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Abstract 

Quantum and Semiclassical Approaches to 
Chemical Reaction Dynamics 

by 

David Eugene Skinner 

Doctor of Philosophy in Chemistry 

University of California at Berkeley 

Professor William H. Miller, Chair 

In this work, we present methods for studying the dynamics of molecules as they 

undergo chemical reaction. Methods and applications are presented using two ap

proaches. The first is fully quantum mechanical and as such fully accurate. The 

second is a semiclassical approach motivated by classical approximations to quantum 

mechanics. 

Within both of these areas one can always extend the utility of the methods by 

looking for sensible approximations which faithfully represent the chemical dynamics 

while requiring less effort. A large portion of the present work is devoted to exami

nation and evaluation of such economizing approximations. 

In the quantum approach, we examine approximate treatments of angular momen

tum in the calculation of thermal rate constants. In particular we calculate thermal 

rates for the reaction 0 + 0 H ~ H + 0 2 . 

In the semiclassical approach we present several methods aimed at the Monte Carlo 

evaluation of certain phase space integrals which arise from classical approximations 

to the Feynman path integral. In these methods quantum dynamics is represented 
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approximately via the interference of many classical trajectories. Here we will examine 

molecular energy transfer. 
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Chapter 1 

Introduction 

Chemical reaction dynamics is the study of the motions molecules make during the 

course of a chemical reaction. By understanding these movements we can determine 

how chemical change occurs and may also calculate many physically useful quantities. 

In the present work we are primarily interested in the rates of chemical reaction, but 

a dynamical understanding of the reaction allows further insight as to the energetics 

and mechanism involved. Indeed, a fully dynamical account of a chemical reaction 

allows any and all molecular change to be studied in detail. We will examine methods 

that fall short, on purpose, of a complete description of chemical change, but provide 

detailed answers to specific questions. Such an appropriately detailed understanding 

of chemical reactions is the goal of the work presented here. 

The central statement of the dynamics of molecules at the quantum mechanical 

level is the time dependent Schrodinger equation. In a simplistic sense the enterprise 

of chemical physics must only implement an already known theory, quantum mechan

ics, for chemical systems. No new theories need be developed. We must simply write 

down a known Hamiltonian for the molecular system and solve the time dependent 

Schrodinger equation, 

d A 

ilidtiV;(t)) = HIV;(t)), (1.1) 

for 11/J(t)), from the initial wave function 1'1/1(0)). From 11/J(t)), all physical properties 
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of the system are directly available. This approach, while quite general, suffers on 

two accounts. 

The first reason is that the application of basis set methods to Equation (1.1) for 

chemical problems, particularly problems involving chemical reactions, quickly be

comes computationally intractable as the molecules approach sizes common to chem

istry (CH4 , Amino Acids, and larger). The size of the direct product basis set needed 

is rv Nd , where N is the number of basis functions needed for each degree of freedom 

d. The exponential scaling of basis size with dimensionality presents a bottleneck in 

terms of the memory required to complete the calculation on a c~mputer. Currently, 

a memory size on the order of a gigabyte is typical to most workstations. Assuming, 

optimistically, that we need 10 basis function per degree of freedom we can approach 

a 5 dimensional problem, but larger problems will always lie increasingly out of reach. 

Even if we could accomplish the calculation, what would we do with the solution 

1?{1(t))? Often we are interested in a specific physical property of the system (as 

opposed to complete knowledge), and the calculation of that ,property will nearly 
--

always involving throwing away information contained in the complete 1?{1(t)). For 

instance to calculate a thermal reaction rate we would time evolve reactant states, 

by solving Equation(1.1), and project on to product states in order to determine the 

amplitude, 

(1.2) 

where G(E) is the Green's function and nr and np are respectively the reactant and 

product quantum numbers. The thermal rate collapses all of this information via, 

k(T) = [27rliQr(T)t1 l: dEe-EfkT L ISnp,nr(E)I2 

np,nr 
(1.3) 

into a single number. In chapter 2 we will present ways around this by using alter

native methods for the efficient calculation of k (T) directly. 

The second problem with pursuing the direct solution via Equation(1.1) has to do 

with the size of molecules. Molecules inhabit the boundary world between quantum 

and classical physics. The atomic constituents of molecules span the range of masses 

from rv 10-24 to 10-22 grams, and even within this low mass range, the impact of 
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Figure 1.1: The range of chemical systems spans the range from motion of individual 
protons through chemical barriers to the dynamics of large protein structures. 

quantum mechanical phenomena varies greatly. The chemical region beyond few atom 

systems e.g.proteins, can involve many millions of molecular constituents. 

It is important to ask what impact we expect quantum mechanics to have on 

systems as they become larger. For the fast vibration or translation of a low mass 

particle such as an H atom we would expect that tunneling and interference ac

tively contribute to the dynamics. Indeed these processes play a significant part in 

proton transfer, the dynamics of delocalized states, and electronically non-adiabatic 

processes. In this regime the use of fully quantum dynamics is appropriate and quite 

likely necessary. 

Consider on the other hand the dynamics of a protein whose slowly swaying molec

ular framework may approach that of classical dynamics due to the great masses in

volved. For this type of motion, quantum effects will manifest themselves, if at all, 

only in more subtle ways. For this reason, classical molecular dynamics has been 

quite successful in exploring chemical dynamics in this regime. Indeed, molecular 

dyanamics based on classical dynamics is widely used througout chemistry, materials 

science, and biology. Since the solution of classical dynamics is trivial compared to 

the effort needed for a quantum solution we would much prefer to utilize, when possi

ble, a description of molecular dynamics which is motivated by this simpler classical 

motion. Chapter 4 presents the theory of such semiclassical methods. 

Given that the theory that fully describes chemical dynamics is not one we can 
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apply directly to systems of chemical interest, the real work of chemical dynamics 

is the discovery of approaches which can either reduce the effort of computation by 

calculating reduced quantities directly or by leveraging the near-classical behavior 

of chemical sized systems to provide approximate descriptions of chemical dynamics 

based in quantum mechanics. It is from these methods that a physical understanding 

of processes at a truly molecular level can be developed. 

The body of this work is divided into four main sections. In chapters 2 and 4 we 

present background on the theory and ideas behind the quantum and semiclassical 

approaches. In chapters 3 and 5 we implement these theories by studying specific 

chemical systems. Summary and conclusions are presented in chapter 6. 
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Chapter 2 

Quantum Approaches 

2.1 Introduction 

In this chapter we will present background on the theories that will be imple

mented in the next chapter. The focus of the methods in on calculating thermal 
"' 

rates, k(T), in a rigorous way quantum mechanically. A necessary part of this cal

culation, and indeed the most time consuming, is evolving wave functions in time. 

Therefore, a discussion of computer implementations of quantum dynamics is also 

presented. 

2.2 Reactive Flux Correlation Formalism 

The direct quantum approach to the thermal rate presented in Equation(1.3) 

of the last chapter is quite inefficient since it generates a large amount of detailed 

information which is then combined to provide the rate constant. Miller1 has shown 

that the thermal reaction rate constant, k(T) may be expressed more efficiently and 

directly as: 

k(T) 

Crp(t) 

(2.1) 

Where Fr(O) and Fp(t) are the Heisenberg evolved flux operators for dividing 
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surfaces defining product ( Fp) and reactant ( Fr) regions of the potential energy surface 

(PES). Each flux operator is defined in relation to a surface through the coordinate 

space. We can think of such a surface as a Heaviside operator, h and write the flux 

operator as, 

(2.2) 

We define the thermal flux operator, 

(2.3) 

which is simply a flux operator Heisenberg evolved to the imaginary time t 13 = 

-if3/21i. The other flux operator appearing in Equation(2.1) is likewise the real 

time evolved F(t). 

Efficient evaluation of k(T) via equation(2.1) depends on choosing an appropriate 

basis for evaluating the trace. One convenient set of basis functions are the eigenkets 

of the thermal flux operator F(/3) "' 

(2.4) 

Evaluating the trace in equation (2.1) in this basis gives the rate as: 

(2.5) 

Since the thermal flux operator may be shown to be of low rank, the sum may 

be restricted to only those .Ai which are large enough to contribute to the rate. This 

is the primary benefit of the present method. The low rank property means that 

a minimum of wave functions will need to be propagated. The number of thermal 

flux eigenfunctions that will be needed to evaluate the trace in Equation (2.1) is 

analogous to the number of states at the transition state. In the next chapter we will 

see a further demonstration of the low rank property in the application of this theory 

to a particular chemical system. 

< 1/JdF(t)l1/li > is calculated by propagating the thermal flux eigenfunctions on 

the PES with an absorbing potential at the boundary to properly treat the boundary 
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Rate Constants from Flux Correlation Functions 

k rxn(T) 
Reactants Products 

I 

I 
I 

I 
I 
I 
I 
I 

I A I A 

I hR(x) I hp(x) 
I I 
I I 

00 
A A A 

krxn(T)= Q~ I tr[e-~H fReiHtp pe_. iHt]dt 

0 

00 

Q~ I (F R(O)F p(t)) thermdt 
0 

Figure 2.1: Flux Correlation Methods 
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conditions. The absorbing potential is negative imaginary term added to the Hamil

tonian which damps the wave function in a particular region. When carefully applied 

the absorbing potential enforces the boundary conditions by allowing asymptotic flux 

to permanently leave the reaction region. Absorbing potentials would typically be 

placed in the asymptotic product channels in order to properly enforce the boundary 

conditions. 

The thermal flux eigenfunction is localized at the flux dividing surface at t = 0. 

As the wavefunction is propagated in time, flux crosses both reactant and product 

dividing surfaces. Flux crossing the surface towards products contributes positively 

to the correlation function and to the rate. Recrossing flux contributes negatively to 

the rate. The correlation functions Crr(t) and Crp(t) track this flux as the reaction 

proceeds. A schematic example of a flux correlation function is shown in Figure 

(2.2). The transition state theory approach misses this recrossing flux and thus over 

estimates the rate constant. 

In order to carry out a calculation of k(T) using this method we still must be able 

to propagate the wave functions in both real and imaginary time. This will be the 

largest computational task involved in the determination of the reaction rate. 

2.3 Quantum Dynamics on Grids 

As seen above in equation(2.5), the choice of an appropriate basis for evaluating 

the trace has a great impact on making the theory practical. It is likewise so for the 

propagation of wavefunctions. We must find a suitable basis such that the action 

of the time evolution operator e-iflt/1i on an arbitrary state is computable in an 

efficient way. The approach we take is to express the propagator as a product of one 

dimensional kinetic energy operators and a potential energy factor and to find a basis 

which admits an simple form for these one dimensional terms. 

Let us suppose that the Hamiltonian has the following two dimensional form: 

P2 F2 
A 

-2- + _]!.._ + V(x, y). (2.6) 
2m 2m 

For this example Hamiltonian we may expand the propagator as, 
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Figure 2.2: A typical reactive flux correlation function, which depicts the contribution 
from transition state flux as well as flux. 
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(2.7) 

Though this expansion2 is approximate, for sufficiently small t the error is o(t2 ). 

We will assume that we always choose t small enough that this error is negligible. 

Similar expansions hold for other Hamiltonia, but for the present illustration a two 

dimensional cartesian example will do. 

If we construct the direct product basis, 

NxNy 

17/J) = I: Cijl¢f)I¢J), (2.8) 
ij 

then we seek one dimensional basis sets l¢i) and I¢J) such that the matrices, 

(2.9) 

are readily computable. Several such bases exist. The Fourier functions and their 

bandwidth limited counterparts, the sine functions, being among the simplest exam

ples. 

