capsule's main body of fusion fuel

inward. At the appropriate point, thermonuclear reactions would be initiated and spread

through the compressed and heated fuel.

The energy source required to perform this compression is immense, but the bene-

�ts in terms of the thermonuclear energy yield can be great. The �rst challenge in developing

power from IFE is to identify an appropriate source of energy necessary to compress and

ignite the fuel pellets. Currently two general types of these driver sources are being con-

sidered: lasers and heavy ion beams. In either case, the driver beam would deposit its

energy on or around the fusion fuel capsule providing the necessary energy for implosion
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and thermonuclear `bang'.

Indirect and Direct Drive

The energy necessary for the compression and ignition of a thermonuclear fuel

pellet can be delivered to the capsule in two general ways. A driver laser pulse or ion beam

pulse can be deposited into a material on the capsule surface itself or into a secondary

material encasing the capsule. The former approach is known as direct drive. The sudden

deposition of driver energy just beneath the surface of a coating on the capsule is intended to

cause an explosion below the surface, the recoil of which would drive the main body inward.

The driver energy must be deposited symmetrically over the surface of the spherical capsule

in order to achieve an eÆcient implosion. In indirect drive schemes, the driver energy is

not applied directly onto the fusion fuel capsule but into a surrounding container in whose

cavity the capsule is located. This method relies on the radiation emitted by the secondary

materials surrounding the capsule to heat and ablate away its surface, generating a recoil

which sends the body of thermonuclear fuel inward.

Currently among most HIF power plant design groups at the Virtual National

Laboratory for Heavy Ion Fusion (VNL), indirect drive is regarded as a more favorable

approach. The advantages of indirect drive include improved ablation symmetry. Rather

than laser or ion beam intrinsic non-uniformities being sensed directly by the surface of

the capsule as in direct drive methods, indirect drive o�ers a signi�cant degree of smooth-

ing. The non-uniformities of the driver beam are generally lost as it is deposited into the

radiating materials of the hohlraum. Those materials re-radiate the energy in a manner

whose symmetry depends on their spatial distribution and hydrodynamic motions, not on
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Figure 1.1: An idealized ICF hohlraum; Arrows indicate application of driver energy

the imperfections of the beam. However, direct drive schemes are still being considered and

may eventually represent a competitive alternative to indirect drive.

ICF Hohlraums

In indirect drive implosions systems, the fusion fuel capsule is contained within

a structure designed to receive the driver's energy and to re-radiate that energy onto the

capsule within. The structure containing the capsule is known as a hohlraum, which means

`cavity' in German. The principle motivating this name is that the cavity between the

absorbing and radiating materials and the capsule itself houses the radiation �eld which

ablates away the surface of the capsule. This is represented graphically in �gure 1.1.

The materials within the hohlraum which receive the driver energy, either laser or

ion beam, are known by several names, the most common being `radiators' or `convertors'.

These materials re-radiate the driver energy, converting it into an X-ray black-body �eld in

the cavity in the hohlraum.
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Heavy Ion Indirect Drive

Among the many possible manners of driving an IFE fuel capsule implosion, this

dissertation will be directed to the study of one in particular. The use of beams of heavy ions

to supply the driver energy for an IFE power plant is regarded as a potentially economically

successful mode of fusion power generation. This dissertation addresses some atomic physics

issues associated with the use of such driver beams, which may consist of lead ions with a

beam energy of 20MeV=u.

1.2.2 IFE Fuel Capsules

After the driver, the second general component of an IFE power scheme is the the

thermonuclear fuel capsule itself. Whether driven by direct beam deposition onto their sur-

faces or by indirect radiation, the science of small, dense arrangements of hydrogen isotopes

is a re�ned concert of hydrodynamics, radiation transport and thermonuclear reactions.

The concept of ignition of a compressed fuel capsule in general terms is a realistic and well-

understood approach to generating fusion power. This section covers the nature of these

remarkable fusion fuel capsules and their performance in thermonuclear power generation.

Pellet Function and Form

The general principle on which IFE fuel capsules are designed is that it is ener-

getically easier to accelerate inwardly and implode a spherical shell than a sphere. This is

the same principle behind the designs of early �ssion weapons in which a critically dense

and con�ned �ssioning fuel mass was assembled by imploding hollow spheres [56]. For IFE

fuel capsules, the analogous solid shell is intended to consist of cryogenic hydrogen which



9

would be imploded inward to create the �nal conditions appropriate for a rapid spread of

thermonuclear burn through the compressed lump. Another nuclear component is needed

for this to be achieved. Current designs require a rare�ed gas of fusion fuel to be present

in the hollow center of the cryogenic shell. It is this gas which, when compressed by the

imploding main fuel shell, �rst initiates thermonuclear burn. This burn then propagates

into the main fuel, ideally at the appropriate point of compression. Just as a rocket can be

propelled by releasing fuel exhaust, a spherical shell can be compressed by sending exhaust

o� of its surface, propelling the shell inward at all points to its center. In this manner,

by applying an external energy source, an outer layer covering a shell of hydrogen isotopes

could be ablated away while driving the fuel shell inward by conservation of momentum.

The imploding shell of fuel within the capsule could be initiated to fuse at the proper point

of compression. In that situation, as a function of the density of the fuel, the thermonuclear

reactions once initiated would propagate or "boot-strap" through the compressed, dense

fuel at the right instant. The fuel would burn up creating a thermonuclear explosion. This

explosion could be designed to be a small, manageable event from which useful energy could

be extracted.

Pellet n�

In inertial con�nement fusion systems, the time scale of the con�nement is the

duration of the `bang', the propagation of the thermonuclear burn wave through the main

fuel. For IFE capsules this time is of the order of tens of picoseconds, 10�11 seconds. This,

as often remarked, is hardly con�nement at all. The �gure of merit n� is rescued by the

high densities of the thermonuclear fuel involved. The main fuel shells of fuel capsules are
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to be constructed of cryogenic hydrogen. This solid-density fuel is then compressed by a

series of pulse-induced shocks which increase the density even more. Final densities are

achieved which are 1000 times greater than the initial cryogenic density, creating a dense

DT (deuterium + tritium) mass compressed to the astronomically tight ionic density of

1025=cm3. [58]

The Fermi Adiabat

In order to achieve such high �nal densities, the fuel shell must be compressed

in a careful manner. The foremost principle in ICF fuel compression is that solid fuel

compressibility is hindered by entropy increase. In order to compress the main fuel shell to

high �nal densities by shock penetration, the entropy added to the fuel by each shock must

be minimized. A measure of how well this is done is the ratio of the pressure of the solid

fuel to its Fermi pressure during the compression. Ideally, the compression is performed

keeping the pressure of the fuel as close to the Fermi pressure as possible, ensuring adiabatic

compression and maximizing the possible �nal densities. The Fermi pressure of an electron-

degenerate medium is calculated as follows.

The condition of Fermi degeneracy entails that the constituent electrons in a ma-

terial have been arranged such that their six-dimensional volume in momentum-position

space V6 is quantum-limited. This means that each electron's individual 6-volume is re-

duced to the Planckian value of h3, having units of (length�momentum)3. This condition

for a material having N electrons is expressed as

V6 =
X
s

Z Z
d3xd3p = (2s+ 1)VxVp = Nh3 (1.1)



11

with (2s + 1) representing the multiplicity of combinations of spin angular momenta of

spin-s particles, and Vx and Vp representing volumes in position and momentum space,

respectively. For electrons s = 1=2. The Fermi momentum is derived from this by

Vp =
4

3
�p3f =

Nh3

(2s+ 1)Vx
(1.2)

p3f =
3nh3

8�
=

(2�)33n�h3

8�
(1.3)

pf = (3�2n)1=3�h (1.4)

The electronic number density n = N=Vx for hydrogen isotopes is identical to the ionic

density. The ionic density of a medium is

n =
�
�Amu

(1.5)

where � is its mass density, �A is the average atomic mass number and mu is the atomic

mass unit. The Fermi energy for a degenerate electron gas is

�f =
p2f
2me

=
�h2

2me

 
3�2

2:5mu
�

!2=3
(1.6)

Converting to familiar energy units this becomes

�f = 14:03eV
cm2

g2=3
�2=3 = 2:247� 10�11erg

cm2

g2=3
�2=3 (1.7)

The Fermi pressure Pf which will be compared to the actual material pressure is determined

by [70]

Pf = �dE
dV

=
2

3

�f
V

(1.8)

Since the average kinetic energy of an electron is 3
5�f this Fermi pressure can be related to

the Fermi energy as

Pf =
2

5
n�f =

2

5
5:416� 1012

erg cm2

g5=3
�5=3 (1.9)
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This expression can be used to state a ratio of the material's kinetic pressure to its

Fermi pressure. This ratio is usually expressed by the term �. Converting to appropriate

pressure units using 1dyne = 1erg=cm3 and 1Bar = 106dyne, the standard relationship is

obtained

� =
P [MBar]

2:166MBar cm
5

g5=3
�5=3

(1.10)

For situations such as IFE fuel capsule compression the pressure of the hydrogen mass is

sought to be kept close to that of the Fermi pressure throughout the compression. Thus,

ideally � should be close to 1 for the dense main fuel in the capsule. Compressibility

decreases with increasing �.

Burn-up and �R

The need for this terri�c compression can be understood through an examination of

the propagation of thermonuclear burn in a solid fuel. The fuel's burn fraction is expressed

as the ratio

fb =
nb
n

(1.11)

where nb is the density of hydrogen isotopes which have fused and n is just the total ionic

density. The number of isotopes remaining to be burned is just nr = n � nb. In standard

DT fuel capsules the rate at which this burn-up occurs is twice the reaction rate density of

the DT fusion reactions since each fusion reaction causes two ions, one deuterium and one

tritium, to burn:

_nb = n _fb = 2nDrnTr <�vth> : (1.12)
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The brackets <> indicate that the DT fusion cross section � is to be averaged over the

the distribution of thermal ionic velocities vth. Since the fuel ideally consists of an equal

mixture of D and T this reduces to

n _fb = 2
nr
2

nr
2
<�vth> (1.13)

n _fb =
n2r
2
<�vth> : (1.14)

With the substitution of n(1� fb) for nr a convenient expression is written

_fb =
(1� fb)

2

2
n <�vth> : (1.15)

The product n <�vth> is a reaction rate for fusion reactions and its inverse is a character-

istic reaction time � .

When this expression is written as a di�erential equation and integrated from t = 0

to the con�nement time of the ensemble tc the following relationships develop

Z f(tc)

f(0)

df

(1� f)2
=

Z tc

0

dt

2�
(1.16)

=
fb

1� fb
=

tc
2�

(1.17)

fb =
tc=2�

1 + tc=2�
: (1.18)

From this we see that as the con�nement time increases so does the burn fraction with a

logical limit of 1.[58]

After the fuel pellet has been compressed and thermonuclear burn has been initi-

ated, a rarefaction wave propagates into the fuel shell from without. This is equivalent to

saying that the DT main fuel shell hydrodynamically di�uses into the hohlraum's cavity.
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The speed with which this rarefaction penetrates into the fuel is the sound speed of the fuel

cs =

�
P

�

�1=2
: (1.19)

During compression, the pressure of the fuel had ideally been kept near the electron Fermi

degeneracy pressure. However, after burn begins, the heat of the fusing ions rapidly domi-

nates the pressure term. Therefore,

cs =

�
nikBTi
�Animu

�1=2
(1.20)

where ni is the density of hydrogen isotopes, Ti is the ion temperature,  = 5=3 is the heat

capacity ratio of the fuel, �A is the average atomic mass number (= 2:5 for DT) and mu is

the atomic mass unit. These values give

cs =

�
kBTi
�Amu

�1=2
(1.21)

cs =

 
(5=3)kBTi[eV]1:602� 10�12erg=eV

(2:5)1:66� 10�24

!1=2

(1.22)

cs = 8:02� 105
cm=s

eV1=2

p
Ti: (1.23)

The con�nement time of the fuel is the time in which this thermonuclear burn

wave propagates throughout most of the shell. A competition thus exists between the time

scale of the propagation of thermonuclear burn and the time scale for the dissociation of

the fusion fuel mass by rarefaction. A general estimate for the e�ective con�nement time

is given as the time for the rarefaction to penetrate into a fraction of the compressed fuel

mass. A �gure usually cited is [58]

tc =
R

4cs
(1.24)

where R is the capsule outer radius at stagnation.
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Continuing to solve now for the term tc=2� in the burn fraction equation 1.18,

tc
2�

=
R <n�v>

8cs
(1.25)

tc
2�

=
�AmunR <�v>

8 �Amucs
(1.26)

tc
2�

=
�R <�v>

8 �Amucs
(1.27)

in which the familiar areal density �R is introduced. In order to complete the expression

for burn fraction, the terms relating to the cross section and speed of sound must be

evaluated. The typical temperature of burning solid DT fuel should be about 30keV in

these applications. At this point the value of the sound speed, from equation 1.23, is about

1:4�108cm=s. The value of the velocity-averaged reaction cross section at this temperature

is near 6:5 � 10�16cm3s�1. Using these values and the usual �A = 2:5 for an even mix of

deuterium and tritium,

8 �Amucs
<�v>

' 7g=cm2: (1.28)

Hence, a generalized relationship between the burn fraction and the areal density can be

obtained by substituting this re-expressed form of tc=2� into equation 1.18:

fb =
�R

7g cm�2 + �R
(1.29)

In order to achieve a burn fraction of 1=3, which is considered to represent a successful

ignition, the areal density of the compressed hydrogen fuel must be near 3g=cm2.

Power Plant Fuel Capsules

Currently at Lawrence Livermore National Lab, DT fuel capsules are being de-

signed to produce high enough thermonuclear yield to be considered as useful candidates
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Region Outer Radius Volume Density Mass
cm cm3 gcm�3 mg

Ablator 0:234 0:0138 1:845 25:46

Main Fuel 0:212 0:0155 0:25 3:875

Spark Gas 0:18 0:0244 3� 10�4 7.33�10�3

Table 1.1: Physical parameters for power plant-grade thermonuclear fuel capsules

for HIF power plant capsules. The form of such a capsule is as follows. A spherical ablator

shell consisting of a material such as bromine-doped beryllium or a plastic such as `kapton'

(C22H10N2O4) would be formed containing an even mix of deuterium and tritium vapor.

This capsule would be subjected to cryogenic temperatures in such a manner as to cause

a layer of frozen DT to form on the inside of the ablator shell. The inner volume of the

capsule would be occupied by the remainder of the DT vapor.

The frozen DT shell on the interior of the capsule would constitute the main fuel.

The gas in the interior volume would form the `spark', being heated by the implosion to

form a hot spot which initiates thermonuclear burn.

The typical measurements for the regions described for such a capsule con�guration

are found in Table 1.1. A section of a typical HIF fuel capsule is shown in �gure 1.2.

1.2.3 HIF Chambers

The ignition of IFE fuel capsules must be contained in a facility which can both

protect the nearby environment from the blast and harness the fusion energy in an econom-

ical fashion. Chamber science and engineering is a crucial component to developing realistic

fusion power schemes schemes. Several issues must be negotiated by choosing the proper

chamber structure. The driver energy must be able to be delivered into the chamber and
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Figure 1.2: Schematic cross section of an HIF fuel capsule

the capsule itself must be able to be injected with precision. The chamber also must o�er

shielding of the driver and associated diagnostics from the debris and radiation from each

thermonuclear shot. After each shot (which consists of hohlraum injection and fuel capsule

ignition) it will likely be necessary to to remove the resultant debris from the chamber in

preparation for the next shot.

An e�ective technique for accomplishing these requirements as well as eÆciently

absorbing the radiative energy for power conversion may be the use of liquid jets of a

mixture of beryllium, uorine and lithium known as ibe. Another more recent candidate

for the chamber uid is the beryllium uoride compound BeF2. Currently it is expected that

in upcoming experiments the uid will likely not be ibe but BeF2, omitting the lithium

content. As a note, it has become common to refer to any HIF chamber uid colloquially

as `ibe'. This material could be injected into the chamber in oscillating jets which could

perform all of the shielding and thermal hydraulic heat removal.

However necessary, this chamber gas or plasma is also responsible for ionizing the

beam, the quanti�cation of which is a major goal of this dissertation. This ionization may
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be a problematic process. BeF2 vapor is likely to be in the path of the beam in varying

degrees of density. An average BeF2 molecular density value near 5� 1013cm�3 is expected

to be present in the HIF power plant chamber. Collisions between the beam ions and this

BeF2 result in the removal of electrons from the beam ions. The charge states of the beam

ions will increase, possibly complicating beam transport and focusability. However, given

the great range of parameters available for variation, it is likely that complications due to

BeF2 ionization can be resolved. However, it is very important for computer modeling of

beam transport to be able to calculate the ionization caused by this BeF2.

Chambers designed presently for HIF power plants are spherical structures with

inner radii of several meters. Surrounding this structure would be both appropriate shielding

and magnets for focusing the beam into the chamber.

1.2.4 IFE Power Plants

Integrated heavy ion fusion power plant designs incorporating realistic driver,

chamber, capsules and energy conversion have been developed extensively. The designs

are often modular, allowing for di�erent driver systems to be developed independent of gen-

eral chamber parameters. An illustration of one such design, the HYLIFE power plant, is

shown in �gure 1.3. This comprehensive design presents a realistic approach to generating

IFE energy. Its name is an acronym for `High Yield Lithium Injection Fusion Energy'. This

name signi�es that the chamber uid which will achieve the neutron, x-ray and blast shield-

ing and absorption is designed to be lithium-based. Other non-lithium chemical compounds

can be implemented, like BeF2 - the important point here is the identi�cation of the power

plant components.
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Figure 1.3: Visualization of HYLIFE chamber design

Not shown is the accelerator, which may be a linear accelerator facility producing

the beams which would enter into the chamber. The center of the power plant is the fusion

capsule target, enclosed in its hohlraum and injected into the protective enclosure generated

by the owing jets of chamber uid. These targets can be fabricated on-site and sent to the

injector as shown.

The target and liquid jets are enclosed by the chamber structure which is sur-

rounded by pumping systems. These systems acts to circulate the chamber uid and to
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generate within the chamber the appropriate vapor pressures. The chamber could be cleared

after each shot to a suÆcient degree and steady state operation could be achieved. Contin-

ued progress on such designs are making an inertial fusion power plant as conceivable as an

internal combustion engine.

Final Focus and Chamber

A particular region of current HIF power plants is the site of much of the beam

activity addressed in this present work. Along the course of its path through the acceler-

ator systems, the HIF driver beams are focused and adjusted to create the desired beam

properties. This focusing is achieved typically by magnetic devices placed along the ac-

celerator channel. However, this focusing can not be performed once the beam enters the

chamber in which the fusion target is positioned, where the thermonuclear ignitions occur.

Situated before the beam enters the chamber is a �nal focusing system which performs the

last adjustments to the beam before it enters the chamber to be deposited into the target.

It is currently expected that after the �nal focusing is applied, the beam will travel

ballistically into the chamber over a distance of about 300 to 500cm before being deposited

into the target. Any beam ionization or other variation in the beam's parameters which

occur after the �nal focus in the chamber can not be corrected. Therefore, the atomic

reactions which occur between �nal focus and deposition into the target are the focus of

much attention.
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1.2.5 Power Plant Energetics

The ultimate goal of fusion-related research is to facilitate the development of a

competitive electric power source. Ideally, an IFE power plant would be developed which

could produce about 1000MW of electrical power, comparable to a conventional �ssion

reactor. The generation of such a power supply from individual mini-thermonuclear blasts

is outlined below.

The basic energy levels associated with the the implosion and thermonuclear burn

of HIF-scale fusion capsules are of the order of megajoules. The total driver energy deposited

into the capsule structure could be near 5MJ. The thermonuclear yield of a typical reactor-

grade fusion pellet could be of the order of 400MJ, featuring energy gains near 7 to 10. Of

this, a fraction would be rendered by the IFE chamber and converted �rst to thermal and

then to electric energy.

Several factors determine the amount of electrical energy produced form a single

shot. First, the energetic fusion particles, fragments and radiation must be gathered. This

energy, rendered largely into the chamber uid, becomes thermal energy which, through

turbines and generators, is converted into electrical. The turbine or generator eÆciency for

such a system could at most be 50% [3]. So, a conservative thermonuclear yield of 360MJ

from one shot would produce about 180MJ of electrical energy. An appropriate unit to

quantify electrical energy in this discussion is the watt-hour. This energy yield per capsule

corresponds to about 50kWh. If only one implosion were performed each second, then the

power of the plant would be about 180MW. In order to achieve the goal of 1000MW,

there should be between 5 and 6 thermonuclear capsule bangs produced in each second.
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This shot repetition rate of 5 to 6Hz is typical of the expectations of modern IFE designs.

The chamber and beam systems are being designed to handle this ignition repetition rate

(`rep-rate') in order to meet the competitive power requirements.
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Chapter 2

Atomic Physics and Heavy Ion

Fusion

2.1 Introduction

In a commissioned report from 1983, a panel of physicists identi�ed atomic coupling

between driver beams and target and chamber materials as an unresolved and potentially

problematic phenomenology [15]. Though the uncertainties then were expected to be min-

imal, it was deemed necessary that further research be conducted into the atomic physics

issues of beam-plasma interactions. Most of the uncertainty centered around the calculation

of ionization rates associated with the passage of a projectile through a gaseous or rare�ed

target, particularly an ionized target. Now nearly twenty years later, the atomic processes

associated with heavy ion interactions with absorbing media remain popular subjects of

experimental and theoretical research. Particularly active is research in the study of the
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atomic interactions between ion beams and plasmas. Most of the work has been directed

to resolving a particularly perplexing problem, which is the inability to calculate accurately

the ionization cross sections for a beam penetrating a plasma.

Over the past decade an extensive experimental e�ort has validated many trends

in beam-plasma interactions such as the general enhancement of beam ionization cross

sections in plasmas and the importance of indirect ionization events [17],[60]. However,

many empirical results have exposed sometimes-gross shortcomings in theoretical modeling

approaches. Speci�cally, the calculations of the ionization cross sections for beams pen-

etrating plasmas have in general not been consistent with experiment. As a result, the

simple and direct approach to calculating ionization rates from discrete cross section for-

mulae has been questioned. This has opened di�use speculation about the true nature of

atomic reactions relevant to HIF such as ionization and plasma energy deposition.

The atomic physics problems associated with the penetration of swift heavy ions

through rare�ed and solid-density materials constitute a signi�cant set of phenomena. For

the heavy ion fusion scientists, the accurate modeling of the behavior of heavy ion beam

pulses as they propagate through the conceived power plant chamber plasmas and into target

hohlraums is an important component for forming expectations about possible inertial fusion

power plant con�gurations. It is therefore important on a pure atomic science level and

on an applied level to be sure that the most up-to-date physics have been developed and

incorporated into the modeling e�orts. This work presents a thorough investigation of

the physics of ion-matter atomic interactions with special focus on HIF-related processes

whose quanti�cations by direct models have been elusive. This dissertation addresses the
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majority of those questions providing a new comprehensive modeling scheme for heavy ions

penetrating plasmas and gases as well as solid density ionized absorbers.

2.1.1 Plasmas and the Ionization Problem

The process which initiated the renewed interest in beam-target atomic physics

is the comparative increase in a projectile's charge state experienced when traversing a

plasma target [17]. Beam penetration through plasmas causes enhanced ionization to occur

in the projectile ions compared to the penetration through the corresponding cold target

with all else held constant. The degree to which this beam ionization may be enhanced has

been diÆcult to quantify, and many experiments have produced results which have been

modeled successfully only by mammoth supercomputer runs. Some of the causes for this

mismatch were anticipated, but continued investigation of this process has produced data

which some have interpreted to indicate that standard ionization cross section calculations

are sometimes in error, even in a non-ionized target [18], [19]. Additionally, there have

been some observations of enhanced ionization in rare�ed non-ionized media [60]. This has

generated concern about the validity of even the standard models for ionization in cold,

rare�ed targets.

Indirect and Multiple Ionizations

Accompanying this beam-plasma activity has been a new interest in the impor-

tance of indirect ionization processes which have not been handled traditionally by standard

cross section calculations. The standard cross section formulae used to calculate the ion-

ization of a beam typically give the rate of ionization due to a direct collision between an
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incident beam ion and a target charge. However, in addition to this direct collisional ioniza-

tion, a projectile in an excited atomic state can auto-ionize through a number of channels

such as Auger cascades. These indirect ionizations have been credited with generating a

signi�cant fraction of the anomalously high ionization rates observed in beams penetrating

both plasmas and rare�ed targets.

Standard direct ionization calculations generally yield a total cross section for

ionization of a projectile which is the sum of the cross sections of its individual constituent

electrons. This gross ionization cross section can be used to calculate a mean free path for

an ionization to occur. However, as re-introduced by Grisham [43], the gross ionization cross

section should be considered to represent the grand sum of many types of ionizations which

can occur in a collision. In fact, a single collision between a projectile and a target charge

may yield multiple ionizations. Incorporation of multiple ionization e�ects into charge state

evolution calculations will not change the average charge state of the beam, but will alter

the distribution of charge states within the beam.

2.1.2 Relation to HIF Power Plant Calculations

All of these ionization calculation issues will be addressed in detail in this disserta-

tion. Their roles are important to incorporate into models connected with the two di�erent

types of intervening and absorbing materials encountered by heavy ion beams in conceived

power plant con�gurations. These two regimes are (1)chamber rare�ed gases and plas-

mas and (2)target solid-density absorbers. The concerns due to the ionization calculation

diÆculties are distinguished for each of the two regimes.
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2.1.3 Chamber Penetration

A currently-envisioned heavy ion fusion target chamber is expected to contain a

rare�ed gas or plasma, perhaps consisting of a mixture of lithium, and beryllium uoride

(BeF2) or just BeF2 in molecular form with a molecular density near 5� 10�13cm�3. The

incident driver beam ions must propagate through a distance between 300 and 500cm of

this chamber ambiance between the last stage of its �nal focus and the destination fusion

target. Along that course, the beam may be ionized to some degree beyond the level with

which it entered the chamber. The BeF2 itself also may be initially ionized or may become

ionized during the course of the beam propagation.

The degree of the beam's ionization in this BeF2 is important to predict. The

spot size of each beamlet may need to be sensitively tailored to produce an anticipated

volumetric deposition when it reaches the hohlraum. If the spot size of the HIF driver beam

should change in the chamber, this will a�ect the spatial distribution of the beam's energy

deposition into the hohlraum target in the chamber's center. This change in volumetric

beam deposition into the hohlraum convertor materials will create changes in the geometry

of the radiative �eld created inside the cavity of the hohlraum. The properties of this

radiation �eld are responsible for manner in which the surface of the fusion fuel capsule

is ablated. Changes in this �eld caused by unforeseen changes in the HIF driver beam's

volumetric deposition into the hohlraum's radiating materials may have deleterious e�ects

on capsule implosion and thermonuclear yield. The spot size can be strongly a�ected by the

ionization state of the beam's constituent ions. If the charge state should increase, greater

Coulomb repulsion may be generated within the beam causing the spot size to increase.
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This type of e�ect due to the Coulomb repulsion among a beam's constituent ions is known

as a space charge e�ect.

If any enhanced ionization should occur in the chamber, it can be countered by

a number of techniques. The space charge of the beam can be neutralized by adding

co-moving free electrons to the beam. Also, the rate of beam ionization can be reduced

simply by achieving a lower density of background gas in the HIF chamber. It is important,

however, to know what level of beam ionization to expect. If the beam should enter the

chamber at an average charge state of +1, what will be its average charge when it reaches

the center of the chamber? Will it be +4 or +8? HIF scientists hope to be able to calculate

adequately the ionization such that dependable expectations can be formed about what

level of countering tactics must be employed, or if any are needed at all.

2.1.4 Target Deposition

The basic cause of the problem associated with the modeling of the deposition

of the heavy ion beams into the destination fusion hohlraum is the same as for chamber

propagation { uncertainties of charge evolution of beams penetrating absorbers, particularly

plasmas. In the case of deposition into the dense plasmas of the fusion targets, the concern

of the charge state calculation is not the change in the spot size of the beam but rather the

e�ects on the energy deposition rates.

A charged projectile deposits its energy into a medium primarily by transferring

its energy to the constituent electrons in the medium. The rate at which this occurs is a

function of many things, chief of which is the square of the charge of the incident projectile.

This quadratic dependence of incident ion charge state is a signi�cant factor for deposition
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of heavy ionic species. Consider a lead ion beam incident on a target. At an HIF-relevant

velocity of 0:2c, a lead ion's equilibrium charge state while penetrating a cold target (see

section 5.1.1) will be near 63+. But, this charge state is expected to be higher if the beam

were to penetrate an ionized target. So, will such incident lead ions being deposited into an

HIF hohlraum plasma be charged to a state of +63 or +79, for instance? The deposition

di�erence in this hypothetical case is nearly a factor of two, which directly produces a

corresponding di�erence in the range which the projectile ultimately traverses.

Thus, it is important to be able to calculate the charge state evolution of a beam in

an ionized target since IFE targets are designed such that the volumetric energy deposition

in the hohlraum materials is sensitively tuned. A new understanding of energy deposition

in plasmas probably will not threaten any current target designs since the many material

and spatial parameters can be adjusted to accommodate beam energy deposition proper-

ties. But, it is important to understand beam-plasma interactions and to be able to trust

deposition models.

In plasmas, the range of an incident projectile is generally shortened relative to the

range in the corresponding cold material. This is due to the enhanced ionization and charge

states attained and also to the Coulombic properties of free electrons and their di�erences

with respect to the properties of bound electrons. Now consider that the charge state of

an incident heavy ion is also enhanced in a plasma. The combination of these two e�ects

combined may produce a signi�cantly di�erent energy deposition pro�le in a plasma as

compared to the analogous cold target. It is the quanti�cation of this range shortening and

deposition pro�le which is the subject of the study of part of this work.
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2.2 Approach

In order to conduct this research, a broad set of basic atomic physics data and

modeling must be developed. Then, the actual reactions which determine the charge evo-

lution and energy deposition of a beam must be articulated. In general, all of the reactions

addressed are Coulombic in nature, and can be understood as collisions between the beam's

shielded nuclear charges and electrons with the penetrated medium's nuclear charge and

electrons. The atomic interaction between the beam and any target will be considered to

consist basically of two types of processes: (1)ionization and recombination (charge change),

and (2)energy deposition. Once the primary problem of charge state determination has been

addressed, integrated calculations incorporating energy deposition can be performed. The

modeling of charge evolution and the integrated calculations will be applied to resolve the

problems of atomic modeling for heavy ion fusion.
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Chapter 3

Atomic Principles

3.1 Atomic Data and EOS Modeling

In order to address the complex atomic interactions between a beam and a pen-

etrated material, a suitable atomic modeling suite and data bank must be developed to

provide the necessary structural and energetic information for the electrons associated with

the atoms and ions involved. This section addresses the various data sources and calcula-

tions used to provide the necessary information.

3.1.1 Quantum Numbers

While the electrons within an atom or ion can exist in states characterized by as

many as four quantum numbers, the analyses in this dissertation will be sensitive to only

two, the principal quantum number n and the angular momentum sub-shell number l. This

will be adequate since the variations in an electron's ionization potential with terms beyond

l are relatively weak, causing variations of only a few percent at most. This is consistent
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with the range of accuracy required for this dissertation, which is near 30% for cross section

calculations.

3.1.2 The Bohr Atom

Many useful atomic parameters can be ascertained by scaling of some fundamental

values which have been derived from �rst principles of classical and quantum mechanics.

Three constants, the Bohr radius, the �ne structure constant and the Rydberg energy will

be derived here from a semi-classical analysis of the hydrogen atom. These standard values

can be obtained from knowledge of only the electron mass me, the electron charge unit e

and Planck's constant �h. Scaling laws for application to other species will also be detailed.

The Bohr radius a0 can be understood as the radius at which a hydrogenic elec-

tron's classical angular momentum `e equals the lowest value allowed by quantum stipula-

tions, �h.

`e = mevea0 = �h (3.1)

where ve is the electron's ground state velocity in the hydrogen atom. Since the velocity of

the electron is not yet given here, a second equation is needed to solve for a0. This infor-

mation can be taken from the electrostatic energy balance of a charge in orbit. Following

Bohr and modeling the atom as a planetary-like electron orbiting a solar nucleus, a virial

equation relating the electron's energy kinetic and potential energies can be expressed

1

2
mev

2
e =

1

2

e2

a0
: (3.2)

Solving for ve above gives

ve =

s
e2

mea0
(3.3)
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Substituting this expression for ve into the momentum balance equation provides a solution

to a0

a0 =
�h2

mee2
= 0:529� 10�8cm: (3.4)

Note that this result is also obtained from a centrifugal force balance applied to the atomic

orbital system.

mev
2
e

a0
=

e2

a20
: (3.5)

The �ne structure constant can be understood as being the ratio of the electron's

orbital velocity to the speed of light c. Solving for the orbital velocity in the above deriva-

tions give the simple value

ve =
e2

�h
(3.6)

or

� � ve
c
=

e2

�hc
� 1

137
: (3.7)

The Rydberg energy is the ground state binding energy of hydrogen's electron, be-

ing approximately 13:6eV. This can be obtained from the above by a simple non-relativistic

expression for the kinetic energy of the electron. Using a classical virial relationship between

the hydrogenic electron's potential and kinetic energies,

Ry =
1

2
mev

2
e =

me4

2�h2
: (3.8)

Two important scaling relationships are required for applying these basic values

to to more complex species: scaling with variable e�ective nuclear charge Ze and scaling

with a change in principal quantum number n. With knowledge of quantum mechanics,

inserting an arbitrary charge factor Z into the balance equations of the Bohr atom provides
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the following relationships for charge and n. The binding energy In for an electron in shell

n sensing an average nuclear charge Z scales as

In(Z) � Z
2
Ry

n2
(3.9)

The radius an scales as

an(Z) =
n2a0

Z
(3.10)

The orbital velocity of an electron in shell n perceiving a screened nuclear charge Z , vn(Z),

scales as the square root of the energy

vn(Z) =
Z�

n
: (3.11)

The value of the e�ective charge Z can be determined either from screening constants or

from the atomic electron distribution analysis of section 3.1.5.

Relativistic E�ects

For high-Z atomic species, the strength of the associated Coulomb binding poten-

tial may be such that the subsequent motions of the inner electrons may be relativistic.

In such cases the classical Bohr scaling laws may require correction. The hydrogen K-shell

orbital velocity �c = �c � 0:0073c is not relativistic, but the K-shell electrons in a uranium

atom or ion have a Bohr-scaled velocity of �c � 92�c � 0:67 which is certainly relativistic,

giving a  value of 1:35.

The relativistic scaling of the binding energy is given by [25]

In = (1� s)mec
2 (3.12)
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in which

s2 = 1� �2n; (3.13)

�n being the Bohr-scaled orbital velocity

�n =
�Zn

n2
: (3.14)

While important in principle, this e�ect is not huge, even for the largest ions considered here.

For example, the fully relativistic K-shell binding energy of uranium is found to be 132keV.

The analogous non-relativistic value from the classical Bohr scaling would be 115keV. The

classical result in this case di�ers by only about 13% from the correct relativistic value.

Thomas-Fermi Scaling

The Bohr atom is an atom of shells and orbitals with direct analogs to virial

systems. The Thomas-Fermi (TF) view of the atom is one of a locally degenerate electron

uid with no distinctions between bound or free or between shells and continuum. Many

useful atomic properties can be discerned by treating the electrons associated with each

nucleus, bound or free, as a Fermi-degenerate electron gas. This is similar in principle

to the analysis of section 1.2.2 in which the macro degeneracy of all of the electrons in a

material is considered.

Two values from Thomas-Fermi analysis are useful to consider. The �rst is the

characteristic atomic electron velocity vTF (Z). It is given by

vTF (Z) = Z2=3�c (3.15)

in which � here is the �ne structure constant. It represents a characteristic velocity of the

average electron in the atomic Fermi gas. The second TF value relevant to this dissertation
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is the TF radius, rTF (Z) which gives a scaling of the radius within which nearly 80% of the

electrons of a given atom or ion are located. It is given by

rTF (Z) = Z�1=3a0 (3.16)

in which a0 is the Bohr radius.

3.1.3 Impact Parameters

Many of the calculations in this study will performed to simulate the collision

between a projectile or a projectile's constituent electrons and a target charge, either a

nucleus or electron. An important consideration in quantifying such collisions is the possible

scale of collisional impact parameters b. The characteristic interaction time associated with

a projectile with velocity v passing a stationary target charge at a distance b is of the order

of b=v. Limitations on this impact parameter and its associated interaction time form the

criterion by which the maximum and minimum impact parameters of many atomic reactions

are determined.

The maximum sensible impact parameter for a charge in collision with an atom

or ion with some bound electrons is related to a distance called the Bohr adiabat. Its value

is determined by the time interval associated with the characteristic quantum period of an

electron around a target atom or ion. This period is expressed by

� = 1=! = �h=I: (3.17)

In this formula, I is the average ionization potential of the atom or ion in question (see

section 3.1.8).
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When the time interval of impact is greater than the associated quantum oscillation

period of a typical target electron, no signi�cant energy transfer will occur between the

projectile and target electron. This is true because in collisions with greater characteristic

times, the passing of the projectile by the target happens adiabatically in the sense that,

relative to the target electron's oscillatory motions, the projectile would be proceed very

slowly. The distance beyond which this condition is met is the maximum impact parameter.

It is determined by

bmax

v
� �h

I
(3.18)

bmax � v�h

I
: (3.19)

The minimum impact parameter in a collision between two charges has at least

two possible manifestations. From principles of quantum mechanics, a limitation is imposed

on the minimum relative angular momentum between two particles. This minimum value of

�h, when equated to the classical relative angular momentum between the colliding particles

gives the following limiting relationship

�vr = �h (3.20)

where � is the reduced mass of the colliding system. If one of the colliding particles should

be an electron and the other a nucleus, the reduced mass would be very nearly me, the

electron mass. The radius r at which this is satis�ed is the quantum-determined minimum

impact parameter, which sets an approximate lower boundary on the length scale of any

interaction

bmin � �h

mev
: (3.21)
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Another possible limitation exists, however. Suppose that an electron in a target

material, bound or free, should be in the vicinity of a passing projectile nucleus of atomic

number Z. The kinetic energy of that target electron in the frame of the projectile would

be just 1
2mev

2, where v is the projectile's speed. The electrostatic potential energy between

the two, with the projectile nucleus shielded to Z, would be Ze2=r. The maximum possible

energy transfer in such a Coulomb collision is 2mev
2. The impact parameter at which this

energy transfer is achieved (see section 4.2) presents a classical limitation on the minimum

impact parameter. The relationship between impact parameter b and energy transfer �E

at a given collision velocity v will be shown in equation 4.3 to be

�E(b) =
(�p)2

2me
=

2Q2e4

mev2
1

b2
(3.22)

where Q is the e�ective charge of the projectile which interacts with the electron. The

impact parameter at which this energy transfer equals the maximum allowable value is

b =
Qe2

mev2
(3.23)

This classical impact parameter limit will compete with the quantum-limited impact pa-

rameter in determining the e�ective minimum impact parameter of a particular collision.

3.1.4 Electron Binding Energies

For many of the reactant atomic and ionic species involved in the set of interactions

examined here, the binding energies of the attendant electrons must be obtained. The

binding energies for the valence electrons (simply called the ionization potential) at each

charge state for most elements are available. Also, the binding energies of inner electrons for

neutral atoms are available from calculations and tables found in the associated literature.
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However, this investigation requires knowledge of the binding energies of inner

electrons for ionized species. For instance, the binding energy of the 2p electrons in neutral

gold may be readily found, but what would their binding energy be if the gold should be

ionized to a charge state of 12? The most facile and reasonably accurate solution to this

issue is to employ the screening constants of atomic electrons [29] and the Bohr atom scaling

given in section 3.1.2. Any given electron in any atom or ion (except hydrogenic cases) is not

attracted by the entire, bare nuclear charge during its averaged orbit. The other electrons

in the atom or ion have a probabilistic spatial distribution, a fraction of which occupies

the space between the electron in question and the nucleus, screening the nuclear charge.

The nuclear charge as perceived by a given electron will be reduced by a certain amount

depending on the con�guration of the other bound electrons. The degree to which other

constituent electrons in an atom or ion shield the nucleus as perceived by a particular

electron is that electron's shielding constant. The shielding constant of hydrogen's one

electron is zero, since there are no other electrons to come between it and the nucleus.

The screened nuclear charge, Znl which an electron nl in an atom of atomic number

Z perceives is

Znl = Z � Snl (3.24)

where Snl is the screening constant for electron nl. The shielding constants and binding

energies for all electrons in all neutral atomic species were acquired from a tabulated data

bank [65]. From these two sets of data, ionization potential of neutral atoms and associated

screening constants, the binding energies for ionized species can be approximated. The key

to transposing from neutral values to ionized requires two simple phenomenological points
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of atomic physics. (1) The electronic level population of an atom Z ionized to charge stateQ

is roughly identical to the electron con�guration of the neutral atom having Z0 = (Z �Q).

(2)The binding energy of an electron scales as Z
2
nl, with Znl being the average shielded

nuclear charge which that electron perceives.

So, to determine the inner binding energy Inl(Z;Q) of an electron nl in species Z

ionized to Q, one �rst retrieves the binding energy Inl(Z
0; 0) and shielding constant of the

corresponding electron nl in neutral species Z0 = (Z � Q). The nuclear charge which that

particular electron perceives in atom Z0 is

Z
0

nl = Z0 � Snl: (3.25)

Now, the e�ective charge that the electron nl would perceive in the associated ionized

species Z is similarly

Znl = Z � Snl; (3.26)

since the shielding constant is not a function of the nuclear charge, but only of the electron

con�guration, which is roughly identical in species Z ionized to Q and neutral species

Z0 = (Z �Q).

Thus, the adjusted binding energy of electron nl in the ionized species is deter-

mined by scaling the neutral-atom value according to the new e�ective charge:

Inl(Z;Q) = Inl(Z
0; 0)

 
Znl

Z
0
nl

!2

(3.27)

3.1.5 Atomic Electron Radial Density Distribution

Just as a bound electron in an atom or ion senses the central nuclear charge

screened by other bound electrons, external charges interacting with an atom or ion also
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encounter its nuclear charge, though screened to a di�erent degree by the constituent elec-

trons. In any given reaction between a charged particle and an atomic or ionic species, the

interacting charge encounters the Coulombic �eld of the atom or ion's nucleus, but shielded

by a certain degree as a function of the impact parameter and the ion's charge distribution.

This section addresses the determination and approximation of that density distribution as

a function of atomic number, ionization state and density.

Exact calculation of the time-averaged spatial distributions of bound electrons

including relativistic e�ects for the high electron velocities encountered in high-Z atoms is

accomplished by solving the associated Dirac-Hartree-Fock-Slater equations. This approach

however requires a potentially large calculation requirement. Also, the high level of accuracy

produced by such sophisticated models is not required by this work. In general, cross

section values for ionization of swift heavy ions with many bound electrons can only be

stated within 30% accuracy. So, for the work of this dissertation an approximate analytical

model which characterizes the general features of the typical electronic distribution about

a nucleus should be adequate.

Exponential Screening Potential Model

An approach detailed by Moli�ere [47] and by Chen et al. [28] o�ers one method

to model the radial distribution of each electron shell of an atom. In those works, success

was reported in using simpli�ed analytical models to describe the electrostatic potentials

and shell-wise electron densities in atoms. The justi�cation for this approach can be traced

as follows. In a non-ionized atom, the electrons' electrostatic potential can be modeled

as diminishing with the inverse of the distance from the nuclear center while also being
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screened by the other electrons in an exponentially-decaying fashion. This is expressed by

V (r) =
1

r

X
i

miX
j=1

NiAij exp [�Bijr] (3.28)

in which the summations are over i for the orbitals and over j for the mi moments in

each shell. Ni is the number of electrons in each orbital. The coeÆcients Aij and Bij are

parameters to be determined according to the speci�c case.

By Poisson's theorem this potential is related to the the total bound electron

density n(r) by

r2V (r) = �4�en(r): (3.29)

Substituting into this the expression for the potential V (r) produces

n(r) =
Z

4�r2
Æ(r)�

X
i

miX
j=1

Ni

4�r
Aij exp[�Bijr] (3.30)

with the Æ(r) term added to account for the contribution of the nucleons at r = 0. Notice

that the r2 operator applied to the potential produces a density of the same general form.

This term is the electronic charge density term and it expresses that the density in each

shell should be distributed as

ni(r) /
miX
j=1

Ni

4�r
Aij exp[�Bijr] (3.31)

where ni(r) is de�ned as the bound electron density of shell i.

