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ABSTRACT

The problem of generating light neutrinos within supersymmetric models is discussed. It is shown

that the hierarchy of scales induced by supersymmetry breaking can give rise to suppression

factors of the correct order of magnitude to produce experimentally allowed neutrino spectra.

1 Introduction

Small neutrino masses are usually generated through the seesaw mechanism [1]. Three
superfields N̄α (α = e, µ, τ), singlets with respect to the Standard Model (SM), are added
to the three neutral state components of the three doublets Lα. These fields have a
large mass MR that suppresses the electroweak scale naturally obtained from the Yukawa
operators yN̄N̄LH , for coupling constants yN̄ = O(1), when the neutral component of H
acquires a vacuum expectation value (vev). Three light neutrino eigenstates ν1, ν2, ν3,
with mass ∼ v2/MR are obtained, with very small mixing to the heavy eigenstates n1, n2,
n3, with mass ∼ MR.

This mechanism can be easily implemented in supersymmetric models. In these,
however, given the richness with which they are endowed, it is possible to obtain similar
suppression factors in different ways, when three SM singlet superfields N̄ are added to
the SM particle content. In particular, supersymmetry breaking at some intermediate
scale MX , with the typical hierarchy between the Planck mass MP (≃ 1018 GeV) and
the gravitino mass m3/2, m3/2 ∼ M2

X/MP , or generically between the Planck mass and
a typical soft supersymmetry-breaking mass m̃ (mweak ∼< m̃ ≪ MP , where mweak is the
electroweak scale), may play a crucial role in providing alternative mechanisms for gen-
erating small neutrino masses [2, 3, 4]. Moreover, even keeping the seesaw mechanism
unaltered, supersymmetry breaking may still be advocated to explain the lightness of an
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additional light sterile neutrino, if a fourth SM singlet superfield S is also included [5].
The resulting seventh neutrino eigenstate is denoted by νs.

Here, we critically review mechanisms and models recently proposed in Refs. [2]
and [5]. Both proposals rely on the same class of models of supersymmetry breaking [6, 7].
They are, however, very different in spirit. The proposal of Ref. [2] replaces or encom-
passes the conventional seesaw mechanism, accommodating three states ni of mainly
sterile neutrinos that are light or heavy depending on the details of the specific model.
The proposal of Ref. [5] makes use of the hierarchy of scales induced by supersymme-
try breaking to explain the lightness of the fourth sterile neutrino. The three states νi,
mainly active ones, are made light by the well-known seesaw suppression generated in the
neutrino mass matrix by the three heavy sterile neutrinos of mass ∼ MR.

When looking for alternatives to the seesaw mechanism, or when trying to generate
a small mass for a fourth sterile neutrino, an excessive tuning of coupling constants can
be avoided by forbidding renormalizable interactions such as yN̄LH or ySSLH . Thus,
neutrino masses can be generated (in addition to or as a replacement of the seesaw mech-
anism) in the two following ways.

• Through non-renormalizable operators, in which N̄ and S are coupled to a
spurion field. Small masses are dynamically generated and linked to the large hier-
archy between mweak and MP , or between mweak and some intermediate scale, as in
the seesaw mechanism. Contributions to Dirac masses mD and mDs are induced by
non-renormalizable interactions of the Yukawa type, i.e. terms of the form ν̄L ανR β,
ν̄R ανL β, and ν̄LsνL α, ν̄LανLs, where νL α indicates the fermionic component of the
neutral fields in Lα (the α-th active neutrino), νLs and νR α are the charge conju-
gated fermionic components of the superfields S and N̄α, respectively. Majorana
masses mL for active neutrinos νT

L αCνL β can be generated, if chiral-lepton violation
is allowed.

• Through quantum effects. As in the previous mechanism, loop diagrams give
rise to Majorana masses for active neutrinos, if chiral-lepton violation is allowed.
Radiative contributions to Dirac masses are possible if an additional gauge group,
such as U(1)B−L is included.