For example in the Fourier basis our kinetic energy operators have the form, 

(2.10) 

which is easily exponentiated to give the propagator as, 

e-ztT/Ii = u)..FT diag e 2~'.6."' 2 UFFT· 
• ' A ( it/i{j-N:r;/2)) A 

(2.11) 

The Fourier basis is particularly useful in that the transformations 0 F FT may 

be applied using only NxlogN x multiplications in applying the matrix owing to the 

symmetry of these functions. A strong disadvantage of this basis is that it must be 

used on a regular,i.e. rectangular, grid. Thus the memory required to store a wave 

function scales exactly as the worst case Nd situation. 

One way around this problem is to use a sparse grid of irregularly spaced points. 

This is quite natural using sine (sin(x)/x) functions, 
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l</>n(x)) (2.12) 

(2.13) 

The label n is an index for the grid coordinates Xn = mr /wmax· The sine function 

DVR is further illustrated in Figure(2.3). 

An important aspect of the sine function DVR is that we may delete members of 

the direct product basis in unphysical regions. If, for instance, the potential energy 

in a particular region is so high that we expect the amplitude of the wave function to 

be vanishingly small, deleting the basis in that region is equivalent to imposing this 

assumption on the calculation. Similar constraints may be imposed with respect to 

the kinetic energy. For a typical chemical potential energy surface it is not unusual 

to be able to shrink the size of the basis to about 20% of the original number (Nd 

scaling). 

Sparse matrices on irregular grids operate on kets in the same way as dense op

erators, though we need not store all the elements. An effective way of operating a 

sequence of one dimensional operators on such a multidimensional sparse vector is is 

via the reordering process shown in Figure(2.4). Before acting e-itT.,fli on the ket we 

order the vector so that the index corresponding to dimension x changes most rapidly, 

with the other dimensions ordered in an increasing but arbitrary order. Sorted this 

way contiguous sections of the fastest running index, e.g.x, correspond to one dimen

sional line segments in the multidimensional sparse grid. Acting e-itT.,fli on the ket 

is then simply a sequence of small one dimensional matrix multiplications on each 

segment. This method has the great computational advantage of sequential memory 

access and speeds up the propagation significantly. 

The above tools allow one to transform a problem in chemical reaction dynam

ics into what is essentially a large linear algebra problem to be implemented on a 

computer. In the next chapter we will apply these methods to a specific example 

important in combustion and atmospheric chemistry. 
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Figure 2.3: The Sine Function DVR Basis 

:li> 

XI 

• Overlaps are simple: 

I · > sin(1r(xj!:ix-j)) 
J ex xf !:ix-j 

~ = 1r/Wmax 

. ... . 

. :-~ . . :. ; . . :. : . 

: i: \ : . : . : . . : . : . . : . : . 
: E : i : . : . : . 

: i : \ : IJ·;. 
: : : : : : 
: E : i : : 
. : . : . ' . . : . : . . 
:: : :: : 
. : . :. . 
. : . :. . -: . :· . 
·: . :· . :: : :: 
.: . :
.; . ~ 

• 2 

XJ 

. . . . . . . 

(ilj) = J_: w:(x)wj(x)dx 
00 

"' E w:(xi)wJ(xi)~x 
-oo 

= bij 

• Grid spacing determines largest representable momentum: 

Pmax = n/~x 

• Operators are sparse 



2.3. QUANTUM DYNAMICS ON GlliDS 13 

Tx Ty Tx 
1 1 1 1 1 1 

3 1 1 2 3 1 

1 2 1 4 1 2 

2 2 2 2 2 2 

3 2 2 3 3 2 

·2 3 3 1 2 3 

1 4 3 2 1 4 

I I I I I I 
I I I I I I 
I I I I I I 

I I I I I I 
Figure 2.4: Sparse matrix multiplication where each box represents an element of the 
ket vector and is labeld by it's y index first and x index second. Reordering between 
applications of one dimensional operator increases efficiency. 
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Chapter 3 

Applications to 0 + OH---+ H + 02 

3.1 Introduction 

In this chapter we apply the methods outlined in the previous chapter to the 

problem of angular momentum in chemical reactions. Often the basis set needed for 

a chemical system is so big that only the J ·= 0 part of the computation may be 

carried out. Here we examine methods of including the effects of angular momentum 

on thermal reaction rates. 

A recent paper3 presented the results of rigorous quantum mechanical calculations 

of the rate constant of the reaction 0 + 0 H ~ H + 0 2 (and also recombination to 

H02 via collisional relaxation by a bath gas). Because of its importance in combus

tion and atmospheric modeling4
- 7 this reaction has been the focus of many studies, 

e.g., classical trajectory simulations8
, statistical (RRKM) rate9 and quantum scatter

ing calculations10~13 , and also studies of the H 0 2 bound 14 and metastable states15 . 

Previous calculations, however, have only carried out explicitly for zero total angular 

momentum ( J = 0 ) , the contribution to the rate constant for J > 0 being approx

imated by the "J-shifting" approximation (JSA)16 , which assumes that rotational 

motion is separable from the other degrees of freedom and furthermore that it is that 

of a rigid rotor (with some assumed geometry). The purpose of this work is to report 

the results of more accurate calculations for J > 0, to test the accuracy of the JSA 

and see to what extent it is reliable for this reaction. We note that there have been 
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some previous calculations for J > 0 : those by Wu and Hayes14 for bound state 

energy levels of H02 for J up to 3, and those by Meijer and Goldfield17 for total 

reaction probabilities of H + 0 2(v = O,j = 1) for J = 0, 1, 2, 5. 

How to deal with the J > 0 contribution to the thermal rate constants is a non

trivial matter, particularly so for the present reaction which is extremely challenging 

even for J = 0 because of the existence of a long-lived collision complex. At the most 

rigorous level of theory the quantum mechanical calculation of the rate constant is 

carried out separately for each value of J, and the total rate constant is the sum of 

those for each J, 

00 • 

k(T) = L(2J + 1)kJ(T). (3.1) 
1=0 

Typically many values of J contribute to this sum, the more so the higher the tem

perature, and the calculation for each J is more difficult than for J = 0 because there 

is an additional coupled degree of freedom. (Matters are not quite so bleak, however, 

because the J dependence of the k1 (T) is usually very simple; one can thus perform 

the calculation for a few widely spaced values of J and then interpolate to evaluate 

the sum in Equation(3.1) 18). 

The next section first briefly summarizes the methods used to calculate the rate 

constant (for each J), a fully rigorous quantum mechanical approach based on reactive 

flux correlation methods1
•
19

. We then describe the helicity conserving approximation 

(HCA) used for the present J > 0 calculations. A more general HCA is also described, 

one based on the instantaneous principal axes of the molecular system, and an even 

wider range of possible approximations for J > 0 calculations is also surveyed that 

may be useful in other applications. The results of the calculation of k(T) for the 

present reaction are presented and used to compare the quality of the approximations 

considered. It is seen that the simplest, JS approximation is not so bad ("' 10- 20% 

error) for the present reaction, provided the proper choice is made for the reference 

geometry. 
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3.2 Summary of the Rate Constant Calculation 

3.2.1 General Theory 

Within the HCA (see section 3.3.1 below) the calculation of the rate constant for 

J > 0 is the same as that for J = 0 with an effective potential energy surface VJ K that 

depends parametrically on J and K, the projection of the total angular momentum 

onto a body-fixed axis. K (the helicity) is assumed to be conserved in the HCA, and 

kJ(T) of Equation(3.1) is given by 

J 

kJ(T) - L kJK(T), (3.2) 
K=-J . 

where kJK(T) is the result of the rate constant calculation with the effective potential 

VJK· 

The rate constant calculation is carried out for each value of J and K. Because 

the reaction proceeds via a long-lived collision complex, i.e., 

0 + 0 H ~ H 0~ ---+ H + 0 2 (3.3) 

it is useful to compute the rate constant as the time integral of a cross correlation 

function rather than as a flux autocorrelation function as has been most commonly 

done in other applications, 

(3.4) 

where Qr(T) is the reactant partition function per unit volume and Crp(t) is given 

by, 

(3.5) 

Here the flux operators, Fr and Fp, are defined with respect to two different dividing 

surfaces, one on the reactant(O · · · OH ) side of the HO~ complex region and the 
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other on the product(H + 0 2) side, respectively; see Figure 3.2 . (For simplicity 

of presentation, the Hamiltonian in Equation(3.5), and elsewhere in the following 

sections, is not labeled by the specific ( J, K) value of the calculation.) 

The most efficient way we have yet developed for evaluating these flux correlation 

functions is that described by Thompson and Miller20
, which has been used before 

for the 0 + HCl -+ OH + Cl21 and Cl + H2 -+ HCl + H 18 reactions, as well as 

our earlier J = 0 calculations for the present reaction3 . (One should also see the 

work of Light et al. 22 and Matzkies and Manthe23 which has features similar to our 

approach.) The first step in this approach is a Lanczos iteration calculation24 to find 

the relatively small number of non-zero eigenvalues >.i and corresponding eigenvectors 

!vi) of the Boltzmannized flux operator 

(3.6a) 

which can then be represented as 

(3.6b) 

The Lanczos procedure is particularly efficient because Fr ((3) is of low rank, i.e., 

has a small number of non-zero eigenvalues (approximately twice the number of ther

mally accessible states on the reactant dividing surface). Figure 3.1 shows the positive 

eigenvalues of Fr ((3) for temperatures T=600 K and 1000 K, showing how the number 

increases with T. (The eigenvalues occur in± pairs, with the eigenvector of the neg

ative eigenvalue being the complex conjugate of that for the positive eigenvalue25
•
26

.) 

The trace in Equation(3.5) is then evaluated in the basis of these eigenvectors, 

giving 

k(T) = Qr(T)-1 ~ >.i fooo dt (vi(t)IFivi(t)) 
~ 

(3.7) 

where lvi(t)) is the time evolved vector 

(3.8) 
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1 

600K --e-
1000 K --•--

Figure 3.1: The positive thermal flux eigenvalues (>.) at 600 K and 1000 K for J = 0 
for the dividing surface at the 0 · · · OH transition state. The rapid convergence to 
zero demonstrates the low rank of Ff3. 
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We used the split operator algorithm to carry out this time evolution, though other 

methods for wave packet propagation could also be used. 

We note that the general principle in this type of calculation is to choose the 

dividing surface at the position for which F(/3) will be of the lowest rank possible, so 

as to minimize the number of vectors which must be time evolved (Equation(3.8)). 

This will typically (but may not always) be the dividing surface through the highest 

energy transition state, e.g. Fr in Figure 3.2 . This feature of the procedure is very 

reminiscent of the variational character of transition state theory27 , where one chooses 

the dividing surface to minimize the number of states of the activated complex. In the 

present (fully dynamical) approach the final result for the rate constant is formally 

independent of where the dividing surface(s) is( are) located but the efficiency of the 

calculation is not. 

3.2.2 Computational Specifics 

A qiscrete variable representation28 (DVR) basis was used to represent the wave

function at a set of grid points. The underlying finite basis consists of Fourier func

tions in the r and R coordinates and associated Legendre functions in the '"Y coordi

nate. A basis set using 64 x 128 x 32 grid points in the R, r, '"Y coordinates, respectively, 

was found to be adequate for the present calculations. 