This model, though reported to be quite successful, requires a signi�cant assort-

ment of associated constants. Can it be simpli�ed? The following analysis presents a new

and simpli�ed approach to obtaining reasonably accurate electronic density distributions.

Suppose each shell n could be modeled by just two constants, Cn and a re-de�ned Bn whose



43

units are of length.

nn(r) =
Cn

r
exp[�r=Bn] (3.32)

With the appropriate Cn and Bn values, this equation should provide a reasonably accurate

model of atomic or ionic shell-wise electron distribution. With some additional stipulations

and boundary conditions the new parameters Cn and Bn can be determined for each shell

n. First, charge neutrality must be maintained. Integration of the density of a shell over

the spherical volume produces the charge enclosed qn(r) at a given radius

qn(r) = 4�CnB
2
n

�
1�

�
1 +

r

Bn

�
exp[�r=Bn]

�
: (3.33)

For a free atom or ion, as r ! 1 the enclosed charge must approach the total number of

electrons in shell n, Nn. Calculating that limit in the above expression gives

Nn = 4�CnB
2
n (3.34)

or

Cn =
Nn

4�B2
n

(3.35)

One more condition is required to specify the two unknown constants. This is

provided by examining the areal charge density, being 4�r2 times the density expression of

equation 3.32. An examination of the plot of exact calculations of the total atomic electron

density shows clear phenomenological trends [71]. The function r2n(r), where n(r) is the

total electron density, features a clear shell structure. The areal density function for each

shell features a maximum at a radius whose value increases with increasing n. The density

function of equation 3.32 reaches a maximum at r = Bn, where the enclosed charge is

qn(Bn) � 0:264Nn: (3.36)
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The value of Bn can then be interpreted as the median radius of a given shell n. If the Bn

value could be determined for each shell then the entire electron density could be modeled.

This radius, which represents the average position of an electron in a given shell

n, can be approximated from the rami�cations of this model. Given that the shell-wise

distributions were approximated by an exponentially screened 1=r variation as in equation

3.32, the properties of the peak can be used to determine the peak radius value. It was just

demonstrated that within the peak radius Bn, about 26:4% of the shell's charge is contained.

Also contained within a radius Bn of shell n are a fraction of the electrons contained in

inner shells whose principal quantum number is less than n. Additionally, a smaller fraction

of the electrons from outer shells will also contribute to the screening. Combining these

electrons, a model-based screening value can be determined

Sn � fiNi � 0:264Nn � foNo (3.37)

in which fi is the fraction of inner electrons Ni enclosed within Bn and fo and No are the

corresponding values for the outer electrons. From inspection of the actual Hartree-Fock-

Dirac integrations [71], it can be approximated that about 80% of the inner electrons in

shells ni < n are enclosed within a given shell n and about 15% of the outer electrons in

shells n0 > n. Nn is the number of electrons in the shell n. Using this model-based value,

the peak radius position can be ascertained from

Bn =
n2a0
Z � Sn

(3.38)

With that approach to calculating the peak radii, being the Bn values for each
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shell, the total electronic density for a free atom is given by

n(r) =
X
n

Cn

r
exp[�r=Bn]: (3.39)

An important situation must be addressed here. The above analysis applies to

a free atom or ion whose electron distribution extends, in principle, to in�nity. An atom

or ion bound in a material experiences inter-atomic forces which cause its distribution to

change. According to Zel'dovich and Raizer [70] the �rst-order e�ect of compressing the

electronic distribution is that the density near the cell boundary increases to accommodate

the relocated charge. The relative change in the inner region is much less.

These e�ects can be replicated analytically with a simple heuristic argument. In

the previous free-atom formulation, the shell-wise density was normalized such that when

integrated over all space, the enclosed charge would be the number of electrons in the shell.

In an actual bound atom or ion, the normalization should be performed with an integration

only from r = 0 to r = r0 where

r0 =

�
3

4�ni

�1=3
; (3.40)

ni is the ionic density in the material. The value r0 is usually called the atomic cell radius,

de�ning a `cell' in which the electrons of each atom or ion in a material are generally

con�ned. The charge qn(r) of shell n enclosed within r = r0 is

qn(r0) = 4�CnB
2
n

�
1�

�
1 +

r0
Bn

�
exp[�r0=Bn]

�
(3.41)

Setting this equal to the number of electrons Nn in shell n, the value of Cn would be

Cn =
Nn

4�B2
n

h
1�

�
1 + r0

Bn

�
exp[�r0=Bn]

i (3.42)
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Figure 3.1: Atomic electron radial distribution for gold at solid density and room
temperature

An example calculation using this method appears in �gure 3.1, which shows the

calculated radial density of a gold atom's electrons. The pro�le compares very well with

the actual density distribution calculated from extensive Dirac-Hartree-Fock integrations

which are also shown, taken from reference [71]. While the nuances of the shell structure

are not followed, the averaged electron distribution behavior is captured. It is this averaged

behavior which is important for the analysis of this dissertation.
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Free Electron Distribution

While the above model handles the bound electron distributions in atoms and ions,

the density pro�le of the free electrons associated with an ion in a material must also be

addressed. The QEOS model of More et al. presents a Thomas-Fermi analysis in which the

electron density at the cell boundary is related to the charge state Q of the ion by

nf = Qni (3.43)

where ni is the ionic density. This is equivalent to expressing that the free electrons dis-

tribute themselves over the atomic cell with a at density distribution. This neglects some

shielding behavior but is a good �rst approximation and will be used throughout this anal-

ysis.

3.1.6 Material Charge State

The astrophysical conditions achieved in inertial fusion scenarios require consider-

ation of extensive ionization of materials involved. The degree to which a modeled material

is ionized and the ion population distribution are important considerations in the radial

electron density pro�le determination of the previous section and will be seen to be an

important component to ion deposition calculations.

If the target material should be in a rare�ed state of density n less than about

1017=cm3 then it is generally possible to use the Saha equation to determine the average

charge state and charge state distribution of the ionic species in the target. This equation

expressing the ratio of the number densities of a species of charge state i+1 to its progenitor
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at charge state i is [11]

ni+1ne
ni

=
mekBT

2��h2

3=2

exp[�Ii=kBT ] (3.44)

in which ne is the free electron density and T is the electron temperature. The challenge in

using this formula is that the density of the state i and the electron density must be known

in order to calculate the density of state i+ 1. This can be solved by an iterative solution

converging on the correct distribution of densities.

A solid-density material can not be modeled eÆciently by a Saha equation. Hot,

dense materials exhibit complicated equations of state and must be handled by sophisticated

coding. A very successful model for determining atomic properties of hot, dense materials

has been the quotidian equation of state (QEOS) model of More et al. [57]. This model-

ing system has been incorporated into the two-dimensional, radiation-hydrodynamics code

LASNEX of Lawrence Livermore National Lab. Values for this work which require more

elaborate EOS calculations are taken from the QEOS model as kindly provided by Debbie

Callahan Miller and Manoj Prasad of LLNL.

3.1.7 Oscillator Strengths

The oscillator strength for an electronic transition from principle quantum shell n

to shell n0 is a measure of the energetic and quantal likelihood of an electronic transition.

The oscillator strength is a unit-less term which appears in several di�erent forms, all related

by specifying the degeneracy of the transition. For a transition between two `full' shells each

having N = 2n2 electrons, the oscillator strength is

fnn0 =
26

3�
p
3

�
Ry

En � En0

�3
(nn0)�3 (3.45)
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In many applications other factors are introduced depending on the nature of the transition.

For instance, it is customary to articulate the oscillator strength of a single electron's

transition from shell n to a partially-�lled shell n0. This is expressed by dividing the full-

shell expression by 2n2 and by multiplying by the availability fraction of shell n0

2n02 �Nn

2n02
(3.46)

producing

fnn0 =
2n02 �Nn

2n02
25

3�
p
3

�
Ry

En �En0

�3
n�5n0�3: (3.47)

3.1.8 Average Ionization Potential

An important term in equations quantifying the energy transfer from a projectile

to the bound electrons in a material is the average ionization potential of the absorbing

material I . For a species of atomic number Z it is de�ned as

ln
h
I
i
=

1

Z

X
nn0

fnn0 ln[Eik] (3.48)

with the summation being over all inner-atomic transitions nn0 of energy Enn0 and oscillator

strength fnn0 .

The expression for I is complex to calculate explicitly. Its values for all of the

neutral atoms have been determined theoretically and experimentally [71]. However, in the

case of an ionized target, the ionization potential must be adjusted from its neutral atom

value to accommodate the new electronic structure of the ionized species. Mehlhorn [45]

presented a useful method for adjusting the non-ionized I to that for an arbitrary level of

target ionization. The adjusted ionization potential I(Z;Q) for a target of species Z at a
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charge state Q can be approximated by

I(Z;Q) ' I(Z �Q; 0)Z2

(Z � Q)2
(3.49)

in which I(Z �Q; 0) is the neutral ionization potential for species Z �Q.

While the Mehlhorn scaling is reasonable, values for this analysis will be pro-

vided from QEOS calculations, with generous cooperation from Manoj Prasad and Debbie

Callahan Miller.

3.1.9 Plasmas and Atomic E�ects

While classic beam-plasma interactions such as two-stream instabilities and neu-

tralization are not addressed in this present work, some other important plasma physics

must be considered. First it may be useful to introduce a few standard expressions of

plasma characterization.

The plasma frequency represents the rate at which free electrons in a plasma

exhibit characteristic oscillatory motions. Its value is de�ned as

!p =

s
4�e2ne
me

(3.50)

in which ne is the plasma's free electron density.

The Debye length of a plasma is the scale of the shielding layer which the free

electrons create around a positive charge or potential. This distance represents the length

beyond which the charge or potential is e�ectively screened by the plasma. The Debye

length value is

�D =

s
kBTe
4�e2ne

(3.51)



51

in which Te is the electron temperature of the plasma. Note that the product �D!p gives

the characteristic electron thermal velocity in the plasma.

The plasma parameter is a quanti�cation of the number of electrons contained

within a sphere whose radius is the Debye length. The plasma parameter is thus de�ned

ND =
4

3
��3

Dne: (3.52)

With increasing plasma parameter, the more e�ectively a charge or potential is screened

beyond the Debye length.

The physical consequences of the plasma condition which are germaine to this work

involve the e�ects on the target material's atomic properties. These atomic plasma e�ects

may then e�ect a change in the incident beam's charge state evolution and energy deposition

into the target. A primary manifestation of target ionization level in its atomic properties

is the reduction of the binding energy of its electrons due to nuclear shielding. In a plasma,

the liberated electrons, though not in a bound state, are still distributed throughout the

atomic cells with a certain fraction in the vicinity of the target nuclei. Their presence about

the nuclear center can act to shield the target's bound electrons from the nuclear charge.

This reduction in e�ective nuclear charge causes a reduction in the ionization potential of

the shielded electrons. This e�ect becomes important if the Debye length of the plasma

�D should be near or less than the characteristic atomic radius ra � Z�1=3a0, where the

Thomas-Fermi scaling of the atomic radius is employed.

The e�ect and its quanti�cation are known as Debye-H�uckle shielding. The speci�c

criterion required for this situation to become important is

�D < ra: (3.53)
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The largest characteristic atomic radius encountered is typically 1:5�A. In this investiga-

tion, the solid-density target materials constituting the HIF hohlraums will exhibit Debye

lengths ranging from tens to a fraction of an Angstrom (see section 3.1.10). Therefore, some

accounting must be made of this shielding e�ect.

To �rst order, the e�ect of Debye-H�uckle shielding on outer electrons can be ap-

proximated by quantifying the screening electrons within the atomic radius. If the char-

acteristic ionic radius should be greater than the Debye length, the usual screened nuclear

charge value sensed by the target's valence electrons can be considered to be reduced by

the plasma parameter. For ionic radii much less than the Debye length, the screening e�ect

can be considered to be negligible.

For intermediate values, the number of plasma screening electrons within the radius

of electron in shell n, rn, can be approximated as

SD � 4

3
�r3nne = ND

�
rn
�D

�3
: (3.54)

This is consistent with the free electron distribution modeling described in section 3.1.5.

The binding energy will be reduced according to section 3.1.4 by adding this additional

plasma screening term to the usual screening term due to bound electrons.

In addition to acting to shield the materials own nuclei, the free electrons in a

heated material can dynamically shield the nucleus of an incident ion. This e�ect is much

weaker than the ordinary Debye-H�uckle shielding due to the velocity of the projectile.
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3.1.10 Tabulated Atomic EOS Properties

As indicated in sections 3.1.6 and 3.1.8, the characterization of the atomic prop-

erties of dense plasmas can be diÆcult to establish. Such atomic properties are necessary

for the calculations of this dissertation in that the average charge state and average ioniza-

tion potential of a target material a�ect the charge- changing cross sections and the energy

deposition of an incident beam. The development of appropriate atomic equation of state

models for such purposes has not been included in the e�orts of this dissertation. Thus,

existing atomic codes were used to provide the necessary atomic parameters for the calcula-

tions of this work. The QEOS (quotidian equation of state) model [57] was used by Manoj

Prasad of LLNL to provide the following tabulated data. In the following tables the average

charge states Q, average ionization potential I and Debye lengths �D are given for several

di�erent materials over a range of temperatures T and densities �. The range of materials,

densities and temperatures covers most of the range of material properties associated with

current HIF hohlraum designs.

3.2 Reaction Rates, Density Regimes and Charge Equilib-

rium

In discussing the theory of projectile-target reactions, it is useful to employ a stan-

dard vocabulary of terms characterizing the rates and time scales of the reactions involved.

Consider a beam of identical particles with a certain intensity I(t) and velocity v. Incident

into a reaction-inducing material the beam's constituent particles will incur reactions. For

a reaction cross section � and a target density n, the rate of reduction in unreacted beam
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� T Q I �D

1 300 5:55 519 2:44

1 200 5:31 408 2:03

1 100 4:60 266 1:55

1 10 1:98 115 0:745

0:1 300 5:77 729 7:56

0:1 200 5:62 568 6:25

0:1 100 5:14 358 4:62

0:1 10 1:99 115 2:35

0:01 300 5:88 1024 23:7

0:01 200 5:79 782 19:5

0:01 100 5:49 479 14:1

0:01 10 2:45 131 6:7

Table 3.1: EOS properties for carbon with � in g=cm3, T in eV, I in eV and �D in �A

� T Q I �D

1 300 11:0 736 2:6

1 200 9:92 573 2:23

1 100 7:71 392 1:79

1 10 2:51 201 0:992

0:1 300 11:8 994 7:93

0:1 200 11:0 759 6:69

0:1 100 9:12 489 5:21

0:1 10 2:58 203 3:10

0:01 300 12:3 1342 24:6

0:01 200 11:8 994 20:5

0:01 100 10:3 621 15:5

0:01 10 3:2 217 8:79

Table 3.2: EOS properties for aluminum with � in g=cm3, T in eV, I in eV and �D in �A
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� T Q I �D

1 300 15:4 782 1:0

1 200 13:0 660 0:89

1 100 9:47 524 0:737

1 10 5:07 400 0:320

0:1 300 18:3 994 2:90

0:1 200 15:7 798 2:56

0:1 100 11:2 585 2:14

0:1 10 2:96 355 1:32

0:01 300 20:7 1264 8:62

0:01 200 18:3 984 7:50

0:01 100 13:7 687 6:12

0:01 10 3:22 358 4:00

Table 3.3: EOS properties for iron with � in g=cm3, T in eV, I in eV and �D in �A

� T Q I �D

1 300 27:4 1560 1:41

1 200 21:4 1369 1:30

1 100 14:0 1190 1:14

1 10 5:29 994 0:691

0:1 300 33:9 1775 4:00

0:1 200 26:5 1528 3:69

0:1 100 16:8 1251 3:28

0:1 10 4:05 965 2:11

0:01 300 40:8 2062 11:5

0:01 200 32:4 1723 10:6

0:01 100 20:9 1369 9:29

0:01 10 4:87 984 6:10

Table 3.4: EOS properties for gold with � in g=cm3, T in eV, I in eV and �D in �A
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intensity is given by the usual relation

dI(t)

dt
= �n�vI(t) (3.55)

De�ning the reaction rate at a given time � as n�v(t), the expression is solved by the

common exponential formula

dI(t)

dt
= ��I(t) (3.56)

I(t) = I0 exp[��t]: (3.57)

Another important relationship can be derived from these equations. The reaction rate �

is seen to represent the di�erential probability per unit time of sustaining a reaction,

�dI(t)=I(t)
dt

= � (3.58)

dP (t) = �dt: (3.59)

From these probabilistic reaction attrition relationships the probability for a con-

stituent particle to sustain a reaction over a certain time period t can be derived. The

di�erential probability of witnessing a single particle's �rst reaction in a time increment

dt at a time t is given by the fraction of unreacted beam remaining at time t times the

di�erential probability

dP (t)

dt
= � exp[��t] (3.60)

The total probability for sustaining a single reaction anywhere in a time interval t is given

by integrating the above probability

P (t) =
Z t

0
� exp[��� ]d� (3.61)

P (t) = 1� exp[��t] (3.62)
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Note that for a small time t = dt, the total reaction probability reduces to the di�erential

probability

P (dt) = 1� exp[��dt] � 1� (1� �dt) � �dt (3.63)

The mean free path (m.f.p.) is de�ned using this probability expression as the

averaged distance x a beam particle will travel into a target before sustaining a reaction.

This is expressed by weighting each penetration depth x according to the probability of

�nding unreacted beam at that distance. Switching from time to position di�erentials,

dt = dx=v; (3.64)

this integral expression is

x =
Z 1

0
xP (x)dx = n�

Z 1

0
x exp[�n�x]dx: (3.65)

It's solution is

x � l =
1

n�
(3.66)

where l is customary notation for the mean free path. The characteristic time � for a

reaction to be induced in the beam is similarly de�ned as

� =
1

n�v
� 1

�
(3.67)

The beam-target interactions investigated here can be expressed using of these standard

reaction terms.

3.2.1 Densities and Reaction Rates

The distinction between the penetration of solid-density media and rare�ed gaseous

media is important because the di�erence in the associated densities creates di�erent em-
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phases on two types of reactions rates. Charge change and energy deposition each have

characteristic cross sections and in di�erent density regimes the resultant mean free paths

for each may change the relative scale of each. In solid-density targets, the charge state of

an incident beam ion is usually assumed to be in an instantaneous equilibrium. An incident

ion reaches charge equilibrium when it achieves a charge state at which the net ionizing

reaction rates balance the net electron capture reaction rates at a given velocity. The as-

sumption of instantaneous charge equilibrium implies that the time scale for changing from

an arbitrary initial charge state to the equilibrium charge is much smaller than the time

scale of the typical incremental change in energy.

This can be justi�ed by a rough analysis of the reaction rates involved in typical

scenarios. Many electronic reactions participate in the ionization and recombination process

as an ion penetrates a material. Near equilibrium, when the ionization and capture rates are

nearly equal, the projectile will be ionized roughly to the point at which the outer electron's

orbital velocity is equal to the projectile's velocity (see x5.1.1). At this peak in ionization,

the ionization cross section will be shown in section 5.4.4 to be given by

� � 6:5� 10�14cm2eV2Zt
2

I2
� 0:7 (3.68)

where I is the instantaneous orbital binding energy and Zt is the screened nuclear charge

of the target. Given the equilibrium velocity matching criterion, this would be given by

I � 1

2
mev

2: (3.69)

The velocities of interest to this study are v � 0:2c. At this velocity, using the above

relation, the valence ionization potential at the beam's charge equilibrium should be near
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10keV. Using an e�ective screened target charge of Zt � 10, the ionization cross section of

the beam ion at its charge equilibrium would have an approximate value of

� � 10�21cm2: (3.70)

An analogous cross section can be developed for an incremental energy loss reac-

tion. The rate of energy loss of a beam penetrating a target material can be quanti�ed as

a function of the beam's velocity v, its average charge state Q, the target ionic density n

and target atomic number Z. According to the theory of Bethe [5] (which will be discussed

in section 4.3), the energy deposition rate is expressed as

�
dE

dx

�
=

4�e4Zn

me

�
Q

v

�2
ln [�c] (3.71)

in which the logarithmic term �c is a function of the projectile velocity and atomic properties

of the target. Multiplying both sides by the projectile instantaneous velocity v converts the

spatial di�erential to a temporal rate. Dividing by the non-relativistic projectile kinetic

energy E = 1
2Amuv

2 produces a fractional energy reduction rate

v
1

E

�
dE

dx

�
= v

8�e4Q2Zn

Amumev4
ln [�c] : (3.72)

Isolating the density and velocity terms, this expression can be interpreted as a reaction

rate for fractional energy loss

�E = v
1

E

�
dE

dx

�
= n

 
8�e4Q2Z

Amumev4
ln [�c]

!
v: (3.73)

The quantity in parenthesis represents an e�ective energy loss cross section �E . It can be

reduced and quanti�ed as follows:

�E =
8�e4Q2

Amumev4
ln [�c] (3.74)
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�E =
8�e4Q2

A(mu=me)m2
ec

4�4p
ln [�c] (3.75)

�E � 8�r2eQ
2

1837A�4
ln [�c] (3.76)

where re is the classical electron radius

re =
e2

mec2
= 2:818� 10�13cm: (3.77)

For typical cases of importance to this dissertation, swift heavy ions such as lead

at a velocity of � = 0:2 are simulated to penetrate a target material. In a cold target, the

e�ective charge Q of the lead at that velocity is near 63+ and will be near 11+ when the

projectile has slowed to a velocity of v = 0:02c (this will be discussed in section 5.1.1). The

logarithmic term can be taken from the tables in section 3.1.10. Its values are of the order

of just a few. These typical values generate an equivalent energy loss cross section of

�E � 10�25cm2: (3.78)

This is several orders of magnitude smaller than the smallest charge-changing reaction cross

section of 10�21. Thus, the mean free path for an incremental energy change should be much

greater than the charge-changing mean free path in a dense target. This means that the

time interval necessary to achieve charge equilibrium will be much smaller than the time

interval necessary to cause a fractional reduction in beam energy since the time interval �

for a given reaction is given by 1=(n�v) (see section 3.2) for a given target density n and

projectile velocity v. So, it should be the case that the incident projectile ion will be in

instantaneous charge state equilibrium as it penetrates a dense material.

In dense materials, the scale of the target usually contains many energy loss and

charge-change mean free paths. Therefore the propagation of a beam projectile through
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a dense material requires integrated charge evolution and energy deposition calculations,

usually employing an instantaneous charge equilibrium model for the projectile's charge

state. In rare�ed plasmas or gases of n < 1017cm�3, however, the typical situation is

that the reduced density extends the energy reduction mean free path and the charge-

equilibrium m.f.p. to beyond the scale length of the system. Therefore the time interval

for reaching charge equilibrium may exceed the magnitude of the total time to traverse the

target system. In this case, the charge may not be able to be considered in instantaneous

equilibrium. If the charge state evolution of a projectile ion penetrating such a material

must be calculated, then the actual set of charge-changing reaction cross sections must be

identi�ed and quanti�ed. The evolution of the charge state can then be calculated using

a total reaction rate representing the sum of signi�cant atomic reaction rates for the given

beam and target con�guration.

These two target regimes, solid-density and rare�ed, play out rather illustratively

in a putative heavy ion fusion power plant scenario. In the power plant chamber after the

�nal focusing system, the driver beam must penetrate a rare�ed plasma whose density may

be about n = 1014cm�3. In that regime energy deposition should not be signi�cant, but

charge-changing reactions may occur over the expected 300 to 500cm chamber radius. After

penetrating the chamber plasma, the ions enter the HIF target, a solid-density material into

which the beams deposit their energy. In that solid-density regime, instantaneous charge

equilibrium is likely to be achieved and signi�cant energy deposition will occur.

There does exist a mesochoric regime of plasmas and gases whose densities range

from about 1017cm�3 to 1020cm�3 in which ionization and energy deposition occur on a
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comparable scale. In this regime, the time evolution of the beam's charge state must be

incorporated into energy deposition calculations since both would occur on a comparable

time scale.

Other non-equilibrium beam charge evolution may occur in plasmas, even in dense

plasma targets [14]. In cold targets, the equilibrium charge state of an incident beam is

determined by the balance between competing ionization and capture reactions. Charge

transfer of bound electrons in the target to the beam ions dominates the capture reaction

rate providing that enough bound electrons are present in the target to cause charge transfer

(see section 5.5.1). When the dominant target charge transfer reactions are eliminated

due to target ionization, the remaining capture processes are reduced and the charge of an

incident ion may take more time to reach equilibrium [14]. This can also result in signi�cant

beam energy deposition before equilibrium is reached.

3.3 Quantum Scattering and The Born Approximation

Central to many analyses of atomic scattering reactions is a quantum mechanical

perturbation technique known as the Born Approximation. More speci�cally, Born's First

Approximation forms the basis of much of stopping power theory and electron ionization

theory. It is therefore important to develop an understanding of the approximation itself

and its limitations.

Consider the scattering of an incoming beam of particles from a Coulombic poten-

tial V (~r) localized to a �eld. In the case of atomic scattering, the incident particles would

be ions of mass M and charge state Q with a mean velocity v. The scattering �eld would
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be the atomic cell of radius r0 centered on a nucleus of charge Ze. The potential of the

incident ion within this localized �eld would be of the order of QZe2=r0.

The �rst issue to address is the determination of the degree to which classical and

quantum models should be applied. If the de Broglie wavelength of the incident particle

is much smaller than the scale of the �eld then the situation can be described classically.

This condition is expressed as

�i =
h

Mv
� r0: (3.79)

This is roughly equivalent to requiring that the uncertainties in the incident particle's

angular momentum about the �eld's center be much greater than �h:

Mvr0� �h: (3.80)

Note that relativistic e�ects are considered to be negligible here. At � = 0:2, this is not a

bad approximation. This �rst requirement places limits on the velocity (momentum) of the

incident particle. With r0 typically equal to a Bohr radius, the requirement becomes

v � �h

M�h2=(mee2)
(3.81)

� �
 
me

mp

!
�

A
(3.82)

where A is the incident ion's atomic mass. For A ' 200 and with mp ' 1836me, this

becomes

� � 2� 10�8; (3.83)

which will be satis�ed in the range of interest of current applications.

Since the mechanics of the collision are very nearly classical, the quantum e�ects on

the scattering process can be treated e�ectively by a perturbation technique. The incident
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particle's waveform can be represented as a plane wave whose form is simply

	i(~r) = Aeikz (3.84)

where A is some amplitude which will be taken as real for this analysis. The wave number

k is the modulus of a wave vector ~ki which is prescribed to be along the z-axis for simplicity.

This incoming wave would scatter from the localized atomic potential con�ned to a volume

of characteristic dimension a0. Each di�erential volume element d3r within the �eld scatters

this incoming wave as a distinct point source.

The asymptotic behavior of the scattered wave function 	s at r � a0 can be

expected to be of the form

	s(~r) = f(�; �)
Aeikr

r
(3.85)

where the scattered wave function approaches that of a spherically propagating wave from

a point source. The wave number k is used here also as the modulus of the implied wave

number of the scattered wave ~ks. This equivalence can be stated since elastic Coulombic

scattering is being modeled here. While the scattered wave vector ~ks would indeed vary

in the �eld of the potential, this analysis is meant to address the behavior well beyond

the localized �eld. The scattered wave vector may indeed be aligned di�erently than the

incident wave vector and the two will satisfy the relationship

~ki + ~kx = ~ks (3.86)

where ~kx represents the phase transfer in the scattering.

The radial functionality of the scattered wave function is that of a standard spher-

ical wave whose amplitude varies as the inverse-square of the radius. The function f(�; �)
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contains the angular dependence of the scattering reaction. It also is related to the scatter-

ing cross section by

�(�; �) = jf(�; �)j2: (3.87)

The net stationary state wave function �(~r) of the system would be the sum of

the incident planar wave function and the scattered spherical wave function

�(~r) = 	i(~r) + 	s(~r): (3.88)

It is this total wave function which is found by solving the wave equation of the system

"
� �h2

2�
r2 + V (r)

#
�(~r) = E�(~r) (3.89)

where � is the reduced mass of the projectile-target system

� =
mimt

mi +mt
: (3.90)

This can be reduced by knowing that the total energy of the scattered wave is given by

E = �h2k2=(2�) and by using the substitution

U(~r) = V (~r)2�=�h2: (3.91)

The wave equation for the scattering system then can be written as

h
�r2 + U(~r)

i
�(~r) = k2�(~r) (3.92)

This can also be written in a form more suggestive of a solution by Green's function analysis:

h
r2 + k2

i
�(~r) = U(~r)�(~r) (3.93)
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in which �(~r) can be solved by a Fourier superposition of the associated Green's functions

which satisfy

h
r2 + k2

i
G(~r) = Æ(~r): (3.94)

The solution to �(~r) with the function G(~r) is accomplished by integrating over

the potential �eld

�(~r) = �0(~r) +
Z
G(~r� ~r0)U(~r0)�(~r0)d3r0 (3.95)

with the function �0(~r) being the solution to the homogeneous equation

h
r2 + k2s

i
�0(~r) = 0: (3.96)

The Green's functional form which satis�es this equation is

G(~r) = � 1

4�

eikr

r
: (3.97)

In the integral of equation 3.95 the operand of Green's function is ~r � ~r0 where ~r is the

position vector of the observation point at r � a0 and ~r0 is the position of a point within

the �eld r0 < a0. The two are related by

j~r � ~r0j = r � r̂ � ~r0 (3.98)

Note that at large r this di�erence approaches r. It is only signi�cant if it appears in a

harmonic function, i.e. in the complex exponential where the periodicity makes preservation

of terms important.

With this modulus of the di�erence in radii inserted into the operand in the Green's

function of equation 3.97, the form becomes

G(j~r� ~r0j) = � 1

4�

eik(r�r̂�~r
0)

r
(3.99)
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Substituting this approximated far-�eld Green's function into equation 3.95, the

expression for the Green's solution to �(~r) becomes

�(~r) = �0(~r) +� 1

4�

eikr

r

Z
e�ikr̂�~r

0

U(~r0)�(~r0)d3r0 (3.100)

Comparing this to the expected solution to �(~r) in equation 3.88, the signi�cance of the

terms can be understood. The solution �0(~r) to the homogeneous wave equation is under-

stood to represent the incident waveform eikz . The angular dependence of the scattered

wave f(�; �) is shown to correspond to

f(�; �) = � 1

4�

Z
e�ikr̂�~r

0

U(r0)�(~r0)d3r0 (3.101)

The recursivity of the above system of equations emerges upon a simple inspection.

The integral solution to �(~r) (more speci�cally its angular dependence) is a function of itself.

This is addressed through an iterative technique known as the Born Expansion. However,

if the interaction should be suÆciently weak then the total wave function �(~r0) in the

integrand on the right can be approximated as being simply the original incident planar

wave function

�(~r) = eikr
0

: (3.102)

In other words, the e�ect of the interaction with the potential �eld is approximated as

creating only a negligible perturbation to the original wave function in the integration.

This is the essence of the Born Approximation. The limitations of the conditions on which

this approximation is based are discussed in the following subsection.

When this approximation substitution is made, the angular function f(�; �) be-
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comes

f(�; �) =
Z
eikr̂�~r

0

U(r0)eikz
0

(3.103)

From the vector relationships of the radii vectors and wave vectors the following reductions

can be made.

kz0 = ~ki � ~r0 (3.104)

kr̂ � ~r0 = ~ks � r̂ (3.105)

With these substitutions, the argument of the complex exponential is simpli�ed and the

scattering angular dependence becomes

f(�; �) = � 1

4�

Z
ei
~kx�~r0

U(r0)d3r0 (3.106)

Substituting back into this the expression for the actual Coulombic potential V gives the

�nal form

f(�; �) = � �

2��h2

Z
ei
~kx�~r0

V (r0)d3r0 (3.107)

The scattering cross section which results from this scattered wave functionality

can be obtained.

3.3.1 Limitations of the Born Approximation

The stipulation that the scattering interaction be so weak that the total wave

function at large distances be comparable to the incident wave function can be articulated

as follows. The potential of interaction is roughly

V (r) =
ZQe2

r
(3.108)
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To say that the e�ect of scattering from this potential is weak is to say that classical action

of an incident particle's impact with the �eld be small relative to the Planckian value. The

action of the potential �eld is taken as the product of the energy of the �eld and the time

increment of collision.

�h� V (a0)dt (3.109)

With V (r) as above and dt = a0=v this becomes

�h� ZQe2

v
: (3.110)

Using the de�nition of the �ne structure constant � = e2=(�hc) this condition can be ex-

pressed in its most frequently cited form

� � ZQ� (3.111)

or

v � ZQ�c (3.112)

The implications of this are quite serious, in principle, for heavy ion applications.

A typical heavy ion to be modeled in this work is lead, whose atomic charge is 82. Therefore,

in order for the Born approximation to be strictly valid, even in collision with a test charge

of Q = 1, the velocity of the ion must be much greater than 0:6c. Typical fusion power plant

driver beam velocities will probably not be over 0:2c. However, it will be shown that the

Born approximation and its daughter expressions reproduce results quite well over many of

the regimes of concern to this work.
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3.4 E�ective Charge

In many atomic reaction cross section calculations it is important to quantify the

e�ective screened nuclear charge which an incident electron senses upon a collision with an

atom or ion of atomic number Z and charge state Q. An electron, either free or bound

to an atom, does not necessarily interact with the entire unscreened Coulomb �eld of the

nuclear charge of the colliding atom or ion, unless the incident ion should be fully stripped.

Any electrons bound to the target nucleus contribute to the screening of the nuclear charge

as perceived by a passing electron. The degree to which that screening occurs is a function

of the energy of the incident electron and the electron distribution of the bound electrons

of the target atom or ion.

An electron, bound with energy I to a projectile atom or ion, will sense a screened

nuclear charge in a target atom or ion which satis�es the following classical balance [54]:

I =
(Z � S(b))e2

b
(3.113)

where b is the impact parameter of the collision and S(b) is the number of screening electrons

within a radius of b centered at the target's atomic center. It is given by

S(b) =

Z b

0
ne(r)dr

3 (3.114)

where ne(r) is the electronic distribution function characteristic to the atom or ion in

question. This electron density distribution can be quanti�ed using the simpli�ed analytical

model detailed in section 3.1.5. This balance is related to the Bohr adiabat stipulation. At

points within the radius b, the target's bound electrons must be characterized by an orbital

velocity higher than that of the probing projectile electron. In that case, the characteristic
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motions of the incident electron at its binding energy of I will seem relatively slower. Thus

the orbital motions of the electrons within b will e�ectively shield the target nucleus.

Determination of the impact parameter b and the screening levels can be performed

by an iterative calculation. This impact radius will be shown to be the basis for an ionization

cross section calculation.
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Chapter 4

Stopping Power

4.1 Introduction

A projectile atom or ion penetrating a medium transfers its energy to the con-

stituent electrons and nuclei within the medium almost entirely through Coulombic inter-

actions. The projectile ions can transfer energy to both the nuclei and electrons within

a target. Since the masses of nuclei are so much greater than the electrons mass, energy

transfer to target electrons will dominate by several orders of magnitude [45]. Note that this

applies only to collisional energies below which nuclear reactions are induced. At energies

much higher than those being addressed here, nuclear reactions can contribute signi�cantly

and atomic processes are incidental. The typical HIF beam energy of this examination is

near tens of MeV per atomic unit. The energies at which nuclear reactions begin to become

signi�cant are above hundreds of MeV=u.

A given material's capacity to receive the energy of a projectile particle through

electronic interactions is known as its stopping power. These interactions depend on the
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equation of state of the material and the electronic characteristics of the projectile. This

section outlines a comprehensive study of stopping power theory. Information about target

equation of state and electronic distribution was addressed in the previous section. Deter-

mination of the projectile's charge state will be addressed in the next.

The stopping power of a target with respect to a given projectile can be determined

by quantifying the complete set of energy transfer reactions which may occur between

incident charges and the constituent electrons of the penetrated medium. This analysis has

been performed extensively over the past century. The resultant stopping power formulae

can be investigated best as categorized into four basic types of interactions, which are bound

electron stopping, free electron stopping, ionic stopping and low-velocity stopping.

4.2 General Electron Stopping

In order to understand the various terms in some of the electron stopping power

expressions, it is useful to consider briey a physical model of projectile-electron energy

deposition, from which the exact stopping power expressions are derived. In general, the

rate of energy transfer to bound or free electrons within a material from a projectile can be

developed from a Coulombic collisional model[38].

Consider an incident charge of mass mi, charge Q penetrating a material with a

velocity v. The net set of Coulombic collisions can be built in terms of an average binary

collision between an incident beam particle and the electrons in the target material. As the

incident particle passes a target electron at an impact parameter b, they both experience

an electric �eld. This �eld would have components aligned and anti-aligned to the direction



74

of motion and transverse to the direction of motion. The net e�ect of the components

parallel to the beam's direction of motion is vanishing since, integrated over the time of

the impact, they contribute oppositely on either side of the electron. The transverse �eld

however imparts a non-zero momentum transfer to the system.

The fully-relativistic form of the transverse �eld generated by the moving incident

charge at the position of the electron is given by [38]

E?(b; t) =
Qb

(b2 + 2v2t2)3=2
: (4.1)

Here, b is the impact parameter, t is the time measure which is de�ned to vanish at closest

approach and v is the projectile of velocity with  having its usual relativistic de�nition. In

the present investigation relativistic e�ects will be considered to be small since the projectile

velocity range will be near 0:2c, so  will be taken to be unity. The time dependence is

arranged such that at t = 0 the particles are at closest approach with the modulus of their

separation vector ~r equal to b. The momentum transfer from the beam ion to the electron

is calculated by integrating the mutual transverse force of the collision over all time:

�p =
Z 1

�1
eE?(b; t)dt =

2Qe2

bv
(4.2)

The energy transfered from the incident particle to the electron is then

�E(b) =
(�p)2

2me
=

2Q2e4

mev2
1

b2
: (4.3)

The net energy transfer rate to the electrons in the material is obtained from

integrating this individual transfer calculation over all of the encountered electrons. If the

atomic number of the material be Z and the ionic density be n then there will be Zn

electrons per unit volume. In an incremental beam position advancement of dx the incident
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particle encounters a certain number of electrons in the ring formed about the impact

parameter:

dN = (nZ)2�bdbdx: (4.4)

The total energy transfer per incremental step dx is calculated by integrating over all elec-

trons encountered

dE

dx
=

Z
N
�E

dN

dx
(4.5)

which entails an integration of all of impact parameter space:

dE

dx
= nZ2�

2Q2e4

mev2

Z bmax

bmin

1

b2
bdb: (4.6)

The limits of integration, bmin and bmax, represent the minimum and maximum impact

parameters of the collision. This then forms a general expression for the energy transfer of

an incident ion to the electrons in a material

dE

dx
=

4�nZQ2e4

mev2
ln

�
bmax

bmin

�
(4.7)

The speci�cation of minimum and maximum impact parameters is not just a for-

mality. Clearly the natural limits of 0 to 1 result in a divergent calculation. Limits on

the impact parameters must be developed based on physical arguments. Also, so far, the

state of the electron receiving the transfered energy has not been addressed. The analysis

has assumed that it is stationary. An actual electron in a material will be either bound

or free and will be characterized by an energy and velocity. These considerations will be

important in determining the impact parameters and will accompany the discussion on the

speci�c forms of the stopping power.
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Note that the ratio of maximum to minimum impact parameters is also known as

the Coulomb logarithm �c. Its value forms a primary distinction among the various stopping

power expressions for both bound and free electrons.

4.3 Bound Electron Stopping

The two principle exact forms of bound electron stopping power formulae are due

to Bethe [5] and Bohr [9]. These two expressions represent di�erent regimes of applicability

and are closely related to the general form derived above. They are distinguished chiey in

their respective choices of collision impact parameter formulation.

The Bohr formula for bound electron stopping power is based on a semi-classical

formulation. Its full form is [8]

�
dE

dx

�
B
=

4�e4nb
me

�
Q

v

�2
ln

"
1:1229mev

3

Zpe2!

#
(4.8)

with nb being the number density of bound electrons in the target absorbing medium, v

is the incident ion's velocity and Q is its charge or ionic charge state. The term ! is the

characteristic frequency of the bound target electrons

! = I=�h (4.9)

in which I represents the average ionization potential of the target atomic electrons detailed

in section 3.1.8.

Bethe's formulation, on the other hand, is fully quantum mechanical. The full

expression for Bethe's version of the stopping power is

�
dE

dx

�
B
=

4�e4nb
me

�
Q

v

�2 (
ln

"
2me

2v2

I

#
� �2

)
(4.10)
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in which � and  have their usual relativistic meanings

� =
v

c
; (4.11)

 =
�
1� �2

�� 1

2 : (4.12)

Neglecting the relativistic and higher-order terms, the Bethe form appears simply as

�
dE

dx

�
B
=

4�e4nb
me

�
Q

v

�2
ln

"
2mev

2

I

#
(4.13)

4.3.1 Di�erences and Limitations on Bohr and Bethe

The Bohr and Bethe stopping power formulae form the foundation for most ion-

matter interactions. Implementation of these expressions for energy deposition calculations

requires an understanding of their respective di�erences and regimes of applicability.

Logarithmic Di�erences

In simpli�ed form, these two standard energy deposition formulae di�er only in

their respective logarithmic terms. Both match the general form of equation 4.7. An

examination of their associated Coulomb logarithms provides important insight into the

nature of these two standard formulae and their application to the purposes of this work.

The logarithmic term in the stopping power formulae, which originated in the

solution of an integral equation, can be understood in terms of the impact parameters

discussed in x3.1.3. In the Bethe form, which is based on quantum theory, the logarithmic

term is nearly the ratio of the maximum impact parameter to the quantum-limited minimum

impact parameter

�q � v�hI

�h=mev
(4.14)
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=
mev

2

I
: (4.15)

Aside from a factor of 2, this is the Bethe stopping power logarithm. The Bohr logarithm

term, having been derived from a classical theory, is the ratio of the adiabatic maximum to

the classically-limited parameter.

�c =
v�hI

Zpe2=(mev2)
(4.16)

=
mev

3

Zpe2!
: (4.17)

Velocity and Applicability

The larger of the two minimum impact parameters for the given beam-target

scenario in principle determines whether the Bohr or Bethe logarithm is appropriate to

the calculation. The Bethe formula is meant to be applied when the quantum minimum

impact parameter bq exceeds the classically-limited value bc. The Bohr model conversely

is intended to be applicable when the classical minimum impact parameter is largest. The

theoretical point of transition between the two models occurs when the two possible impact

parameters are equal. This is solved by equating

bc = bq (4.18)

where the left and right sides are expressed as in section 3.1.3

Zpe
2

mev2
=

�h

mev
(4.19)

v =
Zpe

2

�h
: (4.20)

Using the de�nition of the �ne structure constant, this condition becomes

v = Zp�c (4.21)
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Note that this is the same criterion for the application of the Born approximation found

in formula 3.112. This makes sense, since outside of the Born approximation, the Bethe

formula in principle breaks down into the regime in which the Bohr model is meant to

address. This rough analysis is also consistent with Sigmund's exact calculations [61] of the

point of transition between the two models being

v < 2:25Zpv0 (4.22)

with v0 = �c.

Note that there is a certain value of Zp beyond which the Bethe stopping power

formula is always technically invalid due to the criterion for satisfying the Born approxima-

tion on which it is based. In order for the Born approximation and thus, technically, the

Bethe stopping formula to be valid, the beam velocity must satisfy

v > 2:25Zp�c (4.23)

However, there exists an atomic number Zp beyond which the projectile velocity v would

need to be greater than the speed of light in order to satisfy the Born criterion:

Zp >
1

2:25�
(4.24)

or,

Zp > 61: (4.25)

This limitation is not commonly acknowledged in the literature and many papers refer to

calculations which employ the Bethe stopping power for high-Z projectiles and for velocities

well below the quantum-limited values. The remarkable fact is, though, that the Bethe
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model reproduces data very well even in classically-limited situations [61]. The reason

why the Bethe expression operates beyond its theoretical regime of application is not well

understood [61].

Functional Limitations

There are more limitations in addition to these theoretical ones. Catastrophic

failure of Bohr and Bethe models occur when the logarithmic term is less than unity. For

the Bethe logarithm, this occurs when

2mev
2 < I (4.26)

or,

2mec
2�2 < I: (4.27)

A simple approximation for I developed by Bloch [7] can be used

I � Zt10eV: (4.28)

The logarithmic failure condition for the Bethe expression then becomes

2mec
2�2 < Zt10eV (4.29)

� <
p
Zt3:13� 10�3 (4.30)

Velocities below this value produce a meaningless logarithm in the Bethe stopping power

expression. This limitation probably will not e�ect the calculations in this study since these

low cut-o� speeds represent the very tail of the range of a � = 0:2 heavy ion. Note that this

condition is not dependent upon the projectile atomic number as the impact parameter is.