In the following, we discuss the contribution from non-renormalizable operators to
Dirac and Majorana entries in the neutrino mass matrix, see Sec. 2. The superpotentials
for the relevant fields in the different models proposed in Refs. [2] and [5] are listed
in Sects 2.1.1, 2.1.2, 2.2, and 2.3. In Sec. 3, a class of models is outlined in which
supersymmetry breaking is induced by the strong dynamics of a gauge group SU(2),
FZ 6= 0, where FZ is the vev of the auxiliary component of a singlet superfield Z. The
breaking of supersymmetry gives rise to a non-vanishing vev for the scalar component of
such a superfield, AZ 6= 0, which is crucial to induce Dirac and Majorana mass terms from
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the non-renormalizable operators listed in Sec. 2. The same operators give rise to scalar
terms softly breaking supersymmetry, with explicit chiral-lepton violations. These are
discussed in Sec. 4. Some of these terms, if not duly suppressed (or altogether forbidden)
may give rise to instability problems and/or too large radiative contributions to Majorana
neutrino masses. At danger is the model of Ref. [5], for which remedies are anticipated
already in Sec. 2.3 and outlined in Secs. 5 and 6. Finally the contributions to Dirac and
Majorana masses due to quantum effects, also induced by supersymmetry breaking, are
discussed in Sec. 7. The typical neutrino spectra obtained in the models proposed in
Refs. [2] and [5] are described in Sec. 8.

2 Contributions from non-renormalizable operators

We list some non-renormalizable operators inducing tree-level neutrino masses. The pre-
sentation is arranged in such a way to show the basic structure of the different models
proposed in Refs. [2] and [5]. Their classification is according to the type of lepton-number
violation in them allowed.

2.1 No gauge group extension; 3 singlets N̄

2.1.1 No lepton-number violation allowed

The relevant superpotential operator is:

W =
kN̄

MP

ZN̄LH , (1)

where Z is a SM singlet, with a supersymmetry-conserving vacuum expectation value
(vev) AZ and a supersymmetry-violating one FZ , with FZ ∼< M2

X ≃ m3/2MP . The usual
Yukawa coupling operator yN̄LH can be forbidden by a continuous or discrete symmetry
Zn:

Zn(N̄) = +1, Zn(Z) = −1 , (2)

whereas a Majorana mass for the right-handed neutrinos is forbidden by a discrete lepton-
number symmetry L:

L(+1), N̄(−1), Ē(−1) . (3)

For each generation, the Dirac neutrino mass

mD = kN̄

AZv

MP

(4)

is generated and one Dirac neutrino eigenstate with mass mν = mD is induced. Notice
that, if A2

Z ≃ M2
X ≃ m3/2MP , the neutrino mass is too large, i.e. mν ≃ 103 eV. Thus, a

value A2
Z ≪ M2

X ∼< m3/2MP is needed.
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2.1.2 Explicit lepton-number violation

In this case, the superpotential is:

W =
kN̄

MP

ZN̄LH +
1

4

z

MP

ZZN̄N̄ +
1

4

h

MP

LHLH . (5)

The same Zn-symmetry of eq. (2) forbids the usual Yukawa operators and the absence of
a large Majorana mass for the fields N̄ , can be guaranteed by imposing that Zn is Zn 6=2.
An additional R-parity symmetry, Rp:

Rp(N̄) = − , Rp(Z) = + , (6)

forbids also dangerous terms such as MP ZN̄ . For each generation, the tree-level contri-
bution to the Dirac mass mD, and the Majorana masses for left-handed and right-handed
neutrinos, mL and MR are, respectively:

mD = kN̄

AZv

MP
, MR =

z

2

A2
Z

MP
, mL =

h

2

v2

MP
. (7)

The physical neutrino spectrum consists of two Majorana neutrinos with mass:

mν1
≃
(

h

2
−2k2

N̄

z

)

v2

MP

, mν2
≃ z

2

A2
Z

MP

. (8)

The only assumption so far is that v < AZ and that z is unsuppressed. In this case, for a
value of A2

Z ≃ M2
X ≃ m3/2MP , mν1

is too small, i.e. mν1
≃ 10−5 eV, whereas mν2

≃ m3/2.
This spectrum may be cured by radiative corrections, which can increase the value of mL.