Both the thermal and real time propagation was carried out using the following 

split-operator2 factorization of the full quantum propagator, 

which expresses (with 1i = 1) the full propagator as a series of lD kinetic energy 

operators which can be applied efficiently within the DVR formulation. In order to 

apply each 1D operator one transforms to a basis in which the operator is diagonal. 

For r and R these are Fourier transforms and for '"'( Legendre transforms. Denoting 

these transformations as unitary matrices one has, 
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Figure 3.2: Contour plot of the H02 DMBE IV potential energy surface29 for a 
colinear ('-y = 0) geometry. The reactant and product dividing surfaces are shown by 
thick lines. The shaded areas are absorbing potentials €(R, r) which start at the thin 
lines and increase to the edge of the DVR grid. R and r are shown in atomic units. 
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R 

Figure 3.3: The Jacobi coordinates for the molecular system. 
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Figure 3.4: The largest eigenvalue of the thermal flux operator as a function of the 
rotational quantum numbers J and K. 
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Figure 3.5: The J selected thermal flux cross correlation functions (T = 600K) and 
their integrals. The dynamics in the reaction region is nearly over after about 2 psec 
and the integral contribution converges to a constant value. 
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e--eT=600K 
·----------------------------- ..___.. T = 1 000 K 

---~ 
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1000 2000 3000 
J(J+1) 

Figure 3.6: Here is shown the individual k1 (T), from Equation(3.2), computed within 
the Helicity Conserving Approximation. Rates at two temperatures are shown 600K 
and lOOOK. The line connecting the points shows the interpolation scheme used in 
order to evaluate Equation(3.1). 
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Figure 3.7: Total Thermal Rates for H + 0 2 ---7 0 + OH calculated here compared 
to experimentally determined values. 
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(3.10a) 

(3.10b) 

(3.10c) 

where diag is a matrix with only diagonal entries (indexed by j), N R and Nr are 

64 and 128 respectively, and ULeg is the Legendre transformation which includes the 

first 32 odd associated Legendre polynomials. (Only odd Legendre polynomials in 

cos,( 'Y) are included because the wavefunctions must be odd under interchange of the 

two identical oxygen atoms29 .) 

A time step /::).t = 10 au was used for the thermal propagation and 20 au for the 

real time propagation. For all calculations the number of thermal flux eigenvectors 

included is determined by the temperature alone. At T=600 K 20 eigenvectors were 

propagated and at T = 1000 K 40 eigenvectors were propagated. The real-time 

propagation of the eigenvectors is the most time consuming part of the calculation. 

These calculations were carried out on a Cray T3D parallel computer and required 

approximately 1 hour per eigenvector in the 64 processor queue. 

The dividing surface for reactants (0 + OH) is defined by r = 6.5a0 and that 

for products (H + 0 2 ) by R = 6a0 . The same dividing surfaces were used for all 

calculations. Several dividing surfaces other than the ones mentioned were tried. 

It was found that the effort involved in the calculation, i.e.the length of real time 

propagation, varied significantly with the choice of dividing surface. The appropriate 

compromise is to place the surfaces far enough out that there is minimal recrossing 

flux, but not so far out as to delay the approach to the reaction region. This is 

evidenced in Figure(3.5) as the positive lobe of the correlation function occurs quickly 

(in rv 100 nsec) and also in that there minimal negative contribution to the rate from 

flux recrossing the dividing surface. 

As in several other studies of H02 we use the DMBE IV potential energy surface 

of Pastrana et al. 30 for our calculations. 



3.3. APPROXIMATE TREATMENTS FOR J > 0 27 

Absorbing potentials, €( q), were placed just beyond each of these dividing surfaces 

to prevent reflection of reactive flux from the edge of the DVR basis. The reactant 

and product absorbing potentials start at r = 7.2a0 and R = 6.8a0 , respectively. Both 

are quartic potentials which rise from zero to a maximum of 0.3 to 0.5 eV. Figure3.2 

shows a schematic of the dividing surfaces and absorbing potentials. 

Figure 3.5 shows typical results for the flux correlation function, here for T = 

600 K and for several values of total J. The rv 1 psec time scale for the decay of 

the correlation function, i.e., the lifetime of the collision complex, is seen not to vary 

much with J. The integral contribution to the total rate is seen to drop rapidly with 

J. 

3.3 Approximate Treatments for J > 0 

3.3.1 The Helicity Conserving Approximation 

Figure 3.3 shows the Jacobi coordinates that we use - r is the 0-0 coordinate 

and R is that of H and the center of mass of 0-0 - in terms of which the Hamiltonian 

has the standard form 
A2 2 

A A A £ • J 
H = TR + Tr + 2J-LR2 + 2mr2 + V(R, r, )'), (3.11) 

where 

l and 'j are the angular momentum operators for the R and r angular motion respec

tively, and V is the potential energy surface. The usual helicity (or Jz) conserving 

approximation31 is to choose R as the body-fixed quantization axis and to assume 

that the projection of total angular momentum along it is conserved, i.e., to neglect 

off-diagonal matrix elements in the quantum number K, the projection quantum 

number for this body-fixed axis. 

This would be a poor choice for the present reaction, however, because the kine

matics of the light H atom makes this component of the total angular momentum 
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poorly conserved during the dynamical motion. Choosing the best body-fixed axis 

for purposes of making a helicity conserving approximation (i.e. neglect of D..K =/= 0 

matrix elements) is the same choice microwave spectroscopists make in deciding on 

the best "almost symmetric top" axis for molecular rotation32
; e.g., if the body-fixed 

axis were indeed a symmetric top axis, then K would be conserved without approxi

mation. From these considerations it is clear that because of the light mass of the H 

atom a much better (i.e. nearly symmetric top) choice for the body-fixed axis is the 

0-0 axis, i.e., the vector r. This idea of using the heavy atom axis in a "heavy + 
light-heavy" mass combination has often been used in the past33 , the analogy of the 

electron in Hi often being invoked. We also note that it was used by Thompson and 

Miller in their treatment21 of the 0 + HCl-+ OH + Cl reaction. 

With r thus chosen as the body-fixed axis, one follows Van Vleck's prescription 

and uses total angular momentum conservation to eliminate the angular momentum 

for this axis (j). 

(3.12) 

so that the Hamiltonian becomes 
~2 ~ ~ 2 

~ ~ ~ l IJ -£1 
H = TR + Tr + 2J-LR2 + 2mr2 + V. (3.13) 

The HCA is obtained by taking the part of the Hamiltonian diagonal in K, which 

gives 

(3.14a) 

where 

(3.14b) 

with 

(3.14c) 
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and 

J ( J + 1) - 2K2 K 2 1 1 
EJK(R,r,')') = 

2 2 + -.-2-(
2 

R2 + -
2 

2). 
mr sm 1' Jl mr 

(3.14d) 

The effective potential energy surface for J > 0 alluded to in Section 3.2 is thus 

VJK(R, r, 1') = V(R, r, 1') + E1K(R, r, 1'), (3.15) 

the actual potential plus a centrifugal potential that is the rotational energy of the 

molecular complex as a function of the coordinates (R, r, 1') that determine its sh~pe. 

We note that EJK can also be written in standard symmetric top form, 

EJK(R, r, 1') = B(R, r, '"Y)(J(J + 1)- K 2
) + C(R, r, '"Y)K2 

where the rotational 'constants' are (with n = 1) 

B(R, r,')') 

C(R, r, 1') 

1 

2mr2 

( 1 cos
2 

"() / . 2 = --+-- sm 'Y 
2J.1R2 2mr2 

(3.16a) 

(3.16b) 

(3.16c) 

In practice, rather than suming over all (J, K), we need only complete the calcu

lation of kJ K (T) for several ( J, K) pairs and note the dependence on the rate on these 

parameters. If the dependence of the rate is smooth we can extrapolate the sum in 

Equation(3.1). For the present reaction this dependence can be seen in Figure(3.4). 

The largest eigenvalue of the thermal flux operator, which is a bound to the contri

bution to the total rate, is seen to be a smoothly and rapidly decreasing function of 

J. 

3.3.2 The J-shifting Approximation 

The J-shifting approximation (JSA) results by assuming that the rotational con

stants in Equation(3.16) are truly constants, 

B(R, r, 1')-+ B+ B(R+, r+, "!+) (3.17a) 
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(3.17b) 

corresponding to some reference geometry ( R+, r+, 1+). Since the Hamiltonian for 

J > 0 then only differs from that of J = 0 by a constant, it is easy to see that the 

equations in Section 3.2 lead to 

(3.18a) 

where 

(3.18b) 

The sums over J and K in Equation(3.1) and (3.2) then give 

(3.18c) 

where Q;ot is the rotational partition function, 

00 J. 

Q;ot = L(2J + 1) L e-f3E}K (3.18d) 
J=O K=-J 

which is usually accurately approximated by its classical limit 

+ _ kT ~1rkT 
Qrot- B+ c+ (3.18e) 

if B+ and c+ ::; kT. 

At the level of the JS approximation it is not neccessary to assume that the rigid 

molecular system has a symmetric top geometry. If it is that of an asymmetric rotor, 

i.e., all three rotational constants A+ , B+ , and c+ are different, then the classical 

partition function of Equation(3.18e) becomes 

Q+ -rot- (3.18f) 

which can be thought of as the same as the symmetric top expression Equation(3.18e) 

with the replacement B+--+ v' A+B+. 



3.3. APPROXIMATE TREATMENTS FOR J > 0 31 

A comparison of the JS approximation and the HC approximation discussed above 

is seen in Figure (3.7). Comparison is also made with experimentally determined 

values of the thermal reaction rate. The JS approximation results and those of the 

HC approximation bracket the experimental values on either side. 

3.3.3 Principal Axis Helicty Conserving Approximation 

For the present molecular system the 0-0 axis r is a very nearly symmetric top 

axis because of the lightness of the H atom, but in other cases it may be that neither 

R nor r is a good choice. Thus some years ago McCurdy and Miller34 suggested 

using one of the instantaneous principal axes of the molecular system as the body

fixed axis for purposes of making a HC approximation. This was motivated by the 

way microwave spectroscopists32 make the "best symmetric top" approximation for 

molecular rotation and also by the desire to have a body-fixed axis that changes 

continuously from reactants to products during a chemical reaction. 

McCurdy and Miller used the classical form of the Hamiltonian, obtained by taking 

the cla_ssicallimit of the quantum Hamiltonian operator given by Diehl35 et al., 

(3.19) 

where qK is the angle variable conjugate to the projection "quantum number" ( ac

tually action variable) K, and the other coordinates and moments are as before. Ji, 

i = 1, 2, 3 are the components of the angular momentum along the three instantaneous 

principal axes, and 1i are the corresponding principal moments of inertia, ordered so 

, that 11 < 12 < 13 = 11 + h (for this planar molecular system); specifically 

= V (J-LR2 ) 2 + (mr2) 2 + 2J-LR2mr2 cos(2'Y) 

= J-LR2 + mr2 

(3.20a) 

(3.20b) 
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The vibrational angular momentum terms !:l.pR, !:l.pr, !:l.p7 in Equation(3.19) are given 

by 

!:l..pr 

= -J3 2h/2 cos 'Y 
(!2- /1)2 R 

J 2/1/2 cos 'Y 
3 
(/2- /1)2 r 

= -J
3 

2hl2 (J.tR2 
- mr2) sin 'Y 

(!2 - /1)2 /1 + /2 

(3.2la) 

(3.2lb) 

(3.21c) 

and if principal axis 1 ( the one with the smallest moment of inertia) is chosen as 

the body-fixed quantization axis, then 

J1 =K (3.22a) 

J2 = VJ2 - K2 cosqK (3.22b) 

J3 = JJ2- K2 sinqK. (3.22c) 

The classical version of the HC approximation, which corresponds to the quantum 

prescription of taking the matrix elements of fi diagonal in K, is obtained by averag

ing the classical Hamiltonian over the angle variable Qk· In doing this, McCurdy and 

Miller neglected the contribution from the vibrational angular momentum terms, but 

it is not necessary to do so. The averaging process is straight-forward, 

so that 

1 1271" 
(- · ·) - - dqK · · · , 

211" 0 

(K) 

(sin QK) 

(sin2 
QK) 

=K 

= (cosqK) = 0 

= (cos2 
QK) =! 

