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This work presents several semiclassical techniques for calculating properties 

of chemical systems. We would ideally like to perform all calculations in a fully 

quantum mechanical manner. However, as the dimensions of the system of inter­

est increase, so does the computational complexity of the quantum calculations. 

At some point the quantum calculations become intractable, and we must derive , 

and use approximate methods. Semiclassical mechanics provides a way to esti­

mate or approximate these quantum effects. In this work, we examine three such 

semiclassical techniques and variations of those methods. 

First we look at Semiclassical Transition State Theory(SCTST), which uses 

a semiclassical approximation for tunneling through a reaction barrier. We note 

that the semiclassical tunneling probability can be replaced by the quantum tun­

neling probability for the Eckart barrier. When we apply these two methods to 

the H 2 + OH--+ H20 + H, D2 + OH--+ HDO + D, and Cl + H2 --+ HCl + H 

reactions, we find that SCTST results agree closely with previous experimental 

and quantum results. The results for reactions without hydrogen motion are 

especially accurate. 
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Next we use the Semiclassical Perturbation (SCP) and Infinite Order Sudden 

(lOS) approximations to calculatE) the dissociation rate of triplet ketene. Previ­

ous experiments have shown a definite step structure in the rate when the total 

energy of the system is increased. For our calculations, we use a newly available 

potential energy surface that is calculated at a high level of theory. Unfortunately, 

we were unable to reproduce the step structure and elucidate the underlying prin­

ciples behind the steps. However, we do see structure in the rate as the curvature 

couplings are artificially increased. 

Lastly, we explore the nuances of the Heiman-Kluk Initial Value Represen­

tation (IVR), where the propagator is expressed as a phase space average. We 

apply this method to a model system, where we can control the chaotic nature 

of the system. As the chaotic nature of the system is increased, the Monte Carlo 

evaluation of the phase space integral becomes difficult to converge. In an at­

tempt to smooth the integrand, we introduce a time average in the Herman-Kluk 

formalism. This new method in effect adds a zero point energy to the classical 

hamiltonian. For the less chaotic systems, this new method does result in a severe 
' 

decrease in the number of trajectories necessary for convergence. However, the 

splittings in the spectrum are underestimated at higher couplings. 
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Chapt.er 1 

Introduction 

In chemistry, we are interested in both how molecules behave alone and how 

they interact with each other. Theoretical chemists try to elucidate the undedy­

ing processes of chemical systems by means of equations and calculations, while 

' the experimentalists play with the chemical systems in a similar attempt. To­

gether we try to crack the code as to why matter behaves as it does, thereby 

obtaining a complete understanding of the full reaction. A detailed understand­

ing of the reaction has many applications, from being able to control the reaction 

more precisely to predicting the interaction of other molecules. 

As theorists, our most accurate, fully exact method is quantum mechanics. 

While a large object (such as a baseball) obeys classical mechanical principles, 

the motions of light objects (such as atoms) are governed by quantum mechan­

ics. Quantum mechanics allows for a variety of phenomena not seen in classical 

mechanics. These include coherence and tunneling, which can contribute signifi­

cantly to the physical properties of interest. 

In quantum mechanics, all physical properties of a chemical system can be 

obtained from the wave function. However, the wave function can be very diffi­

cult to obtain because most quantum methods rely on the use of basis sets. If 

we use N basis sets for each degree of freedom, we see how the number of basis 
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sets required for a large dimensional system can quickly become unwieldy. The 

number of basis functions necessary for an accurate calcul<).tion increases expo­

nentially with the number of degrees of freedom. Although we would ideally like 

to perform all calculations quantum mechanically and thus exactly, this is often 

not possible using today's technology. Many chemical systems of interest are too 

large to treat using quantum mechanics due to memory constraints. In fact it was 

only a few year ago that the first four-dimensional calculations were performed. 

At some point we must ask ourselves if each system needs to be treated using 

quantum mechanics. While it is true that isolated reactions involving hydrogen 

motion do exhibit a fair degree of quantum effects, reactions involving heav­

ier atoms may be accurately described using approximate methods. Considering 

that the size of chemical systems of interest today can contain thousands of atoms 

(such as DNA), methods other than quantum mechanics must be used for calcu­

lating the physical properties of those systems. 