2.2 Spontaneous lepton-number violation; 3 singlets N̄

Spontaneous lepton-number violation is achieved through the spontaneous breaking of an
additional gauge group, say a U(1)B−L. Due to this new gauge interaction, two additional
Higgs bosons, Φ and Φ̄ (SM singlets) are present. They acquire vev’s <Φ>=< Φ̄>= vΦ =
vΦ̄. The fields N̄ are not neutral with respect to U(1)B−L and have charge XN̄ , while the
charges of Φ and Φ̄ are respectively XΦ and XΦ̄. As in the two cases described before,
renormalizable neutrino Yukawa interactions are forbidden by the Zn-symmetry in eq. (2),
and the relevant superpotential is:

W =
kN̄

MP
ZN̄LH +

1

4

z

(MP )m+1
Φ̄mZZN̄N̄ +

1

4

h

(MP )m+1
ΦmLHLH , (9)

if the symmetry that forbids the Yukawa neutrino operator is Zn 6=2. The operator giving
rise to the Majorana mass for the fields N̄ is however:

W =
1

2

z

(MP )m−1
Φ̄mN̄N̄ , (10)
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if Zn = Z2. The power m in eqs. (9) and (10) is a solution of the equation 2XN̄ +mXΦ̄ = 0.
In the first case, i.e. Zn 6=2, the tree-level contributions to neutrino masses are:

mD = kN̄

AZv

MP

, MR =
z

2

(

vΦ̄

MP

)m A2
Z

MP

, mL =
h

2

(

vΦ

MP

)m v2

MP

. (11)

If the discrete symmetry is Z2, MR becomes:

MR = z vΦ̄

(

vΦ̄

MP

)m−1

, (12)

whereas mD and mL remain unchanged. The physical spectrum obtained depends on the
values of m, vΦ̄ and AZ . For Zn = Z2, and m = 1, it is MR ∼ vΦ̄. In general, however,
since vΦ̄ ≤ MP , the factor (vΦ̄/MP )m is a genuine suppression factor and MR in eq. (12)
is < vΦ̄. The same is true for Zn 6=2, i.e. MR in eq. (11), if A2

Z ∼< M2
X ≃ m3/2MP . In

particular, for sufficiently large m, it is MR ≪ vΦ. Moreover, if vΦ̄ is sufficiently close to
MP , the spectrum is similar to that obtained with the superpotential in eq. (5). If vΦ̄ is, for
example, as in the seesaw case, ≃ 1012 GeV, and m = 1, then, for A2

Z ≃ M2
X ≃ m3/2MP ,

ν2 would tend to be too heavy, ∼ 105 eV, and mν1
∼ 10 eV. For larger m, the suppression

factor becomes increasingly more effective, and the two eigenvalues tend to ±kN̄AZv/MP .
Again, a solution to the problem may be obtained if A2

Z ≪ M2
X is possible. Similar

considerations hold in the case of Z2.

2.3 Lepton-number violation; 4 singlets: 3 N̄ ’s, 1 S

This case is slightly different from the previous ones, in that renormalizable operators that
give rise to the usual seesaw mechanism are allowed, whereas it is only the renormalizable
Yukawa operator for the fields S that is forbidden. A non-renormalizable operator of the
Yukawa type, mediated by a SM singlet Z, is allowed. The superpotential is, in this case:

W = yN̄LH +
1

2
MRN̄N̄ +

1

4

h

MP

LHLH +
kS

MP

ZSLH , (13)

where, for simplicity, lepton number is assumed to be explicitly broken. The modifications
for the case of spontaneous lepton-number violation, which requires an additional gauge
group, are obvious. Notice that all bilinear mass terms SS and N̄S are understood to
be forbidden as in string scenarios in which S is a moduli field. It is also understood
that some string-related dynamical feature forbids the non-renormalizable superpotential
operator (1/MP )ZZSS, which could otherwise induce very dangerous scalar interaction
terms. Finally, by assuming that the fields relevant for the generation of neutrino masses
are charged under a U(1)R group, with the following R-charges:

R(Z) = 0 , R(H) = 0 , R(L) = 1 , R(N̄) = 1 , R(S) = 1 , (14)
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a similarly dangerous operator in the Kähler potential, (1/M2
P )Z†ZSS, is also forbidden.