2 

and it is not hard to carry this out to obtain an HC Hamiltonian of the same form. 

as Equation(3.14a), 

'"(, p'Y) = 

HJ=o + B(R, r, 'Y)(J2
- K 2

) + C(R, r, 'Y)K2 (3.23) 
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where HJ=O is the same as Equation(3.14b) and here, 

(3.24a) 

(3.24b) 

In the limit p,R2 ~ mr2 it is not hard to show that the rotational constants in 

Equation(3.24) revert to those in Equation(3.16). 

3.3.4 Some Further Thoughts on J > 0 Approximations 

The helicity conserving approximations discussed above try to identify a body

fixed axis which is an almost symmetric top axis for the molecular geometries relevant 

to the dynamics, so that K (the helicity) is conserved during the dynamics, speaking 

classically, or a good quantum number, speaking quantum mechanically. 

From a very different perspective Bowman36 has suggested using an adiabatic 

rotation (AR) approximation, which would be justified dynamically if the rotational 

motion (i.e., QK, classically) were fast compared to the internal ( R, r, ry) motion. 

In this case one proceeds as in the Born-Oppenheimer approximation, i.e., freezes 

the (R, r, ry) degrees of freedom and solves for the rotational energy levels of the (in 

general) asymmetric rotor, EJ,r(R, r, ry), as a function of the internal geometry. The 

Hamiltonian for the internal motion is then 

(3.25) 

i.e., of the same form as that for the HCA, Equation(3.14) or Equation(3.23). In 

fact, if the asymmetric rotor energy levels are approximated as an almost symmetric 

top-which is often a very good approximation- then 

(3.26) 

which is then identical to the principal axis HC approximation if the vibrational 

angular momentum terms are neglected (as McCurdy and Miller originally did). 
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To complete this discussion the range of possible approximations for J > 0 it 

is useful to consider the opposite limit for the rotational motion, namely that it 

is much slower than the internal (R, r, 'Y) motion. This is the rotational sudden 

approximation (SA) which has a long history in molecular collision theory37. In the 

present context this would mean freezing the rotational variables ( J, K, qK) in the 

Hamiltonian Equation(3.19), computing the rate constant as a parametric function 

of these variables, and then averaging that result over the variables for the rotational 

degrees of freedom. The net rate constant would thus be given by 

1
oo ~J 121r dqK k(T) = dJ 2J dK -

2 
. k(T; J, K, qk), 

0 -J 0 7r 
(3.27a) 

where k(T; J, K, qk) is the rate constant computed from the Hamiltonian that depends 

parametrically on ( J, K, qK), 

H(J,K,qK) H lf Ji Jl 
= J=O + 211 + 212 + 213 (3.27b) 

K 2 2 . 2 = H _ _ (P _ K 2)(cos qK sm qK) 
J-O + 211 + 212 + 213 (3.27c) 

where we have for simplicity dropped the vibrational angular momentum terms 

(they could be retained if desired). This approximation is somewhat more costly 

to implement than the PA/HCA because the result of the calculation now depends 

on the three parameters (J, K, qK) rather than just two, (J, K). In the symmetric 

top limit, h ~ 13 , however, one sees that the qK dependence in Equation(3.27c) 

disappears and one is again back to the same expression as the PA/HCA. Thus if 

the internal dynamics is confined to molecular geometries that are well approximated 

as a symmetric top, one obtains the same effective Hamiltonian whether rotation is 

treated as fast or slow. Finally, it is easy to show that Equation(3.27a) for the sudden 

approximation can be written as 

k(T) = 2~ j d3J k(T; J), (3.28a) 

with 

1 ( )-1 HJ = HJ=o + 2"J ·I R, r, 'Y · J (3.28b) 
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which makes it clear that this approximation is completely independent of how the 

body-fixed axis is chosen; e.g., it is not even necessary in Equation(3.28b) that the 

inertia tensor be diagonal. By evaluating the integral over J in spherical coordinates 

(J, (}, ¢), 

j d3 J = fooo dJ J2 fo1f d(} sin (} fo 2
1f d¢ (3.29) 

one can show that Equation(3.28a) is equivalent to Equation(3.27a). 

3.4 Results and Discussion 

The HCA described in Section 3.3.1 was used for the J > 0 calculations reported 

here. This should be an excellent approximation for this reaction because the 0-0 

axis is such a good "almost symmetric top" axis; e.g., in Table 3.4 one sees how close 

are the two smallest rotational constants, AI: and B* , at both the geometry of the 

H 0 2 minimum and the 0 · · · 0 H transition state. One also sees how close are the 

exact rotational constants of the 0 · · · OH transition state and those implied by the 

HCA (Equation(3.16)) at this geometry. 

Within the HCA, however, the calculation of kJK(T) for each (J, K) is equivalent 

in effort to the kJ=o(T) calculation, which is itself already a very expensive calcula

tion due to the the small grid spacing that is necessary because of the deep potential 

well and also the long propagation times resulting from the long-lived complex. It is 

therefore very important to minimize the number of ( J, K) values for which calcula

tions are actually performed. To this end the ( J, K) dependence of kJ K (T) was fit to 

the following functional form 

ln[kJK(T)/koo(T)] = -(3{aJ + biKI + B[J(J + 1)- K 2
] + CK2

} (3.30) 

which is sufficiently accurate for the range of J and K values that contribute. Adding 

terms of higher order in J and K did not affect to result for the total rate constant. 

Between 15 and 19 kJK(T) were calculated to perform this fit at each temperature. 

The values of a,b,B,C determined from the fit and used for the interpolation are given 
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in Table 3.4. The sum over J and K to obtain the total rate thus gives the same 

form as the JSA, 

k(T) = kJ=o(T)Qrot(T), (3.31a) 

where here 

00 J 
Qrot(T) = L L e-,B{aJ+biKI+B[J(J+l)-K2]+CK2}. (3.3lb) 

J=OK=-J 

Table 3.4 lists the rate constants given by the HCA at T = 600 K and 1000 K, 

and also those given by the JSA with two possible choices of the reference geometry, 

that of the H02 minimum and that ofthe 0 · · · OH transition state. (Here we note 

an error in the use of the JSA in our previous paper3 ; the rotational constants used 

there for the H02 minimum- AI: = 0.572cm-1 , B+ = 0.589cm-1 , c+ = 18.94cm-1 

- are in error; the correct values are those in Table 3.4.) 

Comparing the (presumably) accurate HCA results with those of the JSA in Table 

3.4, one sees that the JSA is not bad- the rate constant agrees with that of the HCA 

to 10-20% for this temperature range -provided one uses the 0 · · · OH transition 

state as the reference geometry for the rotational motion. For a 'direct' reaction it 

is commonly believed- with some examples to support it18•38 - that the transition 

state geometry is the best reference geometry for the JSA, but since the collision 

complex (HO~) spends most of its time in the region about the H02 minimum, it 

was not obvious that this latter geometry might not be a better choice in this case. 

The minimum does seem to be the best choice for the JSA in describing resonance 

energies39 of the HCO complex, a very similar system. For the rate constant, however, 

we see that in this case, too, the transition state geometry is the best choice for the 

JSA. 

This latter observation, i.e., that the transition state geometry provides the best 

choice of reference geometry for the JSA in both 'complex-forming' as well as 'direct' 

reactions, is thus an encouraging one, for the JSA is by far the simplest way of 

dealing with J > 0 if the choice of reference geometry is unambiguous. The full 

i ' 
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Table 3.1: Rotational Constants and Partition Functions at Fixed Geometries. 

Geometry A* fcm-1 B* fcm-1 c+ /cm-1 Q;ot(600K) QLt(1000K) 
H02 minirriuma 1.051 1.115 20.51 3069 6603 
0· ··OH TSa 0.286 0.287 44.52 7897 16971 
HCA TSb 0.290 0.290 45.00 9647 19350 

aExact rotational constants of the three atom system at the indicated geometry. 

bRotational constants of the 0 · · · OH geometry implied by the HCA Equation(3.16) 

Table 3.2: Parameters Describing the Dependence of kJK(T) on J and K in 
Equation(3.30) 

Temperature /K a /cm-1 b /cm-1 B /cm-1 

600 -3.14 77.7 0.318 
1000 -2.37 62.7 0.336 

1.65 
18.3 

dynamical calculation is then required only for J = 0, an enormous simplification. It 
---. 

is important, however, to have the possibility of carrying out more accurate treatments 

of J > 0 , as discussed in Section 3.3, to calibrate its reliability, as in the present 

application. 

Finally, we note from Table 3.4 that the rate constants given by the HCA( and 

the JSA with the 0 · · · OH reference geometry) with this potential surface are in 

quite good agreement with the experimental values. To pursue matters further it 

would be useful to utilize the more recent and presumably more accurate potential 

energy surface developed by Kendrick and Pack40 and also to deal explicitly with 

the electronically non-adiabatic dynamics arising from the spin-orbit coupling in this 

system. 
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Table 3.3: Rate Constants in cm3molecule-1sec-1 for H + 0 2 -7 0 + OH 

Method k(600 K) X 1016 k(1000 K) X 1014 

JSA (H02 minimum) 1.32 3.52 
JSA (0 · · · OH TS) 3.39 9.03 
HCA 4.12 10.3 
Experiment* 3.72 9.1 

*The rate constant at 600 K was extrapolated from a measurement of k- 1 (520K) 

by Howard and Smith41 using the experimentally determined equilibrium constant42 . 

The rate constant at 1000 K was measured by Eberius et al.43 
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Chapter 4· 

Semiclassical Approaches 

4.1 Semiclassical Initial Value Representation 

As mentioned at the outset of this work, molecules span a range of sizes, that is 

masses, which sit firmly with quantum mechanics on the small end and fall into the 

realm of classical mechanics for larger molecules. The chasm between these worlds 

is the realm of semiclassical theories. In the theory presented here we are essentially 

trying to develop a form of classical molecular dynamics, motivated by quantum 

mechanics, which expresses quantum effects when they are important and ignores 

them when they are not. 

The semiclassical (SC) initial value representation102,103 (IVR) is undergoing a 

re-birth of interest as a practical way for including quantum interference and tunnel

ing effects into classical molecular dynamics simulations46-u7 . The primary difference 

in the recent IVR approaches from the originalversion is that they are now imple

mented in the cartesian coordinate (or coherent state) representation rather than in 

action-angle variables, and this is more general, better behaved numerically, and also 

typically more accurate. The number of successful applications in recent years gives 

one confidence that the SC-IVR does indeed provide a good description of quantum ef

fects for a wide range of molecular phenomena (including electronically non-adiabatic 

processes64,67 ). 