81

When the Bethe expression becomes invalid in this manner, accommodations must be made

to form a transition into another stopping power expression applicable at low-velocities. In

theory the Bohr expression could be implemented here, but this choice is not empirically

supported [61].

The Bohr stopping power formula also features a catastrophic failure condition

when its logarithmic term is less than 1. This occurs when

mev
3 < Zpe

2I=�h (4.31)

v3 < Zpe
2Zt0:735

2�2e4

�h3
(4.32)

v3 < 1:47�2ZpZt
e6

�h3
(4.33)

v < 1:665(ZpZt)
1=3�c (4.34)

This failure condition is close to the condition speci�ed for the transition into the low-

velocity stopping power formulation described in section 4.6.

4.4 Free Electron Stopping

In addition to collisions with bound electrons in the target, a beam ion being

deposited into a plasma can collide with free electrons if the target should be ionized to any

signi�cant degree. Free electrons in the target behave di�erently in collisions with beam

ions and must be addressed by a separate stopping power expression. The free electron

stopping power has appeared in various incarnations throughout the associated literature.

Like the bound electron formula it can be expressed in a form with a logarithmic term

whose argument represents a ratio of impact parameters.
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Mehlhorn [45] following Jackson [38] gives a free electron stopping expression in

this manner which is �
dE

dx

�
f
=

4�e4nf
me

�
Q

v

�2
ln

"
0:764v

bmin!p

#
(4.35)

Here, bmin represents the same quantum or classical minimum impact parameter as in the

previous analysis for bound electrons. However, free electrons do not exhibit the same

adiabatic maximum impact parameter as bound electrons. Recall that the bound electron

maximum parameter is chosen such that at distances b > bmax, the impact time given by

b=v is greater than the quantum orbital oscillations of the target bound electrons. In a

plasma, free electrons exhibit a di�erent oscillation period characterized by their associated

plasma frequency

!p =

 
4�nee

2

me

!1=2

(4.36)

in which ne is the free electron density. In the plasma case, the maximum impact parameter

is that distance beyond which the plasma electrons will perform many oscillations in the

collision time, causing an adiabatic collision.

Peter and Meyer-ter-Vehn [55] have developed a comprehensive expression for the

free electron stopping based on linear and non-linear Vlasov theory. They found for an

electron plasma at temperature T a free electron stopping power of

�
dE

dx

�
FE

= �
�
Qe!p
v

�2(
G

�
v

vth

�
ln[kmax�D] + H

"
vp

kBT=me

#
ln

"
vp

kBT=me

#)
(4.37)

in which

G(x) � erf[x]� 2p
�
x exp[�x2] (4.38)
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and

H(x) �
�x3 exp

h
�x2

2

i
3
p
2� ln x

+
x4

(x4 + 12)
; (4.39)

G(x) being the Chandrasekhar velocity matching function and H(x) being an additional

matching function developed by Peter and Meyer-ter-Vehn. These terms both approach

unity for large v=vth.

In the above expressions erf(x) is the usual error function, vth is the plasma elec-

tron thermal velocity
p
2kBT=me and �D is the Debye length of the plasma. This form of

the stopping power was developed not in terms of impact parameters but in terms of wave

numbers k representing momentum transfer

p = �hk: (4.40)

The wavenumber cut-o� for collisional momentum transfer, kmax, is determined by the

lesser of the quantum and classical momentum transfer wavenumbers:

kmax = minimum

(
mev

2
r

Qe2
;
2mevr
�h

)
(4.41)

In the above, vr =
q
v2 + v2th represents the e�ective velocity of the thermal electrons in the

projectile's rest frame, being a quadrature addition of the projectile and thermal velocities.

In references [55] and [54] the authors chose to use just v in the quantum constraint in

equation (4.41) instead of the full quadrature velocity. This seems to be inconsistent, and

this analysis will employ the quadrature velocity in the quantum impact constraint. The

expression as it appears in reference [45] concurs and uses the full quadrature velocity. Note

that this kmax parameter is simply the inverse of the minimum impact parameter in the

logarithm of equation (4.7).
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The two functions G( v
vth

) and H( vp
kBT=me

) both approach unity for projectile

velocities much greater than the plasma electron thermal velocity. In this case, equation

(4.37) may be simpli�ed as follows:

�
dE

dx

�
FE

= �
�
Qe!p
v

�2
G

�
v

vth

�
ln

"
kmax�D

vp
kBT=me

#
; (4.42)

�
dE

dx

�
FE

= �
�
Qe!p
v

�2
G

�
v

vth

�
ln

�p
mekmaxvp
4�nee2

�
; (4.43)

which is just �
dE

dx

�
FE

= �
�
Qe!p
v

�2
G

�
v

vth

�
ln

"
kmaxv

!p

#
: (4.44)

Recalling the interpretation of kmax as the inverse of the minimum impact parameter, the

above expression becomes nearly identical to the Jackson free electron stopping expression

in equation 4.35: �
dE

dx

�
FE

= �
�
Qe!p
v

�2
G

�
v

vth

�
ln

"
�v

bmin!p

#
(4.45)

in which � is a factor near unity. If the classical condition should determine kmax and

v � vth then the expression reduces to the classic Bohr formula [9]

�
dE

dx

�
FE

= �
�
Qe!p
v

�2
ln

"
mev

3

Qpe2!p

#
(4.46)

This analysis establishes a good correspondence among the various plasma electron stopping

power formulae.

Incidentally, the term v=!p has the unit of length. Recalling the form of equation

(4.7), one should expect that it would be analogous to a maximum impact parameter. The

expression can be written as

v

!p
= b (4.47)
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1

!p
=

b

v
: (4.48)

This equates the electron's plasma period to the collision time at a certain distance, b. Thus

this distance would indeed be a maximum impact parameter, beyond which the electron

would begin to exhibit many plasma oscillations during the collision time. This is the

plasma analog of the Bohr adiabat condition.

4.5 Nuclear Stopping Power

Although their contribution is usually negligible, the screened nuclei within the

target are able to receive energy from a penetrating projectile through Coulombic interac-

tions analogous to those with electrons. The form for this component of the stopping power

is [45] �
dE

dx

�
i
= �

�
Qe!pi
v

�2
G

�
v

vthi

�
ln

�
�D
bmin

�
(4.49)

in which !pi is the ion plasma frequency de�ned by

!pi =

 
4�nie

2

mi

!1=2

(4.50)

with ni and mi being the ionic number density and mass and vthi is the ionic thermal

velocity.

The Debye length acts as a maximum impact parameter beyond which electron

shielding will negate any ionic charge. The minimum impact parameter is just the classical

value, given by

bmin =
QpQte

2

m�(v + vthi)
2

(4.51)
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in which Qt is the target ionization state and m� is the reduced mass of the binary system

m1m2=(m1 +m2).

Since the ionic thermal velocities are much less than the electron thermal velocities,

the velocity ratio in the G function will be greater and thus the matching will be better for

ions. However, the mi term in the denominator means that the ionic stopping power will

be typically a factor of 103 smaller than electron stopping terms.

4.6 Low-Velocity Stopping

When the beam velocity is reduced to that of the characteristic Thomas-Fermi

orbital velocity of the beam's constituent atomic species (see section 3.1.2),

v � Z2=3
p �c; (4.52)

the previous stopping power expressions become inadequate. In this case, the incident beam

ion does not appear as a distinct charge to the target electrons since the motion of the

projectile's orbital electrons would be screen its nucleus. This screening of the projectile's

nucleus occurs since the collision time would be slow compared to the characteristic orbital

time of the projectile's electrons. Also, below this velocity, the equilibrium charge state of

the beam as given by Bohr's formula (see section 5.1.1) is not well de�ned.

Note that this transition velocity might not be `low' by some standards. For a

lead beam ion, the characteristic Thomas-Fermi velocity is approximately vTF � 0:14c. If

the initial lead beam velocity should be 0:2c then this transition velocity is reached when

the beam energy is still about 1=4 of its initial value.

The quanti�cation of the energy deposition of beams whose velocities are in this
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regime is known as `low velocity stopping' (though this is often a misnomer). For calcula-

tions of beam energy deposition in this regime, a theory was developed by Linhard, Schar�

and Schi�tt [37]. This form of the stopping power is known as the LSS model[37], [45].

Note that this low velocity stopping is sometimes called `nuclear stopping'. This is also

a misnomer, as this energy deposition characterization is not a function of actual nuclear

collisions but rather atomic collisions.

The LSS stopping power formula treats the energy deposition of the beam as if

ti were caused by a velocity-proportional friction force between the beam and target. The

LSS stopping power expression is given as

�
dE

dx

�
LSS

= CLSS

p
E (4.53)

in which

CLSS =
K
p
EL

RL
(4.54)

with

K = Z1=6
p

0:0793Z
1=2
p Z

1=2
t (Ap + At)

3=2

(Z
2=3
p + Z

2=3
t )3=4A

3=2
p A

1=2
t

; (4.55)

EL = (Ap + At)ZpZtE
2Ata (4.56)

and

RL =
(1 + At

Ap
)2

4� At
Ap
Nta2

: (4.57)

In the above expressions, a is a screened-potential radius term given by a = a00:8853(Z
2=3
p +

Z
2=3
t )�1=2 with a0 being the Bohr radius, 0:529� 10�8cm.
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4.7 Transitions Among Stopping Power Forms

Several clari�cations need to be made regarding the choice of energy deposition

modeling appropriate for a given beam, velocity and target con�guration. Several di�erent

stopping power expressions have been presented for di�erent beam velocities. However, as

the beam deposits it energy into the target, its velocity decreases and the transition among

the various energy deposition models needs to be addressed.

In the analysis of section 4.3 it was shown that the correct choice of stopping power

model for beam deposition into bound electrons in principle will vary with the projectile

ion's atomic number and velocity. No rigorous formalism yet exists for determining the

exact dependence of stopping power model on projectile velocity. However, some empirical

trends have been identi�ed in the literature which will be employed in this present work.

The goal of this dissertation is not to correct or improve the physics of stopping power but

rather to use the best stopping power models to examine the e�ects of beam charge state

evolution changes on energy deposition into various targets.

4.7.1 Bethe vs. Bohr

Suppose the beam velocity v is greater than its associated Thomas-Fermi atomic

orbital velocity

v > vTF = Z2=3
p �c (4.58)

where Zp is the beam species atomic number. At such beam velocities, either the Bohr

stopping power formula or the Bethe version is meant to model correctly the beam's energy

deposition into the target bound electrons. In principle, when the Born approximation
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validity is established

v > 2Zp�c (4.59)

the Bethe model is meant to be used. At velocities lower than the Born criterion velocity, but

greater than Z
2=3
p �c, the Bohr stopping power formula is meant to apply. When the beam

velocity drops below its associated Thomas-Fermi scaled velocity vTF , the LSS stopping

model is appropriate.

However, a curious trend has been noted by Sigmund and others [61]. For velocities

greater than the low-velocity stopping power limit, being the Thomas-Fermi velocity vTF ,

the Bethe stopping power model is more reliable than the Bohr model. This is true even if

the Born approximation criterion is not satis�ed. The Bohr model is simply not empirically

valid in most applications. The Bethe stopping power formula is found to be useful even

beyond the technical limitations of the Born approximation. Therefore in this work, only

the Bethe stopping power formula will be employed for projectile velocities v greater than

vTF .

4.7.2 Low Velocity Transition

In principle, if a projectile should enter an absorbing medium at a velocity greater

than its Thomas-Fermi velocity, it should eventually be slowed to the point at which a

transition should be made to the regime in which the low-velocity stopping power should

be used to model its energy deposition. However, the LSS stopping power value is not in

principle equal to that of the Bethe model at the point of transition,

v = vTF : (4.60)
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Empirically, ion beams do not exhibit a sharp change in energy deposition rate at the

transition point [71]. The transition from logarithmic Bethe stopping to LSS low-velocity

stopping must be modeled in a continuous manner, representing the natural behavior of

ions stopping in an absorbing material.

In order to achieve a continuous connection between the Bethe and LSS stopping

power formulae at and around the velocity at which a transition between the two should

occur, a variety of functional smoothing techniques have been proposed. Peter and Meyer-

ter-Vehn [54] have suggested that the two expressions be joined quadratically such that the

lesser dominates by �
dE

dx

�
B;LSS

=

�
dE
dx

�
B

(1 +
�
dE
dx

�2
B
=
�
dE
dx

�2
LSS

)1=2
(4.61)

Others such as Mehlhorn [45] and Varelas and Biersack [67] have simply considered the

smallest value of either the Bethe/Bohr or LSS models to be the appropriate one at each

point. As it happens, the manner in which the low-velocity stopping and logarithmic are

merged does indeed a�ect the deposition pro�le and range calculation. Based on the rec-

ommendations in references [54] and [71], the LSS velocity dependence will be engaged by

the quadratic transition detailed above.

If the velocity should be low enough to cause a negative logarithmic stopping in

either the Bethe model then the bound electron term may be considered to have vanished. In

this case the combined stopping power above would be just the LSS stopping contribution.

Both of these bound electron stopping power applicability issues, the choice of

Bethe's formula over Bohr's and the transition into LSS application, deserve a designated

theoretical review. But, the detailed justi�cation of these issues is not the task at hand.
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The purpose here is to employ the most reliable energy deposition scheme since the focus

of the original work of this dissertation is comprehensive beam charge evolution modeling

in targets while leaving energy deposition questions to another student.

4.8 Complete Stopping Power Form

Given the di�erent stopping power physics presented in sections 4.2 through 4.6 a

comprehensive energy deposition formulation applicable to any beam-target con�guration

can be developed. This complete form represents the sum of the stopping power contribu-

tions from collisions with target bound electrons and a transition to the low-velocity LSS

formula
�
dE
dx

�
B;LSS

, free electron stopping
�
dE
dx

�
FE

and energy transfer to target nuclear

charges
�
dE
dx

�
i
. These were each addressed in the previous analysis.

A total comprehensive stopping power expression can be stated as a linear combi-

nation of the stopping power expressions due to each separate process:

�
dE

dx

�
=

�
dE

dx

�
B;LSS

+

�
dE

dx

�
FE

+

�
dE

dx

�
i
: (4.62)

This follows the stopping power formulation presented in reference [54].
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Chapter 5

Projectile Charge State

Calculations

In the energy deposition discussion of the preceding chapter, all of the terms in

the beam stopping power formulae were quanti�ed except for Q, being the charge state of

the incident ion. The determination of the beam charge state to be used in stopping power

formulae and the abstracted determination of the charge state of any projectile traversing

a material represents a formidable problem. It constitutes the primary motivation of this

dissertation and of many modern atomic physics research endeavors. While some physical

uncertainties exist in energy deposition schemes [61], the most perennially diÆcult issue is

the understanding of the reactions which cause the charge of a projectile to change along

its course through an absorber. For the HIF scientist this issue has posed an uncertainty

about atomic interactions whose resolution is desired.

The following sections detail the approaches to calculating the atomic processes
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responsible for e�ecting a change in the charge state of ions penetrating a given material.

Also presented is a context of previously-employed methods and problems motivating a

closer investigation of current methods.

5.1 Current Understanding of Charge State Evolution

In general, two approaches exist for determining the charge state evolution of

an ion penetrating a target: (1)equilibrium charge state equations, (2)discrete reaction

calculations. Historically the most useful technique for addressing projectile charge state

values for energy deposition calculations is the former method. Semi-empirical �ts for

determination of the equilibrium charge states attained by projectiles penetrating cold,

solid-density target materials have been exceptionally successful [25]. At a given velocity

an ion penetrating a material will eventually reach an equilibrium charge state at which the

ionization of the projectile by collisions the target is balanced by the capture of electrons

from the target onto the projectile. In cases in which the path length required for reaching

charge equilibrium is less than the scale of the target itself (see section 3.2.1) and much less

than the distance required for a small incremental change in projectile energy, the charge

state can be assumed to be in instantaneous equilibrium throughout its propagation. The

time dependence of the charge state evolution in that case would not be an issue.

In more rare�ed targets with densities less than about 1017cm�3 or in targets hav-

ing a low areal density nx where n is the number density of the target and x is its thickness,

charge equilibrium may not be attained within a depth small compared to the scale of the

system. In such cases the time-evolution of the charge state must be addressed. There is
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thus a need for quantifying the cross section for ionization by collision with target atoms and

any free electrons. Also, beam propagation through plasmas has not been studied to the

extent to enable a semi-empirical �t for ion deposition into plasma targets. Thus, discrete

models have been proposed to be used to model the charge evolution of ions penetrating

plasmas [54].

In the HIF chamber, the density of the ambient gas or plasma is such that charge

equilibrium is not likely to be achieved along the 300 to 500cm path length between the

designed chamber entrance and target location. Thus, determination of the beam charge

evolution in the chamber can not be addressed by a formula providing equilibrium charge

states. In that case, discrete cross sections calculations must be employed to determine the

charge state evolution of a beam in the HIF chamber. In the target, however, the beam

will be deposited into a solid target material which will rapidly be heated to form a dense

plasma. The nature of the charge evolution of a beam penetrating such a target plasma

has not yet been determined. Regardless, discrete ionization and capture reactions will

be useful in forming preliminary expectations about the nature of the charge evolution of

beams in dense plasma targets.

While a simple formula providing the charge evolution of an HIF-related beam

scenario does not yet exist (but will be developed in this work), the concept of equilibrium

charge expressions will be examined. The nature of such approaches to charge evolution

calculations can provide useful insight into beam-target atomic interactions.
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5.1.1 Equilibrium Charge

The original ansatz which serves as the basis for early equilibrium charge state

formula was given by Bohr [8]. He surmised that the equilibrium charge state QE of an

ion penetrating a given non-ionized material at a velocity v would be the one at which

the characteristic valence electron orbital velocity vv(Zp; QE) equals the projectile velocity.

This criterion can be understood better in the frame of the incident projectile, in which

observers would see the target constituents rushing past at velocity v. If an orbital electron

should be moving in its shell less swiftly than the passing nuclei and electrons, it will be

removed. This is to say that unless its binding energy, which is related to its velocity, is

greater than its kinetic energy at the beam velocity, it will be removed from the projectile.

Alternatively, this condition relates that capture of an electron from the target onto the

projectile ion will occur if the binding energy of the next available shell in the projectile's

electronic structure should be greater than the kinetic energy of an electron approaching

with the projectile velocity v. Note that this implicitly requires that the target should

possess some loosely-bound valance electrons with energy It such that

It � 1

2
mev

2: (5.1)

Thus, the projectile will be in charge equilibrium QE if the following energy balance

is established

1

2
mev

2 � Iv(Zp; QE) (5.2)

or

v � vv(Zp; QE): (5.3)
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Many techniques have been o�ered to quantify this relationship. Betz presents

a comprehensive overview of the various charge state equilibrium models [6]. The form

which has appeared most frequently in the literature and which appears to have enjoyed

more examination and �ne tuning is the exponential model due to Bohr, Betz and Brown

and Moak [10]. With amazing simplicity it relates the equilibrium charge state QE of a

projectile of atomic number Z to its velocity v.

QE = Z(1� exp[�v=v1]) (5.4)

where v1 is the characteristic Thomas-Fermi velocity of an orbital electron in the projectile

v1 = Z2=3�c: (5.5)

This expression has been adjusted slightly in various papers by variations in the associated

constants for comparison to experimental data [1]. For this present purpose the original

form is acceptable for analysis.

What is most amazing is that the model requires no information about the medium

being penetrated. The equilibrium charge state achieved in the beam, which is known to

represent the balance point of the ionization and recombination rates, is not a function of

the material properties. This amazing result actually contains some implicit assumptions.

The principal approximation is that the material being penetrated contains electrons which

are very loosely bound with respect to an electron's kinetic energy of relative motion in the

system

Ek =
1

2
mev

2: (5.6)

For most atoms, the outer-most electrons are typically bound by just a few electron-volts.

The relative energy of motion in electron-volts for non-relativistic beam velocities is obtained
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by

Ek =
1

2
mec

2�2 (5.7)

Ek = (0:5)511keV�2 (5.8)

Assuming a target valence electron binding energy of 10eV, the equilibrium �t should be

valid when

Ek > 10eV (5.9)

which is to say

255keV�2 > 10eV (5.10)

or

� > 0:01 (5.11)

Since this analysis is meant to address swift ions of � � 0:2, that velocity limitation will

not present a problem.

Another beam velocity limitation on this semi-empirical �t is that in principle it

is meant to be applied when v > v1. Note that this velocity restriction is also the velocity

criterion for validity of the LSS stopping power formulation of section 4.6. However, it is

noted that the Bohr �t for the equilibrium charge state of a projectile in a target is valid

even for beam velocities v well below the beam's Thomas-Fermi orbital velocity [71].

Several general target properties can cause this beam equilibrium charge state

formula to be invalid. It is well known that the equilibrium charge state of an ion penetrating

a gas is lower than the corresponding charge state in a solid target [20]. The semi-empirical

�t detailed above is relevant to deposition studies of beams in solid targets. Also, this

equilibrium formulation is not yet applicable to ionized targets. Both experimental and



98

theoretical investigations of the charge state equilibria achieved by ions in plasmas indicate

that the equilibrium charge state in plasmas is higher than the equilibrium charge given

by the traditional Bohr-based �t. This inability to address plasma charge evolution has

motivated much of the ion-plasma atomic physics research of late. The goal of developing

a model and a new �t to be applicable in plasmas is addressed in this dissertation.

Physics of the Semi-empirical Fit

A consideration of the physical basis of the semi-empirical �t can provide a better

understanding of the �t itself and important atomic physics properties. Since the equi-

librium condition requires that the outer electron velocity at the equilibrium charge state

should be equal to the projectile velocity, a useful relationship can be developed by in-

verting the Bohr equilibrium charge state equation. Substituting in the valence electron

velocity vv(Z;Q) of an atomic species Z charged to Q for the projectile velocity v = �c,

the semi-empirical �t can be shown to be identical to an expression relating the valence

electron orbital velocity of an ionized projectile to its charge state. The following analysis

will employ the notation Q for projectile charge state in place of equilibrium charge QE .

Q = Z(1� exp[�vv(Z;Q)=v1]) (5.12)

Z � Q

Z
= exp[�vv(Z;Q)=v1] (5.13)

ln

�
Z � Q

Z

�
= �vv(Z;Q)=v1 (5.14)

which gives a �nal useful form of

vv(Z;Q) = v1 ln

�
Z

Z �Q

�
: (5.15)
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Figure 5.1: Valence electron velocities for all charge states of Pb and Ag, empirical and
calculated from inverted Bohr formula
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This actually is an accurate representation of the charge state dependence of a

charged species' valence electron velocity. Figure 5.1 plots this function for the valence

velocities of lead and for silver at all charge states Q (except for the fully-stripped cases,

for which there are no valence electrons). Agreement is excellent, within about 25% over

all charge states.

Note that a check for consistency can be made with the hydrogenic state of any

ion. From the basic Bohr atom scaling, the velocity of the one electron in a hydrogenic ion

with charge state Q = Z � 1, vv(Z;Q=Z�1), is given by (see section 3.1.2)

vv(Z;Q=Z�1) = Z�c: (5.16)

But, from the above analysis this value should also be given by

vv(Z;Q=Z�1) = v1 ln [Z] : (5.17)

Substituting the explicit form of the Thomas-Fermi velocity v1 gives

vv(Z;Q=Z�1) = Z2=3�c ln [Z] : (5.18)

If the orbital velocity of a hydrogenic ion obtained from Bohr scaling should be equal to

the value obtained from this new scaling, then the following identity can be stated:

Z2=3� ln[Z] � Z� (5.19)

Is this observed to be true? Figure 5.2 displays the hydrogenic ion electron velocities for

every species (excluding hydrogen) as calculated from the Rydberg scaling and the Thomas-

Fermi logarithmic scaling which is produced from the semi-empirical �t. The agreement is
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excellent. Note that this relationship is actually demonstrating that for Z values in this

range,

ln[Z] � Z1=3: (5.20)

Appendix B provides a brief analysis of the validity of this approximation in the regime of

interest to this dissertation.

This valence electron velocity scaling will be employed later to develop a new

semi-empirical �t for charge evolution of ions in partially-ionized targets.

5.1.2 Discrete Calculations

The primary goal of this dissertation involves the quanti�cation of the charge-

changing reactions which a projectile sustains while penetrating a variety of target types.

These reactions can be divided into two categories:(1)ionization and (2)capture. In general,

the atomic properties of a projectile species and penetrated medium are accounted and the

various reaction rates are formulated based on a number of atomic theories. Ionization can

result from collisions between a projectile's electrons and the target's nuclei, bound electrons

and free electrons. Capture (or recombination) can occur by the transfer of electrons from

the target atoms or ions onto the projectile or by the capture by the projectile of a free

electron in the target.

The �rst discrete cross section developed was the ionization cross section for col-

lision between an incident ion and a target nucleus. This was accomplished early on by

Thomson [66] and then by Bohr [8]. After the revolution of quantum mechanics, Bethe re-

formulated ionization theory along with energy deposition theory [5]. Since that time, many
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other quantum and semi-classical approaches have been developed producing many associ-

ated ionization cross sections. Despite these decades of attention, no consistent formalism

presently exists for a robust ionization model. The Bohr formula has been out-dated by

principles of quantum mechanics. The Bethe expression was left in a form which included

several terms which are diÆcult to calculate. The currently employed quantum and semi-

classical models were once regarded as quite successful [54], but have been couched in doubt

with the rebirth of interest in beam-plasma interactions.

This doubt about the modern approaches to calculating ionization cross sections

has generated concern among HIF scientists and atomic physicists about the accuracy of the

cross sections which they traditionally use for ionization calculations. Recent experiments

have produced data which some have interpreted as indicating that one type of popular cross

section model, the binary encounter model (BEM), underestimates by a factor of 2 or more

the ionization cross section of beams penetrating plasmas [19]. An important component

of this work is to investigate this issue and to develop a reliable ionization scheme.

5.2 The Ionization Problem and Indirect Ionizations

Over the past decade much attention in atomic physics, plasma physics and HIF

circles has been directed to the problem of enhanced ionization of projectiles penetrating

absorbing media. For regimes in which equilibrium charge state �ts aren't applicable,

individual cross sections have been assembled to form ab initio models for calculations of

the charge state evolution of beams penetrating targets. What has been observed is that

empirical ionization rates are often inconsistent with the reaction rates being predicted by
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current models.

The problem in calculating ionization cross sections for ion beams incident on

targets is due to a number of issues. First, the appropriate choice for an ionization model

for a particular beam-target arrangement is not well de�ned. A wide array of ionization

formulae have been developed since the time of Thomson. Today, it seems that every

one which has ever been developed is still being cited. Moreover, it seems that every

formula cited in one reference is elsewhere shown to be faulty. Compounding this is the

re-emergence of a sensitivity to e�ects which change beam ionization rates even given a

robust nominal ionization model. Even if an ionization formulation could be found which

is reliable for a certain projectile-target con�guration, changes in target ionization state or

density introduce changes in the observed ionization cross sections which sometimes defy

theoretical modeling. The ionization problem has manifested in at least two regimes which

are of direct concern to HIF scientists.

5.2.1 Plasma Enhancement

Plasmas and cold targets each require their own associated set of ionization or

recombination cross sections for incident ion beams. Enhanced ionization cross sections

for beams penetrating plasma targets compared to the cross sections in the analogous cold

gas targets were forecast by Nardi and Zinamon in 1982 [17]. This phenomenon has since

been experimentally validated to an extensive degree. Comparing the energy deposition and

charge state of an ion beam in a cold gas to the same gas in an ionized state reveals that the

charge state of the incident beam is in general increased in the latter case [36]. Also, direct

measurement of the charge states attained by beams penetrating plasmas has con�rmed
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that ionized targets induce greater beam ionization rates than non-ionized targets[19].

The reason for the enhanced charge states is understood as being due to several

atomic processes. First, the charge transfer of bound electrons from the target to the

incident ion which ordinarily serves to neutralize the projectile can be signi�cantly reduced,

particularly for nearly fully-stripped plasmas. Also, the reaction rates for free electrons

in the target to recombine with the projectile are in general much lower than the rates

for charge transfer of bound target electrons to the projectile. Another cause is due to

the change in nuclear screening of the target constituents. Many ionization reactions will

be shown to be a function of the square of the e�ective target nuclear charge sensed by

the incident beam's electrons. If the target should be ionized, its nuclear charge may be

screened less e�ectively and may contribute more to ionizing an incident ion.

However, even though considerable theoretical e�ort has been directed to develop

a comprehensive modeling scheme to simulate this enhancement, some observed ionization

cross sections ba�e the atomic physics community. Ionization rates of beams penetrating

plasmas have been shown to exceed that which the best models predict { sometimes by

a factor of 2 to 3 [18], other times by a factor of over 10 [19]. These deviant ionization

enhancements have been observed at projectile velocities near � = 0:13, which is close to

the proposed HIF beam velocities of � = 0:2.

5.2.2 Enhanced Ionization in Cold Matter

Even when the target is not ionized, observed ionization cross section of incident

beams can confound calculation. Shevelko et al. have investigated the cross sections for

total ionization of a variety of species of projectile in a rare�ed gas target [60]. They reported
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that standard cross sections underestimate the actual ionization rates of ions penetrating

cold gas targets whose density was near 106cm�3. It was shown that the direct models often

accounted for only about 70% of the total observed ionization. This underestimation is less

severe than that of some plasma cases, but it merits attention nonetheless.

Similar calculations of the ionization of swift projectiles in dense foils have been

performed and compared to experiment with no reports of signi�cant problems [59],[32].

In some cases, second-order enhancement has been observed to occur in solid-density foils

[27], but the total ionization cross section has not deviated from theory in a problematic

way. The reason why rare�ed gases (or plasmas) are more prone to enhanced ionization

than dense targets is linked to the indirect ionization mechanism which is believed to be

responsible. This is discussed in the following section and in section 7.1.3. The important

point now is that rare�ed gas targets, a characterization which may include HIF chambers,

exhibit a particular type ionization enhancement.

5.2.3 Indirect Ionization Events

The observed levels of enhanced ionization in both plasmas and rare�ed gas targets

have been attributed to shortcomings in the simple direct ionization approach. The problem

is that most ionization models are useful in calculating only the direct ionization of an

electron from its ground state in the projectile. This does not address many of the other

processes which can contribute to the total ionization rate of a beam penetrating a target.

Instead of simply causing ionization, an encounter between a beam projectile and

a target particle can cause the projectile to form an excited electronic state. From this

excited state, the projectile may execute either a direct ionization in a subsequent collision
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with the target or an auto-ionization. These auto-ionization processes are also categorized

generally as indirect ionizations. An auto-ionization or indirect ionization is the collision-

less removal of an electron caused by energy transfer from an electron transition within the

projectile. It is analyzed further in more detail in sections 5.5.3 and 7.1.3 [52],[60].

This complex behavior is not addressed in the standard direct ionization models.

The problem is that in order to calculate these ionizations from excited projectile states,

the electronic con�guration of the excited state must be known. In a given collision causing

excitation, a wide array of electronic arrangements may result. In order to quantify such

processes it becomes necessary to employ more sophisticated computational techniques.

Monte Carlo Approaches

In an e�ort designed to address these indirect ionizations from excited states, ad-

vanced simulations have been undertaken by Olson et al. [52]. These calculations, known as

CTMC for computed trajectory Monte Carlo, aim to solve the total Hamiltonian equations

of the electrons of an atom or ion in collision. It, like the other atomic reaction models

used here, is an independent particle model (IPM) in which each electron is treated sepa-

rately with no collective e�ects. These calculations have been shown to agree well with the

experimental results in some cases [19]. However, the CTMC results have been shown to

underestimate severely the cross sections in a regime very close to that of HIF. Matsuo et

al. [26] have performed calculations and measurements of ionization of several noble gases

by impact with a 6MeV=u bare nucleus. The ionization of xenon predicted by the CTMC

method is lower than experiment consistently by a factor of 2 to 4. The Monte Carlo meth-

ods currently employed do not enable a facile, desk-top calculation of charge state evolution
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and energy deposition which is needed for many applications. The codes require months

of operating time on parallel computing facilities. There is great motivation to develop a

rapid and reasonably accurate desk-top approach to ionization calculations.

5.3 The Role of This Investigation

This dissertation explores the possibilities of vindicating the discrete cross sec-

tion approach to calculating beam ionization cross sections. This will be accomplished by

correcting problems in previous direct ionization cross section models and by establishing

trends in enhanced ionization which can be adapted into new semi-empirical adjustive fac-

tors. The goal is the development of a quick and versatile charge evolution and energy

deposition modeling system. The data suggesting that discrete ionization cross sections

are in error will be re-examined also in order to ascertain the cause of enhanced ioniza-

tion. The key component is a study of the set of reactions which characterize ionization or

recombination in a projectile.

5.4 Ionization Reactions

By the same Coulomb collisions which are responsible for transfer of energy from

a beam into an absorbing medium, attendant electrons may be removed from a traveling

ion as it collides with the nuclei and electrons in a target material. This section outlines

several standard ionization models and provides an analysis of their di�erences and applica-

bility. The existence of such a variety of ionization models is testimony to the uncertainty

associated with such a basic calculation as collisional ionization.
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5.4.1 The Bohr Ionization Model

The Bohr ionization cross section was developed in 1948 in connection with Bohr's

treatise on the interaction of particles and matter[9]. It is closely connected to the Thomson

model [66]. It is based on classical collisional theory and therefore inherits the weakness

of neglecting a full quantum mechanical treatment. However, it still enjoys some recent

application [31]. It is instructive to re-derive the simplest form of the Bohr-Thomson for-

mula from �rst principles. The energy transfer expression of equation 4.3 relates the impact

parameter of a collision between a moving charge with an electron to the energy transferred

to that electron. If the energy transferred is equated to the binding energy Inl of a reac-

tant electron of quantum numbers nl, then the associated impact parameter is that which

achieves ionization.

�E = Inl =
2Q2e4

mev2
1

b2
: (5.21)

Interpreted as the radius of collision, that ionization impact parameter can be used to

generate an equivalent ionization area, or cross section

� = �b2 =
2�Q2e4

v2Inlme
(5.22)

Another, more complete form of the classical ionization cross section is derived

from an integration of the di�erential cross section

d� =
2�Q2

te
4

mev2
dT

T 2
(5.23)

in which T represents the energy transfer in a collision between the target charge and

a projectile electron. Integration is performed over the maximum energy transfer 2mev
2

and the minimum energy transfer necessary to achieve ionization of electron nl, Inl. This
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produces, with some substitutions from the Bohr atom vocabulary,

�B = 4�a20Q
2
t

�
�

�

�2X
nl

�
Ry

Inl
� 1

2�2

�
: (5.24)

In the Bohr ionization formula above, a0 is the Bohr radius, � is the �ne structure constant

and � is the projectile speed divided by c. The total cross section is given as the sum of

those of the individual electrons.

5.4.2 Bethe Ionization

The ionization cross section due to Bethe is from his classic 1930 work [5] and was

based on the Born approximation (see x3.3). It is closely related to the Bethe stopping power

theory, but with the frames of the projectile and absorbing material reversed. In ionization,

a projectile electron receives energy from the target nuclear charges and electrons into which

it is advancing. The cross section for a projectile electron nl to be ionized is given by the

Bethe form as

�nl = 4�a20

�
�

�

�2 Ry
Inl

Z2
t fnl ln

"
4�22=�2

CnlInl=Ry

#
(5.25)

where Cnl � 0:048 for the hydrogenic case [32]. The fnl term is related to the oscillator

strength of the bound-free transition from shell n to the continuum (see section 3.1.7).

The problem with applying this formulation is the large degree of uncertainty

associated with the factors fn and Cn. Bethe himself in the classic 1930 work was only able

to express the Cn term to `etwa Zehnerpotenz kleiner', or about a factor of 10 smaller than

the respective binding energy for multiple-electron systems. Tabulations have been made

of some values of the associated terms, but a simple formalism does not exist for broad

application over di�erent projectile species and ionization states.
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5.4.3 PWBA Models

Based on calculations similar to that of the Bethe expression is a class of ionization

models known as PWBA (plane wave Born approximation) models. They treat the wave

function of the incident and scattered waves in a simpli�ed manner as described in section

3.3. Some prominent PWBA models are due to Merzbacher and Lewis [46] in 1958 and by

Hansteen et al. in 1975. Many other analyses of this model have been conducted and the

literature is replete with references.

The seminal equation of PWBA models is the Born integral expression for the

ionization cross section of an electron nl in a projectile ion [25]

�nl =
8�a20Z

2
t�

2

�2

Z 1

0
d�

Z 1

q0

dq

q3
jF (q)j2 (5.26)

in which � represents the kinetic energy of the ionized electron and and q is the momentum

transfer of the collision. Zt has its usual meaning as the target nuclear charge and � is the

projectile velocity divided by c. The form factor F (q) is the inner product of

<~�j exp(iq � r)j~nl> (5.27)

where ~� and ~nl represent the wave functions of the ionized continuum electron and the initial

bound electron nl respectively. This expression is often parameterized more conveniently

as

�nl = 4�a20�
2Z

2
t

1

�2
1

Z
2
nl

f(�nl; �nl): (5.28)

In the above form �nl is the square of the ratio of the projectile velocity v to the orbital

velocity of the electron to be ionized vnl

�nl =
v2

v2nl
; (5.29)
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and �nl is a measure of the screening constant for a particular electron, representing the

ratio of the actual ionization potential to the value calculated by scaling the Rydberg value

using the bare nuclear charge. Znl is the screened nuclear charge of the projectile atom or

ion as perceived by electron nl.

The values of the function f(�nl; �nl) which are the solutions to this integration

have been tabulated in various references [35]. The PWBA models are then implemented

by selecting the appropriate tabulated value for the particular electron nl to be ionized.

Note that such PWBA approaches are not simply functions of the ratio of the projectile

velocity v to the orbital velocity vnl. Like the Bethe formula, the PWBA cross sections

require particular values for each di�erent shell for di�erent species.

5.4.4 Binary Encounter Models

A semi-classical alternative approach to the Born-based calculations has been de-

veloped which o�ers a simpli�ed application. These schemes are known as binary encounter

models (BEM) and were articulated �rst by Gryzinski [34] and Garcia [30] in the late 1960s.

Additional lasting work towards their development was performed by Vriens [68]. Calcula-

tions based on this model employ a simpli�ed two-body Coulomb scattering cross section

for the target charge's collision with the projectile electrons. The exact analytical form of

the binary encounter models will be derived. The most general form will then be analyzed

qualitatively to develop an understanding of the origin and scaling of the terms involved.
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BEM Form and Velocity Matching

The exact form of the binary encounter model formula has appeared in several

manifestations. They are distinguished by their di�erent functional dependences on the

velocity of the projectile and the orbital velocities of its electrons. The nature of the

velocity dependence and the exact BEM ionization cross section formula itself are derived

as follows.

The di�erential binary Coulomb cross section on which the BEMs are based is

most generally expressed as d�C(v; v2; dE). In this, v is the incident velocity of the ionizing

agent, v2 is the instantaneous velocity of the projectile's orbital electron to be ionized and

dE is the energy transfer in the collision. While the electrons in an atom or ion are generally

treated as having one characteristic velocity vnl, they indeed can exhibit a spread in velocity

distribution. This velocity distribution function is expressed by �(v2; vnl) such that

Z 1

0
4�v22�(v2; vnl)dv2 = 1: (5.30)

The total cross section is generated by integrating over the range of electron velocities and

energy transfer values

�(v; vnl) =
Z 1

0

Z Emax

Emin

4�v22�(v2; vnl)�C(v; v2; dE)dv2dE (5.31)

in which Emin is the binding energy Inl of the electron in question and Emax is the kinetic

energy of the ionizing agent in the frame of the projectile atom or ion.

The choice of projectile electron velocity distribution distinguishes among the dif-

ferent models. Several analytical expressions have been used and success has even been

reported using a Æ distribution for the projectile's electrons' velocities [40]. The �rst use-
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ful algebraic solution to this integration was performed by Gryzinski using a hydrogenic

velocity distribution [34]

�(v2; vnl) =
8

�2
v5nl

(v2nl + v22)
4
: (5.32)

The resultant cross section for the ionization of electron nl in the projectile appears as

�(V ) = �e4Zt
2 1

I2nl
G[V ] (5.33)

in which G[V ] is a function of the scaled velocity V = v=vnl. The algebraic form of this

velocity function is as follows [34]. If V = v
vn

> 0:206 the value is given by:

G[V ] =
�3=2

V 2

�
�+

2

3
(1 + �) ln[2:7 + V ]

�
� (1� �)(1 + �1+V

2

) (5.34)

with

� =
V 2

1 + V 2
(5.35)

and

� =
1

4V (1 + V )
; (5.36)

for V < 0:206 the velocity-matching function is simply

G[V ] =
4V 4

15
: (5.37)

This function is plotted in �gure 5.3. Note that the maximum occurs at a scaled

velocity of V = 1. This indicates that maximum ionization of an electron nl is achieved at

a collision velocity equal to vnl.

The term Zt
2
is the e�ective screened target nuclear charge perceived by the in-

dividual electron nl. Its determination is discussed in the following section. The power

this type of cross section expression is that it does not in principle depend explicitly on
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Figure 5.3: The Gryzinski velocity function
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the individual velocities of the projectile and electrons, but only on their ratios. Therefore,

regardless of the quantum numbers or screening constant of the projectile electron to be

ionized, the ionization cross section is sensitive only to the ratio of the projectile velocity v

to the orbital velocity vnl of the electron to be ionized. This presents a signi�cant advan-

tage to the PWBA models which require adjustments for individual shells and sub-shells

incorporating tabulated values.

Screened Impact Parameter

The �nal form of the BEM cross section generated by Gryzinski

�(V ) = �e4Z2
t

1

I2nl
G[V ] (5.38)

requires accounting of the screening of the ionizing target charge by its bound electrons. The

nature of this screened charge term can be understood through a qualitative examination

of the binary encounter ionization cross section.

In a Coulomb collision between an electron nl and a charge Zt, the energy transfer

is given by equation 4.3. The maximum energy transfer allowable by collisional mechanics

is

�Emax = 2mev
2: (5.39)

Classically, the cross section for removing a projectile electron nl scales as the area generated

by the impact parameter at which this maximum energy transfer equals the binding energy

of the electron Inl. Using equation 4.3 explicitly, this is expressed as

�Emax = 2mev
2 =

2Z2
t e

4

mev2
1

b2min

(5.40)
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where bmin is the impact parameter of the collision at which this maximum energy transfer

occurs. Equating 2mev
2 to Inl and solving for bmin gives

bmin =
2Zte

2

Inl
: (5.41)

This analysis, which ignores dependence on the collision velocity, actually provides insight

to the scaling of the Gryzinski form. The cross section given by this model would be

� � �b2min. Using the above form of the impact parameter gives a cross section very similar

to the exact BEM form

� / �e4
Z2
t

I2nl
: (5.42)

Velocity matching is not included, of course. This also is the general scaling of the PWBA

ionization cross section as presented in reference [59].

The e�ective target charge term in the actual BEM cross section formula is solved

simultaneously with the impact parameter as the solution to a classical Coulomb balance.

The impact parameter for electron nl is given by

Inl =
Zt(bnl)e

2

bnl
: (5.43)

Solving for bnl,

bnl =
Z t(bnl)e

2

Inl
: (5.44)

The impact parameter bnl is measured from the center of the target nucleus. Z t(bnl) is the

e�ective screened charge of the target nucleus experienced by the projectile electron in nl

as it penetrates the electron distribution of the target atoms and ions. It is a function of

the amount of screening of the target's nuclear charge by the electronic density within a
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sphere de�ned by radius bnl.

Z t(bnl) = Zt �
Z bnl

0
n(r)d3r (5.45)

in which n(r) is the electron density about the typical target nucleus. This density is

calculated according to the approach outlined in section 3.1.5. The simpli�ed exponential

screening model developed there will be used to generate all of the target electron density

distributions required for the cross section calculations.

5.4.5 Ionization Adjustments

The performance of the ionization models will be analyzed in section 5.7, but some

important preliminary issues are addressed here.

Ionization Potential Correction

It has been noted that even for the most simple example of hydrogen ionization

by proton impact, the BEM and PWBA models fail to model the ionization cross section

[25],[40]. The cross section peak predicted by the BEM velocity matching at V = 1 is not

experimentally observed. The idealized proton energy which would produce the maximum

cross section is Ep = (mp=me)13:6eV � 25keV. What is observed is a maximum near

50keV. The same misalignment occurs even for higher-Z hydrogenic ionizations. Anholt

et al. reported that the peak in the ionization of hydrogenic xenon occurs near a value of

twice the expected value in collisions with gaseous xenon.