The consequences that both operators, (1/MP )ZZSS and (1/M2
P )Z†ZSS, could have are

discussed in Sec. 4.

By integrating out the heavy fields N̄ , the usual effective superpotential

W = − y2

2MR
LHLH +

kS

MP
ZSLH , (15)

is obtained, where the subleading operator, with coupling h, is neglected. Four light states
are now present, three with Majorana masses mL, one with Dirac mass mDs:

mDs = kS
AZv

MP

, mL = −y2 v2

MR

. (16)

Values of MR ∼ 1013–1014 give rise to mL’s in the range 0.1–1 eV, whereas mDs is again
too large if A2

Z ≃ M2
X ≃ m3/2MP .

3 An interesting class of models

An interesting class of models was introduced in the past years, in which the dynamics of
a strongly interacting SU(2) gauge group induces the breaking of supersymmetry through
non-perturbative effects [6, 7]. The scale of supersymmetry breaking coincides with the
dynamical scale Λ of this gauge interaction. A fundamental role is played by a super-
field Z, singlet of SU(2) and of the SM gauge group, which is the field that acquires a
supersymmetry-breaking vev FZ ∼ Λ2. (For the definition of the field Z, see Ref. [8].) This
field is identified with the singlet mediating the non-renormalizable neutrino operators in
eqs. (1), (5), (9), and (13).

It is known that in these models the Z direction is flat at the tree level, but it is lifted
by loop corrections. Corrections to the Kähler potential from the strong SU(2) interaction
are non-calculable and can only be estimated. They give rise to a quadratic term in Z
in the scalar potential, with coupling k. Making a specific dynamical assumption on the
sign of this term, i.e. k > 0, a tiny vev for Z is induced [9]:

AZ ≃ m3/2

λk
, (17)

where λ is the coupling of the effective low-energy superpotential obtained after integrating
out heavy fields active under the strong SU(2). It was shown in [10], however, that a
quadratic term in the scalar potential is obtained from loops of light particles. These
corrections are calculable and larger than the non-calculable one as long as λ is in a
perturbative regime [10]. This quadratic term induces a vev:

AZ ≃ 16π2

λ3
m3/2 . (18)
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In the following, λ is assumed to be in the perturbative regime and only the value in
eq. (18) is used for the vev AZ . (The numerical result obtained in Ref. [5] for the mass
of the sterile neutrino, makes use of the value of AZ in eq. (17), corresponding to a
non-perturbative coupling λ.)

The ratio AZ/MP in eqs. (4), (7), and (11) may be sufficiently small to induce suitable
values of neutrino masses. Indeed, when the breaking of supersymmetry is transmitted to
the SM visible sector via gravitational interactions (m3/2 ≃ 1 TeV), the ratio AZ/MP is of
order ∼ 10−13. It is needless to say that, if the transmission of supersymmetry breaking is
via gauge interactions (in general, m3/2 ≪ mweak), this ratio may give rise to contributions
to neutrino masses that are too small. The radiative mechanism may then be the only
one to generate sizable values of mL and mD in this class of models.

Notice that in the case of the superpotentials in eqs. (1), (5), and (9), the singlet Z is
charged under the discrete group Zn, while it is neutral in the physics picture described by
the superpotential in eq. (13). In this picture, Z can couple to vector multiplets, giving
rise to gaugino masses and can therefore be the main supersymmetry-breaking agent,
when the information of supersymmetry breaking is transmitted to the SM visible sector
via gravitational interactions. It is assumed in Ref. [5] that FZ ∼ Λ2 ∼ M2

X ∼ m3/2MP .
In the scenarios described by the superpotential in eqs. (1), (5), and (9), Z cannot induce
gaugino masses and it does not need to be the singlet with the largest supersymmetry-
breaking vev. Thus, it can be FZ ∼ Λ2 < M2

X ∼ m3/2MP . The situation is obviously
more free when the breaking of supersymmetry is transmitted to the visible sector by
gauge interactions, which induce gaugino masses at the quantum level. In this case, FZ

can be smaller (and even considerably smaller) than M2
X .