Applications of the SC-IVR approach to date, however, have mostly dealt with 
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molecular systems of a relatively few degrees of freedom because of the oscillatory 

nature of the integrand in the phase space average over initial conditions of classical 

trajectories. Applications that have included larger numbers of degrees of freedom 

have almost always done so with harmonic bath modes which have a particularly 

smooth semiclassical structure. Finding methods to cope with the fundamentally 

oscillatory nature of the integrand is very active area of research114- 119 . In this spirit, 

after the general theory is presented, we will present two. methods of taming the 

SC-IVR integrand. 

A linearization approximation63•64 to the SC-IVR has been considered which sim

plifies this oscillatory structure of the IVR integrand. This linearized SC-IVR (LSC

IVR) has been seen to be capable of describing quantum effects correctly in the short 

time regime (time ::; nj3) of thermal reactive flux correlations functions, but not the 

longer time behavior. 

We also present the Forward-Backward version (FB-IVR) of the SC-IVR. The goal 

of the FB-IVR is to again simplify the oscillatory structure of the IVR integrand, but 

through a distinctly different approximation. 

4.2 Theoretical Development 

As a starting point for our examination of semiclassical dynamics consider the 

time evolved overlap, 

(4.1) 

which provides a transition amplitude which between two states. Expanding this 

expression in the position coordinate variables q 0 and qt gives, 

( 4.2) 

The Feynmann path integral interpretation of the quantity (qtle-itfl1ilq0 ) is that 

of summing all possible paths between q0 and qt weighted by the complex phase, 

eiS/1i, where S is an action quantity associated with the path. 
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Van Vleck developed a useful approximation121 to this quantity by completing a 

stationary phase integration of the path integral. The resulting expression consists 

of a sum over paths which are restricted to follow classical paths. The Van Vleck 

version of Equation( 4.1) is given by, 

where the sum extends over all classical paths between q 0 and qt , roots of S'. 

The dimensionality of coordinate space is F. The classical action is given by, 

(4.4) 

The Van Vleck expression is problematic as it requires the determination of the 

classical paths between two specified points in fixed time. In general there are multiple 

paths since we are free to choose a variety of initial momenta. This root search is a two 

point boundary value problem and for chaotic systems the determination of all such 

paths proves quite difficult. To make things worse the denominator in Equation( 4.3) 

can be singular. 

The initial value representation (IVR) is born out of doing away with the root 

search by recognizing the factor, l8qtf8q0 l as the Jacobian for a transformation be

tween qt, q0 and p 0 , q0 . After making this change of coordinates Equation(4.1) be-

comes, 

This IVR, sometimes called the primitive IVR, is a great improvement over Equation( 4.3). 

Since it is an initial value problem there is no longer a root search problem. What's 

more the denominator is no longer singular. The new factor v, the Maslov index, is 

an integer which ensures that the integrand is continuous and is easily computed. 

The above derivation of Equation( 4.5) was done in the position coordinate rep

resentation. A similar derivation holds true in the momentum representation. And 
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interesting balance of the two is the derivation of an IVR in the coherent state rep

resentation, which interpolates between the previous two. The applications here use 

the Herman-Kluk51,52 , or coherent state version of the SC-IVR, which expresses a 

quantum time evolution operator as, 

where (p0 , q0 ) are initial conditions of the coordinates and momenta for classical 

trajectories. Pt(Po, q0 ; t), qt(Po, q0 ; t) are the momenta and coordinates at time t 

that evolve from these initial conditions, and St is the classical action integral along 

the trajectory. The pre-factor Ct involves the monodromy matrix elements, 

(4.7) 

The bra and ket states in Equation( 4.6) are coherent states, the coordinate space 

wave functions of which are of the form 

(4.8) 

and F is again the number of degrees of freedom of the molecular system. Coherent 

states have the property of being analogous to classical phase space points centered 

at p 0 , q0 but with a distribution about this center which is appropriate for quantum 

mechanics. 

For many systems it seem that the integrand of the Herman-Kluk propagator 

is less oscillatory than that of the Equation(4.5). The smoother integrand makes 

Equation( 4.6) the best starting place for many semiclassical calculations. 
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Chapter 5 

Semiclassical Molecular Energy 

Transfer 

5.1 Introduction 

In this chapter we will apply the methods just discussed to the determination of 

energy-transfer between molecules in a collision. We do not consider reactive collisions · 

though there has been some work108•115 in this direction. 

Calculations are carried out for the well known colinear He+ H2(vi) ~ He+ 

H 2 (vJ) problem studied by Secrest and Johnson68 . This example provides a good 

testbed for semiclassical approximations to quantum mechanics since we know that 

quantum interference plays an important role in the inelastic scattering product state 

distribution. 

5.2 LSC-IVR for the S-matrix 

Here we will present a test of the SC-IVR approach, and especially the LSC-IVR, 

on a problem which has well-understood quantum interference features. This is the 

well-studied102•103•68- 70 model of inelastic scattering for which Secrest and Johnson68 

carried out coupled channel quantum calculations many years ago, the colinear He+ 

H2 (vi) ~ He+ H2 (v1) problem . This was the first example to which "classical 
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S-matrix" theory was applied102 in 1970, showing prominent interference features in 

the distribution of final vibrational states due to interference between two classical 

trajectories that typically contribute to each transition probability. Here we wish first 

to verify that the full SC-IVR treatment is able to describe this well (as it does), and 

primarily to see how much error is introduced by its linearized approximation. 

As noted before66 , the LA results in classical propagation and overlap of Wigner 

distribution functions, a result given by a variety of other formulations and approximations71- 73 . 

In the present application it is very close, though not completely identical, to a model 

Lee and Scully74 put forth some years ago and tested on this very same example. 

Comparison to the Lee and Scully version of the approximation will thus also be 

presented. 

We consider a multichannel scattering problem characterized by a Hamiltonian of 

the form, 

p2 
H(P, R, p, r) = - + h(p,r) + V(R, r) 

2~-t 
(5.1) 

where (P, R) are the momentum and coordinate for the relative translation of the 

two collision partners, and (p, r) are the momenta and coordinates of the internal 

degrees of freedom. A rigorous quantum expression for the S-matrix in terms of the 

time evolution operator (propagator) is75 

S2,1(E) = -n~ e-i(k1Rl+k2R2) r)Q dteitEf1i(R2¢2ie-itHf1iiRI¢JI) (5.2) 
f-£ lo 

where E is the total energy, nkn, n = 1, 2 are the initial and final translational mo-

menta, 

(5.3) 

and En and ¢n(r), n 1, 2 are the eigenvalues and eigenfunctions of the internal 

Hamiltonian h(p, r); the limit R1, R2 -+ oo is implied in Equation(5.2), but these 

values only have to be so large that the interaction potential V(R, r) is negligible. 
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The coordinate space (or Van Vleck) IVR approximates the propagator as a phase 

space average over initial conditions for classical trajectories, 

where (p, q) denote all F degrees of freedom of the complete system ( i. e., q = ( R, r), 

etc.), qt(Po, q0) is the coordinate at timet that evolves along the classical trajectory 

with initial conditions (p0 , q0), and St is the action along it, 

rt , 
St(Po, Qo) = lo dt (p · q- H). (5.4b) 

Using the SC-IVR for the propagator, Equation(5.4a), in Equation(5.2) for the S

matrix thus gives 

S2,1(E) = ~h {k:k;e-i(ktRt+k2R2 ) fooo dt j dp0 j dro j dPo j dRo(5.5) 

..---------

1:~:',~}) I /(27rih)F eiEtf1ieiSt(Po,ro,Po,Ro)/1i8(Rt- R2)¢2(rt)*¢JI(ro)8(Ro- R1), 

and the two delta functions in the integrand allow the integrals over R0 and t to be 

evaluated, so that the final SC-IVR result for the S-matrix is 

S2,1(E) = -e-i(ktRt+k2 R 2
) j dp0 j dr0 j dP0 1:(~:,,~)) I /(27rih)F (5.6) 

ei[Et+St(Po,ro,Po,Ro)]/1i¢2(rt)* ¢I (ro)hjk;k;/ Pt 

(The factor of 1/ Pt arises from J dt8(Rt-R2 ) = 1/ Rt-) The trajectories in Equation(5.6) 

begin with initial conditions r 0 , p0 , P0 ,and R0 = R1 (an arbitrary fixed, large value), 

and terminate when Rt = R2 (an arbitrary fixed, large value), this latter relation 

being what determines the value oft in the integrand of Equation(5.6). 

Equation(5.6) is what we have used to compute the SC-IVR transition probabili

ties, 
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(5.7) 

discussed below in Section 5.3. We also carried out calculations using the Herman

Kluk coherent state version51•52 of the IVR and obtained essentially identical results. 

The linearized approximation (LSC-IVR) is obtained by explicitly squaring the SC

IVR S-matrix of Equation(5.6) to obtain the transition probability via Equation(5.7), 

giving an expression of the form, 

P2,1 (E) =I dr0 I dpo I dPo I dr~ I dp~ I dP~{. . . } (5.8) 

ei[Et+St(po,qo,Po,Ro)-Et
1 
-St1 (p~,q~,P~,R~)]J1i 

The LSC-IVR corresponds to expanding the difference of the action integrals in the 

integrand of Equation(5.8) to linear order in (r0 -r~), etc., with the corresponding ap

proximation for the pre-exponential Jacobian factors . The details of this calculation 

have been given before66 , and one obtains the following 

LSC-IVR( ) ( )-(F-1) I I 1i
2 
klk2 ( )* ( ) P2,1 E = 27rh dpo dro IPoPtl P2 rt, Pt P1 ro, Po , (5.9a) 

where again Ro = R1 and Rt = R2 determines t, and the initial translational momen-

tum is given by, 

(5.9b) 

{Pn}, n = 1, 2 in Equation(5.9a) are the Wigner distribution functions for the initial 

and final internal states 

I 1 • I /n 1 1 1 I 

Pn(r, p) = dr e-zp·r </>n(r + 2r )</>n(r- 2r )* (5.9c) 

Finally, as noted before66 , the LSC-IVR expression in Equation(5.9a) is very sim

ilar to one put forth many years ago by Lee and Scully74 (LS) and tested on the 

-.A 

I 
'·,· 
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same system we treat presently, the only difference being that LS take the initial 

momentum to be the quantum value, 

(5.10) 

rather than the value in Equation(5.9b) that is determined by total energy conser

vation and the initial conditions of the internal degrees of freedom. The transition 

probability given by the LSC-IVR procedure is microscopically reversible, i.e., 

pLSC-IVR _ pLSC-IVR 
2,1 - 1,2 (5.11) 

while that given in the LS prescription is not. Nevertheless, it will be seen that even 

though the LSC-IVR result, Equation(5.9b), is on sounder theoretical ground, the LS 

version, i.e., with Equation(5.10) replacing Equation(5.9b), gives better numerical 

results for the present example (though neither the LS or LSC-IVR versions are 

nearly as accurate as the full SC-IVR results based on Equation(5.6)). 

The Secrest-Johnson68 model of co linear A+ BC (vi) -+ A+ BC ( v f) vibrationally 

inelastic scattering corresponds to the Hamiltonian of Equation(5.1) for one internal 

degree of freedom, a harmonic oscillator, for which 

p2 
H(P, R,p, r) = 

2
/l + h(p, r) + V(R, r) (5.12a) 

and with the following internal Hamlitonian and interaction potential, 

(5.12b) 

V(R, r) = ea(r-R). (5.12c) 
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Figure 5.1: The Secrest-Johnson surface for inelastic scattering. 

In the reduced units used by Secrest and Johnson, m = 1, w = 1, a= 0.3, and J.L = 2/3 

for the He+ H2 system. The Secrest-Johnson potential energy surface is shown in 

Figure (5.1). 