The reason for this apparent miserable failure is the nuclear charge enhancement

due to the presence of the incident proton [40],[69]. In the course of a close collision, such
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as those involved in K-shell ionization, the ionizing charge (here a proton) may actually

pass within an approximate sphere de�ned by the ionized electron's orbital radius. The

presence of the ionizing charge near the nuclear center of the ionized atom or ion actually

temporarily increases the e�ective nuclear charge perceived by the electron to be ionized.

In this case, the total e�ective charge Z0 perceived by the electron would be

Z0 = Z � Snl + fZt (5.46)

in which Z is the ionized ion's nuclear charge, Snl is the screening constant for the electron

and Zt is the nuclear charge of the ionizing agent. f is an occupation fraction representing

the fraction of the collision for which the nuclear superposition occurs. Given that the close

K-shell collision can occur with equal probability on either side of the electron (nuclear side

or continuum side), a value of f = 0:5 is reasonable.

This change in e�ective charge results in a change in the e�ective orbital velocity

of the electron. Using the Bohr velocity scaling for the adjusted orbital velocity of a K-shell

(n = 1) electron gives

v0 = Z0�: (5.47)

This will cause an increase in e�ective velocity of the ionized electron which causes the peak

to shift to a value higher than the actual orbital velocity. Using this adjustment, K-shell

ionization can be calculated and matched to experimental data [40].

Note that this e�ect should only be an issue for ions in which the K-shell ionization

cross sections dominate the total cross section. Since this dissertation is focused on the

atomic physics of heavy ions with many electrons, this e�ect will not be important. It is

important to address to demonstrate that some of the apparent glaring problems of the
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BEM formulae are actually well understood and correctable.

Non-ideal Target Charge Dependence

Another important adjustment is due to non-ideal functionality of the target e�ec-

tive charge. In all of the ionization cross sections presented here the e�ective charge of the

ionizing agent has appeared in quadratic dependence, Z
2
t . However, in the ionization formu-

lae based directly on the Born approximation, such as the Bethe and PWBA expressions,

this behavior is found not to represent nature well in some cases [26]. The breakdown point

is linked to the breakdown of the Born approximation as applied to the ionizing system. As

discussed in section 3.3 and following Matsuo et al., the criterion for PWBA applicability

to collision between a bound electron and an ionizing charge q at velocity v is

v > 2q�c: (5.48)

When the velocity is lower than this value for a given charge q, the perturbation technique

on which the Born-type analyses are made is violated. In this scenario the Born violation

manifests as a deviation of the functionality of the ionizing charge from the ideal q2 behavior.

In experiments investigating this e�ect, Matsuo and his colleagues studied the

ionization of various neutral atoms by impact with bare nuclei with energies of 6MeV=u. The

nuclei ranged from helium to argon. In their analysis they parameterized the functionality

of the ionizing charge as Z
�
t , where � = 2 in the ideal cross section behavior. It was observed

that as the charge of the bare nucleus increased to argon, the observed value of the exponent

� changed from near 2 for helium to 1:88 for argon. A recommendation for correcting for

this e�ect is given in reference [26].
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5.4.6 Free Electron Ionization

While the bound electrons and target nuclei ionize a beam as detailed in section

5.4, any free electrons in the target contribute to the ionization in a di�erent manner. This is

due to the di�erent kinematic properties which free electrons exhibit in collisions. Since the

electron mass is much less than that of a nucleus, the velocity dependence of the ionization

cross section due to free electron impact will exhibit a di�erent functionality.

This free electron ionization may be particularly important to study since the

greatest levels of enhanced ionization have been observed in plasmas [19]. The only sig-

ni�cant di�erence between cold target ionization and plasma ionization aside from the

di�erently-screened target nuclei and remaining bound electrons should, in principle, be

the free electron contribution.

For most modeling e�orts of swift, non-relativistic heavy ions penetrating plasmas,

the Lotz free electron ionization formulation has been employed [54]. The Lotz expression

is basically identical to the original Bethe ionization cross section. The ansatz which Lotz

followed is that the ionization caused by an electron impact exhibits a functionality similar

to ionization by a collision with a nuclear charge. An important kinematic distinction must

be made, however. A free plasma electron in the target, by conservation of momentum,

is only able to ionize an electron in the projectile whose orbital velocity is less than the

projectile velocity, which is approximately equal to the velocity of the incoming plasma

electron in the projectile's frame. A target nucleus, being at least 1837 times heavier than

an electron, is able to ionize even at velocities lower than the collision velocity.

Lotz extracted from the Bethe formulation a simpli�ed functional dependence of
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projectile velocity and ionization potential which features a cut-o� at v = vnl. The resultant

expression is

�nl � a1
EkInl

ln[Ek=Inl] (5.49)

in which a1 represents the unknown structural and empirical term. The maximum of the

Lotz function occurs at Ek = eInl where e here is Euler's constant.

Experimental data were used to determine the appropriate semi-empirical terms.

This is essential since the Bethe ionization equation and thus the Lotz formula are for-

mulated chiey for hydrogenic ions. For ions of other species, the atom-speci�c terms are

uncertain. The �tted terms in the Lotz or Bethe equations are not just some arbitrary

factors introduced to compensate for poor modeling. They represent a determination of

at least two unknown parameters which are inherent in the formulation and which rep-

resent important electronic structural information. The �tted terms may also be used to

incorporate extra indirect ionization processes. This cross section is versatile enough to

accommodate them and its semi-empirical nature reasonably allows such �tting.

In Lotz' work, experimental data from the ionization of many neutral atomic

species by electron impact were analyzed. Additionally, ionization cross sections were ob-

tained from species ionized to a charge state of +1. This ionization of already-charged

species exhibited a functionality consistent with that of the neutral species. A general cross

section was thus developed with the following constant:

�nl � 4:0� 10�14cm2eV2

EkInl
ln[Ek=Inl] (5.50)

This form of the Lotz formula and in particular this constant value of 4:0� 10�14 has been

cited widely.
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Deviations in Highly-Charged Ions

As is often the case with semi-empirical physics, a formula such as the Lotz expres-

sion is tested in a few cases and its success is extrapolated to others. While the Lotz formula

is valid for ionization of neutral or +1 species, experimental studies have since demonstrated

a deviation which was not foreseen by Lotz or by those who have implemented his formula.

The Lotz ionization cross section formula (equation 5.50) deviates quite signi�cantly from

experiment when applied to ionization of more highly-charged ions.

Stenke et al. reported measurements and analysis of the electron impact ionization

of Wq+, where q = 1:::10 [50]. This is especially relevant to this HIF study since the atomic

number of tungsten is near to those being considered for driver beam ions. For most every

charge state q examined the observed cross sections are signi�cantly higher than those

predicted by the original Lotz �t at certain electron velocities. Speci�cally, the measured

cross sections deviate from theory most prominently at electron velocities near or below the

theoretical cross section function's peak at

V = v=vnl (5.51)

where v is the electron velocity and vnl is the orbital velocity of the electron in the tungsten

to be ionized. At velocities such that V <
p
e, the observed cross sections are larger than

the respective theoretical values by a factor typically between 8 and 16. Around the peak at

V � pe the data can exceed theory by about a factor of 2. At velocities much larger than

the peak velocity the agreement improves and observed cross sections match those given by

the Lotz formula.

Gregory and Crandall [33] have provided similar measurements of the ionization
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of Xe6+. Their data reveal a total electron impact ionization, including ionization from

excited states, which is at times a factor of 10 higher than the Lotz value at low collision

velocities and as much as a factor of 4 higher at the peak of the velocity dependence V � 1.

The net e�ect of these deviations in many instances is to reduce the value of the

energy at which the Lotz function attains a maximum and to increase the value of that

maximum cross section.

The cause for this deviation is likely to be ionizations from excited states and

indirect auto-ionizations. Neither are addressed in the Lotz formula which calculates only

direct ionization from ground state. As is evident, the Lotz formula can not be simply

used as it has been, as a universal ionization formula for all projectile species and charge

states. It must be adjusted for each charge state and to include accounting of ionization

from excited states. This adjustment has not previously been incorporated in beam charge

state evolution studies relevant to HIF.

This error alone could be responsible for many of the miscalculations of enhanced

ionization in plasmas. This analysis will be pursued further in Chapter 7. In the experiments

producing anomalously high ionization data, primarily at GSI, the projectiles have been

generated with initial charge states ranging from +10 to +40 [19]. The Lotz formula as

presented was not empirically calibrated for such high ionization states, but in most recent

applications the speci�cally-generated empirical term of 4:0 � 10�14 of equation 5.50 has

been used as a universally applicable constant [54]. Additionally, since the experiments

have involved highly charged heavy ions at energies of several MeV=u, the gross ionization

cross sections are dominated by individual electron cross sections near the peak of the
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Lotz function where deviations have been observed. For instance, in the GSI experiment

involving Au28+ at 8:6MeV=u [19], the ratio of the projectile velocity to the electrons' orbital

velocities ranges from 0:25 to 2:5.

5.4.7 Lotz, Gryzinski and High V

The Bohr, Bethe, PWBA, BEM and Lotz formulae each bear their own functional

dependence on the projectile and electron orbital velocities. However, independent of all

modeling, one empirical point remains solid. It is observed and supported analytically that

at beam-target collision velocities much higher than the beam projectile's orbital velocities,

the dependence of the ionization cross section on velocity approaches a uniform ionization

energy and velocity functionality [24]. This behavior is identical for all ionizing agents,

whether they be electrons or screened atomic nuclei. The uni�ed cross section functionality

at high scaled velocities V � v=vnl is typically expressed as

�nl / 1

Inl

ln[E]

E
(5.52)

where E is the kinetic energy of an electron traveling at the same speed as the projectile

(or incident ionizing agent in the reversed frame) and Inl is the ionization potential of the

electron to be ionized in the projectile.

This expression is actually just a high-velocity approximation of the actual Bethe-

type logarithmic dependence

� / ln[E=Inl]

EInl
: (5.53)

For E � Inl, which to say v � vnl, this can be reduced by

ln[E=Inl]

EInl
=

(ln[E]� ln[Inl])

EInl
� ln[E]

EInl
: (5.54)
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In this non-reduced form, this functionality is seen to be identical to the Lotz ionization

formula. Indeed, it was this behavior which Lotz guessed would model electron ionization

properly.

The original non-reduced functionality and the Lotz function itself can be re-

expressed in another useful way using the scaled velocity V � v=vnl, or V
2 = E=Inl as

ln[E=Inl]

EInl
=

1

I2nl

ln[E=Inl]

E=Inl
(5.55)

or,

�nl / 1

I2nl

ln[V 2]

V 2
(5.56)

Note that from this analysis, the high-velocity dependence and thus the Lotz ionization

function can be expressed in the same simple terms as the BEM formula. The functionality

of the scaled velocity can be separated from the inverse-square ionization potential term

producing a cross section of the form

�nl / 1

I2nl
f(V ): (5.57)

Let us explore this BEM-Lotz similarity a bit further. The general form of the

BEM ionization cross sections were shown to be (see equation 5.33)

�(V ) = �e4Z2
t

1

I2nl
G[V ] (5.58)

The constant �e4 can be rewritten by using some Bohr-atom substitutions:

�e4 = �

 
e2

a0

!2

a20 (5.59)

and

Ry =
e2

2a0
(5.60)
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give

�e4 = 4�a20Ry
2 � 6:5� 10�14cm2eV2 (5.61)

Compare this to the Lotz function

�nl = 4:5� 10�14cm2eV2 1

I2nl

ln[V 2]

V 2
: (5.62)

The general forms of these two functions di�er only by a factor of 0:615. In other words,

the Lotz function can be written in the same general form as the BEM function

�nl = �e4
"
0:615

ln[V 2]

V 2

#
: (5.63)

The only di�erence in the two is presumably their V functions.

This can be examined further. Given that at high velocities the behavior of the

models all should merge, it may be illuminating to compare the Lotz cross section and the

BEM cross section to examine the nature of their behaviors at high V . Figure 5.4 displays

the Gryzinski velocity dependence function and the Lotz velocity dependence extracted from

the form above. Indeed, at high scaled velocities the two functions merge. The primary

di�erence is the location of their respective peaks and cut-o� values. The Lotz function

exhibits a cut-o� at V = 1. This is expected from conservation of momentum. A target

electron can only ionize a bound projectile electron if its velocity relative to the projectile is

greater than the bound electron's orbital velocity. However, the Gryzinski model is meant

to be applied to nuclei which, by virtue of their larger mass, can ionize below this cut-o�.

This type of ionization functionality is powerful in its simplicity It requires no

shell-by-shell adjustments as the PWBA models do. The cross section for ionization of

electron nl is a function only of the relative velocity v between the projectile and target
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Figure 5.4: Uni�ed scaled velocity functionalities for Gryzinski and Lotz ionization cross
section models; V � v=vnl
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and the orbital velocity of the electron to be ionized vnl. The performance of these models

will be examined more in section 5.7.

5.4.8 Ionization by Bound Electrons

The above ionization expressions addressed only the target nuclear charge con-

tribution and the free electron contribution to the ionizing collision. However, the bound

electrons of a target atom or ion also contribute to the ionization cross section. What is

the associated velocity dependence of the ionization caused by bound electron impact?

Following Bethe [5] and Scheidenberger et al. [59], the contribution of target bound

electrons to the total ionization cross section can be incorporated by replacing the e�ective

target nuclear charge Z
2
t with

Z
2
t + (Zt �Qt) (5.64)

where Qt is the average charge of a target ion and Zt�Qt is the number of bound electrons

remaining on the target ion.

The physical reason for this can be understood from the scaling behavior of the

ionization cross sections. They each are functions of the square of the ionizing charge. The

square of the electron's charge is unity, but it contributes (Zt � Qt) times to the cross

section. The total bound electron contribution is just (Zt�Qt) times this cross section and

is added to the nuclear term with the Z
2
t coeÆcient.

However, a subtlety must be addressed here. Do bound electrons ionize as free

electrons or as a massive nuclei? Does the fact that they are bound alter the properties

of their ionizing cross sections? Including them with the target term as indicated above
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suggests that they generate the same ionization cross section as the target, aside from the

squared charged factor.

The issue is not clearly resolved. For instance, why is beam ionization in hydrogen

plasmas so di�erent from the ionization in cold hydrogen gas? The free plasma electrons

certainly behave di�erently than when bound. In this analysis the bound electrons will be

included in the total charge in the manner following Bethe, though the issue merits some

future development beyond the scope of this dissertation.

5.4.9 Addressing Indirect Ionization

So far, all of the discrete ionization models described have been direct ioniza-

tion models and have not addressed the ionization problem described in section 5.2. The

challenge is to determine trends in data to establish an understanding of when the indirect

processes are important. If they should be determined to be important for this present study

then a semi-empirical adjustment will be sought to avoid the need for time-consuming and

costly Monte Carlo calculations.

The preceding investigation of the Lotz ionization problem helps to clarify the

state of a�airs. Also, the extensive work of Shevelko �nding enhanced ionization in rare�ed

gases establishes the general magnitude of the non-plasma ionization e�ects.

Cold Gases

Shevelko et al. reported ionization cross sections of beams penetrating extremely

rare�ed cold targets with density n � 106cm�3. Measurements were taken with a beam

ion species range from magnesium to uranium and over initial charge states ranging from
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1+ to 29+. The conclusions suggest that the indirect ionization contribution to the total

ionization cross section is consistently near 40% of the direct ionization contribution for

charges greater than 1+ (meaning that the direct contribution is only 70% of the total).

The total is then near a factor of 1:4 greater than the direct value. Ionization cross sections

for electron impact of singly-ionized species exhibited no noticeable deviation from direct

modeling according to the Lotz formula. This factor of indirect ionization contribution

of 1:4 seems to be consistent across a wide range of beam energies, from 0:2MeV=u to

12MeV=u.

A sensible approach would be then to multiply the direct ionization cross section

by a factor of 1:4 for projectile ions whose charge state is greater than 1+ when penetrating

a gas.

Plasmas

Indirect ionization contributions to the total ionization cross sections of beams

penetrating plasmas, however, can not be approximated with such facility. The departure

of empirical ionization cross sections from the Lotz formula does seem to begin at charges

greater than 1+, but the nature of the departure is more complex. Enhancements as high as

a factor of 6 or 10 have been reported, combined with a change in the velocity-dependence

of the ionization. Also, at beam-target collisional velocities high relative to the beam's

electron orbital velocities the enhancement is reduced and the Lotz theory begins to match

experiment.

Rather than attempting to �t all of the di�use empirical data of electron impact

ionization cross sections for multiply-charged ions, a simple empirical approach can be em-
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ployed. A general trend can be developed in the deviations of the experimentally determined

cross sections from the Lotz formula (see section 5.4.6). First of all, the deviations from

ionization cross sections predicted by the Lotz formula were only noted in target species

(corresponding to beam species in the usual frame of reference) with charge states greater

than 1. The enhancement of Lotz ionization was observed in these charged ions at electron

beam energies near or lower than the valence energies of the ion. This energy range corre-

sponds to a range of scaled velocity V � v=vnl �
p
e, where vnl is the orbital velocities of

the valence electrons of the species to be ionized. Recall that the value
p
e originates as the

maximum of the function ln[V 2]=V 2, which is the velocity dependence of the free electron

ionization cross section. Ionization by collision with a heavy nucleus has a peak in its cross

section at V = 1.

In this regime, the observed ionization cross sections due to electron beam impact

exceeded the Lotz cross section by near a factor of 2 at beam energies such that V � pe

and by a factor of over 10 when V � p
e. Note that these trends are certainly not uniform

and have been observed to vary for di�erent target ions and charge states [50],[33]. But,

these empirical factors can be used as a starting point for an attempt to adjust the Lotz

formula to achieve better agreement with experiment. This empirical adjustment scheme

will be applied in section 5.7.1.

5.4.10 Multiple Ionizations

In the ionization models detailed above, each individual electron on an incident

ion is treated independently and each electron is characterized by its own ionization cross

section. Given all of the N electrons' cross sections, a total cross section can be generated
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by summation

�T =
NX
i=1

�i: (5.65)

This total cross section is useful in forming a net mean free path for an incremental charge

change to occur

` =
1

n�T
: (5.66)

But, the collision between an incident ion and a target particle may produce not just one

incremental ionization but several in one collision. This is distinct from enhanced ionization;

it is a probabilistic and collisional issue inherent to all ionization reactions in atoms or ions

with more than one electron. Imagine the incident ion to be represented by a geometrical

area de�ned by the maximum likely impact parameter. This collisional impact parameter

is related to the orbital radii of the individual electrons. A colliding charge will penetrate

this area, reacting with any number of bound electrons. The gross probability P of any

reaction to occur in a single collision with an atom or ion can be interpreted as the cross

section for the reaction � divided by the impact area of the collision �b2

P � �

�b2
(5.67)

This quanti�cation can be understood by visualizing a target particle passing through the

incident ion's impact area. If the cross section for ionization be very small relative to the

impact area, an ionization event is not very likely in a single collision. If the cross section

is near the size of the impact area then each collision will be more likely to produce an

ionization.

For an atom or ion containing more than one electron, a collision with a target

charge may induce an ionization of more than one electron. The degree to which this
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can occur is roughly related to the probability de�ned above. The probability of a double

ionization is proportional to P 2, the square of the ionization probability. A probability for

triple ionization should be near P 3, and so forth.

A detailed analysis can be used to formulate a more rigorous treatment of multiple

ionizations. Each electron i in a beam projectile has an associated reaction probability

de�ned by its impact parameter and its cross section for ionization. This probability is

a function of the impact parameter of collision. Imagining the atom or ion as an impact

area de�ned roughly by its constituent electrons' orbital radii, a collision probability will

be highest within each electron's individual area, but will vanish far beyond it. A useful

approximation given by Kessel [39] is to treat the distribution of reaction probability as a

step function, with a constant value within some scaled impact parameter and zero outside

of it. A useful scaled maximum impact parameter bi for a given electron was found by

Kessel [39] to be

bi =
p
2ri (5.68)

where ri is the electron's scaled Bohr radius. With this value for the maximum parameter,

the step-approximated ionization probability would be

Pi(b) � �i
�b2i

(5.69)

for b � bi and zero for b > bi.

In order to calculate the single and multiple ionization probabilities, a combina-

torical assessment must be made of the ensemble. The probability that only electron i will



135

be ionized at a certain impact parameter is

iP (b) = Pi(b)
Y
j 6=i

(1� Pj(b)) (5.70)

The probability IP (b) that only one, but any one electron will be ionized in a collision is

IP (b) =
X
i

Pi(b)
Y
j 6=i

(1� Pj(b)): (5.71)

The probability that two electrons i and j will be ionized at a certain impact parameter is

similarly given by

ijP (b) = Pi(b)Pj(b)
Y
k 6=i;j

(1� Pk(b)) (5.72)

with a summation over i and j providing the total double ionization probability.

In order to convert these probabilities into a cross section, an integration must

be performed over all possible impact parameters. For a particular multiple probabilistic

con�guration mP the associated cross section is expressed by

m� =
Z 1

0
2� mP (b)bdb: (5.73)

Employing the step-function characterization of the individual probabilities, this integration

can be performed easily.

Cross section values for each multiple ionization process can be determined from

this detailed analysis or by a simple scaling from the average probability of equation 5.67.

For cases of large, many-electron ions such as those considered in this dissertation, multiple

electron probabilities can be calculated generally only to within a factor of 2 or 3 certainty

[51]. This is due to the fact that indirect ionization e�ects, though not always signi�cant in

total ionization cross section calculations, are usually important to consider in multiple ion-

ization analyses [27]. The values presented using the simpli�ed analysis described here are
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similarly only intended to represent a rough estimate. However, these values are still useful

for calculations and are as reliable as other estimates, within the associated uncertainties.

Using the approximate analysis, the average probability can be used to generate

multiple probabilities mP of order m by:

mP � Pm: (5.74)

This can be re-expressed as a cross section as follows. The gross ionization cross section

�T , being the sum of the individual electrons' cross sections, actually must represent the

sum of all of the multiple ionization cross sections according to [26]

�T = 11� + 22� + 33� + ::: (5.75)

The multiple ionization cross sections can be expressed in terms of the single ionization

cross section by the ratio

m�
1�
� P

(m�1)
T : (5.76)

The decomposition of the gross ionization cross section can be reduced by this substitution

to

�T =1�(1 + 2PT + 3P 2
T + :::): (5.77)

From this, the cross sections for multiple ionization can be approximated by

m� =1�P
(
Tm� 1) (5.78)

In this way the cross section for single ionization can be determined and the multiple

ionization cross sections can be obtained.

Some important trends for multiple ionization can be ascertained from this anal-

ysis. For a given projectile and velocity, the total ionization cross section per collision with
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an target atom or ion increases with target atomic number. Therefore, since the projectile's

own geometrical impact parameter remains the same regardless of the target identity, the

probability for multiple ionization should increase with target atomic number. This has

been veri�ed by Meyerhof et al. [27]. Also, for a given target, the multiple ionization prob-

ability is maximized at a velocity corresponding to the maximum cross section. Note that

for near-neutral atoms this may occur at a low velocity near �c, much lower than the 0:2c

expected for heavy ion fusion drivers.

5.5 Electron Capture Reactions

Now are described the set of reactions which can cause an electron to be added to

the incoming beam ion, reducing its charge state. These reactions and their associated cross

sections will be used to complement the ionization calculations to develop a total charge

evolution model. As in the study of ionization reactions, plasma targets induce their own

particular set of capture reactions due to the behavior of free electrons. Thus, the capture

reactions can be categorized into those concerning bound electrons and those concerning

free electrons.

5.5.1 Charge Transfer

The capture of an electron in a target material by an incident projectile ion can

occur in general by either a reaction in which radiation is emited or by a non-radiative

reaction. Due to the absence of the requirement of a photon, non-radiative processes are

characterized by a greater reaction cross section than radiative processes for a given target
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electron. The only signi�cant non-radiative mechanism for target electron capture by a

projectile is the charge transfer reaction. It is due originally to Oppenheimer [53] and was

re�ned with later work by Brinkman and Kramers. The �nal form is known as the OBK

model honoring its three developers. If the target should not be fully-stripped, the incoming

projectile may acquire electrons originally bound to the target atoms or ions. This charge

transfer reaction rate depends on the initial energy Ei of the bound electron in the target

and its �nal energy Ef in the beam ion. Its cross section is expressed by

�ct = 4:1� 104
X
ni

X
nf

Niaeik �
Q2
pe

4E
5=2
i E

3=2
f E4

k

[E2
k + 2Ek(Ei +Ef) + (Ei �Ef )2]5

(5.79)

in which Ek = mev
2=2 and Ni is the number of electrons in the original target shell. The

eikonal factor aeik accounts for reduction in this reaction with increased deviation from the

Born approximation on which it is based. It is expressed as

aeik =
��vi

sinh(��vi)
exp

�
�2�vi arctan

�
v=2� ��

vi

��
(5.80)

where � = �c=v, � = (Ef �Ei)=1Ry and vi =
p
Ei=1Ry. The total charge transfer reaction

rate is obtained by summing over all initial electron bound states in the target and all �nal

captured states in the projectile.

5.5.2 Radiative Capture

While the charge transfer reaction described above involves no photon emission,

two types of capture reactions can occur which are accompanied by a radiative emission.

Radiative capture reactions can be induced both by free plasma electrons and in some cases

by bound target electrons.
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The transition of a free plasma electron in the target medium to a bound state of

principal quantum number n in a moving beam ion is known as radiative electron capture. It

is more accurately described as free electron radiative capture to distinguish it from radiative

capture of a bound electron. Its cross section is given by Spitzer [62] as

�n = 2:1� 10�22
E2
b

Er(Er +Eb)
cm2 (5.81)

in which Eb is the binding energy of the �nal state and Er is given by

Er =
1

2
me

q
v2 + v2th; (5.82)

vth being the plasma electron thermal velocity. The total radiative capture reaction rate is

found by summing over all possible n receiving shells in the projectile:

�REC =

(
1� Nng

2n2g

)
�ng +

1X
n=ng+1

�n: (5.83)

In low-Z targets containing bound electrons, the second type of radiative capture

can be important to consider. Bound electrons in the target atoms or ions can also ra-

diatively recombine with the incoming projectile. Quanti�cation of this process is due to

Stobbe [63] and is performed according to a non-relativistic dipole model. Its formula, for

capture into shell n of the projectile, appears as

�n = (9165b)Zt

 
�3

1 + �2

!
exp(�4�arctan[��1]

1� exp[�2��] (5.84)

in which � = vn=v. Scheidenberger et al. present an excellent overview of this process as

well [59].
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5.5.3 Dielectronic Recombination

Another important electron capture reaction for ions penetrating a plasma is di-

electronic recombination. This process plays a special role in the recent history of beam

charge state calculation. For years it was neglected, until it was demonstrated by Peter and

Meyer-ter-Vehn to be a potentially dominating process [54]. The e�ect of this improved

understanding is that the expected augmentation of the projectile charge state in plasmas,

according to theory such as that of Nardi and Zinamon [17], is countered by dielectronic

recombination, reducing the beam charge state enhancement.

In this process, a recombining electron joining a beam ion in shell n, whose binding

energy is En, transfers some of its total energy to an electron in shell i of binding energy

Ei, which is consequently excited to shell j, bound by Ej . The angular momentum l of the

captured electron can be speci�ed as well. Electrons excited by this process will eventually

either auto-ionize or radiatively de-excite. The auto-ionization proceeds at a rate given by

an Einstein coeÆcient [54]:

Aa(jnl! iEkl� 1) =
8p
3

1Ry

�h

Z2
p

n3
1Ry

(Ei � Ej)

1

(2l+ 1)
f(i! j)Gl(k; k

0): (5.85)

Gl (k; k
0) is the partial Kramers-Gaunt factor for the bound-free transition of the captured

plasma electron back into the continuum by auto-ionization. It quanti�es deviations of the

process from the classical regime. k and k0 indicate the momentum vectors of the reactant

plasma electron before the collision with the projectile and after, respectively. See references

[54] and [4] for an analysis of this factor and its values. The radiative de-excitation of the
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captured electron occurs at a rate of

Ar(j ! i) =
1Ry

�h
�3
�
(Ej � Ei)

1Ry

�2
f(j ! i): (5.86)

Using the above Einstein coeÆcients, the formulation of the dielectronic recombi-

nation cross section is as follows [54].

�dr =
h3nf

(2�kBmeT )3=2

X
i

X
j

X
n;l

Ni
gj �Nj

gj
(2l+ 1)

ArAa

Ar + Aa
F(s; t) (5.87)

in which F(s; t) is a resonance function matching the projectile velocity with the plasma

electron velocity:

F(s; t) =
e�(s�t)

2 � e�(s+t)
2

4st
; (5.88)

with

s =

�
Ej � Ei + Enl

kBT

�1=2
(5.89)

and

t =

"
mev

2

2kBT

#1=2
: (5.90)

5.5.4 Three-body Recombination

A related but rarely signi�cant reaction is the three-body recombination reaction

in which a radiative recombination occurs and excess energy of the recombining electron

is transfered to another plasma electron. The reaction rate for this process is given by

Zel'dovich and Raizer [70] as

�3br = 2:92� 10�31cm3 s�1
Q3
pnf

(vr=�c)
(5.91)

in which Qp is the projectile charge and � is the �ne structure constant.
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5.5.5 Capture Density E�ects

In order for a projectile to capture an electron from the continuum or from a target

atom or ion, the captured electron initially may exist in a bound state in the projectile

with a very large principal quantum number n. Subsequently the electron may reach its

destination in a ground level in the projectile by radiative cascading decays. Alternatively,

the electron may be ionized by a number of processes before it reaches the ground state. The

probability that this newly captured electron would be ionized before maintaining residency

in a ground state in the projectile increases with the density of the target nt and the velocity

of the projectile v. This is because the competition between cascading decay and collisional

re-ionization is biased towards re-ionization with increasing direct collisional reaction rate

�

� = nt�v (5.92)

given the same radiative decay rate. The net result is the suppression of capture reactions

with increasing density and velocity. This is the cause of the e�ect mentioned at the end of

section 5.1.1.

Peter and Meyer-ter-Vehn have quanti�ed this e�ect as a function of the system's

parameters including the principal quantum numbers nl of the shell into which the capture

has occurred. The suppression is presented as an approximate unit-less factor P by which

the individual capture cross section should be reduced. This factor is given as

P = 1=(1 + 5� 10�18
Z2
t nt1cm

3

Z6
pv=�c

l2n5): (5.93)

It is meant in this form to be applicable for large v and large n [54]. Some adjustments

may be required in order to make it broadly employable.
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The e�ects of this electron capture suppression in an incident beam due to high

target density are believed to cause an increase in the equilibrium charge states in a solid

target versus in a gas target. While in principle this e�ect is present, the degree of change

will be considered small, particularly for a heavy ion's charge state, and this e�ect will be

largely be ignored. This is the case since the charge-changing cross sections for a given

element at a given velocity vary over many orders of magnitude with changes in projectile

charge state (see section 5.7). The goal of developing reliable capture reactions is primarily

to combine them with ionization models to establish the balance point in a given scenario.

This balance point at which capture and ionization rates are equal represents charge equilib-

rium. Given that the capture and ionization cross sections vary so strongly over the range

of projectile charge states for a system, changes in a cross section of even 50% to 100%

could be tolerated since they would not change the equilibrium charge value signi�cantly.

However, if a more detailed analysis should be needed, this term can be implemented.

5.6 Roles of Cross Sections

The ionization and capture cross section models discussed in sections 5.4 and 5.5

can be assembled to form a comprehensive charge changing rate for a given beam penetrating

a target. The roles of individual cross sections can be understood in terms of the two main

objectives of this dissertation. The two processes which need to be addressed are the

ionization of a heavy ion beam penetrating a rare�ed medium and the charge evolution and

energy deposition of a beam directed into a dense plasma.

For the study of beam ionization in HIF chambers, the electron capture reactions
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will not be important since the driver beam's charge state will be low and ionization reac-

tions will dominate the charge evolution. For a heavy ion such as lead at velocities typical

of HIF scenarios, v = 0:2c, the equilibrium charge state would be at least 63 (see section

5.1.1). At charge states greater than this equilibrium value, charge transfer will dominate.

At lower charge states ionization will dominate. For HIF chamber applications, the max-

imum charge of the beam ions encountered will be of the order of 10+ to 15+. At these

charge states, ionization will dominate the reaction rate by many orders of magnitude. This

will be seen in more detail in section 5.7.

For the studies of the deposition of beams into dense target materials, it is hoped

that the beam's actual charge state evolution will be characterized by instantaneous charge

equilibrium as in the case of deposition into cold targets. In this situation, the charge state

of the beam at each velocity as it slows will be that charge at which the total ionization

reaction rate is equal to the total capture rate. It is not yet known when and if this will

be the case for a heavy ion beam penetrating a dense plasma. It is well known (see section

5.1.1) that ions reach equilibrium charge states in cold targets. However, the entire ensemble

of capture and ionization rates have not yet been analyzed suÆciently to establish whether

or not equilibrium charge evolution can be expected in beams penetrating HIF hohlraum

materials heated to hundreds of eV. Ideally, if the charge evolution of a heavy ion in a dense

plasma target should be characterized by an equilibrium value, that will be one which is

eventually expressible by a new, simple equation analogous to the old semi-empirical �t for

cold target deposition. For this purpose, all of the capture and ionization reactions will be

required, as well as the physics of energy deposition.
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5.7 Experimental Validation of Cross Sections

The variety of theoretical and semi-empirical models developed in sections 5.4 and

5.5 can be checked against measured ionization rates in order to determine their validity.

In order to perform these calculations in a comprehensive manner, a computer code suite

was developed incorporating the cross section models of the previous sections. This will

allow calculation of ionization and capture cross sections for a user-speci�ed beam species

penetrating a user- speci�ed target. Appendix C contains information about the speci�c

details of these and codes and other codes used in this dissertation.

One code is called x and is used in the following analyses to generate all ionization

and capture cross sections. Another code called zstopx calculates and gives as an output

the relevant cross sections, but also computes the evolution of the beam's average charge

state as a function of time and distance of penetration through the speci�ed target. In

the following calculations and comparisons to experimental data, the energy deposition of

the beam into the target will not be signi�cant at all. The zstopx code is also equipped

with the capability to calculate the energy deposition of the beam into a target, but that

function is not useful here (see Chapter 6). The zstopx code is useful here to calculate the

average charge state evolution of a beam penetrating a plasma target (see section 5.7.1),

which is a function of the relevant beam charge-changing cross sections. Most experimental

data regarding the ionization cross sections for beams penetrating plasmas is found in the

form of a measured average change in the incident beam's charge state after penetrating a

plasma. This requires a simple beam evolution routine which advances the beam in mean
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free path steps ` according to

` =
v

�tot
(5.94)

where v is the beam's velocity and �tot is the total charge-changing reaction rate. It is

de�ned by

�tot = j�I � �C j (5.95)

where �I is the total reaction rate for beam ionization and �C is the reaction rate for

electron capture onto the beam. After each step `, the average charge state of the beam is

considered to have changed, either by +1 if the ionization reaction rate �I should be greater

than the capture rate �C or by �1 if the capture rate should be the larger of the two. This

is discussed in more detail in Chapter 6.

5.7.1 Ionization Comparisons

The expanse of functions intended to model beam ionization cross sections remains

an unconquered landscape. Even in the past decades both the Bohr and Bethe models have

been used [31],[32]. Meanwhile, the PWBA and BEM models have also enjoyed application

[59],[54]. As yet, no clear consensus exists on when each is applicable and why they di�er

so signi�cantly [25].

The di�erences among the values predicted by the various expressions are not just

cosmetic. The ionization cross section models all exhibit the same general scaling for target

ionizing charge, but exhibit di�erent functional dependence on the projectile velocity v and

orbital electron velocities vnl. Some models such as the PWBA formulae require articulation

of terms for each shell and sub-shell, where the BEM expressions are independent of such
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terms.

Though the situation seems to be obscured by the variety of possible models,

progress can be made on the issues at hand. The primary objective is to address two

regimes of ionization involving the penetration of swift heavy ions through HIF-relevant

materials. The �rst is the study of the ionization of near-neutral ions penetrating a gaseous

and possibly ionized medium. The second is the charge evolution calculation of the ions as

they are deposited into a solid-density material.

Based on the simplicity of the binary encounter models and their asserted e�ec-

tiveness, they will serve as the primary ionization model to be examined in the following

analysis. If shown to be faulty then the other models can be implemented. However, a goal

of this work is to determine if the BEMs can be used e�ectively. They will therefore serve

as the �rst-test calculation.

Ionization Velocity Regimes

The two main ionization scenarios considered here, ionization of near-neutral

beams in a rare�ed target and charge evolution of beams in dense targets, actually form

a convenient dialectic of the two di�erent projectile-electron velocity space regimes of ion-

ization. These are (1)high scaled velocity (V � 1) and (2) near-peak velocity (V � 1),

where V is the scaled velocity being v=vnl for each projectile electron nl which may be ion-

ized. The latter is called `near peak' ionization since the maximum value of the ionization

function for a given electron ionization potential occurs at V = 1. The penetration of an

HIF chamber gas by heavy ions with charge states ranging from 1+ to 10+ represents the

former and the charge evolution of ions, perhaps near charge equilibrium, while deposited
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in solids represents the second case. The following sections address these two cases.

Ionization of Swift Near-Neutrals

Ideally, the ionization cross section of a heavy ion driver beam at all likely beam

charge states would be determined experimentally. However, heavy ion fusion scientists now

are forced to rely on calculations with no direct empirical data in the regime of interest.

The problem is that it is not yet possible to generate beams of high-Z projectiles at tens of

MeV=u at low charge states. This situation is a concern to the HIF community since this is

exactly the case desired to be understood for chamber transport calculations for HIF power

plants. It is quite easy to create beams of even higher energy, but with greater initial charge

state, but studying the prototypical 20MeV=u Pb1+ beam is not possible per se. However,

consider reversing the frame of this collision. If the projectile became a target, a charge

could be driven against it while measuring the ionization of the target. This is exactly the

technique employed by Lotz and others investigating free electron-induced ionization.

Such data have been gathered in a parameter space of immediate interest to HIF.

Matsuo et al. have gathered data from the ionization of several species by collision with

bare nuclei. The beam energy of the experiment was 6MeV=u, which gives � = 0:11. This

data is useful since the velocity range is near that of putative HIF beams, the species being

ionized is neutral, and the charges of the ionizing agents examined included those very close

to the chamber constituents.

In the ionization of swift, near-neutral high-Z species, the cross sections are domi-

nated by the removal of the outer valence electrons, being very weakly bound. For binding

energies of a few eV, the associated orbital velocities are near �c. Therefore, the ratio of the
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frame velocity to the orbital velocity can be near 10. This fact is of tremendous signi�cance.

At such scaled velocities many of the troubling distinctions among the di�erent ionization

cross section models become independent of the mass of the ionizing agent. In this regime

even electrons ionize exactly as protons [24]. The analysis of section 5.4.7 demonstrated the

merging of the Gryzinski BEM and the Lotz formulae in this regime.

Note also that this is the same experiment which demonstrated deviation from q2

ionizing charge dependence for high-Z ionizers (see section 5.4.5). In the following analysis

the corrections for such e�ects will not have been included.

The performance of the BEM/Lotz functions at these high velocities will be exam-

ined with respect to the data and to each other. Using the Gryzinski velocity dependence

of equations 5.34 and 5.37, the binary encounter model was employed to model the Matsuo

data. Also used was a hybrid model consisting of the Gryzinski velocity function below

V = 7:3 and the Lotz form for V � 7:3 (the two meet near V = 7:3).

Representative experimental cross sections taken from Matsuo and his colleagues

appear in table 5.1. The values modeled using both the straight BEM formula and the

hybrid BEM-Lotz model are also included for comparison. In general, both models provide

cross section values of which the majority are within 15% of the experimentally determined

cross sections. The average error in for the four cross sections measurements for the xenon

target is 23:8% for the BEM model and 20:4% for the hybrid model. The greatest disparity

observed between theory and experiment is about 40% for the ionization of xenon by helium

as calculated by the BEM cross section. The hybrid model here gives a value within 33:2%

of the experimental cross section. The experimental uncertainty was estimated to be near
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Ar Kr Xe
Exp Gry Hyb Exp Gry Hyb Exp Gry Hyb

He 1:27 1:06 1:20 1:90 1:40 1:57 2:98 1:77 1:99

C 10:6 9:57 10:8 15:9 12:6 14:1 23:7 16:0 17:9

Ne 26:8 26:6 30:0 39:3 35:0 39:2 56:8 44:3 49:8

Ar 70:0 86:1 97:3 98:3 114 127 144 144 161

Table 5.1: Measured cross sections [=10�16cm2] for ionization by collision with a 6MeV=u
beam of bare nuclei [26]. The column headers list target type and designate `Exp' for
experiment, `BEM' for BEM calculations and `Hyb' for hybrid calculations; rows designate
the incident ionizing nuclei

8:4% [26].

No clear over-calculation of cross sections are observed with increasing beam q

value as expected from section 5.4.5. This is probably the case since the problem was

expected based on analysis of the PWBA cross section { the BEM and hybrid models used

here may not be vulnerable to that particular error. Also, the e�ect may be small compared

to the � 20% error of the calculations.

The case above which is most relevant to HIF chamber ionization calculations is

the ionization of xenon and argon by a charge of q = 2 (a helium nucleus). This is true even

though the gas through which the HIF beams will propagate will likely consist of Z = 9

uorine. Due to screening, the net e�ective charge sensed by the projectile electrons most

likely to be ionized is near 1:5 [51]. The cases more relevant to cross section calculations for

beams being deposited into dense targets are the ones involving the higher q beams. This

is true since in the dense solids, higher beam charge states will be achieved and the valence

electrons at those states will be more strongly bound and will sense a higher e�ective target

screened nuclear charge as detailed in section 5.4.4.

The comparisons conducted above for both the near-peak ionization and the ion-



151

ization of swift neutrals span the ranges of both atomic number and velocities relevant to

HIF while con�rming the cross section values to be within useful tolerances.

Ionization Near Peak

As discussed in section 5.1.1, the charge state of an ion penetrating a suÆciently

dense absorber rapidly reaches an equilibrium value. This value is the charge state for which

the orbital velocities of the valence electrons are comparable to the projectile velocity itself.

In terms of the ionization cross section modeling parameters, this is a regime in which

V � v=vnl � 1. This is also the scaled velocity regime at which the cross section velocity-

dependence reaches a maximum.

Some discrete cross sections are available for testing cross section theory for this

case. A fundamental test would be to compare the measured and calculated cross sections

for a very simple ionization system: ionization of a light ion by proton impact with a proton

beam energy such that the ionization cross section is maximized. Rudd et al. reported the

cross sections for the ionization of helium by proton impact. The e�ective nuclear charge

enhancement by incident charge superposition (see section 5.4.5) and resultant e�ective

increase in the ionization potential of the K-shell electrons will be considered. The e�ect of

this process is that the peak occurs with a proton beam energy near 80keV. The measured

cross section value at this energy is approximately 9 � 10�17cm2. The value given by the

BEM calculation is 9:6 � 10�17cm2. The experimental uncertainty in the measurements

were not stated as the data points were compiled from many sources.

A similar calculation for a high-Z ion was provided by Anholt and his colleagues

[25]. They reported the cross sections of hydrogenic xenon (Xe53+) penetrating a range of
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targets. At a beam energy of 200MeV, which corresponds to the velocity of the one K-shell

electron, the cross section measured for penetration a xenon gas is near 4:8�10�20cm2. The

corresponding value calculated by the BEM formula is 5:16� 10�20cm2. The uncertainty

in the experimental cross section is near 30%.

Meyerhof and his coworkers examined the near-peak ionization of highly ionized

ions of even larger atomic number at collisional energies of several hundred MeV=u [27].

In principle, since the BEM formula is a function of only the ratio of projectile to orbital

velocities, the cross section modeling should be addressed adequately. Indeed, the BEM

calculation proved successful in even this regime. For a uranium ion at a charge state of

83+, the total measured cross section for ionization in a gold foil at an energy of 430MeV=u

was near 1�10�18cm2, with an uncertainty of approximately 15%. The corresponding BEM

value is 1:06� 10�18cm2. For penetration of a carbon foil at the same velocity, the total

cross section was reported to be near 8� 10�21cm2. The BEM calculation produces a value

of 8:5� 10�21cm2. Note that this set of comparisons addresses not just a hydrogenic ion,

but a more complex ion containing 9 electrons, which is uorine-like.