4 Scalar interactions

In addition to the mass terms m̃2

N̄ | ˜̄N |2 and m̃2
S|S̃|2 induced by Kähler potential operators,

trilinear as well as bilinear terms holomorphic in the scalar components of N̄ and S are
also generated.

The non-renormalizable operators (1/MP )ZN̄LH and (1/MP )ZSLH give rise to the
terms:

AN̄
˜̄NL̃H , ASS̃L̃H , (19)

with dimensionful couplings given by:

AN̄ = kN̄

( FZ

MP

)

, AS = kS

( FZ

MP

)

. (20)

These are of order of the gravitino mass if FZ is the maximal supersymmetry-breaking vev,
and therefore ∼> mweak in gravity-mediated scenarios of transmission of supersymmetry
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breaking, for couplings kN̄ and kS of O(1). AN̄ can be much smaller than mweak when
this assumption is dropped, i.e. when FZ < M2

X , or in gauge-mediated scenarios of
supersymmetry breaking.

Bilinear terms, such as:

B2

N̄
˜̄N ˜̄N , B2

SS̃S̃ , (21)

are also generated, the first in the models of Secs. 2.1.2, and 2.2 (no such term is possible
in the model of Sec. 2.1.1, in which lepton number is conserved), the second in the model
described in Sec. 2.3.

In the models of Secs. 2.1.2, and 2.2, in which lepton number is violated explicitly
or spontaneously, due to the presence of additional symmetries, a supersymmetric mass
term (1/2)MRNN is induced by non-renormalizable operators, Thus, a bilinear term

B2

N̄ = m3/2MR (22)

is always generated via supergravity effects. Moreover, in the model of Secs. 2.1.2, and
that of Sec. 2.2 with Zn 6=2, a term

B2

N̄ =
FZ

AZ
MR (23)

is directly induced by the relevant non-renormalizable terms in the superpotentials of
eqs. (5) and (9). In gravity-mediated scenarios of transmission of supersymmetry breaking,
no instabilities or tachyonic eigenvalues for the scalar components of N̄ arise, as far as
B2

N̄ < M2
R, if MR ∼> m̃Ñ , or as far as B2

N̄ < m̃2

Ñ
, if MR < m̃Ñ . All potentially dangerous

situations can be avoided by requiring FZ < M2
X ∼ m3/2MP . (See discussion in Ref. [2]

and in the previous Section.) No problems in general arise in scenarios in which the
transmission of supersymmetry breaking is via gauge interactions.

In the model of Sec. 2.3, chiral-lepton number is violated through the field N̄ , but
a renormalizable mass term for the field S is forbidden by “stringy” reasons. However,
if no charges are assigned to any of the relevant fields, it is difficult to forbid the non-
renormalizable operator (1/MP )ZZSS already mentioned in Sec. 2.3. Indeed, the combi-
nation of fields ZS has, in principle, the same quantum numbers of the field N̄ , unless some
higher scale string dynamics is advocated to distinguish between ZS and N̄ . Thus, forbid-
ding (1/MP )ZZSS would be equivalent to forbidding the see-saw operator (1/MR)LHLH .
Such an operator would give rise to an acceptable tree-level Majorana mass for the sterile
neutrino, of order A2

Z/MP ∼ (16π2/λ3)2m2
3/2

/MP , with mixing (v/m3/2) to the active
neutrinos. It would, however, also give rise to a tachyonic scalar component of the field
S, and to a very large radiative contributions to the Majorana mass of active neutrinos,
through the large bilinear term

B2
S =

16π2

λ3
m2

3/2 . (24)
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(See discussion in Sec. 7.) Similarly, the Kähler potential operator (1/M2
P )Z†ZSS, would

induce the dangerous value of B2
S:

B2
S = m2

3/2 . (25)

The simple assignment of R-charges in eq. (14) can, however, forbid this operator.