Figures 5.2 and 5.3 show the comparison of the exact quantum results for the vibra

tional transition probabilities Pv1,v; (E) and the SC-IVR results given by Equation(5.6), 

for two different total energies. One sees that the SC-IVR results agree extremely well 

with the correct QM values in all cases. The interference structure in Pv1,v; versus VJ 

-i.e., the product state distribution- is well understood from the earlier classical 

S-matrix treatment102 of this system as arising from the interference of two classical 

trajectories that emerge from the stationary phase approximation to the IVR integral 

over initial conditions. 

For the present application the SCI-IVR expression [Equation(5.6)] involves only 

a three dimensional integration, which was evaluated by a quasi-random space filling 

' ' 
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Figure 5.2: Vibrational transition probabilities as a function of final vibrational quan
tum number v1, for several initial vibrational states Vi, and total energy E = 8. The 
solid lines connect the exact quantum values, and the dashed lines are those given by 
the SC-IVR, Equation(5.6). 
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Figure 5.3: Vibrational transition probabilities as a function of final vibrational quan
tum number v1, for several initial vibrational states vi, and total energy E = 12. The 
solid lines connect the exact quantum values, and the dashed lines are those given by 
the SC-IVR, Equation(5.6). 
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Figure 5.4: Vibrational transition probabilities as a function of final vibrational quan
tum number v1, for several initial vibrational states Vi, and total energy E = 8. The 
dotted lines connect the values given by the linearized approximation (LSC-IVR) to 
the SC-IVR, Equation(5.9a), and the dashed lines those of the Lee-Scully (LS) version 
of the LSC-IVR, Equation(5.10). 
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Figure 5.5: Vibrational transition probabilities as a function of final vibrational quan
tum number v1, for several initial vibrational states vi, and total energy E = 12. The 
dotted lines connect the values given by the linearized approximation (LSC-IVR) to 
the SC-IVR, Equation(5.9a), and the dashed lines those of the Lee-Scully (LS) version 
of the LSC-IVR, Equation(5.10). 
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method76
. Since the integration points are independent of the initial and final states 

(and the energy), one can evaluate the entire matrix of transition probabilities for 

all energies with one batch of classical trajectories. It required ~ 104 - 105 classical 

trajectories to obtain convergence in the transition probabilities. For higher dimen

sional problems one will typically wish to use Monte Carlo methods to perform the 

integration over initial conditions, with filtering methods to smooth the oscillatory 

integrand, and importance sampling that may depend on the initial and final states. 

Figures 5.4 and 5.5 show the same quantum results but compared here to the 

linearized approximation (LSC-IVR) of Equation(5.9a). One sees that the LSC-IVR 

results are in reasonable agreement on the average, but they do not describe the 

quantum interference structure very accurately. The original Lee-Scully version of 

this approximation, using Equation(5.10) rather than Equation(5.9b), is seen to do 

somewhat better than the more theoretically justifiable version, a result hard to· 

rationalize. 

For state-to-state transitions such as these, the LSC-IVR actually represents only 

a minor savings in effort compared to the full SC-IVR approach; i.e. Equation(5.6) 

shows that the full IVR calculation requires a 2F -1 dimensional integral and the LSC

IVR of Equation(5.9a) reduces this only to a 2F- 2 dimensional integral. The LSC

IVR has the simplifying feature, however, of not requiring elements of the monodromy 

matrix (the pre-exponential Jacobian factor in Equation(5.4a)), though it requires the 

additional effort of calculating the Wigner transforms of the initial and final states 

rather than needing only their wavefunctions. At the full state-to-state description 

there is thus little point in not carrying out the full SC-IVR calculation, especially 

given the fact that it is more accurate. This conclusion applies only for state-to-state 

processes, however; the LSC-IVR leads to a much simpler approach than the full 

SC-IVR treatment for the calculation of time correlation functions. 

5.4 LSC-IVR Results 

The purpose of this calculation has been two-fold, first to verify that the current 

version of the semiclassical initial value representation is able to provide a good de-
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scription of quantum effects in this well-studied benchmark for inelastic scattering, 

and second to test the degree oferror introduced by using the linearized approximation 

(LSC-IVR) to the SC-IVR. The first goal is clearly met, i.e., the SC-IVR describes 

the quantum structure in the vibrational transition probabilities quite accurately. 

Secondly, the LSC-IVR describes the average value of the transition probability fairly 

well, but the interference features much less so . 

. This behavior of the LSC-IVR is consistent with our earlier experiences with it. 

For the collinear H + H2 --+ H2 + H reaction, for example, it described66 the aver

age energy dependence of the reaction probability quite well, but not the resonance 

structure, which arises semiclassically from the interference of different reactive tra

jectories. Similarly, in using the LSC-IVR for reactive flux correlation functions63•
66 it 

was seen to describe quantum effects well in the short time regime, but the longer time 

dynamics was essentially that given by classical mechanics. A quantitative descrip

tion of the quantum interference/coherence structure thus requires the full SC-IVR 

approach. This gives one further incentive to develop methods that will make such 

calculations more efficient. In this regard, we note that the recently suggested77
•90 

"forward-backward" algorithm shows considerable promise, at least for time corre

lation functions. On the other hand, for applications where interference/coherence 

features are unimportant (i.e., expected to be averaged out), the LSC-IVR provides 

a very useful and much simpler approach. 

Finally, although the expressions in Section 5.2 were written explicitly for non-, 
reactive scattering, it should be clear from general semiclassical theory75 that Equation(5.6) 

applies to reactive scattering essentially as written; the only modification is that in 

the final wavefunction, exp( -ik2R2)¢2(r2), the coordinates (R2, r 2) are the Jacobi 

coordinates for the final (product) arrangement of atoms rather than those of the 

initial (reactant) arrangement. 

5.5 Molecular Energy Transfer via FB-IVR 

Molecular energy transfer (i.e., inelastic scattering) is a critical component of 

many processes in chemical kinetics. In the Lindemann model of unimolecular de-
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composition (or recombination), for example79•80 , it is the energy transfer step, 

(5.13) 

that excites molecule A (via collision with bath molecules B) to a metastable state 

that undergoes decomposition (or de-excites a metastable state to a stable one after 

recombination). 

In most applications one is not interested in the detailed state-to-state inelastic' 

scattering probability (or cross section), but rather the average probability (or cross 

section) for molecule A to transfer a given amount of internal energy per collision, 

P(~EA), ~EA = Ef - Ef where Ef (Ej) is the initial (final) internal energy of 

molecule A. Very often79 one simply assumes a functional form for this probability, 

e.g., 

or 

\ (5.14a) 

(5.14b) 

and though experiments81 have shown that these assumptions are often qualita

tively reasonable, there can be significant departures. (We also note an interesting 

debate82•83 about the existence and significance of a long tail to the energy transfer 

probability, so-called 'super collisions'). There has also been important work recently 

in more rigorous theoretical calculation of energy transfer probabilities, using both 

classical trajectory and quantum ~echanical approaches84- 87 • 
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Here we show how the recently introduced forward-backward (FB) version of the 

semiclassical (SC) initial value representation (IVRf7,ss-go can be used to calculate 

the energy transfer probability (or cross section). Specifically, the energy transfer 

probability (or cross section) is expressed as the Fourier transform of a time correlation 

function, 

(5.15) 

where Ci(t) is given by a single phase space average over the initial conditions of the 

A+ B collision system. 

One should note earlier work by Micha91- 98 et al. and by Heller99- 101 et al. us

ing time correlation functions to describe inelastic scattering. The present work is 

closest in spirit to that of Heller, Reimers, and Drolshagen99 on neutron scattering, 

though the quantities involved are clearly different, and these authors used the frozen 

Gaussian approximation to semiclassical theory. 

The semiclassical (SC) initial value representation (IVR) that we presently adapt 

to molecular energy transfer was first developed and applied in action angle variables102,103 , 

and has recently been the focus of renewed interest as a method for including quantum 

mechanical effects in molecular dynamics 77,88,89,46- 59,104- 114,67 . Recently the SC-IVR 

has been extended and applied in novel ways with the aim of making large scale 

quantum molecular dynamics simulations more practical. Among the new IVR ap

proaches are the Herman-Kluk51,52 (HK), linearized semiclassical110,113 (LSC), and 

forward-backward77,88- 90 (FB) IVRs. Given the recently developed variations on the 

IVR approach, it is useful to determine which and to what extent these approxima

tions preserve important quantum mechanical effects such as tunneling and coherence. 

Comparison with state specific quantum mechanical results provides a particularly 

rigorous test of these semiclassical methods. 

In previous sections of this work we showed that state-to-state energy transfer in 

the Secrest-Johnson (SJ) model of inelastic scattering is accurately described by the 

full SC-IVR , while the LSC-IVR gives only a qualitative description of the quantum 

interference. Now we examine the FB-IVR treatment of molecular energy transfer. 
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5.5.1 Probability Distribution of Molecular Energy Transfer 

We consider the inelastic bimolecular collision of molecule A with (bath) molecule 

B, 

(5.16) 

which is governed by a total Hamiltonian of the form, 

(5.17) 

where hA ( h8 ) is the Hamiltonian for molecule A(B), and P is the 3d momentum 

operator for relative translation of A and B. 

The classical momenta and coordinates for molecule A, molecule B and their·· 

relative translation are (PA, qA), (p8 , q8 ), (P, R), respectively, and p- (PA, Ps, P), 

q ( qA, q8 , R) denote all the F coordinates and momenta. The interaction potential 

V ( q) involves all the coordinates and is thus responsible for the collisional energy· 

transfer. 

The initial wave function (at timet= 0) corresponding to Equation(5.16) is 

hAi<l>i) = Efl</>i) 

hslxi) = Eflxi), 

(5.18) 

(5.19a) 

(5.19b) 

and the translational wave function is a coherent state (c.f., Equation(4.8)) with IRI 
large enough that A and B are non-interacting. The time-evolved wave function is 

given by, 
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11/J(t)) = e-iiltf1ii1/J(O)) (5.20) 

so that the probability for molecule A to experience an energy transfer of L~.EA = 

E A EA. . b 
i' - i IS given y 

(5.21) 

The long time, t-+ oo, entails a complete A+ B collision, and Equation(5.21) also 

includes a Boltzmann average over initial states of the bath molecule B, QB being its 

partition function, 

(5.22) 

By using the Fourier representation of the delta function in Equation(5.21), 

(5.23) 

one obtains Pi(fl.EA) as the Fourier transformation of a time correlation function, 

(5.24a) 

where the correlation function is 

Ci(t) =Jim Q[/ L 
t--+oo . 

J 

( </JixjP iR ie-.BhB eihAtf1ieiiltf1ie-ihAtf1ie-iiltf1i I </JixjP iR), (5.24b) 

and the facts have been used that I</Ji) and lxj) are eigenstates of hA and hB, respec

tively (c.f., Equation(5.19a)). 