Another set of useful measurements from an unpublished GSI experiment have

been presented by Olson [51]. The work reported measurements of the cross sections of

xenon ions at 1:4MeV=u penetrating a nitrogen target. At a charge state of 24+, the total

ionization cross section was reported to be near 1:85� 10�17cm2. The corresponding BEM

value is found to be 2:14� 10�17cm2. The uncertainty in the empirical value is about 20%.

This result, again, represents ionization near the peak of the velocity dependence of the

cross section formula. Since the atomic number of the target is greater than 1, screening
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e�ects were important for the calculation, as they were for the other non-hydrogenic targets.

This reinforces the reliability of the modeling detailed in section 5.4.4.

Plasma Ionization

The comparisons between experimental data ionization models of the ionization

of ionic species by electron impact requires special attention. This is because free electrons,

whether in a beam or in a plasma target, collisionally ionize in a di�erent manner from

screened nuclei as discussed in section 5.4.6. Also, the magnitude of enhancement of electron

impact ionization rates due to indirect ionization processes is generally greater than the

magnitude of the indirect enhancements of ionization by beam collision with a screened

target nuclear charge.

A semi-empirical method for quantifying the deviations of observed ionization rates

from the Lotz ionization formula was proposed in section 5.4.9. In this section, that new

empirical adjustment will be employed in comparisons with electron impact ionization cross

sections.

Dietrich et al. [18] conducted the �rst measurements of the charge state of a swift

heavy ion through a plasma. This �rst work also established that the body of physical

models was not adequate to wrestle the surprise exhibition of the data. Dietrich and his

colleagues were forced to employ a corrective factor to adjust the models in order to agree

with the experimental date. The BEM ionization cross section was multiplied by a factor of

2:5 in order to achieve agreement between the calculated beam ionization and the observed

beam ionization. Analysis here has shown (see also section 7.1.2) that the BEM cross section

should not be totally to blame for the plasma ionization. Upon close inspection the Lotz
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formula emerges as the most likely source of the miscalculation.

In the GSI experiment [18], a xenon beam initially charged to 37+ at an energy of

5:9MeV=u was observed to be ionized to an average charge state near 42+ after traversing

20cm of hydrogen plasma whose density was near 4 � 1018cm�3. The models employed

here forecast an average emerging charge of only 40. This is not an alarming shortfall. It

can indeed be corrected by multiplying the BEM cross section by 2:5, which reproduces

the observed �nal charge state. However, the atomic processes which dominate this charge

evolution involve ionization of electrons whose orbital velocities are near or less than the

projectile velocity. In such cases in which the scaled velocity V � v=vnl � 1 signi�cant

ionization enhancements were observed in electron beam ionization of highly-charged ions

(see section 5.4.6). The GSI beam-plasma experiment of Dietrich and his colleagues was

actually just another form of the experiments in which an electron beam was used to ionize

a target species. The GSI experiment was simply a frame-reversal of the Lotz-type electron

beam experiments, with the roles of the targets and beams reversed. But, instead of just

causing ionization by electron impact, a hydrogen plasma also generates ionization in an

incident beam through collisions with the protons. Thus two cross sections must be em-

ployed to characterize the total ionization : the BEM cross section for ionization by proton

impact and the Lotz cross section for ionization by free electron impact.

However, in the analysis of the experimental data, only the BEM cross section was

adjusted by a corrective factor. It has been shown here that the Lotz formula can under-

estimate electron ionization cross sections signi�cantly. Therefore, it should be expected

that the Lotz cross section { not just the BEM cross section { should be augmented by a
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corrective factor. Given that Shevelko's analysis indicated a consistent need for a factor

of 1:4 for nuclear ionization, this factor could be applied to the BEM cross section in this

analysis instead of the 2:5. The rest of the necessary adjustments should be applied to the

Lotz formula. Given this arrangement, the corrective factor to the Lotz formula needed

to reproduce the data, along with the factor of 1:4 applied to the BEM values, is near 12.

This is sensible since the magnitude of deviation from Lotz in this velocity range for other

high-Z ions is on the order of 10 [50]. This enhancement by 12 is within the observed levels

of experimental deviation from the Lotz formula and was it is near the factor proposed in

section 5.4.9.

In another experiment, St�ockl et al. have measured the ionization of gold beams

penetrating hydrogen plasmas. Their results were surprising because the enhancement they

observed was not able to be corrected by a factor of 2:5 applied to the BEM cross section.

It was concluded then that a corrective factor approach would not work to model ionization

in plasmas, and that the BEM formula in general was not reliable. No mention was made

of the deviations of the Lotz formula from observed electron ionization values. In light of

the present work, this conclusion is re-examined. Again, this is a regime in which many

of the electrons have orbital velocities near or less than the projectile velocity. Following

the previous re-analysis, which was based on the conclusions of section 5.4.6, the Lotz free

electron ionization cross section was multiplied by a factor of 12. That approach here also

provides a close replication of the empirical data. Through 20cm of hydrogen plasma at

5 � 1017cm�3, a gold ion initially charged to 28+ at 8:6MeV=u was found to reach a �nal

average charge state of 42� 2. Using the corrected Lotz formula and the 1:4 factor on the
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BEM value, the �nal charge is 42:5. If the density should be reduced to 2� 1016cm�3, the

�nal measured charge was 33 � 2. The modeled average charge state, using the corrected

Lotz cross section, was found to be 30 for the same beam and target parameters.

While no analytic representation of the observed deviations from the Lotz formula

have been developed, good consistent agreement has been achieved here by quantifying to

�rst-order the observed enhancements in both the BEM and Lotz ionization formulae. This

is a new result in that it is the �rst analysis which has identi�ed and corrected the Lotz

problem for beam-plasma interactions. This supports the corrective approach outlined in

section 5.4.9.

5.7.2 Capture Comparisons

The cross section calculations associated with the capture of an electron by a pen-

etrating projectile are not as controversial as those of ionization. However, it is important

to be sure that proper modeling has been achieved particularly since the cross section cal-

culations depend not only on the explicit cross section formula itself but also on atomic

values such as binding energies and radial density distributions.

Some capture cross section values from a GSI experiment were reported by Olson

[51]. For the same 1:4MeV=u xenon collisions in nitrogen, capture cross section measure-

ments were made for a variety of charge states ranging from 24 to 33. These results along

with the theoretical values are presented in �gure 5.5. The uncertainties in the GSI mea-

surements are near 20%. The total capture cross section is the sum of the non-radiative

charge transfer reaction and the radiative capture of bound electrons according to models

of section 5.5.1 and 5.5.2.
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Figure 5.5: Total capture cross sections for 1:4MeV=u xenon penetrating a nitrogen target,
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Figure 5.6: Total capture cross sections for Au78+ penetrating carbon and nickel targets,
experiment and theory; experimental uncertainty is near 40%

Some other useful capture cross sections have been reported by Scheidenberger et

al. [59]. They presented capture rates for hydrogenic gold penetrating nickel and carbon

targets. Figure 5.6 shows the theoretical and experimental values of the total recombination

cross sections of Au78+ penetrating both nickel and carbon targets. The uncertainties in

the capture cross section measurements are given to be near 40%. This seems relatively

large, but note that the capture rates vary over many orders of magnitude over the energy

range examined here. Agreement between theory and experiment is within error.



159

These results validate the OBK capture model in non-ionized targets over a range

of velocities and atomic numbers of both target and projectile. As with the ionization

cross section comparisons, an even stronger validation can be made by using the Bohr semi-

empirical �t. Note that the density suppression factor detailed in section 5.5.5 was not

required in the above comparisons. In the low density of the target in the gas measurements

is such that the e�ects are not signi�cant. Also, the e�ect is not important in thin foils.

5.7.3 Comparison to Bohr Equilibrium

While experimental cross section values have been found for comparison with cal-

culated values from the ionization and capture formulae, another comparison is available

without new experimental apparati. Recall the semi-empirical �t for the equilibrium charge

state of a projectile in any given medium as discussed in section 5.1.1. Aside from density

e�ects, the approximate average value of the equilibrium charge state exhibited by a beam

penetrating a target can be determined knowing only the beam velocity and atomic number.

Encoded in this assertion is an implicit statement about cross sections. At the

equilibrium charge state predicted by the semi-empirical �t, the discrete ionization and

capture cross sections should be nearly equal, independent of the target material. The

magnitude of the respective cross sections will certainly vary over the range of projectiles

and targets, but the charge state at which they intersect should occur near the expected

equilibrium charge state value. So, given a set of recombination and ionization reaction

formulae, a de�nitive check can be made of their accuracy in cold matter calculations by

comparing the equilibrium which they collectively forecast to that empirically determined

to be the correct value. Validations can thus be established for the entire set of reaction
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rates for desired scenarios. At a given velocity, the ionization and capture cross sections

for a beam of atomic number Z can be calculated for each charge state Q from Q = 0 to

Q = Z. They should intersect at the equilibrium charge state.

It is important to note that some variations have been employed in the equilibrium

�t formula to achieve an exact match to data for di�erent beam-target set-ups [1]. In the

following analysis, only the most general form of the semi-empirical �t

Zeq = Z(1� exp[��=(Z2=3�)]) (5.96)

will be used. This form of the expression is still very useful and accurate for the purposes

here. The variations employed in the literature to �ne-tune this �t consist of minor ad-

justments such as replacing the Z2=3 with Z0:667 or the 1 with 1:034 [45]. The di�erences

between the current models and the semi-empirical �t may be in part due to failure to

account for such adjustments, but their relative e�ects will be considered to be small.

Also, the e�ects due to density suppression may be addressed. In the following

analysis the cross sections will be employed without the density correction suggested by

Peter and Meyer-ter-Vehn (see section 5.5.5). The e�ect of density suppression of capture

reactions is only responsible for a change in equilibrium charge state of a few for a high-Z

beam [20]. An error due to the exclusion of these e�ects will thus be relatively small. The

equilibrium charge state values predicted using the unadjusted cross sections may therefore

be consistently lower than those which would be expected in a solid target. However, the

validation achieved by this analysis will still be very useful, particularly since this compar-

ison between discrete cross section values and the semi-empirical �t for charge equilibrium

has not been conducted before.
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Consider a lead projectile penetrating a gold target. A useful energy range to

examine for the purposes of this work is from 100MeV=u to about 1MeV=u. The total

ionization and capture cross sections were calculated for this beam, target and velocity

range. The cross section values can be viewed graphically in �gure 5.7 for an incident

energy of 20MeV=u. The dashed line on the plot represents the value forecast by the semi-

empirical �t formula, which is 63 for this case. Agreement between the equilibrium charge

state calculated by the Bohr semi-empirical �t and the equilibrium charge states determined

by intersection of the capture and ionization cross sections is nearly precise at this velocity.

Figure 5.8 displays the lead ion equilibrium values given by the intersections of

ionization and capture as in �gure 5.7 but for a range of velocities, including the 20MeV=u

value above, for the gold target. The agreement between the reaction rate model developed

here and the empirical data represented by the Bohr equilibrium charge formula is excellent

over the entire velocity range. The equilibrium charge states calculated by the cross section

intersection method are within about 15% of the semi-empirical �t value consistently. As

expected, the data are systematically low, probably due to exclusion of capture suppression

in dense targets.

This test can be repeated for other targets establishing the validity of the cross

sections calculated in other target atomic numbers. This is an important step. The equi-

librium charge state of a beam is largely independent of the target being penetrated, so

this procedure of comparing ionization to capture should give the same charge states in any

target.

The equilibrium values calculated for penetration into a carbon targets over the
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a cold solid gold target; Expected equilibrium charge is shown by the dashed line
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Figure 5.8: Modeled equilibrium charge state values with corresponding values given by the
semi-empirical �t for lead penetrating gold and carbon targets

range of velocities appear with those in the gold target in �gure 5.8. In the carbon target

as in the gold target, agreement between the cross section-determined equilibrium charge

state and that given by the traditional �t are within about 15%.

The above examinations were performed for a lead projectile penetrating both

high-Z and low-Z targets. An analogous systematic study was performed for a potassium ion

penetrating both gold and carbon targets. The potassium beam velocity range considered

was lower since the relevant range scales as Z2=3. In �gure 5.9 are displayed the equilibrium
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Figure 5.9: Modeled equilibrium charge state values with corresponding values given by the
semi-empirical �t for potassium penetrating gold and carbon targets

charge states as calculated by the current modeling suite along with the corresponding

semi-empirical values. Again, the agreement is excellent, within approximately 15% of the

values given by the Bohr semi-empirical �t.

This equilibrium charge method of checking charge-changing cross sections is sig-

ni�cant in that, even ignoring density e�ects, the general values against which the com-

parison is made are known to be reliable from the extensive history of reliability of the

semi-empirical �t. The close validation over a wide projectile velocity range in targets
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spanning the periodic table establishes the broad success of the ionization and capture

models to be able to provide equilibrium charge information. The comparison with the re-

sults taken in the carbon target establish that this method is reliable for low-Z targets such

as the HIF chamber gas and some of the hohlraum materials. The gold test demonstrates

model reliability in high-Z hohlraum materials.

This comparison is the �rst time that the semi-empirical equilibrium charge for-

mula has been reproduced from �rst-principle atomic reactions. Its success supports the

reliability of the models used in this dissertation and conclusions drawn from them. It could

be explored in more detail here, but the purpose of this present work requires only a simple

validation.
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Chapter 6

Integrated Deposition Calculations

The �rst major goal of this dissertation has been the calculation of the charge-

changing reactions in beams penetrating rare�ed gases or plasmas into which the beam

deposited an insigni�cant amount of energy. These calculations are useful, for instance,

for determining the charge evolution of an HIF driver beam penetrating the gas or plasma

which may be contained in the HIF power plant chamber. The second major goal addresses

the �nal destination of the beams in the hohlraum fusion targets. The heavy ion driver

beams will deposit their energy into the targets positioned at the center of the HIF power

plant chamber, heating the targets during the course of the deposition.

This chapter presents the methods by which the charge evolution physics of beam

energy deposition presented in Chapter 4 can be integrated with the charge-changing re-

action formulations discussed in Chapter 5. These integrated calculations will be used to

model the charge evolution of an ion or beam as it deposits its energy into a target mate-

rial. These calculations will �rst be performed for beams penetrating cold target materials
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and will later be used to model beam deposition into plasmas. The calculations will be

compared to some actual experimental measurements of beam ranges in solid, cold targets.

While the physics of energy deposition into cold, non-ionized solid targets has been

understood for most of the 20th century, the physics of beam energy deposition into dense

plasma targets has not been resolved. The charge evolution and deposition behavior of

beams in dense plasmas will be analyzed using the charge-changing reaction formulae and

energy deposition models developed and outlined in previous sections and the computational

tools developed here. The eventual objective is a new, comprehensive understanding of the

physics of beam deposition into dense plasmas.

A computer code suite was developed to model the charge evolution and energy

deposition of a given projectile ion into a speci�ed target material. The code suite consists

of two programs called zstop and zstopx . The former is equipped only to treat the

beam as if it were in instantaneous charge equilibrium throughout its deposition into the

target. It uses the Bohr equilibrium formula (equation 5.4) to determine the instantaneous

beam charge state at each given velocity. That beam charge state is used with the energy

deposition physics of Chapter 4 to perform energy deposition calculations. The second code,

zstopx , incorporates beam charge state calculations from the ionization and capture cross

sections discussed in Chapter 5 as well as energy deposition models of Chapter 4. It does

not treat the beam as necessarily in charge state equilibrium, but tracks the evolution of the

beam's charge state according to the associated capture and ionization reaction rates. This

code requires much more time to run since for each step in the calculation new ionization

and capture rates are calculated for the beam, rather than just using a simple formula to



168

give beam charge state at each point.

Appendix C contains information on the use these two codes as well as the other

computer programs developed for this dissertation.

Note that the calculations of this chapter do not yet constitute a useful �nal

computational tool. These calculations are now performed only to validate the charge

evolution models in conjunction with energy deposition physics. This work does not bene�t

calculations of charge changing rates of beams traversing chambers, since those calculations

do not require consideration of the energy deposition of the incident beam. The zstop code

as yet does nothing which has not been done many times before, which is the calculation

of the beam deposition into a target using an old formula for the calculation of the beam's

equilibrium charge state. The calculations performed by the zstopx code using the actual

charge-changing reactions are indeed original. But, the code's modeling routines will be too

slow to be used in a serious target deposition calculation code such as the LASNEX code

of Lawrence Livermore National Lab since the charge evolution calculations are too time

consuming.

However, these calculations will eventually be used to demonstrate that (1)the

physics of beam charge evolution and energy deposition are clearly understood and (2)that

understanding can be used to develop a useful new result, which is a simple and fast equation

giving equilibrium charge state for a beam in a dense plasma.

The zstop and zstopx codes model the average charge state and energy evolu-

tion of an ion penetrating a material, not a distribution of di�erent beam evolutions. This

averaged evolution can be considered to represent the average behavior of a beam being
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deposited. The energy and charge state of the average ion is tracked in numerical steps

representing incremental advancements of the beam in space in time. Each incremental

calculation step is determined by the smaller of two mean free path lengths: the m.f.p. for

an integer or fractional charge change of the beam or the distance required for a small incre-

mental reduction in beam energy. The integrated charge and energy evolution calculations

will be performed by a Runga-Kutta method.

6.1 Numerical Beam Evolution

The method of numerically integrating the di�erential beam energy loss and charge-

changing rates in a target are described below. They are di�erent for each code, zstop and

zstopx, representing beam charge evolution calculation by discrete reaction rates or by

instantaneous equilibrium formula.

6.1.1 Discrete Cross Section Approach

Consider the use of the zstopx code which employs discrete charge-changing reac-

tions rather than an equilibrium formula to determine the incident beam's charge evolution

while penetrating a target. The mean free path for a single charge change of a beam's

average ion is determined as follows. All relevant capture and ionization rates a�ecting the

beam's charge state are calculated for the average beam ion at its current charge state Q1

and velocity v1. This is accomplished using the models of Chapter 5. Then, a net reaction

rate is stated, being the total reaction rate for a charge change in the beam. This net

charge-changing reaction rate �tot is given as the absolute value of the di�erence between
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capture and ionization reaction rates �C and �I respectively,

�tot = j�I � �C j (6.1)

This di�erence between charge-increasing and charge-decreasing reactions achieves the de-

sired result of a vanishing total reaction rate when the �I and �C terms are equivalent. In

other words, when the capture and ionization reactions balance, there will be no net charge-

changing reaction. The m.f.p. distance `q associated with this charge-changing reaction rate

is given by the relation

`q =
1

�tot
v1 (6.2)

where v1 is the velocity of the beam at the start of each incremental calculation step. This

interval can also be expressed as a time increment dtq for a change in beam charge state,

dtq = 1=�tot: (6.3)

The competing beam evolution process is the reduction in the beam's energy by

transferring energy to the target as described in Chapter 4. The mean free path for a small,

incremental reduction in beam energy is calculated as follows. The m.f.p. for reduction in

beam energy will be chosen such that the incremental integration step causes the beam's

energy to be reduced by a small fractional amount �. Typically, an � value of 1% will be

used in these calculations. This level of accuracy should be more than adequate for the

modeling in this dissertation. This incremental time advancement dte for a fractional beam

energy loss � is speci�ed by

�E =

�
dE

dx

�
1
v1dte = �E1 (6.4)
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where E1 is the beam's energy at the start of the integration step and (dE=dx)1 is the energy

loss rate (stopping power). This time increment over which the beam's energy would be

reduced by this incremental amount is

dte = �E1v1

�
dE

dx

��1
1

(6.5)

This can be expressed as a distance `e by

`e = v1dte: (6.6)

The smaller of the two mean free paths, `q and `e, will determine the size of

the integration step taken, `. The time increment dt over which this incremental beam

advancement occurs is just

dt =
`

v1
: (6.7)

If the incremental step for achieving a unit charge change `q should be the smaller of the

two mean free paths then a beam advancement will occur accompanied by a charge change.

The associated change in beam energy will be less than the fractional change �. It will be

given instead by

�E =

�
dE

dx

�
1
dt (6.8)

where dt would be less than dte.

If, conversely, the incremental energy loss step `e should be smaller than the charge-

changing m.f.p. then the advancement would occur but not accompanied an integer change

in the beam's average charge state. The energy of the beam would be reduced by a fractional

amount �. The advancement would contribute to the evolving charge state, but only in a

probabilistic way. Recall from the analysis of section 3.2 equation 3.62 which expresses the
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nature of the time-evolution of the probability of a reaction characterized by a reaction rate

�:

P (t) = 1� exp[��t]: (6.9)

The time increment t associated with the mean free path is de�ned as t = 1=�, producing a

reaction probability of about 0:632. Consider the case of a reaction rate given by the total

charge-changing reaction rate �tot of equation 6.1. If the time should advance in increments

smaller than dtq = 1=�tot then according to this mean free path model, the charge state

of the beam will not have changed. However, there will have been some probability for a

charge-changing reaction accrued over the time interval. This probability will be less than

1 � 1=e ' 0:632 which de�nes the mean free path for a reaction, but it will contribute to

the beam's charge evolution as follows.

After a time dt < 1=�tot, the probability of sustaining a reaction of rate �tot is

P (dt) = 1� exp[��totdt]: (6.10)

After this �rst step, which is smaller than that needed to achieve a charge-changing reaction,

the charge-changing time increment for the subsequent step will be reduced. After the �rst

time increment of dt, a subsequent time increment dt0 necessary to cause a charge change

would be that which would satisfy

1

�tot
= dt + dt0 (6.11)

or

dt0 =
1

�tot
� dt (6.12)
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where dt is the value of the �rst time step taken which did not result in a charge-change.

Thus, in the next iterative beam advancement step, it will be this increment dt0 which is

compared to the next energy reduction time increment dte.

Typically, if the incident beam has not reached its equilibrium charge state, the

charge-changing time increment determines the integration steps. When the beam charge

state is near or equal to the equilibrium value, the energy deposition time increment will

likely be smaller since the net charge-changing reaction rate will then be low.

The path of only one particle is followed per run, representing the average beam

particle's charge and energy evolution. The energy and charge of this ion are evolved as

detailed above until the point at which the energy has been reduced to 1% of the initial

ion energy. Note that this type of modeling will produce a beam charge evolution which

may oscillate between at least two integer values. This will thus produce a jagged energy

deposition rate pro�le, with the energy deposition changing with the square of the oscillating

charge. This is actually physical since an actual ion in a beam will not exist in a single

charge state but will oscillate among several at each beam velocity as it traverses a medium.

6.1.2 Using Charge Equilibrium Formulae

Suppose alternatively that the zstop code should be run which uses a simple for-

mula such as the Bohr equilibrium formula (equation 5.4) to provide the beam's charge state.

In that code, the beam's charge state will always be considered to be at its equilibrium value

QE for a given velocity v1. The mean free path for a charge change would be linked to the

beam energy more directly than in the previous approach since the instantaneous equilib-

rium charge state is an explicit function of the beam energy. Numerical integration in this
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case is more simple since the charge state and energy are already functionally linked.

A incremental beam time advancement for this case can be selected as follows. At

an initial beam velocity v1 and resultant equilibrium charge state Q1 = QE(v1), the beam's

di�erential energy deposition rate into the target is determined according to the physics of

Chapter 4. A time step is calculated which would achieve a fractional beam energy loss �E

dt =
1

v1
�EE1

�
dE

dx

��1
1

: (6.13)

where (dE=dx)1 represents the initial energy deposition rate of the beam. No separate

charge-changing m.f.p. is needed to be expressed in this case since the charge state is a

function of the energy. This time increment dt will be used to perform the subsequent step

of numerical integration.

6.1.3 Runga-Kutta Integration

At each point in the simulated evolution of the beam deposition, regardless of

the manner in which the charge evolution is calculated, a suitable incremental time step

dt is chosen as detailed above. This time step represents an advancement over which the

beam's energy and charge state will change in a small, integrable manner. The initial beam

parameters before the incremental advancement is made are Q1, E1, and v1 which represent

the beam's charge state, energy and velocity respectively.

A second set of values Q2, E2 and v2 are formed according to the choice of charge

evolution calculation and the nature of the time steps as described in the previous sections.

The energy E2 is given by

E2 = E1 + v1dt

�
dE

dx

�
1

(6.14)



175

The second beam velocity value v2 is taken from the new energy (non-relativistically) to be

v2 =

s
2E2

Apmu
(6.15)

in which Ap is the projectile's atomic mass number andmu is the atomic mass unit. The new

charge value depends on the charge evolution model employed. A new energy deposition

rate is then calculated for the new beam parameters

�
dE

dx

�
2
: (6.16)

This represents the energy deposition rate which the beam would exhibit if it had been

advanced to the new energy and charge state values signi�ed with a subscript of 2.

The actual energy decrement over the speci�ed time increment is considered to be

an average of the deposition rate as a function of the the original beam parameters (with

subscript 1) and the deposition rate which is a function of the new values (with subscript

2). This is performed by a �rst-order Runga-Kutta method. It is �rst-order in the sense

that the beam's energy deposition rate over the interval dt is considered to vary linearly

from the initial value to the rate at the end of the interval. This is expressed by

dE

dx
= 0:5

��
dE

dx

�
1
+

�
dE

dx

�
2

�
: (6.17)

The actual change in the beam's energy �E over the increment is given by

�E = 0:5

�
v1

�
dE

dx

�
1
+ v2

�
dE

dx

�
2

�
dt: (6.18)

A new beam energy is formed E0 = E1 + �E and from it a new velocity v0. The

averaged distance which the beam progressed in the incremental step is taken as

dx = 0:5(v1+ v0)dt: (6.19)
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A new beam charge state Q0 is determined as well, either due to any integer change which

may have occurred or a new value from an equilibrium charge state formula, depending on

the model being used.

6.2 Demonstration of Modeling

The objective here is to demonstrate that the charge evolution models and energy

deposition formulae can be integrated using the above numerical formulation to produce

meaningful beam deposition calculations. These will be used later as tools to analyze

the e�ects of target ionization levels on an incident beam's charge state evolution and

energy deposition. In order to validate the accuracy of the calculations employed in the

zstopx and zstop codes, experimental and proven semi-empirical results were collected which

present data against which the results of the code could be compared. Veri�cation of the

calculations is demonstrated with particular focus on beam and target regimes of interest

to HIF scenarios.

While the charge-changing reactions which alter the beam's average charge state

have been validated in Chapter 5, a signi�cant test is to use those charge evolution models

to produce the charge state value of an incident particle to be used in energy deposition

calculations. In Chapter 4 it was shown that the energy deposition of a charged particle

into a target varies as the square of the incident particle's charge. Energy deposition and

range calculations are therefore sensitive to the charge evolution calculations. A validation

of the zstopx code by comparing its deposition pro�les and ranges to experimentally and

semi-empirically determined ones would be a strong endorsement that both beam charge
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Energy [MeV=u] zstopx zstop Exprmnt

114:09 867 862 861:8

50:56 307 302 301:7

20:68 122 116 117:0

10:08 71:9 67:0 67:1

Table 6.1: Ranges [mg=cm2] in plastic of gold beams at di�erent initial energies in gold
targets, calculated and measured; Experimental uncertainty is near 0:2%.

evolution and energy deposition can be calculated individually and integrated successfully.

An excellent source for experimental data regarding heavy ion deposition into cold,

solid density targets is found in Heckman et al.'s work [21]. That reference presents mea-

surements of the deposition range of gold beams whose initial energies vary from 151MeV=u

to 7:65MeV=u, covering well the range of interest of HIF and current atomic physics inter-

est. Two targets were chosen for the experiments in that work, plastic and gold, with the

expressed intent of investigating materials relevant to HIF research.

Table 6.1 lists the ranges of gold ion beams being penetrated into gold targets

for a variety of initial beam energies. Presented are both experimental ranges and ranges

produced from calculations of the codes developed in this dissertation. Note that the ranges

as calculated from the zstopx codes are consistently longer than the measured range. This

is most likely due to the fact that the cross section for charge transfer from the target

onto the incident ion was not corrected for suppression due to target density e�ects. This

was discussed in section 5.5.5. The ranges calculated according to the zstop code, which

employs the Bohr equilibrium charge state formula for beam charge state, are nearly exactly

matched to the experimental ranges.

Calculating the range of energy deposition of a beam into a target using a beam

charge state value given from a semi-empirical �t for beam charge state is not a new result,
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but merely con�rms that the basic energy deposition modeling employed here is reliable.

However, the use of discrete ionization and capture reactions to calculate the charge state

of a beam as it is deposited into a target is a new result. These calculations are the �rst

ever to calculate the range of a high-Z beam penetrating solid target, using a projectile

charge state calculated from �rst principle without the bene�t of a semi-empirical �t. The

integrated modeling scheme outlined here as well as the physics of charge evolution and

energy deposition will be used to draw new conclusions about the deposition of beams into

dense, plasma targets.

The success of the modeling scheme employed in the zstopx code could be explored

further in future work. The goal of this present work is only to establish that integrated

charge evolution and energy deposition calculations can be performed using individual cross

sections to calculate a beam's charge evolution in a target. This success will be extended

in the following chapter to analyze the deposition of heavy ion beams penetrating a dense

plasma target.
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Chapter 7

Analysis and Results

The investigations of this work enable useful new conclusions to be formed for

atomic physics in general and for heavy ion fusion applications. First, an improved under-

standing of the enhanced ionization rates observed in beams traversing rare�ed gases and

plasmas has been developed. Based on the details of this new understanding, conclusions

can be formulated about the occurrences of anomalous ionization and new experiments can

be recommended which would better address the remaining uncertainties in ionization cross

sections for HIF. The comprehensive charge evolution modeling scheme developed here in

Chapter 5 and the energy deposition models and calculations outlined in Chapters 4 and

6 will be used to perform calculations relevant to HIF beam penetration of two types of

media. The two principle beam-target interactions which will be examined are (1)the ion-

ization of ion beams incurred while traversing a rare�ed gas or plasma (with ionic density

near 1014cm�3) with no signi�cant energy loss and (2)the energy deposition of ion beams

into dense plasma targets. Also, based on the physical trends in the charge evolution of
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beams penetrating dense plasmas, a new formula is developed enabling the calculation of

the equilibrium charge state of a beam ion penetrating dense, partially ionized plasma tar-

gets such as those which may exist in HIF hohlraums as they are heated by the incident

driver beams.

7.1 The Enhanced Ionization Problem

The foremost issue to be addressed is the problem of unexpectedly high ioniza-

tion cross sections observed for beams penetrating both cold and ionized absorbers. This

previous confusion about the shortcomings of ionization models has induced doubt about

many beam-plasma interaction calculations and even about calculating atomic interactions

of beams with neutral gases. This work has identi�ed several problems with previously-

employed cross section calculations which, if corrected, can appropriately address the sit-

uation. Also, by identifying the nature of the problem, expectations can be formed about

regimes in which anomalously high ionization should be a concern in HIF and where it

should not. Most important for the HIF applications is that an improved understanding of

the ionization problem has shown that calculation of the ionization cross sections for beams

penetrating rare�ed gases or plasmas can be performed with con�dence by using standard

direct ionization models if appropriate attention is given to the types of indirect ionizations

which can be expected.
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7.1.1 Types of Indirect Ionization

Two distinct types of indirect ionization enhancements of direct ionization cross

sections have been identi�ed in incident ion beams corresponding to two basic targets

regimes. These are (1)ionization enhancement by free electron impact and (2)beam ion-

ization enhancement in cold gas targets. The former, due chiey to deviations from the

expected Lotz-type free electron ionization function (see section 5.4.6) has been shown to

produce more extreme enhancements than ionization enhancement in cold targets. En-

hancement of beam ionization rates in cold gases have been shown to increase the direct

ionization cross section only by a factor of about 1:4. This distinction and its implica-

tions for previously-held views on ionization enhancement and cross section problems are

discussed below.

7.1.2 The Plasma Distinction

Through the di�erences in beam ionization observed in the creation of a plasma

state in targets, an understanding can be developed of the nature of the ionization problem.

As yet, only one possibility had been seriously considered for explaining anomalously high

beam ionization cross sections: ineÆcacy of the nuclear ionization models (usually the BEM

discussed in section 5.4.4) to address auto-ionization from excited projectile atomic states.

These indirect ionization cascades are currently considered to be the likely, yet onerously

calculated, cause of the ionization cross section enhancements in beams penetrating plasmas

and gases. The correction factor which Dietrich et al. employed to account for indirect

ionization enhancement of direct ionization [18] was applied to the Gryzinski BEM collisional
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ionization cross section. The factor which they chose was shown in later experiments not

to be suÆcient to account for all of the enhanced ionization [19]. It was then assumed that

even the corrected cross section approach was not useful and that the BEM cross section

was irreparably wrong in many cases.

However, the problematically high beam ionization rates reported by Dietrich and

Ho�mann in particular were observed in a beam penetrating a hydrogen plasma target.

From the physics of the BEM model, nuclear ionization in a cold hydrogen target is nearly

identical to nuclear ionization in a hydrogen plasma since in both cases the screening of

the nucleus is negligible and the incident ion's electrons would sense the entire unscreened

proton charge in ionizing collisions. So, enhanced ionization in plasmas should only be

attributed to BEM shortcomings insofar as ionization in cold gas targets is underestimated

by it. In this case, the truly anomalous ionization occurred only in the plasma target and

should then clearly not be attributed to BEM cross section problems alone.

Furthermore, this dissertation has shown that in fact the cross section responsible

for the calculation of ionization due to free electron impact does require extensive correction.

This correction was required, but not applied, in the experiments in which the BEM was

blamed for under-calculation of observed cross sections [19], [18] (See section 5.4.6 for this

analysis). Shortcomings in this free electron ionization cross section (the Lotz formula)

have not yet been identi�ed as a cause of under-estimation of ionization rates of beams

penetrating plasmas. Analysis here has shown that its current use in its original form is

guaranteed to under-estimate electron impact ionization cross sections signi�cantly in some

cases, particularly for ionization of highly charged heavy ions penetrating hydrogen plasmas.
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In section 5.7 were presented extensive comparisons which demonstrate that the

BEM cross section accurately models ionization cross sections of beams penetrating cold

matter, both in solid targets and in gases. Experimental data quantifying the ionization

of neutral atoms by collisions with bare nuclei was reproduced within about 30% tolerance

with direct BEM cross sections (see section 5.7.1).

Though some indirect ionization processes are likely to have contributed in the

observed beam ionization enhancement in cold targets, their magnitudes and degree of

deviation from direct ionization theory have been observed to be consistent and consistently

less than the deviations from theory found in plasmas [60]. The problem particular to

cold gas enhancement can be addressed separately. For many applications, such as those

analyzed by Dietrich and Ho�mann, both the enhancement in plasmas and the enhancement

in cold targets were certainly present. The approach of applying a correction factor to the

BEM ionization cross section is indeed a sensible approach to handling the indirect ionization

for collisions with nuclei. But, the free electron contribution to indirect ionization must be

addressed and it must be quanti�ed by a separate corrective factor in future works.

7.1.3 Target Density and Indirect Ionization

Enhancement of direct ionization reactions by indirect phenomena has been shown

to be a signi�cant e�ect in some cases of beam interactions in which either the target is

a gas or rare�ed plasma. The manifestation of indirect ionization contributions to direct

ionization may be linked to the density of the target into which a beam is penetrating.

For e�ects similar to those causing the suppression of electron capture reactions in beams

penetrating dense targets, these indirect ionization phenomena which involve electronic
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activity in the incident beam's outer principal quantum shells may be suppressed as well.

A proposed formalism for determining the target density regime in which indirect

processes such as auto-ionization become important can be developed. This is not an e�ect

due to changes in the target equation of state but rather to changes in the direct ionization

reaction rates relative to the indirect ionization rates. A direct ionization of a beam by

collision with a target occurs at a rate which is a function of the direct reaction cross

section �d, target density nt and the projectile velocity v

�d = nt�dv: (7.1)

The rate for a typical indirect ionization process in an excited atomic state is a function

of the auto-ionization rate Aa, which in isolation does not depend on target density. It

is a property of the atomic structure of the excited projectile atom or ion. Following

the formulation used in the dielectronic recombination analysis of section 5.5.3, the auto

ionization rate for an excited atom or ion can be calculated by [54]

Aa(jnl! iEkl� 1) =
8p
3

1Ry

�h

Z2
p

n3
1Ry

(Ei �Ej)

1

(2l+ 1)
f(i! j)Gl(k; k

0): (7.2)

In this form, n is the original excited shell of the electron which is ejected and j and i are

the initial and �nal states of the de-exciting electron.

This expression can be reduced to a characteristic value for HIF applications by

some simple scaling. A relevant case to consider would be for a high-Z ion with an electron

excited to a state n � 10 followed by a dominant transition from a valence electron j � 5

to a hole in the inner shell i = 1 [54]. Using typical values for oscillator strengths and the

Kramers-Gaunt factor summed over l, 0:01 and 0:2 respectively, the auto-ionization rate
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becomes approximately

Aa � 1014
Z2
p

n3
1Ry

(Ei �Ej)
s�1: (7.3)

Using Bohr-like binding energy scaling for the various shells, this becomes

Aa � 1011s�1: (7.4)

The criterion for establishing the density regime near which these indirect ioniza-

tions become important is

Aa > �d: (7.5)

This condition states that indirect auto-ionization events proceed at a rate greater than

direct collision ionizations in the target. This can be expressed in more detail as

1011s�1 > nt�dv: (7.6)

Using a typical geometrical value of the direct ionization cross section 10�16cm2 and a

projectile velocity near � = 0:1 this gives

nt < 1017cm�3: (7.7)

This simple analysis can actually support some meaningful interpretations. First,

this justi�es that calculations of beam penetration into dense targets should not require

consideration of indirect ionization processes, since the densities of the solids considered

are at least several orders of magnitude larger then this approximate critical density of

1017cm�3. Also, this explains why the plasmas studied in the GSI experiments [19], [18],

[36], whose densities were near or lower than this density, exhibited the indirect ionization

cross section enhancements. In the Shevelko experiment examining beam ionization in
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targets of a density near 106cm�3 [60], the density criterion of equation 7.7 is met within

a margin of many orders of magnitude. Thus, the presence of enhanced beam ionization

rates due to indirect processes can be understood.

Note that the HIF chamber densities in IFE power plant designs are expected to

be of the order of 1014cm�3. According to this analysis, that chamber density may be

rare�ed enough to allow indirect processes to be important for incident heavy ion beams.

7.1.4 New Semi-empirical Accounting for Enhanced Ionization

Given that the enhancements of beam ionization in plasma targets and in cold

targets can be distinguished, more sensible semi-empirical adjustment factors can be used

to modify direct nuclear ionization cross sections. For ionization of beams penetrating

plasmas it has been shown that ampli�cation of the direct free electron ionization cross

section is by as much as a factor near 10 for highly charged projectiles with V � v=vnl

lower than the ionization peak which occurs near V =
p
e � 1:65. Near the peak and for

velocities such that 1 < V < 2 the deviation is typically by a factor of 2. For V � 1 the

indirect phenomena do not contribute and the Lotz expression agrees well with observed

data [50].

For ionization by collision between a projectile electron and a target atom or ion's

shielded nucleus, the Shevelko results show a consistent trend in ionization cross section

enhancement [60]. The results indicate that the ampli�cation of direct ionization is by a

factor near 1:4 over a wide range of projectiles, charge states and energies. This factor can

be used with reasonable reliability as a correction factor for direct ionization calculations

for ions penetrating gaseous targets.
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These two schemes can be used to formulate a more thorough semi-empirical

scheme for quantifying indirect ionization phenomena.

7.1.5 Recommendations For Future Experiments

Based on the preceding delineation of the ionization problem, a clear and simple

experimental program can be outlined to address any remaining uncertainties in ionization

cross sections for HIF purposes. The following recommendations are based on a standard

experimental technique of shifting the frame of reference from the target to the beam. In

other words, just as in the experimental work of Stenke [50] and Matsuo [26], ionization

cross sections for a heavy ion beam species X can be determined by directing a beam of

charged particles, either ions or electrons, against a target of atomic number X . Also,

measurements of the ionization cross sections of species X at charge states Q > 0 can be

performed by using a crossed beam technique [33],[50].

Since the velocity dependence of nuclear collision ionization and electron impact

ionization are di�erent, complete examination of the problem will be accomplished by two

types of experiments.

Electron Impact Ionization

First, electron impact ionization should be studied for a wide range of energies from

cut-o� to near-relativistic for each relevant charge state of a given ion. Once the dependence

of indirect ionization events on charge state and energy are gathered empirically a complete

semi-empirical �t can be drawn.

Several semi-empirical adjustments need to be made to the original Lotz ionization
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formula in order to �t it to the body of experimental data. The observed electron impact

ionization cross section is shown to deviate from the Lotz cross section when the species

to be ionized is charged to an initial charge state greater than 1+. The magnitude of

the cross section, particularly at electron impact energies near or lower than the ionized

species' valence electron energies, is found to deviate from the magnitude of the cross section

predicted by the Lotz formula. Also, the electron beam energy (or projectile velocity in

another frame of reference) at which the electron ionization cross section reaches a maximum

is di�erent from that value expected from the Lotz formula. The following formulation is

recommended to accommodate an eventual new �tting of the Lotz formula to the data. For

ionization of an ion of species Z charged to +Q by electron impact, the following general

cross section formula is proposed

�nl(Z;Q) =
anl(Z;Q)

fnlEkInl
ln[Ek=Inl]: (7.8)

The term fnl will shift the peak of the electron impact ionization cross section, an e�ect

which was observed in the empirical data.

Ionization by Screened Nuclear Charge

Ionization cross sections due to collisions with screened nuclei in the target exhibit

their own particular behaviors with regard to indirect ionization events. The behaviors of

these indirect ionization enhancements can be addressed by a simple and thorough proton

or bare nucleus impact ionization study. This recommended experimental battery would be

analogous to the work of Matsuo et al. but with collision energies of 20MeV=u. Since the

BEM-type ionization cross sections scale with the square of the charge of the ionizer, the
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results from such a study can be used and scaled for broad application. Protons or other

bare nuclei can easily be accelerated to nearly any regime of interest required, particularly

those of heavy ion fusion. Trends in indirect ionization and their deviations from direct

calculations can be evaluated over the energy range and initial ionization recipient's initial

charge state forming a complete data set. This set can be used, as in the case for electron

ionization, to form a semi-empirical data bank.

This type of experiment could be improved by using a crossed beam technique as

in the experiments of Stenke [50] and Gregory [33]. This could be used to study the ioniza-

tion of more highly-charged ions by collision with bare nuclei, speci�cally quantifying the

cross section values needed for current HIF studies. Measurement of ionization by proton or

helium nucleus impact should be adequate to address current HIF chamber ionization con-

cerns since the screened charge of the BeF2 perceived by the incident lead ion at 20MeV=u

is near 1:5 [51].

7.1.6 Optimal Direct Ionization Cross Section

Based on both empirical comparison and theoretical justi�cation, an improved

direct ionization modeling scheme was developed to be used to model ionization of a beam

ion's electrons by impact with screened nuclear charges in the target. The BEM ionization

cross section and its `universal curve' velocity dependence (see �gure 5.3) were used in this

dissertation to provide excellent agreement with experimental data.

However, the expected form of the ionization cross section at high beam velocities

relative to projectile electron orbital velocities is not exactly represented by the Gryzinski

model's energy functionality. The Gryzinski values for V � 1 deviate, though not catas-
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trophically, from the expected and experimentally-supported (see reference [24]) behavior

given by

�nl / 1

EInl
ln[E=Inl]: (7.9)

A hybrid model was therefore proposed which consists of the Gryzinski velocity function

from section 5.4.4 for velocities less than approximately 7:3 and the idealized logarithmic

behavior for higher velocities. This hybrid model was detailed in section 5.4.7. It was shown

to model accurately ionization of neutral species by nuclear collision in section 5.7.1.

7.2 Heavy Ion Propagation Through Rare�ed Targets

This section features calculations and discussions regarding the ionization of beams

penetrating rare�ed gases and plasmas associated with HIF power plant chambers and

related experiments. The ionic density of the material in the chambers and vessels which

the beams will traverse (BeF2 or nitrogen in some upcoming experiments) is expected to

be near 1014cm�3. Thus, according to the analysis of section 7.1.3, indirect processes can

be expected to contribute to ionization rates. The roles of indirect ionization and direct

ionization of beams in HIF-related rare�ed targets will be examined in the following studies.