5 Stability of the scalar potential

We start by discussing the scalar potential relevant for the model described in Sec. 2.3.
It is easy to see that this potential has a D-flat direction when:

L̃ =
1√
2

(

0
φ

)

, H =
1√
2

(

φ
0

)

, (26)

where H is here understood as the scalar component of the superfield indicated by the
same symbol. For a choice of phases such that φ2S̃ = −|φ|2|S̃|, the scalar potential for S̃
and φ around the origin, is given by:

V = m̃2
φ|φ|2 + m̃2

S|S̃|2 − 2kS m3/2|φ|2|S̃| + · · · . (27)

In this expression, the ellipsis denotes higher order terms, suppressed by small factors of
(mweak/MR), (mweak/MP ), or (AZ/MP ), as long as the field values |φ| and |S̃| are not too
large compared to the electroweak scale. It is clear that such a potential has a minimum
deeper than the origin for values of the field |φ| and |S̃| larger than the electroweak scale.
In fact, the potential in eq. (27) crosses the plane V = 0 at the following field values:

|S̃0| ≃ 1

2kS

(

m̃2
φ

m3/2

)

(1 + a) , (28)

|φ0| ≃ 1

2kS

(

m̃φm̃S

m3/2

)(

1 + a√
a

)

, (29)

where a is an arbitrary real number. These values are of the order of weak scale and
tunneling to the unwanted minimum may occur.

However, an estimate of the tunneling rate to the false vacuum shows that a value
of the coupling kS < 1 by about one order of magnitude, is sufficient to guarantee that
the origin is a metastable vacuum. The tunnelling rate can be estimated from the four
dimensional Euclidean action S4 evaluated with the bounce solution for the potential in
eq. (27) [11]. (See also discussion in [12].) The tunneling rate per volume is roughly given
by Γ4 ∼ m̃4 exp(−S4), where m̃ is a typical scale of the potential, m̃ ∼ m̃φ ∼ m̃S ∼ m3/2.
The requirement that the false vacuum has not decayed in our past light-cone gives a
constraint Γ4L

4 ≪ 1, where L is the present size and age of the visible universe. Thus,
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S4 must satisfy S4 > 400+4 ln (m̃/TeV). On the other hand, from eq. (27), by redefining
φ and S̃, one can find S4 ∼ (1/k2

S) × Ŝ4, where Ŝ4 is a dimensionless numerical factor of
O(10) [13]. Therefore, a value kS ∼< 0.1 is sufficient to avoid tunneling to the dangerous
vacuum. Even if ks ≃ 0.01, we may reproduce the result in Ref. [5] adopting the value
AZ in eq. (18).

Notice that a similar problem may arise in the models described in Secs. 2.1 and 2.2,
except for the case in which an unsuppressed mass term for the superfield N is present

(see the superpotential in eq. (10) with m = 1). With a choice of phases for φ and ˜̄N
similar to that made earlier for φ and S̃, the scalar potential is in these cases:

V = m̃2
φ|φ|2 + m̃2

N̄ | ˜̄N |2 − 2kN̄

( FZ

MP

)

|φ|2| ˜̄N | + · · · . (30)

As mentioned earlier, however, in these models the singlet Z does not need to have
the maximal value of supersymmetry-breaking vev FZ , as it is assumed in the model of

Sec. 2.3. Therefore, a suppression of the trilinear term |φ|2| ˜̄N | may be achieved through
a smaller value of FZ , while keeping the coefficient kN̄ ∼ 1. (This and other types of
solutions were advocated for the analogous problem present in scenarios in which tree-
level Yukawa couplings for quarks and leptons are forbidden by symmetries [14].)

6 Another cosmological problem

It was shown in the previous Section that the scalar potential in eq. (27), as well as that in
eq. (30), if FZ/MP ∼ m3/2, have minima deeper than the origin. The vacuum tunneling
from the origin to these minima can be easily avoided. However, another cosmological

problem may, in principle, arise. If the values of the scalar fields S̃ or ˜̄N are larger than
the weak scale at the end of inflation, they do not roll toward the vacuum in which we
live, but towards the unwanted minimum, which is far from the origin, and the desired
vacuum is never realized. However, if a scalar field is charged, it is naturally expected
that at the end of inflation such a field is localized at the origin, which is an enhanced

symmetry point [15]. The fields ˜̄N are charged in all the models outlined above (see
Ref. [2]) and this problem is naturally avoided. The R-charges introduced in eq. (14) to
forbid a dangerous Kähler potential operator, turns out to be very important to prevent
this possible cosmological problem, by forcing the field S at the origin.