At this point the forward-backward version of the SC-IVR is used for the prod

uct of time evolution operators in Equation(5.24b); they are all combined into one 

semiclassical step, given by the IVR of Equation(4.6), 
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eihA t/1i eiflt/1i e -ihA t/1i e -iflt/1i = (5.25) 

(2n1i)-F J dpo j dqoCo(Po, Qo)eiSo(po,qo)/lilp~, q~) (po, Qol· 

The classical trajectory involved in the RHS of Equation(5.25) begins at time 0 with 

initial conditions (p0 , q0), evolves via the total classical Hamiltonian H until time t, 
then to timet+ t via the Hamiltonian hA -i.e., free motion of molecule A with the 

degrees of freedom of molecule B 'frozen' - then backwards in time to t via the total 

Hamiltonian H, and finally back to time 0 via the Hamiltonian hA. (p~, q~) are the 

final values from this trajectory which one may represent schematically as, 

0 ~ t ~ t + t ~ t hA) 0. (5.26) 

The coordinates and momenta are all continuous at the various 'break times'; only 

the Hamiltonian is changed. The classical action S0 and the pre-factor C0 are given 

by, 

So= It dt' (p · q- H)+ If+t dt' (p · q- hA) 

f!+t dt' (p · q- H)+ It0 dt' (p · q- hA) 

~~ -11 (aq~ av~ : ~ aq~ i av~) 11;
2 

vo-- -+--'l"fn-+---
2 8qo 8po 8po 'Y n 8qo 

(5.27a) 

(5.27b) 

Since the coherent states in Equation(5.25) have a direct product form, e.g., 

IPo, Qo) = IP~, q~) IP~, q~) IPo, Ro), (5.28) 

and similarly for IP~, q~), the time correlation function of Equation(5.24b) becomes 

Ci(t) = Q[/(27rn)-F I dpo I dqo Co(Po, Qo)eiSo(Po,qo)/li (5.29) 

(p~q~ ie-t3hB IP~Bq~B) (p~q~l¢i) (¢i IP~Aq~A) (PoRoiPi~) (Pi~ IP~R~), 
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with the limit tlarge. 

Equation(5.29) is the basic theoretical result of FB-IVR for molecular energy 

transfer. It gives the correlation function (and the energy transfer probability via its 

Fourier transform, Equation(5.24a)) as a single phase space average over the initial 

conditions of classical trajectories that run forward and then backward as indicated 

via Equation(5.26). A significant advantage of the FB-IVR, beyond the reduction of 

the number of phase space integrals, is that the forward and backward contributions 
\ 

to S0 in Equation(5.27a) should approximately cancel one another for small t and for 

molecular degrees of freedom which are weakly coupled. This cancelation leads a less 

oscillatory integrand. It would be most natural to evaluate this phase space average 

via Monte Carlo, with a sampling function corresponding to the t = 0 value of this 

integrand; since (p~, q~) = (p0 , q0 ) for t = 0- i.e., the backwards trajectory of 

Equation(5.26) exactly re-traces the forward trajectory·- this Monte Carlo sampling 

function is 

(5.30) 

which is recognized as the Husimi distribution120 for tlie initial state and is therefore 

a most reasonable choice. Also, in many cases one expects only short values of the 

timet to be necessary to obtain Pi(f).EA); e.g., if the energy transfer probability were 

of the Gaussian form as in Equation(5.14b), then the correlation function would also 

be Gaussian, 

(5.31) 

In three dimensional collision systems one is actually interested in the cross sec

tion, which can be obtained from the probability Pi(f).EA) in the usual way. One can 

without restriction choose the translational momentum vector Pi as the z-axis 

(5.32a) 
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and then parametrize the initial translational coordinate via an impact parameter b, 

and azimuthal angle ¢J 

~ = (bcos¢J, bsin¢J, -J R'!nax - b2 ) (5.32b) 

where Rmax is a value large enough for A and B to be non-interacting. The cross 

section for molecular energy transfer !1EA is then given by the angle and impact 

parameter average of the probability 

(5.33) 

(The average can be carried out on the correlation function Ci(t) itself, so that 

ai(!1EA) is then given by the Fourier transform of this impact parameter averaged 

time correlation function.) If one furthermore averages over a Boltzmann distribution 

of translational energies, one obtains a rate constant for energy transfer, 

ki(!1EA)- (~ai(!1EA)) (5.34) 

( S~T)l/2 rood(.!&) .!&e-Et/~T a·(f1E ) 
7rJ.t JO ~T ~T z A 

where Et = P[ /2JL 

Finally, we note the simplifications that occur if the bath gas B is atomic, i.e., has 

no internal degrees of freedom. The coordinates (pB, QB) do not enter, the Hamilto

nian hB --+ 0, and the factors in Equation(5.29) involving these degrees of freedom 

become unity, i.e., 

(5.35) 

5.5.2 Translation Energy Distribution 

In some applications one may be more interested in the energy gained (or lost) 

from the translational degrees of freedom than from the internal degrees of freedom 
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of molecule A. This is most common if molecule A is an atom; the bath species B 

may be a molecule or even a more complex substrate, e.g., a solid or surface or a 

molecular cluster. In this case one is interested in the probability distribution of the 

translational energy after atom A collides with the molecule (or substrate) B, and 

the appropriate modification of Equation(5.21) is 

e-/3Ef p2 p2 
Ptr(t1E) =Jim L -Q (7j;(t)I8(!:1E + -~ - -

2 
)17f;(t)). (5.36) 

t--t oo j B 2 J.L J.L 

Here the initial state is 

(5.37) 

since atom A has no internal degrees of freedom. Proceeding in a similar manner as 

from Equation(5.21) to Equation(5.29) gives an analogous result, 

P, (t1E) = _1_ joo dt eil:!..Etfnc (t) tr 2 t; tr 
1fn -oo. 

with the correlation function given by 

Ctr(t) = Q[/(27rn)-F I dpo I dqo Co(Po, qo)eiSo(po,qo)/1i 

(p~q~ le-f3hB IP~Bq~B) (PoRoiPi~) (Pi~IP~R~). 

Here the forward-backward trajectory is that indicated schematically by, 

H p2/2 H p2/2 
0--+t ~t+t--+t ~0 ' 

(5.38a) 

(5.38b) 

(5.39) 

i.e., in the t --+ t + t and t --+ 0 time intervals the propagation is generated by the 

Hamiltonian P 2 /2J.1, , i.e., free particle evolution of the translation degree of freedom 

with the internal degrees of freedom of B 'frozen'. The full Hamiltonian H governs 

the trajectory during the time intervals 0 ---t t and t+t ---t t. The forward-backward 

action integral is thus given by, 
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So= It dt' (p · q- H)+ E-t (5.40) 

t , ( ) p2 ft+t dt p · q - H - ~ t 

and the pre-factor C0 (p0 , q 0) has the same form as before. 

We apply the formalism developed above to the well studied Secrest-Johnson68 

model of vibrationally inelastic scattering. The Hamiltonian for the collision system 

is 

p2 
H(P, R,p, q) = -

2 
+ hA(P, q) + V(R, q), 

1-£ . 
(5.41) 

where (p, q) and (P, R) are the vibrational and translational respectively. The internal 

Hamlitonian and interaction potential are, 

(5.42a) 

V(R, q) = ea(q-R), (5.42b) 

and h8 = 0 since He has no internal degrees of freedom. In the reduced units used 

by Secrest and Johnson, m = 1, w = 1, a = 0.3, and 1-£ = 2/3 for the He+ H2 

system. Written in this way, we are considering the molecular system H2 (molecule A 

in the previous section) to exchange energy via collision with the Helium bath system 

(molecule B). 

The initial state of the total system is 

(5.43a) 
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with 

(5.43b) 

We calculate the energy transfer distribution Pi(D..EA) for a fi~ed total energy. This 

microcanonical calculation, as opposed to the thermal formalism developed in the 

previous section, allows us to compare our results to previous SC-IVR and quantum 

state-resolved work. The extension to a Boltzmann distribution of kinetic energies 

( c.f., Equation(5.29)) is straightforward. For fixed total energy, E, the energy transfer 

distribution Pi(D..EA) is given by 

Pi(D.EA) = /_: dt eit::.EAt/nci(t), 

where the correlation function is given by Equation(5.29) (with hs- 0), 

Ci(t) = (27rn)-2 I dpo dqo I dPo dRo Co(Po, qo)eiSo(Po,qo)/1i 

(p~qb I cPi) ( cPi IPoQo) (P~R~ I Pi~) (Pi~ I PoRo) 

(5.44) 

(5.45) 

The total energy E = Pl /2!-£ + (vi+ 1/2)1iw is well defined if the initial coherent state 

I Pi,~) is sufficiently broad that it approximates a plane wave. We choose "/R = 0.2 

and~ = 80 to ensure that this is so ( ((D.Pi) 2
) = 0.1). "/q is chosen to be the natural 

width for the oscillator coordinate mw jn. The phase space average of over initial 

conditions is evaluated by Monte Carlo using the Sobol deterministic space filling 

sequence76 . (p~, qb, P~, R~) are the final coordinates and momenta resulting from the 

forward-backward trajectory indicated by Equation(5.26), and the monodromy ma

trix elements necessary for construction of the prefactor Co (Po, q0 ) ( c.f. Equation ( 4. 7)) 

were computed by integration of the auxiliary equations of motion as usual(51 ). 

5. 7 FB-IVR Results 

Figure 5.6 shows the time correlation function given by the FB-IVR procedure, 

i.e., Equation(5.45), and also the exact quantum (QM) result, 

c9 M (t) = ""' P. . . (E) e -iw( Vj -v; )t 
t ~ ~~· ' 

(5.46) 
j 
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Figure 5.6: A comparison of the exact quantum correlation function (dotted line) and 
' the semiclassical one (solid line) computed using Equation(5.45). 

where { Pvi ,vJ are the QM transition probabilities for the vi --+ Vj inelastic transition. 

The correlation functions show much more structure than the simple behavior sug

gested in Equation(5.31), this being due to the widely spaced vibrational energy levels 

of H2 (molecule A in this example). The vibrational levels in a highly excited poly- · 

atomic molecule will typically form a near continuum and thus considerably quench 

this pronounced oscillatory structure. The present example is thus a severe test of 

the extent to which the FB-IVR model can describe quantum coherence effects in 

molecular energy transfer. 

There is reasonable agreement between the FB-IVR and QM correlation functions 

in Figure 5.6, but the more important comparison is their Fourier transforms, z.e., 

Pi(tlEA)· 

Figure 5.7 shows the FB-IVR result for Pt,(tlEA) for several initial states and total 
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energies, and the exact QM result is given by 

piQM (~EA) = L Pvj,Vi(E)6(~EA- nw(vj- Vi)) 
j 

(5.47) 

The peaks in Figure 5. 7 have finite width because of the finite energy spread in the 

initial translational coherent state 1~, ~) and also because of the finite time used in 

computing the Fourier transform of Ci(t). Here, too, the quantized structure of the 

H 2 vibrational states dominates the picture; for a polyatomic molecule A one would 

have a dense set of peaks (essentially overlapping) and thus expect to see results 

for Pi(~EA) closer to the qualitative form of Equation(5.14). Again, this highly 

quantized nature of the H2 vibrational states provides a good test of how well the 

FB-IVR approach can describe such quantum effects. 

The most definite comparison of the FB-IVR and QM results is achieved by inte

grating to obtain the area under the peaks in Figure 5.7 and identifying these with 

the individual quantum transition probabilities { Pvi ,vJ. This comparison is shown in 

Figure 5.10. The oscillatory structure in {Pvi,vJ versus Vj -i.e., the product state 

distribution- is well-understood from the earlier classical S-matrix treatment102 of 

this system as arising from the interference of two classical trajectories that emerge 

from the stationary phase approximation to the IVR integral over initial conditions. 

Our previous IVR study of this system has shown111 that a the full HK-IVR treat

ment accurately describes this interference structure. Here we see that the FB-IVR 

approach also gives reasonably good results, though somewhat less accurate than the 

full HK-IVR treatment. 