Note that energy deposition calculations will not be considered in the following studies

since the targets being considered are rare�ed and no signi�cant energy transfer is expected

between the beam and gaseous target.
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7.2.1 HIF Chamber Propagation

A speci�c scenario which is representative of an HIF power plant driver and cham-

ber con�guration is an initially singly-ionized beam of 20MeV=u lead ions penetrating a

BeF2 ambient gas or plasma at molecular densities near 5�1013cm�3. The degree to which

the BeF2 will be ionized is not certain at this point. Even if the chamber gas should initially

be non-ionized, it may become ionized during the course of the beam's penetration due to

photo-ionization by the radiation generated by the heating HIF hohlraum. Also, the beam

itself will cause ionization in the chamber ambient through the same collisions which cause

ionization in the beam itself. Given that the chamber BeF2 may exist in a plasma state,

calculations of beam ionization will be performed for penetration of both a cold, non-ionized

gas and for BeF2 ionized to varying degrees.

Since the density of the ambient gas or plasma in the HIF chamber will be much

lower than 1017cm�3 (see section 7.1.3), and since a plasma state in the BeF2 may be

encountered, indirect beam ionization processes must be addressed. Of the two types of

direct ionization reactions, screened nuclear impact and free electron impact ionization, only

the former is expected to be enhanced by any indirect ionization augmentation in HIF power

plant chambers. This expectation is understood by examining the relative velocities of the

beam and its ions' valence orbital velocities. The HIF driver beam velocity is expected to

be near 0:2c. The initial charge of the beam upon entering the chamber should be near 1+.

Conservative expectations indicate that a signi�cant fraction of the beam could be ionized

to charge states as high as 12+ after traversing 300cm of the BeF2. The valence electron

velocity of a lead beam at this charge state can be calculated according to equation 5.15
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to be approximately 0:02c. Thus, the scaled velocity V � v=vnl where vnl is the beam's

valence orbital velocity should be near10 for the highest beam charge state and greater than

10 for the lower charge states. In this regime of V � 1, the Lotz formula for electron impact

ionization was shown to model the experimentally observed ionization cross sections well.

Indirect processes did not contribute to the total ionization in this regime.

Furthermore, even if the chamber should be in a plasma state, the ionization by

collision with the BeF2 nuclei and their remaining bound electrons will be much larger than

even an enhanced free electron contribution. This will be demonstrated by examining the

associated cross sections. Therefore, the only ionization cross section which will be increased

by indirect contributions would be the BEM cross section. The enhancements to the BEM

formula due to these indirect processes will be applied as outlined in section 7.1.4.

First consider penetration of a cold, non-ionized HIF chamber gas by a beam of

lead ions. The calculated ionization cross sections for lead ions at 0:2c penetrating BeF2 over

a range of charge states is presented in table 7.1. They also are shown graphically in �gure

7.1. The values presented there have not been modi�ed by any ionization enhancement

factors and have been generated by the BEM formula. Note also that these represent

ionization cross sections per BeF2 molecule. The value is therefore the sum of the cross

sections due individually to two uorine atoms and one beryllium.

Using those values the average charge evolution of the beam can be calculated as

it penetrates the chamber. Two computations were made for penetration of this cold BeF2

chamber, one with no ionization enhancement and one with the factor of 1:4 applied to the

ionization cross sections. At the charge states involved here, electron capture reactions are
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Figure 7.1: Cross sections for direct ionization and capture for 20MeV=u Pb beam pene-
trating an HIF chamber gas of 5� 1013cm�3 BeF2 calculated by BEM
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Charge Cross
State Section

[=10�16cm2]

0 9:12
1 7:74
2 6:12
3 6:24
4 4:83
5 4:17
6 3:78
7 3:45
8 3:03
9 2:77
10 2:53
11 2:32
12 2:40

Table 7.1: Cross sections for direct ionization of 20MeV=u Pb beam penetrating an HIF
chamber gas of 5� 1013cm�3 BeF2 calculated by BEM

inconsiderable. Figure 7.2 displays the calculated average charge evolutions of the beam as

it penetrates the chamber for these and other cases.

Calculations without the enhancement indicate that the average charge state of a

20MeV=u lead beam initially charged to +1 entering a typical HIF chamber containing the

cold BeF2 at 5� 1013cm�3 would be between 6 and 7 after traversing 300cm and between 9

and 10 after 500cm. With the enhancement factor included the average beam charge states

are between 8 and 9 after traversing 300cm and between 11 and 12 after 500cm.

Now consider the calculation of the ionization cross sections for the above case but

supposing the BeF2 were ionized to some degree. Table 7.2 displays the ionization cross

sections generated by three separate arbitrary target ionization levels. They are (1)F ionized

to 2+ and the Be to 1+; (2)F ionized to 4+ and the Be to 2+; (3)F ionized to 8+ and the

Be to 4+; The free electrons were given a temperature of 20eV in all cases. The value of this
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HIF chamber plasma of 5� 1013cm�3 BeF2; dotted line shows results using cross sections
multiplied by 1:4 and dashed line shows case of ionized BeF2 (see text)
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temperature does not a�ect the cross sections and is arbitrary. In these calculations note

that indirect ionization enhancement was included both in the free electron component and

the BEM component to the cross section as in section 7.1.4. This is a conservative approach

but is consistent with the approach which was employed in section 5.7 to model the GSI

plasma data. But, as discussed earlier, due to the relative velocities of the beam and its

valence electrons, the free electron impact ionization is expected to behave as predicted by

the Lotz formula. The corrective factors are only engaged at lower beam velocities or at

much higher beam charge states which correspond to a smaller scaled velocity V .

Figure 7.3 displays the ionization and capture cross sections for a lead beam at

v = 0:2c penetrating the BeF2 ionized as in case (3) above. Note that the ionization

cross section due to plasma electron impact ionization is consistently smaller than the total

ionization cross section (consisting mainly of the BEM ionization cross section) by about a

factor of 10.

The charge evolutions of an HIF driver beam in each of those ionized BeF2 cases

are also shown in �gure 7.2. Notice that the case with the lowest ionization (including

indirect enhancements) does not cause a signi�cantly higher charge evolution than the case

calculated using BEM enhancement in a non-ionized chamber. This is expected since the

BEM nuclear ionization dominates due to the fact that the square of the screened nuclear

charge of the target constituents will cause that contribution to exceed even the enhanced

free electron contribution. The BEM contribution is indeed a bit higher also here because

the screening of the BeF2 nuclei is reduced, but also reduced are the number of bound

electrons which ionize. For instance, the outer valence electrons which dominate the total
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Figure 7.3: Cross sections for ionization and capture for 20MeV=u Pb beam penetrating an
HIF chamber plasma of 5� 1013cm�3 BeF2 with Be4+ and Fe8+
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Charge Cross Section
State (1) (2) (3)

0 14:7 22:8 61:3
1 12:2 18:1 47:9
2 9:42 12:9 32:5
3 9:30 12:5 32:0
4 7:16 8:91 21:0
5 6:17 7:35 16:2
6 5:55 6:45 13:5
7 5:04 5:73 11:4
8 4:44 4:95 9:11
9 4:03 4:44 7:78
10 3:67 3:99 6:70
11 3:36 3:63 5:86
12 3:46 3:72 5:99
13 2:87 3:01 4:51
14 2:35 2:43 3:41
15 2:17 2:23 3:05
16 1:96 2:01 2:67
17 1:80 1:84 2:39
18 1:46 1:48 1:85
19 1:52 1:54 1:92
20 1:38 1:39 1:71

Table 7.2: Cross sections =10�16cm2 for ionization of 20MeV=u Pb beam penetrating an
HIF chamber gas of 5� 1013cm�3 BeF2 with 3 levels of ionization (see text) and correction
for BEM enhancement

cross section sense a screened uorine nuclear charge of 0:768 and 9 bound electrons in the

neutral BeF2 case. In the case of the ionized BeF2 with F2+, the lead's outer electrons

sense a uorine nuclear charge of about 2 but with only 7 bound electrons. The net result

is a target charge term of 9:59 in the neutral case and 11 in the ionized case, only a 16%

increase. But, with higher BeF2 ionization levels, the incident beam's charge evolution does

indeed to di�er signi�cantly from the charge evolution in cold BeF2.
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Charge State Total m = 1 m = 2 m = 3 m = 4

0 9:12 4:42 1:36 1:30 0:401
1 7:74 4:11 1:13 0:31 0:085
2 6:12 3:67 0:84 0:19 0:043

Table 7.3: Multiple ionization cross sections =10�16cm2 for 20MeV=u Pb beam penetrating
an HIF chamber gas of 5� 1013cm�3 BeF2; no enhancement included

Multiple Ionization Probabilities

The above analysis provides useful average charge state evolution calculations and

net charge-changing reaction cross sections for HIF driver beams in power plant chambers.

However, detailed HIF beam dynamics calculations require knowledge of the actual distri-

bution of charge states in the beam. This requires an accounting of the multiple ionization

probabilities discussed in section 5.4.10.

The multiple ionization cross sections for a multiplicity up to m = 5 over a range

of charge states for the case of the lead projectile penetrating the cold BeF2 are presented in

table 7.3. The probabilistic technique employed here for the generation of the following data

was the most basic approach using the average probability (see section 5.4.10). However,

the levels of multiple ionization agree well with similar calculations by Olson [51].

7.2.2 Calculations for Intermediate Experiments

In addition to full-scale power plant scenarios, several other HIF beam experi-

ments may be implemented soon. These intermediate experiments are intended to serve as

proof-of-principle steps towards the development of a full scale power plant. The atomic

physics issues of two such upcoming experiments are addressed below. For the beam physics

parameters discussed here, please see Appendix A.
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HCX

The HIF driver beam systems hoped to be employed in imploding reactor-grade

fusion fuel capsules will require the delivery of very high currents of ions, near 1Amp,

onto a small target. One of the scienti�c challenges presented by such a scheme is the

control of high current beams. While possible in principle, some technological and scienti�c

issues remain to be validated along with some basic engineering questions. A high current

experiment (HCX) is now being designed by scientists at the Virtual National Laboratory

for Heavy Ion Fusion Research to address those issues and to establish con�dence in high

current beams as driver candidates.

The planned beam parameters of the HCX are as follows. The beam ion will likely

be potassium charged initially to 1+. The energy of the ions will be 1:8MeV, which is about

46:2keV=u. This corresponds to a beam velocity near 0:01c. A current between 300 and

800mA will be sought to be generated in the beams. The perveance achieved is hoped to be

comparable to that of the planned HIF power plant beams, between 10�3 and 10�5. The

beam will be directed through a background atmosphere of air (approximated by nitrogen)

over a channel distance of about 20m. The pressure of this ambient gas may be between

10�6 and 10�8Torr. Ideally, the pressure will not have to be pumped down to the lower end

of this range since that poses engineering diÆculties. But, if the ionization cross sections

should be large for this beam, then low pressures may be needed to avoid ionization.

An important consideration must be made in this case. Due to the low beam

velocity in this experiment, the equilibrium charge state QE which the potassium beam

ions would eventually reach (if the accelerator channel were very long) is quite low. It is
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found from the semi-empirical �t to be

QE = 19(1� exp[�0:01=(192=3�c)]) � 3:2 (7.10)

While it is certainly not expected that the HCX beam would reach an equilibrium charge

state in the rare�ed nitrogen ambient gas, conclusions can be formed about the limits of

expected ionization of the potassium beam. At this low energy of 46:2keV=u, the potassium

will not be ionized beyond about a charge state of 3+. However, it is desired even that this

low charge state will not be reached in the HCX accelerator channel. In fact, a successful

experiment will be considered to be one in which only a small fraction of beam is ionized

beyond 1+.

The ionization and recombination cross sections for potassium at this energy pen-

etrating molecular N2 for a range of charge states are shown in �gure 7.4. Note that

equilibrium charge state of the beam as calculated by the Bohr semi-empirical �t (marked

by the dashed line) coincides exactly with the charge state at which the capture and ioniza-

tion cross sections balance. No corrections for indirect ionization enhancement have been

incorporated into those cross sections. The ionization cross sections at low charge states

are quite high with respect to the other values which have been associated with HIF exper-

iments. The reason for this is the low beam energy. At 1:8MeV, the beam velocity is very

near that of its orbital electrons, maximizing the cross section. Note also that as the charge

state increases, the cross sections decrease very quickly. This is due to the exponential

drop-o� in the BEM ionization velocity function for V < 1 as in �gure 5.3. Also, keep in

mind that the values presented in the �gure are for molecular nitrogen N2.

The question is, How rare�ed must the HCX channel air be to limit ionization
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Figure 7.4: Cross sections for direct ionization and capture for 1:8MeV K beam penetrating
a nitrogen gas; the dashed line marks the Bohr semi-empirical charge state
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to within a speci�ed tolerance? The ionization cross section of K1+ by molecular nitrogen

at this energy is near 60 � 10�16cm2. At the highest pressure of 10�6Torr, which gives a

molecular density of near 3:5� 1010cm�3, the fraction of K2+ ionized from the K1+ is given

according to section 3.2 by

f(2+) = 1� exp[�(3:5� 1010cm�3)60� 10�16cm2(20m)] (7.11)

which is about 34%. This may be unacceptably high and pressure reduction may be required

for HCX beyond that which was originally anticipated.

If 99% of the beam is to be maintained at the initial charge state of 1+ then the

density of the HCX accelerator channel must be near 8 � 108cm�3. This corresponds to a

pressure near 2:4� 10�8Torr.

IRE

Following the HCX, the next intermediate experiment designed to demonstrate

con�dence in actualizing an HIF power plant is the IRE, or integrated research experiment.

The success of the IRE would ideally lead to the development of an actual engineering test

facility (ETF), the �nal step before the realization of an IFE power plant. The experiment

would incorporate the key elements of accelerator, focusing and chamber technology in a

scaled system.

An important proof-of-principle issue for the IRE project is to demonstrate suc-

cessful �nal focusing of the driver beam. Currently the crucial aspect of this is the handling

of beam's space charge e�ects. The IRE is being designed to achieve the same space charge

properties as those of the possible HIF power plant driver beams. The perveance of the
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IRE beam in �nal focus is therefore desired to be similar to that of the eventual HIF driver

beams. This value will be between 10�5 and 10�3. Since this perveance represents a unit-

less quantity of space charge repulsion, its scaling between HIF beams and IRE beams will

be examined in terms of ionization created in the respective chambers. This will therefore

connect to the cross section analysis developed in this dissertation.

The IRE will not feature, however, a beam identical to the intended HIF driver

beam. Currently envisioned for the IRE is a potassium beam with an initial charge state

of 1+ at an energy near 400MeV. The current will likely be a fraction of the intended HIF

driver beam current. Therefore some scaling factors may need to be considered in order to

establish a correlation between HIF and IRE beam perveance values and their respective

ionization levels.

The desired equivalence of the perveance of the HIF and IRE beams can be ex-

pressed and related to current and charge state as follows. Using the variables with subscript

1 to represent those associated with the IRE and 2 for the HIF values, we can equate the

perveances of the two beams

Q1 = Q2 (7.12)

which, using the explicit form, gives

q1�1
m1v

2
1

=
q2�2
m2v

2
2

: (7.13)

Re-expressing the linear current density as a current by � = I=v leads to

q1I1
m1v

3
1

=
q2I2
m2v

3
2

: (7.14)

The beam ion candidates for an HIF power plant will likely be in the atomic vicinity of lead.

The energy of the HIF driver beam will be close to 20MeV=u with � = 0:2. Given these
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typical values and the values of the IRE presented above, the implications of perveance

equivalence on beam parameters can be found:

q2I2
q1I1

=
208

39

�
v2
v1

�3
(7.15)

which gives

q2I2
q1I1

� 5:3

�
v2
v1

�3
: (7.16)

At an IRE beam energy of 400MeV this ratio becomes

q2I2
q1I1

� 43: (7.17)

It is expected that the currents employed in the IRE beamlets should be several

factors of ten smaller than the HIF driver beam currents per beamlet [22]. At the highest

(and most desirable) IRE beam energy of 400MeV, this current scaling provides direct

implications for the charge states of the respective beams, namely

q2 � q1: (7.18)

In other words, the charge evolution of the IRE beam should be designed to be similar to

the charge evolution of the HIF beam in the chamber.

The cross sections determining the IRE ionization rates will be a function of the

ion choice and velocity. The chamber gas through which the beams will propagate will likely

be air, which will be treated as molecular nitrogen for the purposes of these calculations.

The ionization cross sections for ionization by nitrogen of the beam potassium ion at 100

and 400MeV over a range of possible charge states are listed in table 7.4. The velocities

at two these energies are between 0:073c and 0:146c. Note that the cross sections are
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Charge
State 100MeV 400MeV

0 15:6 5:15
1 7:95 2:74
2 5:90 2:03
3 4:48 1:54
4 3:29 1:14
5 2:50 0:878
6 1:53 0:563
7 1:37 0:520
8 1:00 0:402
9 0:671 0:293
10 0:504 0:230
11 0:369 0:176
12 0:255 0:130

Table 7.4: Cross sections =10�16cm2 for ionization of potassium beam penetrating a molec-
ular nitrogen gas at two energies with no correction for BEM enhancement

actually larger at the lower energy. This is because the scaled velocity V = v=vnl for the

outer dominating electrons is closer to the peak for the lower energy. The velocities of the

outer electrons of potassium and its associated ions are typically near 0:01c, giving a scaled

velocity value near 10 for the 100MeV case and near 20 for the 400MeV case.

A useful scaling question can therefore be addressed by selecting the nitrogen (air)

density which will induce a charge evolution similar to that of the HIF beam evolution.

Figure 7.5 shows the average charge state of a 400MeV IRE beam as a function of two

di�erent densities covering a range which should provide an estimate for the appropriate

perveance scaling. An IRE chamber density near 5 � 1014cm�3 should provide a charge

evolution and perveance closely matched to that of the eventual HIF driver beams.
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Figure 7.5: Various charge evolution calculations for a 400MeV K1+ beam penetrating
molecular nitrogen at various densities
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7.3 Beam Deposition in Target Materials

The second primary application of the atomic physics models developed and de-

scribed in the present work is the improved simulation of the deposition of ion beams into

dense, ionized solids. Particularly, the scenario of heavy ions penetrating HIF hohlraum

plasmas will be examined. Modeling the deposition of heavy ion beams into dense plasmas

requires the physics of ion energy deposition of Chapter 4, the charge evolution models of

Chapter 5, and the integrated calculation technology of Chapter 6. This section incorpo-

rates those bodies of knowledge to perform calculations of heavy ion deposition relevant to

HIF target scenarios.

As the hohlraum targets are heated by the incident beam, the nature of the energy

deposition of the beam will change due to at least two factors: (1)the free electrons in the

plasma target receive an incident beam's energy di�erently than bound electrons; (2)the

equilibrium charge state evolution of the beam in the heated plasma target is expected to

be enhanced relative to its charge state evolution in a cold target. Both of these e�ects will

be incorporated in the calculations in this chapter.

The stopping power of ionized targets with respect to a given incident beam is a

function of the target's atomic properties and the beam's charge state. The quanti�cation

of the target's role in the stopping power, particularly the presence of free electrons and the

change in the average ionization potential of its bound electrons, were addressed in section

3.1.8 and in Chapter 4. The atomic properties of several representative target plasmas

were tabulated in section 3.1.10. Now, the only undetermined variable in calculating the

energy deposition of a beam penetrating a dense plasma target is the charge state evolution
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of the incident beam ions. All of the real activity in the following analysis is therefore in

connection with the charge state modeling.

Armed now with a good understanding of the nature of the relevant processes,

the charge evolution of beams being deposited into dense plasma target material can be

modeled with good con�dence and the integrated slowing-down calculations can be per-

formed. Additionally, the physics of the preceding analyses will be used to develop a new

semi-empirical �t for the equilibrium charge evolution of projectiles in dense target plasmas.

In section 5.7.3 it was demonstrated that the equilibrium charge state values given

by the semi-empirical �t could be replicated from the ionization and capture cross sections

outlined in this dissertation. In section 6.2 it was shown that energy deposition pro�les

along with ranges could be calculated with excellent accuracy using the integrated charge

evolution and energy deposition calculations. The intent of the analysis in this section is to

extend that success to modeling the deposition of beams in ionized targets.

The intended customers of this investigation are those who are interested in mod-

eling the deposition of HIF driver beams into hohlraum convertor materials. But, since the

analysis and resultant new semi-empirical �t will be suÆciently general, any calculations of

beam interaction with dense, partially-ionized plasmas will bene�t.

For the current application, the crucial issue is the determination of the degree to

which the ionization state of the target material alters the charge evolution of a penetrating

beam. A useful beam-target con�guration to consider is that of a proposed HIF driver-

hohlraum system. This may consist of a 4GeV lead beam (� 20MeV=u) penetrating a

material ranging from a high-Z foam to a low-Z hydrocarbon. The densities of these targets
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can range from 0:01g=cm3 to 10g=cm3. The temperature of the materials in the following

analyses will range from cold (room temperature) to 300eV, which is near the maximum

temperature achieved in current HIF hohlraum designs. At those high temperatures the

target materials feature extensive ionization. The equation of state parameters needed were

taken from the tabulated data of section 3.1.10.

The e�ects of di�erent levels of target ionization on the projectile charge-changing

cross sections will be evaluated systematically. The e�ects of these potential changes in

projectile charge evolution on the integrated energy deposition calculations will then be

evaluated.

7.3.1 Considerations for Dense Plasma Targets

Some details of charge-changing cross sections and energy deposition in dense

plasmas should be addressed before preceding with the analysis proper. Both ionization

and capture reactions will require special attention in the case of dense plasma targets. The

presence of free electrons due to the target ionicity have been considered in some chamber

calculations, but the density of the targets in this application plus the inclusion of energy

deposition require some attention.

Since the target materials in which the cross section calculations will be performed

are ionized, the problems of beam ionization enhancement due to collisions with target nuclei

and with free electrons must be addressed. From the atomic physics investigations of this

dissertation, several points emerge which will be useful in the resolution of the ionization

enhancement issue in dense HIF plasma targets.

The most important observation is that in dense materials processes of auto- ion-
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ization from excited states are suppressed or are not important. This is based both on

the analysis of section 7.1.3 and the agreement between equilibrium �ts and cross section

calculations in section 5.7.3. The calculations in cold targets reproduced semi-empirical

values well using only direct ionization cross sections. One can expect the direct ionization

calculations in plasma targets to be reliable as well since they di�er from the cold matter

case only in e�ective target charge scaling and the addition of the free electron component.

Now, the free electron component has been shown to be responsible for signif-

icantly enhanced ionization in some cases. But, recall that those results were observed

in a rare�ed hydrogen plasma in which the nuclear ionization and free-electron ionization

are both induced by a charge of 1. Thus, the e�ects of the complex free-electron indirect

ionization behavior were relatively signi�cant. In the case of higher-Z plasmas, the nu-

clear charge and bound electron contributions can be expected to be greater than the free

electron component. This is due to the Z
2
t + (Zt � Qt) target charge dependence of the

BEM ionization cross section (see section 5.4.8) as compared to the target charge factor

Qt associated with the free electron ionization cross section. Also, the Lotz free electron

cross section velocity dependence is at all values either less than or equal to that of the

BEM nuclear ionization functionality. This coupled with the high-density suppression of

the indirect ionization e�ects indicate that enhanced ionization in plasmas should not be

an issue for these calculations.

Electron capture processes in hohlraum plasmas will be due to both any bound

electrons present and the radiative recombination of free electrons. In general, the charge

transfer reaction rates from bound electrons will be far greater than the radiative recom-
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bination rates from the free electrons [54]. The eikonal-corrected OBK (Oppenheimer,

Brinkman and Kramers) model and the radiative charge transfer model of section 5.5 will

be used to calculate the total charge transfer cross sections. This approach was shown to

reproduce the average equilibrium charge state of a beam penetrating a cold target within

a few charge states. However, the eikonal adjustments may break down at high target ion-

ization levels. This is due to the fact that at high ionization, the initial binding energies of

the electrons in the target ions will be larger than the typical energies of a neutral atom's

valence electrons. While the adjusted OBK theory works well for near-neutral targets and

their associated dominating low valence energies, the theory has not been applied yet to the

extreme conditions of the dense plasmas studied here. However, the qualitative and gross

trends predicted by the charge transfer models will be useful.

The density corrections for capture reactions also can be employed. This was dis-

cussed in section 5.5.5. In section 5.7.3 it was shown that even without such corrective

factors the charge-changing models reproduced the equilibrium charge states of beams pen-

etrating a cold target within about 15% of the value given by the semi-empirical �t. Since

this error is within the error of the typical cross section value, which is 30%, capture density

e�ects will not be considered to be important.

In the dense target materials simulated here, some consideration must be made for

the lowering of the binding energies of the target's valence electrons by plasma shielding.

This was discussed in section 3.1.9. This was not an issue in the chamber gases due to

the reduced density. However, in the heated hohlraum targets, the Debye length can be of

the order or less than the typical ionic radius. Therefore, the valence electron energies will
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be reduced roughly according to the reduction in e�ective target ionicity as described in

section 3.1.9.

Another important process in highly-ionized, high-Z plasmas must be addressed

which has not yet received much attention in the associated literature. While it is well

understood that a projectile can lose electrons due to an ionizing collision with the target,

another channel exists for electron loss in certain cases. The charge transfer process which

normally acts to reduce the projectile charge can occur in reverse. Instead of receiving a

bound electron from the target, a projectile can transfer one of its electrons to an ionized

target. This form of electron loss can be important in partially ionized plasmas and will

be considered in the following analyses. It will be calculated by the same charge transfer

formulas for target-to-projectile charge transfer, but with the roles of the projectile and

target reversed.

7.3.2 Charge Equilibrium Evolution in Dense Plasmas

If a quotidian calculation technique is sought to be developed for beam-target de-

position, then the integrated energy loss and charge evolution calculations must be rapid.

Since energy deposition is easily calculated by a few formulae, the majority of the com-

putation time is due to the iterations associated with the charge evolution calculations.

Ideally, some form of a semi-empirical �t would be made available for plasma deposition as

in cold targets if the dense plasma charge evolution were equilibrium-dominated and if that

equilibrium condition could be formulated.

The �rst issue to resolve then is whether or not the charge evolution of a projectile

in a dense plasma can be considered to be in equilibrium. In dense cold target materials,
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a given projectile very rapidly reaches and maintains throughout its range a charge repre-

sentative of an equilibrium charge state given by the Bohr semi-empirical model. But, it

has been established that at least in some beam-plasma deposition scenarios, the projectile

charge state at a given velocity is not necessarily the local equilibrium charge state [14],[54].

This is attributed to suppression of capture reactions in highly-ionized plasmas. Radiative

free electron recombination generally occurs at a rate lower than charge transfer reactions,

so without the bene�t of charge transfer, equilibrium charge attainment in a beam pene-

trating a target plasma may be delayed. The equilibrium condition then may be dependent

upon the atomic properties of the target, speci�cally the availability of bound electrons to

generate the stabilizing charge transfer reactions.

It can be demonstrated that in at least certain hypothetical dense target plasmas,

the charge of an incident heavy ion will not necessarily attain equilibrium in a time scale

small with respect to the characteristic energy deposition time. In this case, the beam's

charge state will not change as quickly as the characteristic energy change and the beam ions

will not be in charge equilibrium at all points. Consider a beam-target con�guration likely

to exhibit non-equilibrium charge evolution of an incident beam: heavy ion deposition into

a fully-stripped dense plasma. Figure 7.6 shows the charge state as a function of velocity

of initially 20MeV=u Pb10+ ions penetrating a fully-stripped carbon target at 300eV and

0:01gcm�3. Note that a dense carbon plasma at these conditions, as seen from the tabulated

data in section 3.1.10, would not actually be fully-stripped. However, the fully-stripped

condition was imposed on the target to illustrate the e�ects of a complete absence of bound

target electrons. The beam charge state encountered at each velocity was taken from
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Figure 7.6: Charge evolution of 20MeV=u lead penetrating a fully stripped carbon plasma
at 0:01gcm�3

the integrated energy deposition and charge evolution calculations using the zstopx code

outlined in Chapter 6. Shown for comparison are the equilibrium charge states which a beam

would reach at each velocity as calculated by the method of section 5.7.3 and the equilibrium

charge states given by the Bohr semi-equilibrium �t for deposition in cold matter.

In this simulation the projectile clearly does not maintain a charge state represen-

tative of an equilibrium value. After rising from its initial charge state of 10+, the lead ion

lingers in the higher state as it slows, not following the equilibrium value which drops more
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swiftly with velocity. This is caused by the reduced capture rate since there are no bound

electrons on the carbon ions to support charge transfer. This situation is not likely to be

characterized by a simple semi-empirical �t since the charge state at most points along the

range depend on the past history of the projectile.

Another useful way to analyze the non-equilibrium behavior is to compare the

time scales for incremental charge and energy change at each velocity. If the time scale

for charge change should be comparable to or smaller than the time scale for a small

incremental change in beam energy, then the beam projectile ions can be considered to be

in instantaneous charge equilibrium. If the charge-change times should be larger, the energy

will change signi�cantly before charge equilibrium is reached. Figure 7.7 displays the time

increments as a function of velocity for the change in charge and a 1% change in beam energy

for the lead penetration of the fully-stripped carbon target. The time increments for charge

change form a repeating pattern representing the progressive reduction in reaction rate

as the projectile approaches each new charge state. The energy deposition time increment

appears as a smooth curve. The important feature is that the charge-change time increment

is typically several orders of magnitude larger than the incremental energy loss time. This

indicates again that charge equilibrium is not achieved. This manifests also in the fact that

the change in beam velocity over which the charge change is achieved is considerable. For

instance, note that a new charge state is reached near v = 4� 109cm=s and the subsequent

new charge state is not obtained until the beam velocity has dropped to approximately

3:5� 109cm=s.

For comparison, note the analogous values for deposition of the same beam into
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Figure 7.7: Charge change and energy deposition time increments for a 20MeV=u lead
projectile penetrating a carbon plasma of average charge 6+ at 0:01gcm�3
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a neutral, cold carbon target at 0:01g=cm3 in �gure 7.8. In this case, since the charge

changing reactions are increased by the presence of charge transfer, the pattern formed by

the charge-change times cycles more quickly and less clearly than in the fully-stripped case.

The charge-change time values for this case are all well below or are comparable to those

of energy deposition. Also note that each charge change, marked by the jagged cycling in

the charge time increment, occurs with very little fractional change in beam velocity. In

this case charge equilibrium is maintained at virtually every point in the deposition and the

actual equilibrium charge state is given approximately by the Bohr semi-equilibrium �t of

equation 5.4.

This determination of non-equilibrium beam charge state evolution in the fully-

stripped carbon plasma is consistent with the consensus regarding charge evolution in fully-

stripped plasmas [14],[54], [17]. When target ionization levels are such that charge transfer

is suÆciently suppressed, charge equilibrium is not achieved in a time or deposition distance

increment small with respect to the characteristic beam energy loss path length.

For this fusion investigation, the �rst point to ascertain is whether or not the

fully-stripped condition will be achieved in HIF hohlraums. Even if hohlraum materials are

not fully-stripped at temperatures as high as 300eV, the levels of ionization will certainly

be large. The procedure then is to determine the maximum level of target ionization likely

to be achieved in HIF hohlraums and whether or not that level of ionization will induce

equilibrium charge evolution in penetrating beams.

According to the material equation of state properties listed in the tables in sec-

tion 3.1.10, several instances are observed in which the target material becomes nearly-
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Figure 7.8: Charge change and energy deposition time increments for a 20MeV=u lead
projectile penetrating a cold carbon target at 0:01gcm�3
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fully-stripped within the range of parameters likely to be encountered in HIF hohlraums.

However, none are ever fully-stripped. This happens to be signi�cant. Consider carbon at a

density of 0:01g=cm3 at a temperature of 300eV, which exhibits an average ionization level

of nearly 5:9. This represents the case most likely to result in non-equilibrium behavior.

Does it indeed do so?

Figure 7.9 displays a time increment plot as a function of velocity analogous to

�gure 7.7 but for the same 20MeV=u Pb 10+ penetrating a carbon target charged to an

average state of 5:9+ at a density of 0:01gcm�3. As in the cold carbon target case, the

time increment values for charge change are mostly situated well below or close to those

of energy deposition. Note also that the rate at which the projectile charge state cycles is

rapid with respect to the deposition velocity change as in the case of the cold carbon target

and in contrast to the case of the fully-stripped target. The presence of even just one bound

electron for every ten carbon ions makes a signi�cant di�erence.

The fact that this plasma condition does indeed induce equilibrium can be seen

most directly by comparing the charge states encountered during the integrated evolution

of the particle and the equilibrium charge states calculated by the capture and ionization

models at representative velocities. If the projectile's charge state at every velocity during

its deposition into the target should be equal to the equilibrium charge state calculated at

that velocity then equilibrium charge state evolution would be achieved. Using the zstopx

code of Chapter 6, the integrated beam charge evolution and energy deposition calculations

were performed for this case. The average charge state of the beam ions at each point during

the simulated evolution appear in �gure 7.10. Also plotted are the equilibrium charge states
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Figure 7.9: Charge change and energy deposition time increments for a 20MeV=u lead
projectile penetrating a carbon plasma of average charge 5:9+ at 0:01gcm�3
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Figure 7.10: Charge states for a 20MeV=u lead projectile penetrating a carbon plasma of
average charge 5:9+ at 0:01gcm�3

at representative velocity values as calculated according to section 5.7.3. The lead beam is

shown to be in equilibrium throughout its range in this plasma.

This case represents an extremum of material conditions encountered in HIF

hohlraum materials heated to 300eV. The fact the electronic properties of the carbon

target in this extreme case actually induced equilibrium charge evolution in an incident

driver beam indicates that equilibrium evolution should be expected in most other HIF

target materials since they will feature less fractional ionization than in this example.
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7.3.3 Cross Section and Equilibrium Charge Trends

Given that equilibrium charge attainment can be expected for most hohlraum sce-

narios considered presently, the exact nature of the charge equilibrium of beams penetrating

dense plasma targets will be examined in detail. This examination will be performed with

special attention to the actual cross section values which determine the charge state. The

goal of this analysis is to establish trends in equilibrium charge evolution which could even-

tually form the basis for a new semi-empirical �t for charge equilibrium in partially-ionized

plasmas.

Charge-change cross sections and equilibrium charge values will be calculated sys-

tematically over a range of parameters. The speci�cs of the cross sections will be discussed

and trends in equilibrium behavior will be evaluated. Note that the purpose now is not do

develop a library of charge evolution plots to serve as the basis of an approximate �t, but

rather to examine representative cases to determine the important processes which inuence

charge equilibria in dense plasma targets.

Let us �rst consider the case of a lead projectile simulated to be deposited into a

gold plasma at 1g=cm3. The target temperatures examined will range from 10eV to 300eV.

The velocity of the lead beam will be varied from 0:2c to 0:05c, covering the range of interest

in this study. Figures 7.11 through 7.13 display the ionization and capture cross sections

in the 300eV gold target with an average charge state of 33:9, with each �gure representing

a di�erent lead ion velocity. In each plot, the point at which ionization and capture cross

sections meet is the charge equilibrium value and is marked by a line.

Several primary observations should be made here. The cross section for ionization
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Figure 7.11: Charge-changing cross sections of lead at v = 0:2c penetrating a gold plasma
at 1gcm�3 and 300eV
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Figure 7.12: Charge-changing cross sections of lead at v = 0:1c penetrating a gold plasma
at 1gcm�3 and 300eV
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Figure 7.13: Charge-changing cross sections of lead at v = 0:05c penetrating a gold plasma
at 1gcm�3 and 300eV
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due to free electron collision is shown to be small relative to the total electron loss cross

section. The cross section for radiative capture of free electrons was included in each case,

but was found to be many orders of magnitude lower than the charge transfer cross section.

It was plotted on the graphs with the other cross sections, but did not even appear within

the scale of the �gures. The free electron contributions to both ionization and capture were

shown to be insigni�cant in each case. The equilibrium charge value predicted by these

calculations as well as for other projectile velocities are plotted in �gure 7.14. Included is

the charge equilibrium value predicted by the traditional semi-empirical �t for cold matter.

The calculations in the gold plasma at 300eV and 1g=cm3 show a marked charge state

enhancement which increases as the projectile slows.

Before analyzing these trends in more detail, their manifestation in beams pene-

trating other target materials and ionization levels should be examined. Consider now a

low-Z plasma consisting of carbon at 0:1gcm�3 with a temperature of 100eV. The average

charge state of such a target material is 5:14. The loss and capture cross sections were

calculated for this case using the same lead projectile and associated velocities. Figures

7.15 through 7.17 display the results.

Note that here again the free electron contribution to the cross sections is minimal.

Free electrons contribute neither to loss nor to capture rates in the plasma. Ionization is

dominated by the BEM nuclear ionization and capture is dominated by charge transfer.

The equilibrium charge state values for these and other velocities are displayed in

�gure 7.18. As in the case of the gold plasma, the beam equilibrium charge state in the

carbon is close to the charge state it would have in a cold target (according to the Bohr
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Figure 7.14: Equilibrium charge states of lead ions penetrating a gold plasma at 1gcm�3

and 300eV
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Figure 7.15: Charge-changing cross sections of lead at v = 0:2c penetrating a carbon plasma
at 0:1gcm�3 and 100eV



230

0 10 20 30 40 50 60 70 80
Projectile Charge State

10
−20

10
−19

10
−18

10
−17

10
−16

10
−15

C
ro

ss
 S

ec
tio

n 
[c

m
2]

Loss
Capture
Free Electron Ionization

Figure 7.16: Charge-changing cross sections of lead at v = 0:1c penetrating a carbon plasma
at 0:1gcm�3 and 100eV
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Figure 7.17: Charge-changing cross sections of lead at v = 0:05c penetrating a carbon
plasma at 0:06gcm�3 and 100eV
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Figure 7.18: Equilibrium charge states of lead ions penetrating a carbon plasma at 0:1gcm�3

and 100eV
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semi-empirical formula) for high velocities and greater than the Bohr value at low velocities.

Note that for intermediate velocities the equilibrium charge state in the plasma is actually

lower than the cold target charge state. This is probably just due to inexact modeling

and the di�erence is only by a few charge states, certainly within the uncertainty of the

associated cross sections.

Let us examine the reaction rates and equilibrium charge states of a lead beam

penetrating a third material. Figure 7.19 shows the equilibrium charge states of lead pen-

etrating an iron plasma of density 0:1g=cm3 whose temperature is 300eV. The average

charge state of the iron target under these conditions is 20:72. Again observed is a near

coincidence between the lead beam's charge states in the iron plasma and the equilibrium

charge states according to the Bohr semi-empirical �t at high velocities. The equilibrium

charge state in the plasma is increased relative to the Bohr values with decreasing velocity.

The trends observed in the cross sections and resultant equilibrium charge values

can be interpreted to identify the dominant process determining increased charge state

levels. It has been shown that the free electron contributions are not signi�cant in any of the

cases examined. The primary comparative feature of the charge evolution in dense plasmas

is enhancement with respect to the cold matter value which increases as the projectile

slows. While the plasma electrons do not appreciably alter the cross sections, the cause for

enhanced ionization in the above cases can be identi�ed.

First consider the high-velocity behavior. In all cases, for high velocities, the

equilibrium in the partially ionized plasma is close to that of the semi-empirical �t for cold

matter charge state equilibrium. This is intuitive. For a swift projectile whose velocity is
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Figure 7.19: Equilibrium charge states of lead at penetrating an iron plasma at 0:1gcm�3

and 300eV
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much greater than the scaled Thomas-Fermi electron velocity of the target

v � Z
2=3
t �c (7.19)

the distinction between bound and free in the target electrons should not be pronounced.

This is because the target electrons, bound or free, would appear as a stationary electron

uid to the swift projectile.

As the projectile continues to deposit its energy into the target, slowing down

further, the equilibrium charge states in the plasmas begin to exceed the analogous charge

states in cold targets. The cause of this trend can be understood from a plot comparing

the charge-changing cross sections of the beam in an ionized material to the analogous

cross sections in the corresponding cold material. Figure 7.20 displays the total capture

and loss cross sections for the case of a lead ion with v = 0:1c penetrating a gold plasma

whose density is 1g=cm3 at both 300eV and room temperature. The comparison reveals

that indeed the ionization in the plasma is enhanced relative to the cold target case due

to the reduced screening of the target nuclei. However, this e�ect is not dominant. What

most strongly changes the charge state equilibrium value is the relative decrease in charge

transfer of electrons onto the beam from the plasma target compared to the transfer from

the cold target. This is due to the absence of favored valence electrons with low binding

energies which ordinarily dominate the transfer reaction and which are not present in the

plasma targets.

A similar comparison can be drawn for the carbon target equilibrium values. Fig-

ure 7.21 shows the cross sections for charge change for a lead ion at v = 0:05c penetrating

a carbon target of density 0:1g=cm3 at 100eV and at room temperature. The cause of the
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Figure 7.20: Equilibrium charge states for lead at v = 0:1c penetrating a gold plasma at
1gcm�3 at room temperature and 300eV
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Figure 7.21: Equilibrium charge states for lead at v = 0:05c penetrating a carbon plasma
at 0:1gcm�3 at room temperature and 100eV

relatively enhanced charge state in the plasma can again be seen to be due primarily to the

reduction in charge transfer with the liberation of the target's outer electrons to the plasma.

Since radiative recombination occurs at a rate many orders of magnitude lower, the total

capture reaction rate decreases substantially with the loss of target valence electrons.

Two pivotal points about cross sections and equilibria in dense plasmas can be

taken from the above calculations. (1)The free electrons are roughly transparent to the

incident ions. (2)The dominant e�ect in determining equilibrium is the reduction in the
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non-radiative charge transfer cross section due to target ionization levels and corresponding

loss of valence electrons.

The identi�cation of these two points provides the understanding necessary to pro-

ceed with articulating a new semi-empirical formula for beam equilibrium charge behavior

in partially ionized plasmas.

7.3.4 A Semi-Empirical Fit for Charge Equilibrium in Partially-Ionized

Plasmas

A desire for calculations of ion beam deposition into dense plasma targets is that

they be performed using a beam charge value given by a simple, compact expression rather

than by time-consuming discrete cross section calculations. Given the results of the preced-

ing section, basic heuristic conclusions can be drawn regarding the factors determining the

charge evolution of ions penetrating plasmas. In this section, those factors are quanti�ed

in a way which enables a new semi-empirical �t to be expressed for the charge evolution of

beam ions in dense, partially-ionized plasmas.

Such a charge state formula would represent a signi�cant advancement in beam-

plasma interaction physics. It has been unclear how target ionization levels e�ect incident

beam charge state and deposition. Some e�orts have been made to account for target EOS

e�ects by including the thermal velocity of the target's free electrons in quadrature with

the projectile velocity in the cold-matter semi-empirical charge state �t [2]. This is based

on the idea that the plasma's free electrons ionize the beam more strongly as a function

of their thermal velocities. However, the analysis of this dissertation has shown that the

plasma electrons are largely transparent to the beam in the case of dense plasma targets
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whose atomic numbers are greater than 6. The above study of ionization and capture

cross sections of ions penetrating dense plasma targets has identi�ed the primary cause of

enhanced beam ionization levels in dense plasmas. The reduction in charge transfer capture

rates in plasmas compared to capture rates in cold targets is several orders of magnitude

greater than the corresponding relative increase in beam ionization in plasmas compared to

cold targets. The charge state at which capture and ionization rates in plasma targets are

balanced, signifying the charge equilibrium, is thus higher. This capture reaction reduction

and a simple quanti�cation of it consistent with the previous semi-empirical �t due to Bohr

will be developed as follows.

Recall the nature of the previous semi-empirical �t used for cold target calculations

(see section 5.1.1). The ansatz which served as its basis was that the equilibrium charge state

of an incoming projectile would be that charge state at which the beam's valence electron

velocity equals that of the projectile itself. Let us examine this more closely. Implicit in

this is actually an assumption about the equation of state of the target. Suppose that the

projectile's charge state should increase beyond the equilibrium value QE at a given velocity

v. The idea is that a capture reaction would rapidly occur to restore the equilibrium charge

level. Why? Because there should be, in a cold target, some valence electrons of binding

energy Iv(Zt; 0) which satisfy

Iv(Zt; 0) +
1

2
mev

2 � Iv(Zp; QE + 1) (7.20)

where Iv(Zp; QE+1) is the binding energy of the projectile's valence electrons at an equilib-

rium charge state of QE . For high projectile velocities, the neutral target's valence binding

energies of typically a few eV would be small relative to the value of 1
2mev

2. This energy
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relation could then be re-written approximately as

1

2
mev

2 � Iv(Zp; QE + 1): (7.21)

This is known to be true since the equilibrium charge value was formed based on the

condition

1

2
mev

2 � Iv(Zp; QE); (7.22)

and in general

Iv(Zp; QE) < Iv(Zp; QE + 1): (7.23)

The traditional Bohr semi-empirical �t formula can be obtained from equation equation 7.22

by substituting for the valence binding energy Iv(Zp; QE) the virial kinetic energy of the

valence electrons 1
2mev

2
v(Zp; QE). Using equation 5.15 for the valence velocity v2v(Zp; QE)

and solving for QE provides the traditional semi-empirical �t formula.