7 Radiative contributions to neutrino masses

Radiative contributions to Dirac masses mD and Majorana masses mL arise from the
two diagrams shown in Fig. 1 and/or the diagram in Fig. 2, depending on the model
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B2

N̄

AN̄v AN̄v

νL

Figure 1: Diagrams contributing to the Dirac and Majorana neutrino masses mD and mL.

discussed. The first diagram in Fig. 1 requires a gauge interaction for the field N̄ and
therefore is present only when the SM gauge group is extended (see Sec. 2.2). The two
diagrams giving rise to the Majorana masses mL are possible when chiral-lepton number

is violated, specifically if bilinear terms B2

N̄
˜̄N ˜̄N and B2

SS̃S̃ exist.

An explicit evaluation of these loop diagrams yields the following results. The radia-
tive contribution to Dirac masses mD is:

mD ∼ 1

8π2
(gXXN̄) (gY YL)

(

AN̄v

m̃

)(

m̃

MG

)2

(31)

where gX and gY are respectively the coupling constants of the additional gauge group
U(1)B−L and of U(1)Y ; XN̄ is the U(1)B−L charge of the superfields N̄ , YL is the U(1)Y

charge of the doublet superfield L. Finally, MG is the scale of U(1)B−L violation: MG ∝
vΦ = vΦ̄ and m̃ is the typical soft mass for scalar fields and light gauginos.

The radiative contribution to Majorana masses mL shown in the second diagram of
Fig. 1, i.e. due to the exchange of N̄ , is:

mL ∼ 1

8π2
(gY YL)2

(

AN̄v

m̃2

)2 (BMR

m̃

)(

m̃

MR

)4

(32)

if the Majorana mass for the fields N̄ is MR ≫ mweak, whereas it is:

mL ∼ 1

8π2
(gY YL)2

(

AN̄v

m̃2

)2 (BMR

m̃

)

, (33)

for MR ≪ mweak. Notice that the symbol B2

N̄ in the Figure is here replaced by BMR.

It is interesting to see that in a seesaw type of setting, i.e. when MG and MR are
very large compared to m̃, mL and mD, and therefore the final mass eigenvalues, are more
suppressed by the large scales than in the typical seesaw mechanism. A part for a loop
suppression factor (1/8π2), they are reduced away from the electroweak scale respectively
by factors (m̃/MG)2 and (m̃/MR)3. If the tree-level contributions to mD and mL are
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Figure 2: Radiative contribution to mL from the sterile neutrino field S.

forbidden as in the model of Sec. 2.2, the scale of U(1)B−L can be much smaller than
in the typical seesaw mechanism. Notice that in this model MG and MR are in general
disentangled and fixing the value of one (MG) to get reasonable values of mD, does not
necessarily imply that mL is very small.

If MR is very small, and B2

N̄ = BMR is also small, the suppression to mL comes from
(BMR/m̃2) and AN̄/m̃. This is particularly true of the model of Sec. 2.1.2 for which the
options FZ < M2

X , or m3/2 < mweak as when the transmission of supersymmetry breaking
is mediated by gauge interactions, turns out to be of crucial importance.

In the model of Sec. 2.3, since MR and possibly MG (if the model is realized in such
a way to have spontaneous violation of lepton number) are large, i.e. ∼ 1013 GeV, the
radiative contributions to mD and mL from the two diagrams of Fig. 1 are very small.
A radiative contribution to mL, however, arises from from the exchange of S̃ as shown
in Fig. 2. The natural scale for S̃ is the soft mass m̃. Therefore, the expression for the
radiative contribution to mL is similar to that in eq. (33):

mL ∼ 1

8π2
(gY YL)2

(

ASv

m̃2

)2
(

B2
S

m̃

)

(34)

Since in this model FZ is assumed to be the maximal supersymmetry breaking vev ,
FZ ∼ M2

X , it is AS ∼< m̃ when the suppression of order of magnitude for the coupling kS

discussed in Sec. 5 is kept into account. It becomes clear, then, why the values of B2
S given

in eq. (24) and (25) are far too dangerous: indeed, they tend to move the value of mL

towards the electroweak scale ! It is therefore mandatory to have all operators involving
the bilinear combination SS and giving rise to the soft term B2