We also carried out the calculation of Pi(~EA) treating the He atom as the 

molecular system and H2 as the 'substrate', i.e. using the formulation in Section 5.5.1. 

The results are essentially the same as the above FB-IVR, though it is more efficient 

to treat H 2 as the molecular system since it requires shorter trajectories. 

The Monte Carlo evaluation of Equation(5.45) for a particular value oft requires a 

rather modest 5000 trajectories for convergence. However the present method requires 

a distinct trajectory for each time point in the correlation function, so the overall 

computational effort is comparable to a full HK-IVR calculation. For larger systems 

with more modes for energy transfer we expect the correlation function to die off 
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more rapidly and the spectrum to be broadened more than in the present highly 

coherent example. For systems which less oscillatory correlation functions we expect 

the FB-IVR to be even more efficient. 

The purpose of this section has been to show how the forward-backward version of 

the semiclassical IVR can be used to obtain molecular energy transfer probabilities, 

and to provide a numerical test to see how well it can describe the quantum effects 

therein. We find that the FB-IVR gives reasonably accurate results for the Secrest

Johson model of inelastic scattering. For larger molecular systems it should be even 

more efficient (compared to a full state-to-state calculation) since the high vibrational 

state density should cause the time correlation function to decay more rapidly. 

5.8 FB-IVR for Larger Systems 

In some applications involving large molecules A one is interested not in the de

pendence of the energy transfer probability on the individual initial state of molecule 

A, but rather only its dependence on the initial internal energy of molecule A. If 

E denotes the initial internal energy of molecule A, and E' its final internal energy 

(i.e., ~EA = E'- E), then this quantity- usually denoted P(E' +---E)- is given 

by averaging Pi(~EA) over a microcanonical distribution of initial states all having 

energy E, 

P(E' +---E)= L 8(E- Ef)Pi(E'- E)/ PA(E), (5.48) 
i 

where PA(E) = 'Ei 8(E- Ef) is the microcanonical density of states of molecule A. 

Using Equation(5.29) for Pi(E'- E) _ Pi(~EA) thus gives, 

P(E' +---E)= 1 L8(E- Ef) r)O dt' ei(E'-E)t'fn 
QBPA(E) i }_oo 

(</JiXjp i, ~~e-.BhB eihAt' fneifllfne-ihAt' fne-iHtfni</JiXjpi~). (5.49) 

Proceeding as before, one can use the Fourier representation of the delta function 

in Equation(5.23), so that this 'energy-to-energy' transition probability is given by a 
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two-dimensional Fourier transform, 

P(E' +--E)= (27rnt2 
/_: dt i: dt'ei(E't'-Et)fnC(t, t') (5.50) 

with the two time correlation function given by 

C(t', t) = QBp~(E) tr (!Pi~)(Pi~!e-f3hBeihAtfneiiltfne-ihAt'fne-iiltfn), (5.51) 

with t large. 

The FB-IVR treatment of this two dimensional correlation function leads to tra

jectories which evolve via the following forward and backward steps, 

0 ~ t hA) t + t 1 ~ t' hA) t' - t. (5.52) 

The FB-IVR evaluation of Equation(5.51) involves only coherent state overlaps and 

thus the energy eigenstates of A need not be calculated. Additionally, we expect 

the practical benefit that for small energy transfers, E'- E, C(t', t) should be small 

except for t ~ t'. 
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Table 5.1: Molecular Energy Transfer Probabilities for H2 (v) +He--+ H2 (v') +He 
(E = 8.0) 

I 

HK-IVR LSC-IVR FB-IVR ExaGt v,v 
0,0 0.2093 0.1967 0.2436 0.1978 
0,1 0.4363 0.4230 0.4269 0.4367 
0,2 0.2732 0.3101 0.2626 0.2905 
0,3 0.0710 0.0748 0.0669 0.0699 
0,4 0.0086 -0.0015 -0.0192 0.0056 
0,5 0.0003 -0.0016 -0.0200 0.0001 
0,6 0.0000 -0.0006 -0.0035 0.0000 
0,7 0.0000 0.0003 -0.0022 0.0000 
1,0 0.4122 0.4217 0.4861 0.4367 
1,1 0.0282 0.0692 0.0497 0.0302 
1,2 0.2323 0.1553 0.1785 0.2237 
1,3 0.2364 0.2910 0.2467 0.2602 
1,4 0.0521 0.0620 0.0871 0.0491· 
1,5 0.0089 -0,0123 0.0014 0.0017 
1,6 0.0007 0.0023 -0.0008 0.0000 
1,7 0.0009 -0.0002 -0.0033 0.0000 
2,0 0.2842 0.2943 0.3433 0.2905 
2,1 0.2138 0.1839 0.1559 0.2237 
2,2 0.0316 0.0890 0.0385 0.0305 
2,3 0.2701 0.1518 0.1998 0.2531 
2,4 0.1837 0.2500 0.1952 0.1889 
2,5 0.0252 -0.0030 0.0665 0.0153 
2,6 0.0027 -0.0007 -0.0015 0.0002 
2,7 0.0016 0.0018 0.0009 0.0000 
3,0 0.0717 0.0734 0.0874 0.0699 
3,1 0.2659 0.2859 0.2641 0.2602 
3,2 0.2746 0.1777 0.1908 0.2531 
3,3 0.0030 0.0290 0.0343 0.0015 
3,4 0.3064 0.2741 0.2689 0.3310 
3,5 0.0823 0.1406 0.1282 0.0849 
3,6 0.0098 -0.0094 0.0261 0.0018 
3,7 0.0013 0.0032 -0.0070 0.0000 
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Table 5.2: Molecular Energy Transfer Probabilities for H2 (v) +He--+ H2 (v') +He 
(E = 12.0) 

I 

HK-IVR LSC-IVR FB-IVR Exact v,v 
0,0 0.0063 0.0097 0.0080 0.0074 
0,1 0.0652 0.0647 0.1002 0.0616 
0,2 0.2031 0.1866 0.2269 0.2002 
0,3 0.3196 0.2996 0.2736 0.3188 
0,4 0.2593 0.2823 0.2286 0.2653 
0,5 0.1076 0.1442 0.1286 0.1170 
0,6 0.0230 0.0231 0.0341 0.0266 
0,7 0.0029 -0.0096 -0.0016 0.0028 
1,0 0.0560 0.0647 0.1061 0.0616 
1,1 0.2383 0.2150 0.2664 0.2372 
1,2 0.2118 0.2286 0.1230 0.2168 
1,3 0.0105 0.0608 0.0138 0.0113 
1,4 0.1170 0.0516 0.1237 0.1156 
1,5 0.2243 0.2022 0.1662 0.2255 
1,6 0.0998 0.1726 0.1310 0.1117 
1,7 0.0188 0.0229 0.0576 0.0202 
2,0 0.1820 0.1863 0.2736 0.2002 
2,1 0.2188 0.2322 0.1472 0.2168 
2,2 0.0066 0.0363 0.0099 0.0059 
2,3 0.1840 0.1096 0.1368 0.1784 
2,4 0.0319 0.1241 0.0233 0.0294 
2,5 0.0972 0.0178 0.1119 0.0987 
2,6 0.2056 0.1627 0.1703 0.1958 
2,7 0.0652 0.1485 0.0878 0.0698 
3,0 . 0.3137 0.3247 0.3663 0.3188 
3,1 0.0096 0.0242 -0.0289 0.0113 
3,2 0.1875 0.1294 0.1419 0.1784 
3,3 0.0064 0.0870 0.0294 0.0047 
3,4 0.1716 0.0582 0.0992 0.1568 
3,5 0.0053 0.1467 0.0438 0.0069 
3,6 0.1674 0.0320 0.0982 0.1506 
3,7 0.1670 0.1594 0.1393 0.1486 
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Chapter 6 

Summary and Conclusions 

This work has developed quantum mechanical and semiclassical methods which 

describe chemical dynamics and bring physically useful quantities within reach of 

calculation. The calculations of we are capable of completing really depend on two 

things. The first is our ability to come up with insightful and efficient expressions for 

the physical quantities of interest. Second are the algorithms and computer equipment 

to carry out the calculations. A lack of the first can be overcome with more of the 

second, but will never keep up with a good dose of both. Here we examine future 

directions for both of these ingredients of chemical physics research. 

The dimensional scaling problem with the direct quantum mechanical methods 

we have discussed can be treated by methods which implement more intelligent, and 

albeit more complicated basis sets. Wavelet124 or multiresolution125 methods provide 

grid methods which place a greater density of basis functions in regions where they 

are needed , i.e., where kinetic energy is large. In our case of H 0 2 the dynamics 

within the collision complex well would benefit from these methodologies. 

Another approach to beating the Nd scaling is the use of time dependent ba

sis sets. Multiconfiguration time dependent Hartree122 (MCTDH) and moving finite 

element123 methods both attempt to put the basis set in the right place at the right 

time. Indeed at the time of this writing preliminary results on a 12 dimensional 

MCTDH thermal rate calculation128 have been reported. Finite element methods are 

commonly accepted as a standard tool for time dependent PDE's in other fields, e.g., 
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computational fluid dynamics. Moving finite element methods span a wide range 

of implementations though their use in chemical reaction dynamics so far has been 

limited. There remains much to explore on these fronts. 

The fundamental remaining problem with the semiclassical methods discussed is 

the oscillatory nature of the integrand. This problem surfaces in many different areas 

of science where Monte Carlo integration methods are implemented and hopefully 

the lessons learned between fields will be mutual. The FB-IVR integrand has been 

shown88 to be much smoother than that of the SC-IVR. Likewise, Filinov smoothing, 

ergodic averaging126•127 , WKB like approximations to the prefactor, and adaptive 

and stratified sampling methods afford some help in this regard. The reason for 

trying to beat the oscillatory integrand problem by means other than brute force 

becomes particularly clear when one considers chaotic motion. Here the oscillations 

in the integrand can become larger than numbers easily represented on a computer. 

Thus we should avoid trying to beat the oscillatory integrand problem by brute force 

and instead pursue IVR approaches which avoid the need for summing an excessive 

number of contributions to reach any result. 

For large systems the Herman Kluk SC-IVR is expected to experience a bottleneck 

in the calculation of the semiclasscal prefactor. The determinant in Equation( 4. 7) is a 

N 3 operation which presents, for large N, a significant computational effort. Approx

imate methods for surmounting this problem include the Log-Derivative integration 

methods and WKB like approximations to the prefactor. 

SC-IVR approaches are a burgeoning research area and there remain many ideas 

yet to be explored on the semiclassical front. 

Two future directions in scientific computing relevant to the present work are 

and distributed and quantum computing. Today the worlds largest supercomputers 

are clusters of workstations with fast network interconnects between nodes. This 

situation is distinctly different from 10 years ago when large vector computers were 

designed specifically for scientific research. Distributed scientific computation holds 

many promises and certainly a few challenges. While the compute power of indi

vidual CPUs increases at eighty percent a year, the aggregate compute power of a 

a cluster is not limited by this growth rate. However, since quantum mechanics is 
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inherently nonlocal, distributed scientific computing would benefit from new methods 

and algorithms which minimize the required communication between nodes. Finally 

quantum computers129 , though not yet implemented, are in theory ideally suited to 

direct quantum mechanical calculation. 

In conclusion, a detailed understanding of the dynamics of molecules is important 

to many areas of the sciences. Bringing quantum mechanics, our best theory, together 

with molecular dynamics, our most readily applied theory, should prove to be both 

an enlightening and tremendously useful endeavor. 
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