The signi�cance of this is that at the temporarily higher charge state, the ionization

energy of an incoming captured electron would be greater than Iv(Zt; 0)+
1
2mev

2 � 1
2mev

2.

Given this energetic relationship, charge transfer is favored to occur from the target valence

electrons to the projectile. This will occur until the energetic balance is achieved at a

projectile equilibrium charge state QE such that

Iv(Zt; 0)+
1

2
mev

2 � Iv(Zp; QE): (7.24)

In the case of an ionized target of charge Qt > 0, the valance energy of the target

ion Iv(Zt; Qt) will begin to exceed the usually negligible values of neutral atoms. As the

ionization level increases, a greater projectile equilibrium charge state is required to achieve

the energetic balance. Note that this energetic balance is a function of the orbital energies
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of the bound target electrons, not the thermal energies of the plasma electrons which do

not contribute signi�cantly to beam charge-changing reactions. For a given projectile veloc-

ity, the projectile charge state which achieves valence energy balance would be necessarily

greater in an ionized target with Qt > 0 than in a non-ionized target. This is true since in

general

Iv(Zt; Qt) > Iv(Zt; 0); (7.25)

which is to say that the ionization potential of an ionized species is greater than the ioniza-

tion potential of the same neutral species.

This is consistent with both qualitative expectations and with the calculations of

the preceding sections. But, how can this relationship be quanti�ed into a rapidly calculated

formula? The answer lies in the inversion of the semi-empirical �t itself. As presented in

section 5.1.1, the semi-empirical �t is actually based on an inversion of the relationship

between an ion's valence electron orbital velocity and its charge state. This relationship is

vv(Z;Q) � Z2=3�c ln

�
Z

Z � Q

�
(7.26)

where vv(Z;Q) is the valence orbital velocity of species Z charged to Q+. This velocity can

be used to form an energy of both the projectile and target valence electrons. Substituting

into the equilibrium condition energy balance gives

1

2
mev

2
v(Zt; Qt) +

1

2
mev

2 � 1

2
mev

2
v(Zp; QE) (7.27)

and using equation 5.15 provides the following relationship

�
Z
2=3
t �c ln

�
Zt

Zt � Qt

��2
+ v2 �

 
Z2=3
p �c ln

"
Zp

Zp � QE

#!2

: (7.28)
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This equation expresses the energy balance of the valance electrons of an beam at its

equilibrium charge state QE penetrating a partially ionized dense plasma. Solving this

expression for QE provides the new equilibrium charge state of a projectile in a partially

ionized plasma. This formula, constituting a useful new result, is

QE(v) = Zp

0
BB@1� exp

2
664
�
r
v2 + (Z

2=3
t �c ln[ Zt

Zt�Qt
])2

Z
2=3
p �c

3
775
1
CCA : (7.29)

This resultant expression for the equilibrium charge is analogous to the previous

cold target �t with a target valence velocity term added in quadrature. Note that for a cold

target with Qt = 0, this formula reduces to that of the Bohr semi-empirical value. This

formula should not be used for fully-stripped targets with Qt = Zt, in which case there are

no bound target electrons and the function is consequently unde�ned.

One adjustment needs to be made to make this more broadly applicable. The

expression relating an ion's valance velocity to its charge state is valid for situations in

which the liberated electrons do not screen the nuclei in the target material. In other

words, it applies if the Debye length of the target plasma is greater than the typical ionic

radius as discussed in section 3.1.9. However, as indicated by the values of the Debye lengths

for HIF-relevant target plasmas in section 3.1.10, this condition will not always be met in

the targets simulated here. Thus, the e�ects of nuclear screening by plasma electrons must

be included.

The most facile and reasonably accurate way to address this is by quantifying the

number of free electrons within the ionic radius. The e�ect of these electrons is to reduce the

total e�ective ionic charge, which will produce a corresponding reduction in target valence

electron velocity according to the relation in equation 5.15. Thus, the adjusted version of
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equation 7.29 can be expressed as

QE(v) = Zp

0
BB@1� exp

2
664
�
r
v2 + (Z

2=3
t �c ln[ Zt

Zt�Q0

t
])2

Z
2=3
p �c

3
775
1
CCA (7.30)

with

Q0
t = Qt � 4

3
�r3tne (7.31)

in which rt is the ionic radius of the target material. Alternatively, if the Debye length of

the plasma should be equal to or smaller than the characteristic ionic radius, the e�ective

target charge can be written simply using the plasma parameter ND

Q0
t = Qt �ND (7.32)

Calculations Using the New Formula

The equilibrium charge state values which this �t predicts can be examined for lead

beam penetration of various dense plasma targets which are also representative of heated

hohlraum materials. Consider the scenario of a lead projectile with velocity v = 0:2c

penetrating a gold target of density 1g=cm3 at 300eV. Figure 7.22 displays the equilibrium

charge states calculated for that case using the Bohr semi-empirical �t for charge equilibria

in cold targets and the charge states calculated using the new �t for partially ionized plasma

targets. The lead beam's equilibrium charge evolution forecast by the new equilibrium

formula agrees well with the trends expected from discrete cross section calculations and

with qualitative expectations based on the energetic analysis.

The target valence velocity term added in quadrature in this case is

vv(79; 33:9) = 792=3�c ln[79=45:1]� 0:0756c (7.33)
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The new equilibrium charge formula was applied to two other cases examined through

analysis by discrete cross sections. Figure 7.22 also shows the equilibrium charge states for

a lead beam penetrating an iron plasma at 0:1g=cm3 and 300eV and a carbon plasma at

0:1g=cm3 and 100eV. The average charge state of the iron target is 18:3 and the carbon is

5:14. Note that the equilibrium charge states of the lead beam in the iron plasma are similar

to those in the gold plasma. This is true because the valance electron orbital velocity of

iron at 18:3 is given by equation 5.15 to be

vv(26; 18:3) = 262=3�c ln[26=7:7]� 0:079c (7.34)

which is close to the valence orbital velocity of the gold target charged to 33:9. The valence

energy of the carbon target at an average charge state of 5:14 is

vv(6; 5:14) = 62=3�c ln[6=0:86]� 0:0468c: (7.35)

This relatively low carbon target valence velocity results in a less pronounced beam charge

state enhancement relative to the equilibrium charge state in the corresponding cold target.

While no empirical data exists against which to compare the new �t, several facts

support its reliability. First, the discrete cross sections which provided the justi�cation

for the ansatz on which it is based have been shown to be reliable in reproducing known

equilibrium values in solids. Though only accurate enough to predict charge equilibrium

to within several charge states, the individual cross sections can certainly be trusted to

provide reliable estimations of the relative importance of the various ionization and capture

reactions. From such an analysis, the reduction in charge transfer clearly distinguishes itself

as the process which dominates the ionization enhancement. The new formula was based
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Figure 7.22: Equilibrium charge states of lead ions penetrating various target plasmas
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on a sensible extension of the original Bohr semi-empirical �t which has been shown to be

successful.

The values predicted both by time-consuming discrete calculation and by the

nearly instant application of the new formula provide results which are consistent with

each other. The results are also consistent with expectations based on an understanding of

the atomic energetics involved and a knowledge of the ionization and capture cross sections

which determine the beams equilibrium charge state. The new formula for charge equilib-

rium in a partially-ionized medium can thus be trusted to provide very sensible and reliable

results. Its application to integrated energy deposition calculations will be examined in the

following section.

7.3.5 Integrated Calculations for Targets

Using the new charge evolution formula for partially-ionized dense plasma pene-

tration developed above, integrated calculations can be performed evolving both the energy

loss and charge evolution simultaneously. The charge state evolution of the projectile which

determines the energy deposition will be generated from the new semi-empirical �t. The

target equation of state values, average charge state and average ionization potential, will

be taken from section 3.1.10. From these systematic runs, new expectations can be formed

for beam deposition in ionized target materials for HIF applications.

Consider �rst the deposition of the prototypical lead beam with v = 0:2c into a

gold target of 1g=cm3 at temperatures ranging from 10eV to 300eV. The integrated charge

evolution and deposition calculations for these cases are shown in �gure 7.23. Included is

the pro�le calculated for a cold gold target at the same density by using the traditional
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Figure 7.23: Energy deposition pro�les for 20MeV=u Pb penetrating a dense gold plasma
with � = 1gcm�3 at several temperatures

semi-empirical equilibrium charge state for cold matter.

At least two distinctive trends are noted. First, the range of the beam decreases

progressively with target ionization levels. Also, the Bragg peak of the deposition pro�le

is more accentuated with increasing target temperature. This behavior is due to two in-

uences. First, aside from beam charge enhancement in plasmas, the stopping power in a

plasma target is generally greater than the stopping power in the same cold target. This

can be exempli�ed by comparing the respective logarithmic terms in the stopping power
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formulae for both. Neglecting beam charge state dependence, the energy deposition rates

of the beam in two targets, gold at 300eV and cold, can be expressed in ratio by

dE=dx(300eV)

dE=dx(cold)
=

45:07 ln[�b(300eV)] + 33:93 ln[�f ]

79 ln[�b(cold)]
(7.36)

At a beam velocity of 0:2c, this ratio is found to be

45:07� 3:20 + 33:92� 7:48

79� 4:05
� 1:25 (7.37)

Thus, even without charge enhancement e�ects, the energy deposition will be expected to

be greater in the plasma. This e�ect becomes more pronounced as the projectile slows. At

a velocity of 0:1c, this ratio is near 1:37.

The e�ects of beam charge state enhancement on the deposition in the plasma

target can be isolated by comparison. Figure 7.24 displays the deposition pro�le of the lead

beam into the 300eV plasma using both the new equilibrium �t for ionized targets and the

old �t for cold targets. The comparison shows that the charge state enhancement is also

responsible for a degree of range shortening and Bragg peak enhancement.

Now consider the lead beam deposition into a carbon target at 1g=cm3. Figure 7.25

displays the associated energy deposition pro�les for 20MeV=u lead penetrating the carbon

at temperatures ranging from 10eV to 300eV. The trends of Bragg peak enhancement and

range shortening are again observed.

The isolated e�ect of the charge enhancement in the plasma can be examined as

in the gold target scenario, by plotting a representative pro�le using both the new �t and

the old charge equilibrium model. Figure 7.26 displays such a comparison for the case

of the 300eV carbon plasma. In this instance, the Bragg peak is reduced considerably
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Figure 7.26: Energy deposition pro�les for 20MeV=u Pb penetrating a carbon plasma with
� = 0:1gcm�3 at 300eV using both the new charge equilibrium �t and the cold matter �t

when using the previous equilibrium model for cold target charge state. The e�ect of

the enhancement of charge state is to drive up the equilibrium value as the projectile

slows as the projectile velocity becomes close to the velocity of the ionized target's valence

electrons. This compounds the energy deposition rate at that regime, acting to create a

highly accentuated Bragg peak.
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7.4 Summary and Outlook for HIF Atomic Physics

DiÆculties and signi�cant uncertainties in calculating charge-changing cross sec-

tions and energy deposition of beams penetrating rare�ed and dense plasma targets have

been addressed in this dissertation. Applications of the improved atomic physics models

to HIF chamber and target scenarios enable important new conclusions for HIF and useful

new atomic physics information.

This dissertation presents good evidence to support the conclusion that despite

recent questions [19], the binary encounter model of Gryzinski can be used to produce

reliable beam ionization cross sections, particularly for HIF applications. Unaccountably

high ionization levels should not be expected in the HIF chamber and that calculations

can be performed with the BEM direct ionization cross section models outlined in section

5.4.4. There should be no need for concern about unknown ionization processes and the

HIF community can advance past concerns over ionization uncertainties and proceed with

the simple and fast calculation approach outlined here. If experiments should be sought

to determine relevant cross sections exactly, reversed-frame or crossed beam techniques are

recommended rather than the traditional direct approach of measuring the ionization of a

the heavy ion beam penetrating a target. If space charge e�ects should remain a problem for

HIF driver beam propagation in HIF chambers, other system parameters can be varied in

the HIF chamber to reduce ionization and to enhance beam neutralization. It is important

however to be able to calculate reasonably accurate ionization cross sections for modeling

e�orts.

Design of indirectly driven HIF targets may bene�t if expectations about the
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accentuated Bragg peaks of beams penetrating dense plasmas are validated. If beam energy

deposition should occur in a more well-de�ned volume, the materials of the hohlraum can

be more accurately adjusted to achieve more subtle changes in the spatial distribution of

the radiation �eld. Also, less energy would be lost to deposition in materials positioned

along the beam's path to its intended deposition destination. With evolving laser-generated

plasma technology, this deposition issue can be further resolved with experiments in dense,

high-Z plasma targets.

The beam charge evolution and energy deposition behaviors calculated using the

new equilibrium charge equation presented here certainly beg future veri�cation by a thor-

ough experimental examination. However, just as in the case of the cold matter semi-

empirical equilibrium �t, the physical basis on which the model was based is strong enough

such that observed deviations from empirica can likely be incorporated by parameterizing

one or several terms in equation (equation 7.29) which can be tuned.

The important point is that for HIF chamber and target scenarios, concerns about

poorly-understood ionization and other atomic e�ects can be alleviated by a close exami-

nation of atomic processes for heavy ion fusion.
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Appendix A

Beam Physics

In addition to the isolated atomic physics of beam ions, the e�ects of atomic pro-

cesses on the beam electrodynamics will be considered in this work. In order to address this

issue, which is primarily important for chamber ionization and transport, a brief overview

of the physics of intense ion beams is presented in this section.

Consider a beam consisting of ions of a particular energy E and velocity v (non-

relativistic). In a frame co-moving with the beam, the ions can be considered to occupy

a certain averaged volume de�ned by the beam spot size a and the pulse length l. In this

frame the beam ions are characterized by an average number density n, which is just the

total number of ions N divided by the volume �a2l.

Charged to a state +q, these beam ions constitute a current I given by

I = n�a2vqjej: (A.1)

This current is related to a linear charge density � by

I = �v (A.2)
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Note that the current varies linearly with the charge of the constituent ion.

Emittance and Perveance

In addition to the net velocity in the of the beam in the direction of propagation,

the individual beam ions exhibit individual motions characterized by velocities transverse

to the axis of propagation. This velocity spread is quanti�ed by the emittance of the beam,

which is a measure of the phase-space area of its component ions. This emittance � can be

generally expressed as

�2 /< r2 >< v2r > (A.3)

where r is the transverse displacement from the beam center and vr is the transverse velocity.

Note that each of the terms on the right of the equation above have physical interpretations.

The average value of the square of the radial displacement is proportional to the beam spot

radius a. The average of the square of the velocity is proportional to the ions' average

kinetic energy, which is just the temperature.

One of the chief concerns about using intense particle beams as HIF drivers is

related to an e�ect known as space charge. Ignition of reactor-grade fusion hohlraums may

require a beam with a spot size of only a few millimeters. When focused to such small radii,

the collective Coulomb repulsion of the beam ions may become signi�cant. This repulsion

will increase with increasing ion charge state and with decreasing spot radius. A measure

of the collective space charge repulsion is the perveance Q of the beam. It is a unit-less

quantity expressed by

Q =
qe

mi

2I

(�c)3
(A.4)
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in which mi is the beam ion mass, and � and  have their usual relativistic de�nitions

as a function of the beam velocity v. For a non-relativistic beam scenario, like the ones

considered for the IRE and HCX, this perveance can be simpli�ed as

Q =
qe

mi

2I

v3
(A.5)

Rewritten slightly and making the substitution � = I=v, a simpli�ed form of the perveance

is obtained

Q =
qe�

T
(A.6)

where T = 1
2miv

2.

Ion Equations of Motion

In a co-moving frame, the beam system can be seen as an ensemble of ions in a

self-induced electric �eld. An important component of this electric �eld is in the radial

direction and is related to the beam's current density. The radial �eld Er(r; z) within the

beam is given by

Er(r; z) =
2�r

a(z)2
(A.7)

where a(z) is the spot radius of the beam as a function of beam transit along z. Note that

an ion at the beam's center r = 0 experiences no electric �eld. The radial motion of a beam

ion of charge q due to this electric �eld is given by

mi
d2r

dt2
= qeEr(r; z): (A.8)



263

Since the ion's position along the direction of propagation z is related to time simply by

z = vt, the force equation can be written in terms of a spatial di�erential as

d2r

dz2
=

qe

miv2
Er(r; x): (A.9)

Substituting into this the expression for the electric �eld gives

d2r

dz2
=

qe

miv2
2�r

a(z)2
(A.10)

which, recalling the de�nition of perveance is just

d2r

dz2
= Q

r

a(z)2
(A.11)
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Appendix B

Properties of the Transcendental

Function ln[ln[Z]]= ln[Z]

Consideration of an interesting logarithmic function has been induced by the as-

sertion of the approximation

ln[Z] � Z1=3: (B.1)

This seems at �rst to be a non-intuitive relationship. However, analysis shows that this is

indeed a reliable estimation for Z in the domain of atomic numbers. This function can be

more generally written

ln[Z] � Z1=� (B.2)

where � is some real number. One step of logarithmic algebra produces

ln[ln[Z]]

ln[Z]
� 1

�
: (B.3)

In order for this approximation to be valid, the derivative with respect to Z of

equation B.3 must be vanishing. In other words, at some Z value, will there be a point at
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which the value of equation B.3 locally does not vary with Z. Once this regime has been

established, the actual constant term representing the value of the function in that region

will be shown to be near 1=3.

Taking the derivative of equation B.3 produces

1

ln2[Z]Z
� ln[ln[Z]]

ln2[Z]Z
= 0 (B.4)

which is true if

ln[ln[Z]] = 1 (B.5)

which is to say

Z = ee: (B.6)

So, the original ansatz that ln[Z] can be represented by Z1=� is indeed true if Z = ee � 15:15.

This makes sense: the natural logarithm of this value is e and taking the natural logarithm

again produces 1. The value of the function in equation B.3 is then 1=e, which is very close

to the presumed value of 1=3.

How good is this approximation over a broad domain covering atomic numbers

from 2 to 92? Figure B.1 displays the plot of the left hand side of equation B.3 as a

function of Z. note that the function diverges at Z = 1. But, the important feature is

noted in the proximity to 1=3 of the values of the function for Z � 5. This shows that the

original approximation holds very well for most atomic number values of concern to this

dissertation.
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Figure B.1: Values of the transcendental function ln[ln[Z]]= ln[Z]
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Appendix C

Computer Codes

In this appendix some details are discussed about the computer programs devel-

oped to perform the calculations of this dissertation. The primary language used in this

work was actually FORTRAN77. Despite its age and growing obscurity, FORTRAN77 is

easy to use and well suited for the handling of formulas required by the atomic physics

modeling of this research.

Three general codes were developed to perform most of the calculations discussed

here. One is used to calculate beam charge-changing cross sections including multiple

ionization probabilities. This �rst code is called simply x (representing `cross section')

and is the one most useful for HIF chamber ionization cross section calculation. The second

code, zstop , features no charge changing cross section calculations but does have an energy

deposition routine. This code calculate the energy deposition of a beam into a target. Beam

charge state information is provided using an equilibrium charge state formula (either the

old Bohr formula of equation 5.4, or the new equation 7.29). The third code, zstopx ,
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contains both the beam charge changing routines plus the subroutine for calculating beam

energy loss into the target. It is used to perform integrated charge evolution and deposition

calculations. Since it is used for energy deposition calculations using �rst-principle charge

evolution, it calculates only the average beam charge information and does not employ the

multiple ionization calculations.

Of the three primary codes, only the �rst, x, will be useful in future calculations.

Beam charge-change calculations will be needed to be performed regularly for many di�erent

upcoming HIF-related experiments. Therefore, a code is sought which can run quickly and

can be manipulated easily. The x code accomplishes this. The other two codes will not

be a useful product since any future calculations of beam deposition into dense targets will

be performed with existing routines. However, those codes would bene�t by an update to

include the new charge equilibrium formula for beams penetrating dense plasmas (equation

7.29). That update can be made with only a line or two of new code. Thus, the zstopx

and zstop codes developed here will only be useful to provide preliminary results.

All of the codes exist on the `jess' server in Building 47 of LBNL's AFRD division.

Each of them are operated in a similar manner. Each requires two atomic data bank input

�les which are read by the code automatically. These are (1)`estruct.dat' which contains

the shell structures, screening constants and ionization potentials for every electron in every

neutral atom from hydrogen to uranium; (2)`ibar.dat' which contains the average ionization

potentials for every neutral atom from hydrogen to uranium. These must be included in

the same directory as the compiled, executable code. Each code then requires an input �le

containing the beam and target parameters for the interaction sought to be simulated. The
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input �le is contained in a subdirectory which is speci�ed below. One or more output �les

are then generated. The use of each code is demonstrated in the following sections.

C.1 x

The x code exists in a text �le containing FORTRAN77 code. This form is called

x.f and its compiled form is simply called x . The input �le specifying the beam and target

parameters of the problem is called `x.inp' and must be placed in a sub-directory called

`xinp'. The complete listing of the FORTRAN source of this code appears at the end of

this appendix.

A sample input �le x.inp is listed below. It is the input deck which contains the

parameters for calculating the charge-changing cross sections for a lead beam penetrating a

BeF2 gas. The �rst line of the input deck speci�es the projectile (beam) atomic number Zp

and its atomic mass number Ap. The values here are 82 and 208 respectively, representing

a common lead isotope. The next line speci�es the beam energy and initial charge state.

When the beam energy is negative, as it is here, the value is interpreted by the code as

energy per atomic mass unit. The units of the energy on line 2 are eV, so this beam has

an energy of 20MeV=amu. Note that powers of ten are signi�ed using D, since the code

uses double precision calculations. The charge state here is given as �1. When the initial

charge state is negative, the x code interprets that as an instruction to compute the cross

section values for every charge state Q from Q = 0 to Q = Z.

82, 208

-20.0D6, -1
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0.025, -5.D13, 0

2

4,9,1.0,0

9,19,2.0,0

The next line, line 3, gives the temperature, density and charge equation of state

ag for the target. The units of the temperature value are eV, so the value here of 0:025

represents approximately room temperature. The target density value, here �5 � 1013,

represents number density since it is a negative value. If it were positive, it would be

interpreted by the code as mass density in g=cm3. The last number 0 tells the code to

use the average atom model for the charge state of the target. This means that every

target species will have the same charge state. The next line, line 4, carries the value 2.

This represents the number of atomic or ionic species in the target. Since this input deck

simulates a BeF2 chamber, there are 2 target species. The next two lines give the atomic

information for those two species, being beryllium and uorine. The target species should

be listed according to increasing atomic number. The �rst of the two lines, therefore,

is for beryllium. The three values on line 5 represent the �rst species' atomic number

Zt(1), its atomic mass At(1), and its charge state Qt(1). Here, the �rst target species is

beryllium, with atomic number 4, atomic mass 9 and at a charge state of 0. The next

line, line 6 contains the analogous information for uorine. This completes the input deck

requirements for this problem.

The output which this particular �le produces consists of two separate �les. One is
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`xmulti.out' and the other is `xlist.out'. The �rst contains more information than the latter,

but the latter is more useful to peruse quickly to see the overall cross section values and

beam equilibrium charge state for the case at hand. Samples from each are listed below.

The xmulti.out �le contains the ionization and capture cross sections for each

requested charge state (or for every charge state if the beam's initial charge state is selected

as �1). Also included are multiple ionization cross sections as discussed in section 5.4.10.

A sample xmulti.out output �le is listed below from the calculations generated by the above

input �le. It provides the cross section values for a neutral lead beam upon impact with

BeF2, as speci�ed by the input deck. The `Multiplicity' column signi�es multiplicity of

multiple ionization, listing cross section values for single through quintuple ionization of

the lead projectile.

Charge state = 0

Total Ionization Cross Section [cm2] 0.913D-15

Total Capture Cross Section [cm2] 0.000D+00

Multiplicity Cross Section [cm2]

1 0.442D-15

2 0.136D-15

3 0.130D-15

4 0.401D-16

5 0.302D-16

The xlist.out �le contains a list of the total ionization and recombination cross

sections for the beam, per collision with a target molecule. For the run produced by the
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x.inp input deck considered here, the following output is generated by the x code in the

xlist.out �le:

Charge Ionization Capture

.00000D+00 .91327D-15 .00000D+00

.10000D+01 .77454D-15 .79007D-25

.20000D+01 .61272D-15 .93992D-24

.30000D+01 .62526D-15 .65743D-23

.40000D+01 .48404D-15 .18426D-22

.50000D+01 .41719D-15 .59463D-22

.60000D+01 .37854D-15 .12069D-21

.70000D+01 .34385D-15 .22155D-21

.80000D+01 .30378D-15 .37594D-21

.90000D+01 .27699D-15 .60142D-21

.10000D+02 .25326D-15 .91764D-21

.11000D+02 .23177D-15 .13819D-20

.12000D+02 .24029D-15 .19620D-20

...

.61000D+02 .19156D-17 .15500D-17

.62000D+02 .20006D-17 .16448D-17

.63000D+02 .14778D-17 .17383D-17

.64000D+02 .10903D-17 .19613D-17

.65000D+02 .93518D-18 .20670D-17

.66000D+02 .79078D-18 .21820D-17

.67000D+02 .64999D-18 .23001D-17

.68000D+02 .52513D-18 .24213D-17

.69000D+02 .28789D-18 .25285D-17

.70000D+02 .30143D-18 .26544D-17

.71000D+02 .20376D-18 .27792D-17

.72000D+02 .11047D-18 .29573D-17

.73000D+02 .92112D-19 .30844D-17

.74000D+02 .75309D-19 .32143D-17

.75000D+02 .59203D-19 .33473D-17

.76000D+02 .45027D-19 .34833D-17

.77000D+02 .32197D-19 .36196D-17

.78000D+02 .20464D-19 .37613D-17

.79000D+02 .99761D-20 .39060D-17

.80000D+02 .26443D-21 .40592D-17

.81000D+02 .12463D-21 .42242D-17

.82000D+02 .00000D+00 .43933D-17
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(Some points were omitted for brevity.) This �le lists the total ionization and

capture cross sections for each requested beam charge state, given in cm2. The �rst column

contains the charge state, the second contains the ionization cross section and the last

contains the capture cross section. Note that this �le can be used to identify the equilibrium

charge state for this beam-target con�guration. It occurs between projectile charge state

62 and 63 as judged by the balance of ionization and capture between those points. This

happens to be very near the value predicted by the Bohr cold target �t for a lead beam at

this energy. The �rst dozen of these ionization cross sections are identical to the ones which

appear in table 7.1.

A key �le exists called `x.inp.key' which contains more information about the input

�le and it is found in the xinp directory. Please refer to this �le for any updates about the

code's operation.

C.2 zstop

The code zstop exists in a FORTRAN77 form called `zstop.f'. The compiled

version should be called zstop . Its associated input �le must be named `zstop.inp' and

must exist in a subdirectory called `zinp'.

A sample input �le and output analysis for this code are presented below. Its

input structure is very similar to that of the x code, but with some modi�cations to suite

the code's di�erent purpose. The following input �le provides the instructions necessary to

simulate the deposition of a 20MeV=u lead beam into a gold target of density 1g=cm3 at

300eV.
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82,208

-20.0D6

300.0, 1.0 1

79,197,1.0,27.4,1560.

0.01

The �rst line contains the atomic number and atomic mass number, Zp and Ap

respectively, of the projectile species. The second line contains the beam energy (with `D'

for exponential values signifying double-precision). The energy is negative, which means it

is interpreted as energy per atomic mass unit. The value is 20MeV=u in this case. Note that

no initial charge state is required to be speci�ed for the projectile species since the code

treats the incident ions as being in instantaneous equilibrium, which is calculated by the

code itself. The next line contains the target's temperature and density, respectively, which

are 300eV and 1:0g=cm3 in this case. The zstop code is an average atom code, so it treats

every atom or ion in the target as having the same properties. The following line, containing

1, tells the code that there is just one target atomic constituent. The following line gives

the properties of that one constituent. The �ve values on line 5 are target atomic number

and atomic mass number, fraction of that species in the target (being 1:0 if there is only

one target constituent), the average charge state of the target and the average ionization

potential of the target's remaining bound electrons. The values for this gold target are taken

from section 3.1.10. The last line contains the � tolerance value discussed in section 6.1.2.

A value of 0:01 = 1% was used here and throughout the calculations in this dissertation.

The output �le generated by zstop is called `zstop.out'. It contains data whose
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columns represent di�erent physical parameters of the problem and whose rows represent

values taken at each numerical step. The lines below contain a sample line from the data

output of the calculation generated by the input �le above.

Energy/amu Speed Charge -dE/dx -dE/dR Depth Range Time

MeV cm/s State MeV/cm MeV/mg/cm2 cm mg/cm2 sec

...

0.5009D+01 0.3097D+10 43 0.6844D+05 0.6844D+02 0.5001D-01 0.5001D+02 0.1071D-10

...

The full plot of the projectile's energy deposition rate as a function of the total

range of penetration into the target (column 5 vs. 7) appears in �gure 7.23. This line was

taken from a point at which the range of the lead projectile was about 50mg=cm2 (column

7). The energy at this point was about 5:0MeV=amu, as shown in column 1. The `Time'

column lists total deposition time of the beam into the target. At the point shown here,

the beam has been deposited for about 1 nanosecond (being the value 0:10710� 10�10 in

column 8).

C.3 zstopx

The operation of the zstopx code is very similar to that of the zstop code.

The primary di�erence is that the beam's charge state evolution is calculated from �rst

principles, from the individual ionization and capture reaction rates, and not from a simple

formula. The input �le necessary to run this code is called `zstopx.inp' and it must exist

in a subdirectory `zxinp'. Since this code calculates the actual charge state evolution of

the beam, the initial charge state of the beam must be provided in the input deck. An

sample use of the zstopx code is presented below. The input deck which would be used to
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simulate the deposition of a 20MeV=u lead beam into a carbon plasma of density 0:01g=cm3

at 300eV is as follows:

82,208

-20.0D6, 10

300.0, 0.01 1

6,12,1.0,5.9,1024.

0.01

This case was examined in section 7.3.2 and displayed in �gure 7.10. Notice that

the only structural di�erence between this input �le and the one required for the zstop

code is the second data point on line 2 for the beam's initial charge state. In this case the

value is 10. The charge state quickly changes from this initial state, and its value does not

a�ect the output of the code in this case.

The zstopx code generates an output �le called `zstopx.out'. A representative

output line from that �le, generated by the above input �le, is listed below. This particular

beam-target con�guration was examined in the body of the dissertation to establish that

an HIF driver beam's charge state during its penetration into a hohlraum target would be

equal to the equilibrium charge state at each point in the deposition. The sample output

line printed below was chosen at a point in the deposition when the beam's velocity was

near 2� 109cm=s (in column 2). The charge state of the beam is found in column 3. The

charge state of the incident lead beam at this point in the beam's deposition is calculated

to be 40.

Energy/amu Speed Charge -dE/dx -dE/dR Depth Range Time
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MeV cm/s State MeV/cm MeV/mg/cm2 cm mg/cm2 sec

...

0.2099D+01 0.2009D+10 40 0.2883D+04 0.2883D+03 0.1948D+01 0.1948D+02 0.4538D-09 ...

C.4 Listing of x.f code

The following is a listing of the x.f source code for the x cross section calculation

code.
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c 
c "x" x.f by MSA 2000
c This program calculates ionization and
c recombination cross sections in a beam penetrating a target
c Contact author at msarmel@lbl.gov or through
c advisor Prof. Per Peterson peterson@nuc.berkeley.edu
c or through the Dept. of Nuclear Eng. at UCBerkeley
c See MSA’s dissertation "Atomic Processes for Heavy Ion Inertial Fusion"
c for more info about code
c****************Variables and Inputs********

common zp,ap,ztarg,atarg,ibart,scr,ttargev,eb,nti,nmt,nenl,ng,lg,nmax,lmax,ntc,ipp,ipt

real *16 mp
real *16 scr(1:100,1:7,0:6),ttargev,nit,nmt,nfe,nti(1:10,0:100)
real *16 eb(1:100,1:7,0:6), ibart(1:100), ipp(0:100), ipt(1:10,0:100)
integer  zp,ap,ztarg(1:10),atarg(1:10),ntc
integer  nenl(1:100,1:7,0:6), ng(1:100), lg(1:100), nmax(1:100), lmax(1:100)

real *16 c,me,meev,amu,amev,pi,e,a0,alpha,hbar
parameter  (c=2.998D10, me=9.108D−28, meev=5.11D5, amu=1.66D−24)
parameter  (amev=931.502D6, pi=3.1415927, e=4.803D−10, a0=0.529D−8, alpha=7.3D−3, hbar=1.054D−27)

real *16 tp,tp0
real *16 rate1,rate2
real *16 tpev
real *16 ttarg,rho,eblow
real *16 v1,v0,v1fit,veth,vpc,vprel
real *16 mua,muz
real *16 ttargk
real *16 fs,nesum,bsaha,csaha,coefs,hold,gsaha
real *16 mpev,vp,ne
real *16 r0,tq
real *16 xp,tt
real *16 theta, again, alose
real *16 sigma(1:10)
real *16 ftarg(1:10),fqtarg(1:10,0:100)
real *16 ftsum

integer  ni,zmax
integer  qtarg(1:10)
integer  nl,tn,tl
integer  qp,zpp,zp0
integer  ztrk0, ztrk1, ztrk2
integer  printz,fch

cfffffffffff formats ffffffffffffffff
4 format (2I10)
5 format (D10.4,I10)
6 format (2D10.3)
7 format (2D10.3, I10)
9 format (2I10,D10.3)
10 format (2I10,D10.3,I10)
11 format (I10)
12 format (2I10,2D10.4)
13 format (D10.3)
14 format (I10,D10.3)
20 format (5D10.3)

ciiiiiiiiiiii−−Reading problem input data −−iiiiiiiiiiiiiiiiiiiii
open (8,file=" xinp/x.inp")

c −−−−−−−−−−−Projectile
read (8,4)zp,ap
read (8,5)tp,zp0

c −−−−−−−−−−−−−−Target
read (8,7)ttargev,rho,fch
read (8,11)ntc
ftsum = 0.
do  25 i=1,ntc

if  (fch.ge.3) then
read  (8,9)ztarg(i),atarg(i),ftarg(i)

else
read (8,10)ztarg(i),atarg(i),ftarg(i),qtarg(i)

endif
ftsum = ftsum + ftarg(i)
if  (fch.eq.2) then

do  24 ii=0,qtarg(i)
read (8,13)fqtarg(i,ii)

24 continue
endif
if  (fch.eq.1) read (8,13)sigma(i)

25 continue
close  (8,status=" keep")

c#######−−Conversions, initializations, and important variable set−ups−−##########
xp=0.
tt=0.
tq = 0.
theta = 0.
rate1 = 0.
rate2 = 0.
if  (zp.gt.ztarg(ntc)) then

zmax = zp
else

zmax = ztarg(ntc)
endif
do  34 i=1,100

do  33 n=1,7
do  32 l=0,n−1
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nenl(i,n,l)=0
32 continue
33 continue
34 continue

if  (tp.lt.0.0) tp= abs (tp*ap)
tp = tp*1.602D−12
tp0=tp
mpev=amev*ap
mp=ap*amu
ttarg=ttargev*1.602D−12
ttargk = ttargev*11605.
veth = sqrt (2.0*ttarg/me)
tpev = tp/1.602D−12
vpc = sqrt (2.0*tp/mp)
vprel = c* sqrt (1.0 − (1. + tpev/(ap*amev))**−2.0)
if  ((tpev/ap).gt.30.) then

vp = vprel
else

vp = vpc
endif
mua=0.
muz=0.
do  35 i=1,ntc

mua=mua + atarg(i)*ftarg(i)/ftsum
muz=muz + ztarg(i)*ftarg(i)/ftsum

35 continue
do  38 i=1,ntc

do  37 j=0,ztarg(i)
nti(i,j) = 0.

37 continue
38 continue

if  (rho.lt.0.0) then
nmt = abs (rho)
nit = ftsum*nmt
rho = nit*mua*amu

else
nit = rho/(mua*amu)
nmt = nit/ftsum

endif
ne=muz*nit
qp=zp0
alphtint=0.0
probz= exp (−1.0*alphtint)
r0=(3./(4.*pi*nit))**(1./3.)
v0 = c/137.
v1 = v0*(zp**0.6666)
v1fit = v0*(zp**0.6666)
ztrk0=−1
ztrk1=qp
ztrk2=qp
printz=0

cooooooooooo−− Open output files−−ooooooooooooooooooooooooooooooooo
open (18,file=" xmulti.out")
open (19,file=" x.out")
write (18,27)
write (18,28)

27 format (" Z Energy     Energy/amu Speed         Charge")
28 format (" [MeV]      [MeV] [cm/s]        State")

c### Print  Info###############
write (18,319)zp, tp/1.0D6/1.602D−12, tp/1.0D6/1.602D−12/ap, vp, qp

319 format (I3, " ",D10.4,"  ", D10.4," ", D10.4,"  ",I10)

c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%GLOBAL ATOMIC PHYSICS%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ciiiiiiiiiiiiiiii−−Reading electron structure, binding energies and screening constants−−iiiiiiiiiiiiiiiii
ciiiiiiiiiiiiiiiiiiii−−Also read  atomic radii and density profile−−iiiiiiiiiiiiiiiiiiiiiii

open (81,file=" estruct.dat")
c read in values for all species <= maximum Z

do  50 i=1,zmax
c −−−−−−−−−−−−−electronic structure

read (81,4)zpp,nl
eblow=1.D9
do  48 ii=1,nl

read (81,5081)tn,tl,nenl(i,tn,tl),eb(i,tn,tl),scr(i,tn,tl)
if  (eb(i,tn,tl).lt.eblow) then

ng(i)=tn
lg(i)=tl
eblow = eb(i,tn,tl)

endif
48 continue

nmax(i)=tn
lmax(i)=tl

50 continue
close (81,status=" keep")

5081 format (3I10,2G10.6)
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5

c Note: Even though I use scaling laws to determine inner binding energies for ionized
c species, I will still use pre−determined (outer electron) ionization potentials when
c possible (one may as well use real*16 values over scaled ones whenever possible).
c
ciiiiiiiiiiiiiiii−−Reading target  ionization potentials−−iiiiiiiiiiiiiiii

open (81,file=" ionpot.dat")
do  59 i=1,ntc

53 read (81,*)zpp
if  (−1*zpp.ne.ztarg(i)) goto  53
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zpp = −1*zpp
do  58 j=0,zpp−1

read (81,13)ipt(i,j)
ipt(i,j)=ipt(i,j)*1000.

58 continue
59 continue

close (81,status=" keep")

ciiiiiiiiiiiiiiii−−Reading projectile ionization potentials−−iiiiiiiiiiiiiiii
open (81,file=" ionpot.dat")

60 read (81,*)zpp
if  (−1*zpp.ne.zp) goto  60
zpp = −1*zpp
do  69 j=0,zpp−1

read (81,13)ipp(j)
ipp(j)=ipp(j)*1000.

69 continue
close (81,status=" keep")

ciiiiiiiiiiiiiiiiiiiiiii−−−Average target  ionization potentials−−iiiiiiiiiiiiiiiiiiiiii
open (81,file=" ibar.dat")
do  79 i=1,92

read (81,*)zpp
read (81,13)ibart(i)

79 continue
close (81,status=" keep")

c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%−−TARGET ATOMIC PHYSICS−−%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
c_________________Charge State distribution_________________
c___________________________Delta, Gaussian or Saha________________

nfe=0.
do  94 jj=1,ntc

if  (fch.eq.3) then
c −−−−−−−−−−−−−−−−−−−−−−−−Saha Equation−−−−−−−−−−−−−−−−−−

coefs = 2.*3.02D21*(ttargev**1.5)
c coefs = (1.305D26*ttarg)**1.5

nti(jj,0)=nit*ftarg(jj)/ftsum
nesum = 0.
do  86 ii=1,ztarg(jj)

fs = coefs* exp (−1.*ipt(jj,ii−1)/ttargev)
nesum = 0.
if  (ii.gt.1) then

do  85 ni = 1,ii−1
nesum = nesum + ni*nti(jj,ni)

85 continue
endif
bsaha = nesum + fs
csaha = fs*nti(jj,ii−1)
gsaha = 0.5*(−1.0 + sqrt (1. + 4.*csaha/(bsaha*bsaha)))

c _________________________ Must be careful with numerics ______________________
if  (gsaha.lt.1.) then

hold = nti(jj,ii−1)
nti(jj,ii−1) = hold*gsaha/(1. + gsaha)
nti(jj,ii) = hold − nti(jj,ii−1)

else
nti(jj,ii) = 0.5*bsaha*(−1.0 + sqrt (1. + 4.*csaha/(bsaha*bsaha)))
nti(jj,ii−1) = nti(jj,ii−1) − nti(jj,ii)

endif
86 continue

do  88 ii=0,ztarg(jj)
nfe=nfe+ii*nti(jj,ii)

88 continue
endif

c −−−−−−−−−−−−−−−−−−Average Atom−−−−−−−−−−−−−−−−−−−−−−−−−−
if  (fch.eq.0) then

nti(jj,qtarg(jj)) = nit*ftarg(jj)/ftsum
nfe = nfe + qtarg(jj)*nti(jj,qtarg(jj))

endif
c −−−−−−−−−−−−−−−−−−Gaussian−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

if  (fch.eq.1) then
do  90 ii=0,ztarg(jj)

nti(jj,ii)=(nit*(ftarg(jj)/ftsum)/(sigma(jj)* sqrt (2.*pi)))* exp ( −((1.*ii − qtarg
(jj)*1.)**2)/(2.*sigma(jj)*sigma(jj)) )

if  ( int ( abs (1.*ii − 1.*qtarg(jj))).gt.int(2*sigma(jj)) ) nti(jj,ii)=0.
nfe=nfe+ii*nti(jj,ii)

90 continue
endif

c −−−−−−−−−−−−−−−−−−−−−−−Manual−−−−−−−−−−−−−−−−−−−−−−−−−−−
if  (fch.eq.2) then

do  92 ii=0,qtarg(jj)
nti(jj,ii) = ftarg(jj)*nit*fqtarg(jj,ii)/ftsum
nfe = nfe + ii*nti(jj,ii)

92 continue
endif

94 continue

c **************************************************************************************************************
*     
c **************************************************************************************************************
*     
c This is the main calculation routine.
c **************************************************************************************************************
*
c **************************************************************************************************************
*     

c$$$ Call  charge routine$$$
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call  dcharge(qp,tp,again,alose)

c$$$$$$ Close  output files
close (18,status=" keep")
close (19,status=" keep")

6660 format (D10.4,"    ",D10.4,"     ",D10.4,"     ",D10.4,"    ",D10.4,"     ",D10.4,"     ")

c$$$$$$Go home
end

c *_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_  dpz/dt  *_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*
c Calculating dpz, the change in the charge state probablilty
c%%%%%%%%%%%%%%%%%%%%%%%%%%%

subroutine  dcharge (qps,tps,again,alose)
common zp,ap,ztarg,atarg,ibart,scr,ttargev,eb,nti,nmt,nenl,ng,lg,nmax,lmax,ntc,ipp,ipt

real *16 mp
real *16 scr(1:100,1:7,0:6),ttargev,nit,nfe,nti(1:10,0:100),nmt
real *16 eb(1:100,1:7,0:6), ibart(1:100), ipp(0:100), ipt(1:10,0:100)
integer  zp,ap,ztarg(1:10),atarg(1:10),ntc
integer  nenl(1:100,1:7,0:6), ng(1:100), lg(1:100), nmax(1:100), lmax(1:100)

real *16 c,me,meev,amu,amev,pi,e,a0,alpha,hbar
parameter  (c=2.998D10, me=9.108D−28, meev=5.11D5, amu=1.66D−24)
parameter  (amev=931.502D6, pi=3.1415927, e=4.803D−10, a0=0.529D−8, alpha=7.3D−3, hbar=1.054D−27)

real *16 tps,tpev,ntis,snuc
real *16 adom,rnl(0:100), ziont2, bnl(0:100)
real *16 re,gamma,beta,vpc,vprel
real *16 vp,ttarg,veth,vr,v0,h,hbev,r0,prhonl
real *16 alose,ibnlev,ibnl,zeft
real *16 av,bv,v,cv,gvgryz,gvggv
real *16 gv1,gv2,gv3,gv4
real *16 fnl,vnl,zeffnl
real *16 sfe,sdr,srec
real *16 snl,snlbethe,snlbohr,snlgryz
real *16 cbohr, bohrsum, fvbethe
real *16 vbohr, arect, srect
real *16 qenc, bmin, ecoul, gvlotz
real *16 snllotz
real *16 bete,gamme
real *16 rright,rleft,fmin
real *16 er,erev,step,ev
real *16 arec,aa,g1,ebind,hn,srn,sc,coef
real *16 eta,arec2,kappa,srec2
real *16 a3br,s3br
real *16 act,sct,ekev,ekit,ekfp,heta,ep,vi
real *16 eika,eikb,eikc,aeik,ct1,ct2,scti
real *16 enl,ipc
real *16 adr,coe,ipi,ipj,s,t,fst,ipv
real *16 fij1,fji1,fvi1,fiv1
real *16 gx,glp,gd,gn0,gl,aa1,ar1,aa1jive,aa1vije,ar1vi
real *16 adrnlij,aav
real *16 ei,ej,ek,en
real *16 again, bminmax, atot, anuc
real *16 zef,zefm, zbart
real *16 ibar,scsum,scavg,coef2,bmax,bmaxmax
real *16 snlggv
real *16 prob(0:100), probnot
real *16 sigion, sigrec, sigmult(1:100)
real *16 ptot, sigtot
real *16 aionmax, sionmax, ra
real *16 flow, fyes, dsig, hold
real *16 probsum,impactsum
real *16 sct2,act2

integer  zmockp,zmockt,qloop,qtargs
integer  qps,ztargs,atargs,tcis
integer  jj,n,ngp,nv,glj,gnj,nmaxp,lgp
integer  ljavg,nlj
integer  nc,ni,lc,li,lv,nnl
integer  nj,nnli,nep,nsum,njsum
integer  llow,nval, forder
integer  iq, q
integer  nin,ntn,nout

nit = 0.
nfe = 0.
do  28 i = 1,ntc

do  25 ii = 0,ztarg(i)
nfe = nfe + ii*nti(i,ii)
nit = nit + nti(i,ii)

25 continue
28 continue

v0=c/137.D0
h=4.13570D−15*1.602D−12
hbev=6.58217D−16
r0=(3.D0/(4.D0*pi*nit))**(1.D0/3.D0)
re = e*e/(me*c*c)

mp = ap*amu
ttarg=ttargev*1.602D−12

9 tpev = tps/1.602D−12
vpc = sqrt (2.0*tps/mp)
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vprel = c* sqrt (1.0 − (1. + tpev/(ap*amev))**−2.0)
vp = vpc/( exp ((tps−mp*c*c)/(0.1*mp*c*c)) + 1.) + vprel/( exp ((mp*c*c−tps)/(0.1*mp*c*c)) + 1.)
if  ((tpev/ap).gt.30.) then

vp = vprel
beta = vp/c
gamma = (1. − beta*beta)**(−0.5)
ek = (gamma−1.)*me*c*c

else
vp = vpc
beta = vp/c
gamma = 1.
ek = 0.5*me*vp*vp

endif
ekev=6.242D11*ek
veth = sqrt (2.*ttarg/me)
vr= sqrt (vp*vp + veth*veth)
er = 0.5*me*vr*vr
erev = er*6.242D11

if  (qps.lt.0) then
qloop = 1
qps = 0

endif

10 nep = zp−qps
zmockp=zp−qps

c000000000000000Initialize0000000000000000000
adom = 0.
arect=0.
anuc = 0.
afe = 0.
alose = 0.
arec = 0.
arec2 = 0.
a3br = 0.
act = 0.
adr = 0.
again = 0.
act2 = 0.
sfe = 0.
srec=0.
srec2 = 0.
s3br=0.
sct=0.
sct2 = 0.
sdr=0.
snuc = 0.
aionmax = 0.
do  53 i=0,nep

rnl(i) = 0.
bnl(i) = 0.
prob(i) = 0.