S sufficiently suppressed in
order to avoid too large contributions to mL.
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8 Neutrino spectra and Conclusions

The neutrino spectrum obtained in the model of Sec. 2.3 is that obtained from the con-
ventional seesaw mechanism with the addition of one light state, mainly sterile. There
are, therefore, three heavy states ni with mass ∼ MR, and four light states νi and νs.
(We assume here that radiative contributions to mL are negligible.) In the basis in which
charged leptons have a diagonal mass matrix, for kS ∼ 0.1–0.01, as argued in Sec. 5,
and the value of AZ in eq. (18), it is mDs ∼ 10−4 eV. The values of mL are ∼ y2 × 1 eV.
Therefore, if νe has a Majorana mass mL ∼ 10−4 eV, the solar νe-νLs oscillation can be ex-
plained as a quasi-vacuum oscillation. With suitable choices of the couplings y, the other
two active neutrinos together with νe can explain the atmospheric and LSND oscillations.
The overall picture is that of the so-called 2+2 neutrino spectrum [16]. (A model for the
recently advocated “1+3” picture of neutrino masses [17, 16, 18], in which all neutrino
masses are also generated at the tree level, is proposed in Ref. [19].)

The model in Sec. 2.1.1 give rise to only three light neutrinos with Dirac mass given
in eq. (4). The oscillation patterns of solar and atmospheric neutrino experiments have
to rely on a specific texture of the couplings kN̄ and no explanation is possible for the
LSND experiment.

The models of Secs. 2.1.2 and 2.2 are more complex and allow a large variety of
neutrino spectra. They have an interesting interplay among tree-level and radiative con-
tributions to neutrino masses and replace completely the conventional seesaw mechanism.

The model (or class of models) in Sec. 2.2 may nevertheless retain some of the qual-
itative feature of the seesaw mechanism spectrum if the Majorana mass MR for the fields
N̄ is large. Three light states νi are present, of mainly active neutrinos, and three heavy
states ni with mass ∼ MR. In this case, however, since no tree-level Yukawa couplings
exist, the small mass of the light states νi is not due to the pattern of light-heavy scales in
the neutrino mass matrix. What moves away from the electroweak scale (mweak ∼ v) the
Dirac and Majorana entries in the neutrino mass matrix are: i) suppression factors coming
from non-renormalizable operators, i.e. AZ/MP and A2

Z/(vMP ) where AZ is a vacuum
expectation value induced by supersymmetry breaking; ii) the factors 1/(16π2)(m̃/MR)3

and 1/(16π2)(m̃/MG)2, originated by loop diagrams, where m̃ is a typical mass softly
breaking supersymmetry and MG is the scale of the additional gauge group present in the
model.

Both classes of models in Secs. 2.1.2 and 2.2, however, may have rather small Ma-
jorana masses MR at the tree-level and can easily realize the possibility of light sterile
neutrinos. Exact predictions depend on the particular realization of these models. The
six states νi and ni are all light. The three ni-neutrinos, however, can still be heavier
than the νi’s, in which case, the mixing angles between ni’s and νi’s are very small. There
is also the other interesting case in which the νi and ni states are roughly at the same
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scale or nearly degenerate, with mixing angles ranging from small to maximal. Flavour
oscillations, therefore, can be accommodated in this class of scenarios, relying on specific
textures of the tree-level couplings of non-renormalizable operators, or of the trilinear and
bilinear neutrino soft parameters. Oscillations among active and sterile neutrinos are also
possible.

Since neutrino masses are much smaller than all other masses, it is plausible to assume
that their origin is different from that of the other lepton and quark masses. They may be
induced, after electroweak symmetry breaking, by operators of higher dimensionality than
the usual Yukawa operators or by quantum effects. We have shown that both possibilities
are easily implemented in supersymmetric models and that the generation of neutrino
masses is intimately linked to the breaking of supersymmetry. In this sense, neutrinos
may be fundamentally different from all other fermions. The recently gathered evidence
pointing to the fact that they are massive and the pattern of oscillation among different
neutrinos, may therefore be the first evidence for supersymmetry.
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