53 continue

if  (zmockp.eq.0) then
ibar = 0.
nmaxp = 0
bmax = 0.
goto  60

endif
ngp = ng(zmockp)
lgp = lg(zmockp)
nmaxp = nmax(zmockp)

c ========Get Ibar for projectile===============
ibar = ibart(zmockp)
scsum = 0.
nsum = 0
do  55 n=1,nmax(zmockp)

do  54 l=0,n−1
scsum = scsum + nenl(zmockp,n,l)*scr(zmockp,n,l)
nsum = nsum + nenl(zmockp,n,l)

54 continue
55 continue

scavg = scsum/nsum
c −−−−−−−−−−−Final form−−−−−−−−−−−

coef2 = ( (1.*zp − scavg)/(1.*zmockp − scavg) )**2.0
ibar=1.602D−12*ibar*coef2
bmax = vp*hbar/ibar

c ******************************Loop for each target constituent*****************
60 do  699 tcis=1,ntc

ztargs=ztarg(tcis)
atargs=atarg(tcis)

c −−−−−−−−−−−−−−−−−−−−−−−−Ionization by Target Nuclear Charge and Bound electrons−−−−−−−−−−−−−−−−
100 if  (qps.eq.zp) goto  351
c vvvvvvvvvvvvvvvvvvvvvvvvFor each target charge statevvvvvvvvvvvvvvvvvvvvvvv

do  190 jj=0,ztargs
qtargs=jj
if  (nti(tcis,jj).eq.0) goto  190
zmockt = ztargs−jj

c −−−−−−−−−−−Target effective ionization potential−−−−−−−−−
c ...get avg screening constant...

scavgt = 0.
do  120 ni=1,nmax(zmockt)

do  110 li=0,nmax(zmockt)−1
scavgt = scavgt + nenl(zmockt,ni,li)*scr(zmockt,ni,li)

110 continue
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120 continue
scavgt = scavgt/zmockt
coef = ((1.*ztargs − scavgt)/(1.*zmockt − scavgt))**2.0
ibartjj = ibart(zmockt)*coef

c vvvvvvvvvvvvvvvvvvvvvvvFor each projectile electron/shellvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
bminmax = 0.
bmaxmax = 0.
ei = 0
nout = nep
do  180 n=1,nmaxp

c −−−−−−−−−−−Radius of n−shell−−−−
nin = nep − nout
ntn = 0
do  122 l=0,n−1

ntn = ntn + nenl(zmockp,n,l)
122 continue

nout = nout − ntn
ra = n*n*a0/(zp*1. − 0.9*nin − 0.264*ntn − 0.1*nout)
if  (ra.gt.1.5D−8) ra = 1.5D−8

c write(18,19)n*1.,ra

do  170 l=0,n−1
if  (nenl(zmockp,n,l).eq.0) goto  170
sc = scr(zmockp,n,l)
zeffnl = zp*1. − sc

c −−−−−−−−Alternative radius−−−−−−
c ra = n*n*a0/zeffnl

vbohr  = zeffnl*alpha/n
c −−−−−−−−−−−−−Scaled nl’s binding energy

coef = (zeffnl/(1.*zmockp − sc))**2.0
ibnlev = eb(zmockp,n,l)*coef

c if ((n.eq.ngp).and.(l.eq.lgp)) ibnlev = ipp(qps)
ibnl = ibnlev*1.602D−12

c −−−−−−−−−nl’s velocity −−−−−−−−−−
gamme = 1. + ibnlev/5.11D5
if  ((ibnlev/5.11D5).lt.1.0D−2) then

vnl = (2.*ibnl/me)**0.5
bete = vnl/c

else
bete = (1. + gamme**−2.)**0.5
vnl = bete*c

endif
c ++++++++++++++++++++++++Velocity ratio++++++++++++++++++

v = vp*n/(c*alpha*zeffnl)
c !!!!!!!!!!!!!!!K−shell correction for nuclear enhancement!!!!!!
c if (n.eq.1) v = vp*n/(c*alpha*(zeffnl + 0.5*qtargs))

c −−−−−−−−−−−−−−−−−−−−−Calculate zeft−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
if  (jj.eq.ztargs) then

zeft = ztargs*1.
bmin = zeft*e*e/ibnl
bminmax = bmin
goto  128

endif
if  ((jj*e*e/r0).gt.ibnl) goto  170
rright=r0
rleft = a0/1.0D6

125 bmin = 0.5*(rright+rleft)
call  qsubr(ztargs,jj,bmin,qenc)
zeft = 1.*ztargs − qenc
ecoul = zeft*e*e/bmin
fmin = ecoul − ibnl
if  ( abs (fmin/ecoul).gt.0.01) then

if  (fmin.gt.0.) then
rleft = bmin
goto  125

else
rright = bmin
goto  125

endif
endif

128 ziont2 = zeft**2. + 1.*(ztargs − jj)

c −−−−−−−−Calculate individual ionization cross sections from a variety of methods
−−−−−−−−−−−−−−
c −−−−−−−−Bethe−−−−−−−−−−−−−−−−−−−−−−

if  (n.gt.1) then
fnl = 0.28/((n*1.)**0.415) − (l*1./(n*1.−1.))*(0.28/((n*1.)**0.4

15) − 0.28/((n*1.)**1.11))
else

fnl = 0.28
endif
fvbethe = fnl* log (4.*v*v)/(v*v)
if  (fvbethe.lt.0.) fvbethe = 0.
snlbethe = (6.50D−14)*ziont2*fvbethe/(ibnlev**2.)

c −−−−−−−−−−Bohr−−−−−−−−−−−−−−−−−−−−−
cbohr =  4.*pi*((a0*alpha/beta)**2.)
if  ( (13.6/ibnlev) .lt. (1./(2.*5.11D5*beta*beta)) ) then

bohrsum = 0.
else

bohrsum = (13.6/ibnlev − 1./(2.*5.11D5*beta*beta) )
endif
snlbohr = cbohr*ziont2*bohrsum
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c −−−−−−−−−−−−GGV BEM−−−−−−−−−−−−−−−−−−−−−−−
c ============GGV (Vriens,Armel) Velocity Dependence=======

av = 1./(1. + v*v)
cv = 0.75*v
bv = 1./(1. + cv*cv)
gv1 = 35./6. + 35* atan (cv)/(3.*pi) + (128./(9.*pi))*((v*bv)**3. −bv**1.5

) + (cv*bv/(3.*pi))*(35. − 58.*bv/3. − 8.*bv*bv/3.)
gv2 = (2./(3.*pi))*v*av*bv*((5.−4.*v*v)*(3.*av*av + 1.5*av*bv+bv*bv) − c

v*v*(15./2. + 9.*av + 5.*bv))
gv3 = (16./pi)*v*(av**4.)* log (4.*v*v+1.)
gv4 = v*v*av*(1. + (2./pi)* atan (cv))*(5./2. + 3.*av + 4.*av*av + 8.*av*a

v*av)
if  (v.ge.1.) then

gvggv = (1./(4.*v*v))*(gv1 + gv2 − gv3 − gv4)
else

c =====================================
gvggv = 0.696/( exp ((0.585−v)/0.096) + 1.)

c ==============My fit=================
endif
snlggv = (6.50D−14)*ziont2*gvggv/(ibnlev**2.)

c −−−−−−−−Gryzinski BEM−−−−−−−−−−−−−−−−−−−−−−−−−−−
av = v*v/(1. + v*v)
bv = 1./(4.*v*(1. + v))
if  (v.ge.0.206) then

gvgryz = (av**1.5)*(av + (2./3.)*(1.+bv)* log (2.7 + v))*(1.−bv)*(
1.− bv**(1.+v*v))/(v*v)

else
gvgryz = (4.*v**4.)/15.

endif
c ################################

if  (v.gt.7.6) gvgryz = 0.615* log (v*v)/(v*v)
c #############################

snlgryz = (6.50D−14)*ziont2*gvgryz/(ibnlev**2.)

c ================Final Choice======================
snl = snlgryz

c ==================================================

c %%%%%%%%%%%%%%%%%%%Adjustment for indirect ionization%%%%%%%%%%%%%%%
c if ( ((tpev/ap).gt.1.D6).and.(nit.le.1.D17).and.(qps.gt.1) ) snl = snl*1
.4

c −)−)−)−)−)−)−)−)−)−)−)−)−)−)−)−)−)−)−)−)−)−)−)−)−)−)−)−)−)−)−)−)−)−)−)−)−)−)−)
snuc = snuc + nenl(zmockp,n,l)*snl*nti(tcis,jj)/nmt
asnl = nenl(zmockp,n,l)*snl*nti(tcis,jj)*vp
if  (asnl.gt.aionmax) aionmax = asnl

c write(18,19)tcis*1.,ztargs*1.,nti(tcis,jj)/nmt,snl,n*1.,l*1.,ziont2,v,bm
in,gvgryz,ibnlev,vp
c write(18,19)qps*1.,n*1.,l*1.,vp,v,ibnlev,sc,zeffnl,coef

anuc = anuc + asnl

do  165 i=1,nenl(zmockp,n,l)
ei = ei + 1
rnl(ei) = ra
bnl(ei) = 1.4*ra
prob(ei) = snl/(pi*bnl(ei)*bnl(ei))

c write(18,19)ei*1.,prob(ei),snl,(pi*rnl(ei)*rnl(ei)),ra,bnl(ei),v
165 continue
170 continue
180 continue
c ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
190 continue

c−−−−−−−−−−Radiative Electron Capture 2 −− from target  bound electrons−−−−−−−−−−−−−−
351 if  (qps.eq.0) goto  500

ntis = 0.
zbart = 0.
do  353 iq = 0,ztarg(tcis)

zbart = zbart + (ztargs − iq)*nti(tcis,iq)
ntis = ntis + nti(tcis,iq)

353 continue
zbart = zbart/ntis

c ~~~~~~~~~~~~Find possible landing sites in ‘n’ shell~~~~~~~~~~~~~~~~~~~
do  390 n=1,10

nnl = 0
if  ((n.le.nmaxp) .or. (n.eq.1)) then

do  355 l=0,n−1
if  (zmockp.gt.0) nnl = nnl + nenl(zmockp,n,l)

355 continue
c −−−−−−−−Is it full?−−−−−−−−−>

if  (nnl.eq.2*n*n) goto  390
ebind = ipp(qps−1)

else
ebind = 13.6*qps*qps/(n*n)

endif
eta = erev/ebind
kappa = eta**−0.5

c *************
srn=zbart*9165.*(1.D−24)*((kappa**3. / (1. + kappa*kappa))**2.)* exp (−4.*kappa* atan (1./ka

ppa)) / (1. − exp (−2.*pi*kappa))
c ****************
c pppppppppppp Density correction pppppppppppppp

prhonl=(1.0 + 5.0D−18*(ztargs**2.0)*nit*(n**5.0)/((qps**6.0)*beta*137.0))**−1.0
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prhonl = 1.
c pppppppppppppppppppppppppppppppppppppppppppp

arec2 = arec2 + prhonl*( 1. − 1.*nnl/(2*n*n) )*srn*vr*ntis
srec2 = srec2 + prhonl*( 1. − 1.*nnl/(2*n*n) )*srn

390 continue

c−−−−−−−−−−−Charge Transfer  by eikonal OBK−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
500 if  (qps.eq.0) goto  1001

do  580 jj=0,ztargs−1
if  (nti(tcis,jj).eq.0) goto  580
scti = 0.
zmockt = ztargs − jj

c iiiiiiiiiiiiiiiiii Initial electron shell in target iiiiiiiiiiiiii
do  560 ni=1,nmax(zmockt)

do  550 li=0,ni−1
if  (nenl(zmockt,ni,li).eq.0) goto  550

c ######Scale initial electron binding energy
sc = scr(zmockt,ni,li)
zef = 1.*ztargs − sc
zefm = 1.*zmockt − sc
coef = (zef/zefm)**2.0
ekit = eb(zmockt,ni,li)*coef

c vvvvvvvvvvvvvvvvvvvvvvvv final shell n vvvvvvvvvvvvvvvvvvvvvvvvvvvvv
do  540 n=1,30

nnl = 0
if  (n.le.nmaxp) then

do  505 l=0,n−1
if  (zmockp.gt.0) nnl = nnl + nenl(zmockp,n,l)

505 continue
endif
if  (nnl.eq.2*n*n) goto  540
if  (nnl.gt.0) then

ebind = ipp(qps−1)
else

ebind = 13.6*qps*qps/(1.*n*n)
endif
ekfp=ebind
heta=alpha/beta
ep=(ekfp−ekit)/13.6
vi= sqrt (ekit/13.6)
eika=pi*heta*vi/sinh(pi*heta*vi)
eikb=−2.*heta*vi* atan ((0.5*vp−ep*heta)/vi)
eikc=(23./48. + (vi*vi/6.+5.*ep/6.)*heta*heta + 5.*ep*ep*(heta**

4.)/12.)
aeik=eika* exp (eikb)*eikc
ct1=((qps*e*e*6.242D11)**0.4)*(ekit**0.5)*(ekfp**0.3)*(ekev**0.8

)
ct2=(ekev*ekev + 2.0*ekev*(ekit+ekfp) + (ekit−ekfp)**2.0)

c −−−−−−pppppppppppdensity correctionppppppppppppp−−−−−−−−−−
c prhonl=(1. + 5.0D−18*(ztargs**2.)*nit*(n**5.)/((zp**6.0)*beta/al
pha))**−1.0

prhonl = 1.
c ************************

snl = prhonl*(1. − 1.*nnl/(2.*n*n))*4.1D4*nenl(zmockt,ni,li)*aei
k*(ct1/ct2)**5.0

if  (snl.lt.1.0D−40) snl = 0.
c write(18,19)qps*1.,ni*1.,li*1.,n*1.,snl,ct1,ct2,aeik,ekit,1.
c write(18,19)prhonl,aeik,nit
c **********************

scti = scti + snl
540 continue
550 continue
560 continue

act=act+nti(tcis,jj)*scti*vp
580 continue

if  (act.gt.adom) adom = act

c−−−−−−−−−−−Charge Transfer2 (Projectile −> Target )−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1001 if  (qps.eq.zp) goto  699

do  1080 jj=1,ztargs
if  (nti(tcis,jj).eq.0) goto  1080
sct2i = 0.
zmockt = ztargs − jj
if  (zmockt.eq.0) then

nmaxt = 0
else

nmaxt = nmax(zmockt)
endif

c iiiiiiiiiiiiiiiiii Initial electron shell in projectile iiiiiiiiiiiiii
do  1060 ni=1,nmaxp

do  1050 li=0,ni−1
if  (nenl(zmockp,ni,li).eq.0) goto  1050

c ######Scale initial electron binding energy
sc = scr(zmockp,ni,li)
zef = 1.*qps − sc
zefm = 1.*zmockp − sc
coef = (zef/zefm)**2.0
ekit = eb(zmockp,ni,li)*coef

c vvvvvvvvvvvvvvvvvvvvvvvv final shell n in targetvvvvvvvvvvvvvvvvvvvvvvvv
vvvvv

do  1040 n=1,30
nnl = 0
if  (n.le.nmaxt) then

do  1005 l=0,n−1
if  (zmockt.gt.0) nnl = nnl + nenl(zmockt,n,l)

1005 continue
endif
if  (nnl.eq.2*n*n) goto  1040
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if  (nnl.gt.0) then
ebind = ipt(tcis,ztargs−1)

else
ebind = 13.6*ztargs*ztargs/(n*n)

endif
ekfp=ebind
heta=alpha/beta
ep=(ekfp−ekit)/13.6
vi= sqrt (ekit/13.6)
eika=pi*heta*vi/sinh(pi*heta*vi)
eikb=−2*(heta*vi* atan ((0.5*vp−ep*heta)/vi))
eikc=(23./48. + (vi*vi/6.+5.*ep/6.)*heta*heta + 5.*ep*ep*(heta**

4.)/12.)
aeik=eika* exp (eikb)*eikc
ct1=((ztargs*e*e*6.242D11)**0.4)*(ekit**0.5)*(ekfp**0.3)*(ekev**

0.8)
ct2=(ekev*ekev + 2.0*ekev*(ekit+ekfp) + (ekit−ekfp)**2.0)

c −−−−−−pppppppppppdensity correctionppppppppppppp−−−−−−−−−−
c prhonl=(1. + 5.0D−18*(ztargs**2.)*nit*(n**5.)/((zp**6.0)*beta/al
pha))**−1.0

prhonl = 1.
c ************************

snl = prhonl*(1. − 1.*nnl/(2.*n*n))*4.1D4*nenl(zmockp,ni,li)*aei
k*(ct1/ct2)**5.0

if  (snl.lt.1.0D−40) snl = 0.
c write(18,19)qps*1.,ni*1.,li*1.,n*1.,snl,ct1,ct2,aeik,ekit,ekfp,e
kev,2.
c write(18,19)eikb,heta,vi,ekfp,ekit,atan((0.5*vp−ep*heta)/vi),−2*
heta
c write(18,19)snl,eikb
c **********************

sct2i = sct2i + snl
1040 continue
1050 continue
1060 continue

act2 = act2 + nti(tcis,jj)*sct2i*vp
1080 continue

if  (act2.gt.adom) adom = act2
sct2 = act2/(nmt*vp)

c*******************************************
699 continue
c*****************************

c−−−−−−−−−Free Electron Collision Ionization−−−−−−−−
200 if  (qps.eq.zp) goto  300

if  (nfe.eq.0.) goto  300
er = 0.5*me*(vr*vr)
erev = er*6.242D11

c xxxxxxxxxxxxx For each projectile electron nl xxxxxxxxxxxxxxxxxxxxx
ei = 0
do  250 n=1,nmaxp

do  230 l=0,n−1
if  (nenl(zmockp,n,l).eq.0) goto  230

c ######Scale binding energy
sc = scr(zmockp,n,l)
zef = 1.*zp − sc
zefm = 1.*zmockp − sc
coef = (zef/zefm)**2.0
ibnlev = eb(zmockp,n,l)*coef
ibnl = ibnlev*1.602D−12
if  ((n.eq.ngp) .and. (l.eq.lgp)) ibnlev = ipp(qps)
zeffnl = zp*1. − scr(zmockp,n,l)
step=( abs (erev−ibnlev) + (erev−ibnlev))/(2.0*(erev−ibnlev))

c −−−−−−nl’s scaled orbital radius−−−−−−
ra = (n**2.)*a0/zeffnl

if  ((vp*hbar/ibnl).gt.bmaxmax) bmaxmax = vp*hbar/ibnl
c −−−−−−−−−nl’s velocity −−−−−−−−−−

gamme = 1. + ibnlev/5.11D5
if  ((ibnlev/5.11D5).lt.1.0D−2) then

vnl = (2.*ibnl/me)**0.5
bete = vnl/c

else
bete = (1. + gamme**−2.)**0.5
vnl = bete*c

endif

c write(19,19)n*1.,l*1.,vnl,c*(1. + gamme**−2.)**0.5,(2.*ibnl/me)**0.5,zeffnl*alpha*c/n,ib
nlev/5.11D5

c ###################Velocity Ratio#######################3
v = sqrt (vp*vp + veth**2.)*n/(c*alpha*zeffnl)

c v=1.
c228 v = v + 0.01
c −−−−−−−−−−−−Lotz−−−−−−−−−−−−−−−−−−−−−−−−−−−−

if  (v.lt.(1.0)) then
gvlotz = 0.

else
gvlotz = 0.615* log (v*v)/(v*v)

endif
snllotz = 6.50D−14*step*gvlotz/ibnlev**2.

c #−−−−−−−−−−−−−−−−−−Make Final Choice−−−−−−−−−−−−−−−−−−−#
c −−−−−−These are the semi−empirical adjustments discussed in Dissertation
229 if  ((v.lt.1.3) .and. (qps.gt.0)) snl = 10.*snllotz

if  ((v.ge.1.3) .and. (v.lt.2.0) .and. (qps.gt.0)) snl = 2.*snllotz
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if  ((v.ge.2.0) .and. (qps.gt.0)) snl = snllotz
if  (qps.eq.0) snl = snllotz

c2295 goto  228
c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

sfe = sfe + nenl(zmockp,n,l)*snl
asnl = nenl(zmockp,n,l)*snl*nfe*vr
if  (asnl.gt.aionmax) aionmax = asnl

do  225 i=1,nenl(zmockp,n,l)
ei = ei + 1
prob(ei) = prob(ei) + (nfe/nit)*snl/(pi*bnl(ei)*bnl(ei))

225 continue

afe = afe + asnl
230 continue
250 continue

c−−−−−−−−−−Free Electron Radiative Electron Capture−−−−−−−−−−−−−−
300 if  (qps.eq.0) goto  399

if  (nfe.eq.0.) goto  399
aa=2.11D−22
g1=1.1
er = 0.5*me*vr*vr
erev = er*6.242D11

c ~~~~~~~~~~~~Find possible landing sites in ‘n’ shell~~~~~~~~~~~~~~~~~~~
do  350 n=1,10

nnl = 0
if  (n.le.nmaxp) then

do  305 l=0,n−1
if  (zmockp.gt.0) nnl = nnl + nenl(zmockp,n,l)

305 continue
c −−−−−−−−Is it full?−−−−−−−−−>

if  ((nnl.eq.2*n*n) .or. (n.eq.1)) goto  350
ebind = ipp(qps−1)

else
ebind = 13.6*qps*qps/(n*n)

endif
hn = erev + ebind

c *************
srn=aa*ebind*ebind*g1*n/(erev*hn)

c write(18,19)qps*1.,n*1.,l*1.,ebind,srn
c ****************
c pppppppppppp Density correction pppppppppppppp

prhonl=(1. + 5.D−18*(ztargs**2.)*nit*(n**5.)/((zp**6.)*beta/alpha))**−1.
prhonl = 1.

c pppppppppppppppppppppppppppppppppppppppppppp
arec = arec + prhonl*( 1. − 1.*nnl/(2*n*n) )*srn*vr*nfe
srec = srec + prhonl*( 1. − 1.*nnl/(2*n*n) )*srn

350 continue

c−−−−−−−−−−Combine REC rates
399 arect = arec + arec2

srect = srec + srec2
if  (arect.gt.adom) adom = arect

c−−−−−−−−−−−Three Body Recombination−−−−−−−−−−−−−−−−−−−−−
400 if  (qps.eq.0) goto  600

if  (nfe.eq.0.) goto  600
a3br=a3br + (nfe*(qps**3.0)) * (4.048D−4*(vr/v0))**9.0
s3br = a3br/(nfe*vr)
if  (a3br.gt.adom) adom = a3br

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Dielectronic Recombination−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−
c −−−− Incoming free electron lands in shell n, transferring some of its energy to an
c      electron bound in shell i which bumps to shell j −−−
600 if  (nfe.eq.0) goto  700

if  (qps.eq.0) goto  700
if  (qps.eq.zp) goto  700
coe=nfe*((1.304D26*ttarg)**−1.5)

c vvvvvvvvvvvvvvvvvvv nc loop Captured electron shell# vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
do  690 nc=nmaxp+1,50

c vvvvvvvvvvvvvvvvvvvvvvvv lc loop vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
lcavg = 0
do  610 lc=0,nc−1

glc = 2*(2*lc + 1)
lcavg = lcavg + glc*lcavg

610 continue
lcavg = int (lcavg/(2*nc*nc))

c )))) energy of electron captured ((((
ipc=13.598*qps*qps/(nc*nc)
en = −1.*ipc

c vvvvvvvvvvvvvvvvvvvvvv Inner electron to receive excess energy − i loop vvvvvvvvvvvvvvvvv
do  670 ni=1,nmaxp

c vvvvvvvvvvvvvvvvvvv li loop to get average li and energy vvvvvvvvvvvvvvvvvvvvvvv
do  660 li = 0,ni−1

nnli = nenl(zmockp,ni,li)
c −−−−−−−−−>>

if  (nnli.eq.0) goto  660
c ..........Determine i electron energy using screening....

sc = scr(zmockp,ni,li)
zef = 1.*zp − sc
zefm = 1.*zmockp − sc
coef = (zef/zefm)**2.0
ipi = eb(zmockp,ni,li)*coef
if  ((ni.eq.ngp) .and. (li.eq.lgp)) ipi = ipp(qps)
ei = −ipi
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c vvvvvvvvvvvvvvvvvvvvvv Landing site of recipient electron − nj loop vvvvvvvvvvvv
vvvvvvvvvvvvvvvv

do  650 nj=ni+1,20
ljavg = 0
njsum = 0
gnj = 2*nj*nj
do  645 lj = 0,nj−1

glj = 2*(2*lj+1)
if  (nj.le.nmaxp) then

nlj = nenl(zmockp,nj,lj)
else

nlj = 0
endif
njsum = njsum + nlj
ljavg = ljavg + lj*(glj − nlj)

645 continue
if  (njsum.eq.gnj) goto  650
ljavg = int (ljavg/(gnj − njsum))
if  (nj.le.nmaxp) then

c −−−Find lowest populated l level and use its energy−−−−
llow = nj−1

620 if  (nenl(zmockp,nj,llow).eq.0) then
llow = llow−1
if  (llow.gt.0) goto  620

endif
sc = scr(zmockp,nj,llow)
enl = eb(zmockp,nj,llow)
zef = 1.*zp − sc + 0.8
zefm = 1.*zmockp − sc
coef = (zef/zefm)**2.0
ebind = enl*coef
if  ((nj.eq.ngp) .and. (llow.eq.lgp)) ebind = ipp(qps−1)*((zp*1. − 

sc + 0.8)/(zp*1. − sc))**2.
if  (eb(zmockp,ni,li).le.eb(zmockp,nj,llow)) goto  650

else
ebind = 13.6*qps*qps/(nj*nj)

endif
ipj = ebind
ej = −1.*ipj

c ........Prevent imaginary radical................
if  ((ej−ei+en).lt.0.) goto  650
if  (ipi.lt.ipj) goto  650

c ))))))) function resonance f ((((((((((((
s=((ej−ei+en)/ttargev)**0.5
t=(0.5*me*vp*vp/ttarg)**0.5
fst = exp (−1.*((s−t)**2.))/(4.*s*t) − exp (−1.*((s+t)**2.))/(4.*s*t)
if  (fst.lt.1.D−40) then

fst=0.
goto  650

endif
c −−−−−−−−−−−−−− oscilator strength −−−−−−−−−−−−−

fij1 = 1.96*(nj**3.)*ni*(nj**2. − ni**2.)**−3.
fji1 = 1.96*(ni**3.)*nj*(nj**2. − ni**2.)**−3.

c −−−−−−−−−−−−−−−−−−Gaunt Factor−−−−−−−−
gl = 0.2/(2*nc*nc)

c ######!!!!!!!!!Auto−Ionization and Radiative Decay rates!!!!!!################
aa1=fij1*(8./ sqrt (3.))*(13.6/hbev)*(nc**−3.)*(qps*qps*13.6/(ipi−ipj))/(2

*lcavg+1)
ar1=fji1*(13.6/hbev)*(137.**−3.0)* ( ((ipj−ipi)/13.6)**2. )

c ################These are additional processes which may detract from true proce
ss##########

aav = 0.
aa1jive=0.
aa1vije=0.
ar1vi=0.
nv = ngp
lv = lgp
nval = nenl(zmockp,nv,lv)
if  (nval.eq.0) goto  640

c −−−−−−−−−−Find new valence energy−−−−−−−−−−−
ipv = ipp(qps)*((zp*1. − sc + 0.8)/(zp*1. − sc))**2.
ev = −1.*ipv

c −−−−−>
if  (ipv.ge.ipi) goto  640
if  (nv.le.ni) goto  640

c ################j electron goes to i, valence electron bails############
###
c −−−−−−−−−−−−Gaunt−−−−−−−−

gx=ek/ipv
glp=(nv**0.66666)/( sqrt (1. + gx))
gd=sqrt (1. + gx)/(2.5*nv)
gn0=(0.4/ sqrt (pi)) * sqrt (gd)/(2. − exp (−0.6/( sqrt (gd)*(nv**1.33333) )))
gl=gn0* exp (−1.*gd*(1.*lv−glp)**2.)
aa1jive = nval*fij1*gl*(8./ sqrt (3.0))*(13.6/hbev)*(nv**−3.)*(qps*qps*13.

6/(ipi−ipj))/(2*lcavg+1)
c −−−−−−−Oscillator Strngths−−−−−

fiv1 = 1.96*(nv**3.)*ni*(nv**2. − ni**2.)**−3.
fvi1 = 1.96*(ni**3.)*nv*(nv**2. − ni**2.)**−3.

c #############valence electron goes to i, j electron bails##############
gl = 0.2
aa1vije = fiv1*gl*(8./ sqrt (3.0))*(13.6/hbev)*(nj**−3.)*(qps*qps*13.6/(ip

i−ipv))/(2*ljavg+1)
c ################j, n electrons remain, valence returns to i, photon rele
ased############

ar1vi = fvi1*(13.6/hbev)*(137.0**−3.0)*( ((ipi−ipv)/(13.6))**2.0 )
c ################Total#############
640 aav = aav + (aa1jive + aa1vije + ar1vi)
c pppppppppppppppDensity suppression factorppppppppppppppp
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prhonl=1.0
c prhonl=prhonl*(1. + 5.D−18*jj*jj*nit*lcavg*lcavg*(nc**5.0)/((qps**6.0)*v
p*137.0/c))**−1.
c prhonl=prhonl*(1. + 5.D−18*jj*jj*nit*ljavg*ljavg*(nj**5.0)/((qps**6.0)*v
p*137.0/c))**−1.
c !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Final Expression!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!
c **********************************

adrnlij = prhonl*coe*nnli*((gnj−njsum)/(1.*gnj))*(2*lcavg+1)*fst*ar1*aa1
/(ar1 + aa1 + aav)

adr = adr + adrnlij
c write(18,19)qps*1.,nc*1.,ni*1.,nj*1.,adrnlij,en,ei,ej,ev,ar1,aa1,aav,aa1
vije,aa1jive,ar1vi,fst
c write(18,19)qps*1.,nc*1.,ni*1.,nj*1.,nv*1.,aav,ar1*aa1/(ar1 + aa1),ar1*a
a1/(ar1 + aa1 + aav)
c write(18,19)13.6/(ipi−ipj),( ((ipj−ipi)/13.6)**2. ),fij1
c write(18,19)fij,fiv,((gnj−njsum)/gnj)*1.,(2*lcavg+1)*1.,fst,ar1*aa1/(ar1
 + aa1 + aav)
c write(18,19)nc*1.,lc*1.,ni*1.,li*1.,nj*1.,aa1jive,aa1vije,ar1vi,fiv,fij

sdr = sdr + adr/(nfe*vr)
650 continue
c ^^^^^^^end of nj loop^^^^^^^^
660 continue
c ^^^^^^^^^^^^^^^^^ li loop ^^^^^^^^^^^^^^^^^^
670 continue
c ^^^^^^^end of ni loop^^^^^^^
690 continue
c ^^^^^^^^end of nc loop^^^^^^^

if  (adr.gt.adom) adom = adr

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−

c ###################### Put all rates together #########################
700 alose = anuc + afe

again = arect + act + adr + a3br
atot = (alose − again)
sigion = alose/(nmt*vp)
sigrec = again/(nmt*vp)
sionmax = aionmax/(nmt*vp)

c )))))))))))))))))))))Probability of no reaction((((((((((((
probnot = 1.
probsum=0.
impactsum=0.
do  710 i=1,nep

impactsum = impactsum + pi*bnl(i)*bnl(i)
probsum = probsum + prob(i)
probnot = probnot*(1. − prob(i))

710 continue
ptot = 1. − probnot
pgross = probsum/nep

write (18,19)

c @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@Compute Multiple Probabilities and Xsections@@@@@@@@@@@@@@@@@@@@@@@@
@

do  799 i=1,4
sigmult(i) = 0.

799 continue

c xxxxxxxxxxxxxxxxxxxxArrange values in order of impact parameterxxxxxxxxxxxxxxx
i=1
forder = 0

711 if  (bnl(i).gt.bnl(i+1)) then
c .....Impact regime

hold = bnl(i)
bnl(i) = bnl(i+1)
bnl(i+1) = hold

c ......shell radius
hold = rnl(i)
rnl(i) = rnl(i+1)
rnl(i+1) = hold

c .........probability
hold = prob(i)
prob(i) = prob(i+1)
prob(i+1) = hold
forder = 1

endif
i = i+1
if  (i.lt.nep) goto  711
if  (forder.eq.1) then

forder=0
i=1
goto  711

endif

write (18,16)
write (18,17)sigion,pgross

c write(18,17)sigion
c write(18,17)sigion,sigion/impactsum
16 format (" Total Ionization Cross Section [cm2]       Gross Probability")
17 format ("      ",D10.3,"                            ",D10.3)

write (18,19)
write (18,22)
write (18,21)sigrec
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22 format (" Total Capture Cross Section [cm2]")

write (18,19)
write (18,20)
write (18,21)bnl(nep),rnl(nep)

20 format (" Max Impact Radius [cm]      <r> [cm]")
21 format ("    ",D10.3,"             ",D10.3)

goto  1101
c ((((((This section is skipped in favor of the alternative mutliple method
c shown below)))))))))))))))))
c =================Here’s one way to do multiples================
c −−−−−−Single−−−−−−−−−−−−−−−−−

do  1100 i=1,nep
dsig = 0.
fyes = prob(i)/(1. − prob(i))
flow = 1.
do  720 q=1,i

flow = flow/(1. − prob(q−1))
dsig = dsig + pi*(bnl(q)**2. − bnl(q−1)**2.)*probnot*fyes*flow

c write(18,19)i*1.,q*1.,dsig,bnl(q),bnl(q−1),(bnl(q)**2. − bnl(q−1)**2.),probnot,fyes,flow
720 continue

sigmult(1) = sigmult(1) + dsig
c −−−−−−Double−−−−−−−−−−−−−−−−

do  1000 j = i+1,nep
dsig = 0.
fyes = fyes*prob(j)/(1. − prob(j))
flow = 1.
do  730 q=1,i

flow = flow/(1. − prob(q−1))
dsig = dsig + pi*(bnl(q)**2. − bnl(q−1)**2.)*probnot*fyes*flow

730 continue
sigmult(2) = sigmult(2) + dsig

c −−−−−−−Triple−−−−−−−−−−−−−−−−−−−−−
do  900 k = j+1,nep

dsig = 0.
fyes = fyes*prob(k)/(1. − prob(k))
flow = 1.
do  740 q=1,i

flow = flow/(1. − prob(q−1))
dsig = dsig + pi*(bnl(q)**2. − bnl(q−1)**2.)*probnot*fyes*flow

740 continue
sigmult(3) = sigmult(3) + dsig

c −−−−−−−−Quadruple−−−−−−−−−−−−−−−−−−−−
do  800 l = k+1,nep

dsig = 0.
fyes = fyes*prob(l)/(1. − prob(l))
flow = 1.
do  750 q=1,i

flow = flow/(1. − prob(q−1))
dsig = dsig + pi*(bnl(q)**2. − bnl(q−1)**2.)*probnot*fyes*flow

750 continue
sigmult(4) = sigmult(4) + dsig

800 continue
900 continue
1000 continue
1100 continue

1101 write (18,19)

write (18,19)
sigtot = 0.
do  1300 i=1,4

sigtot = sigtot + i*sigmult(i)
1300 continue

c%%%%%%%%%%%%%%%%%  Or, here is a simpler way to do  multiples%%%%%%%%%%%%%%%%%%%%%%
sigmult(1) = sigion/(1. + 2.*pgross + 3.*pgross*pgross + 4.*pgross*pgross*pgross + 5.*pgross*pgross*pgro

ss*pgross)
sigmult(2) = sigmult(1)*pgross
sigmult(3) = sigmult(2)*pgross
sigmult(4) = sigmult(3)*pgross
sigmult(5) = sigmult(4)*pgross

write (18,15)
do  1310 i=1,5

write (18,14)i,sigmult(i)
1310 continue

14 format (I5,"            ",D10.3)
15 format (" Multiplicity   Cross Section [cm2]")

c ========Possible choices of x.out output lines================
write (19,19)qps*1.,alose/(nmt*vp),again/(nmt*vp)

c write(19,19)qps*1.0,alose/(nmt*vp),again/(nmt*vp),anuc/(nmt*vp),afe/(nmt*vp),act2/(nmt*vp),arect/(nmt*vp
),act/(nmt*vp),adr/(nmt*vp)
c write(19,19)(tps/ap/1.602D−6),qps*1.,alose/(nmt*vp),again/(nmt*vp),anuc/(nmt*vp),afe/(nmt*vp),arect/(nmt
*vp),act/(nmt*vp),adr/(nmt*vp)
19 format (D10.5,"   ",D10.5,"   ",D10.5,"   ",D10.5,"   ",D10.5,"   ",D10.5,"   ",D10.5,"   ",D10.5,"   ",D10.5,"   ",D10.5,"   
",D10.5,"   ",D10.5)
c write(19,19)(tps/ap/1.602D−6),qps*1.,alose*1.D24/(nmt*vp),again*1.D24/(nmt*vp)
c write(19,19)qps*1.,snuc,sfe,srect,scti,sdr
c write(19,19)qps*1.,anuc,afe,arec,act,adr,a3br

c&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
c These loops are for projectile charge state and energy variation
c if requested

if  ((qloop.eq.1) .and. (qps.lt.zp)) then
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qps = qps+1
goto  10

endif

c if (tps.gt.0.) then
c tps = tps *0.99
c goto 9
c endif

return
end

c *_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*

cvvvvvvvvvvvvvvvvQenc(r)vvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
c *****This subroutine calculates the average number of electrons enclosed within
c a given radius about an atom or ion.***********

subroutine  qsubr (ztargss,jjs,r,qenc)
common zp,ap,ztarg,atarg,ibart,scr,ttargev,eb,nti,nmt,nenl,ng,lg,nmax,lmax,ntc,ipp,ipt

real *16 mp
real *16 scr(1:100,1:7,0:6),ttargev,nit,nfe,nti(1:10,0:100),nmt
real *16 eb(1:100,1:7,0:6), ibart(1:100), ipp(0:100), ipt(1:10,0:100)
real *16 ntot
integer  zp,ap,ztarg(1:10),atarg(1:10),ntc
integer  nenl(1:100,1:7,0:6), ng(1:100), lg(1:100), nmax(1:100), lmax(1:100)

real *16 c,me,meev,amu,amev,pi,e,a0,alpha,hbar
parameter  (c=2.998D10, me=9.108D−28, meev=5.11D5, amu=1.66D−24)
parameter  (amev=931.502D6, pi=3.1415927, e=4.803D−10, a0=0.529D−8, alpha=7.3D−3, hbar=1.054D−27)

integer  ztargss, jjs, zef, nin, lin, ntnin
integer  ntout, nout,lout
real *16 r, qenc, rn, cn, r0, az

nit = 0.
nfe = 0.
do  28 i = 1,ntc

do  25 ii = 0,ztarg(i)
nfe = nfe + ii*nti(i,ii)
nit = nit + nti(i,ii)

25 continue
28 continue

mp = ap*amu
zef = ztargss − jjs

qenc=0.
r0 = (3./(4.*pi*nit))**0.333333
az = a0*(zp**−0.33333)

c...........diagnostic.....
c r = 0.01D−8

29 ntot = 0.

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
do  150 n=1,nmax(zef)

ntn=0
ntnin = 0
ntout = 0

c −−−−−−−−tally electrons in shells within ’n’−−−−−−−−
do  140 nin = 1,n−1

do  130 lin = 0,nin−1
ntnin = ntnin + nenl(zef,nin,lin)

130 continue
140 continue
c −−−−−−−−−−−tally electrons in ’n’−−−−−−−−−

do  145 l = 0,n−1
ntn = ntn + nenl(zef,n,l)

145 continue
c −−−−−−−−−And electrons in outer shells...−−−−

do  147 nout = n+1,nmax(zef)
do  146 lout = 0,nout−1

ntout = ntout + nenl(zef,nout,lout)
146 continue
147 continue
c −−−−−−−−−−−−radius of max of r^2 rho(r,n)−−−−−−−−−−

rn = n*n*a0/(1.*ztargss − 0.9*ntnin − 0.264*ntn − 0.1*ntout)
cn = ntn/(4.*pi*rn*rn*(1. − (1. + (r0/rn))* exp (−r0/rn)))
qenc = qenc + 4.*pi*cn*rn*rn*(1. − (1. + r/rn)* exp (−r/rn))

ntot = ntot + cn* exp (−r/rn)/r

c write(18,151)ztargss*1.,jjs*1.,n*1.,nin*1.,ntn*1.,rn,cn,r,qenc,(1. − (1. + r/rn)*exp(−r/rn))

150 continue
151 format (10D10.3) 

c write(18,151)r/1.D−8,4.*pi*ntot*r*r*1.D−8
c r=r+0.01D−8
c goto 29

return
end

c^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^