Many such approximate methods have been developed over time. These in­

clude .Classical as well as semiclassical methods. Two examples of classical meth­

ods include classical molecular dynamics and transition state theory.· These two 

theories can be used in fairly large systems. In fact, many scientists use molecular 

dynamics on systems as large as DNA. Unfortunately, these methods do not in­

clude quantum effects. In this work, we look at several examples of semiclassical 

methods, where the quantum effects are estimated using semiclassical approxi­

mations. 

In Chapter 2, we present thermal reaction rate calculations obtained using 

Semiclassical Transition State Theory (SCTST)l5- 19 . SCTST is a modification 

on the original classical transition state theory(TST) 1- 3 . Classical TST relies on 

three fundamental assumptions. First we use the Born-Oppenheimer approxima­

tion to assume that the nuclear and electronic motions are separable. Second, 

the system is treated using classical mechanics. Lastly, no reactive trajectories 
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recross the dividing surface. Unfortunately, classical mechanics does not allow 

for tunneling through the barrier. By treating the system semiclassically, we can 

allow for an approximation to the tunneling rate. Miller and Handy developed 

just such a method using the good action angle variables at the transition state. 

In their resulting equations, the reaction rate is a sum of semiclassical tunneling 

coefficients. In Chapter 2, we note that the semiclassical transmission coeffi­

cient can be replaced with the fully quantum mechanical tunneling coefficient 

for the Eckart barrier. Results are presented for the H 2 + OH -+ H20 + H , 

D2 + OH -7 HDO + D, and Cl + H2 -7 HCl + H reactions. We then compare 

the SCTST results with previous experimental and quantum mechanical rates. 

Chapter 3 presents a new look at the dissociation of triple ketene. In the 

early nineties, Moore and coworkers excited rotationally cold ketene to the 8 1 

surface52•53 . The system then underwent an intersystem crossing to the T1 surface 

and dissociated. The resulting dissociation rate showed a curious step structure. 

The steps occurred as the energy of the system was increased. Using RRKM 

theory, Moore showed that the steps appeared as available channels opened up 

in the transition state. However, this explanation has not withstood scrutiny. A 

few years ago Gezelter and Miller performed calculations on the system, but they 

were unable to reproduce the structure63 • They listed three hypotheses as to the 

source of the step structure in the rate. (1) There is more than one transition 

state along the reaction path. (2) The potential surface that Gezelter used was 

not sufficiently accurate. (3) The system experiences intersystem crossings at or 

near the transition state. Allen and coworkers have recently made available a 

more complete potential surface, evaluated using CCSD(T)71 . We use this new 

surface to try to reproduce the step structure. We hope that by utilizing this 

new surface, we will gain insight into the underlying principles that give rise to 

the step structure in the dissociation rate. 

Finally, in Chapter 4 we apply Semiclassical Initial Value Representation 

(SCIVR) methods to a model system 79•80 . Specifically, we examine the Herman-
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Kluk IVR81 •82 , where the propagator is represented as a phase space average. 

This phase space integral is calculated using Monte Carlo techniques, but unfor­

tunately the integrand can be highly oscillatory. This makes convergence using 

Monte Carlo difficult (if not impossible) within a reasonable amount of computer 

time. In addition, for chaotic systems, the magnitude of the integrand can be­

come too large for the computer to handle. This is due to the pre-exponential 

factor, which is a function of the monodromy or stability matrix. The more 

chaotic the system, the greater the change in position at timet given a change in 

the initial position at time 0. Hence, methods for smoothing the integrand would 

be very useful and might allow calculations on previously intractable problems. 

In an attempt to derive a more well behaved integrand, we introduce identity in 

the form of a time integral. We also use the adiabatic approximation to evaluate 

the monodromy matrix in order to simplify our resulting equation for the spec­

trum of our system. We apply our method to a model system of two harmonic 

oscillators interacting via a quartic coupling term. Results are presented for the 

non-interacting oscillators as well as increasing levels of coupling. 
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Chapter 2 

Semiclassical Transition State 

Theory 

2.1 Introduction 

Classical Transition State Theory (TST) 1- 9 provides a simple way to calculate 

the thermal reaction rates of gas phase reactions. In the TST formalism, the rate 

is equal to the flux across a dividing surface in coordinate space. This dividing 

surface separates the product and reactant regions. It is placed at the transition 

state (or saddle point) along the minimum energy path between the reactants 

and products. Using mass weighted coordinates, the minimum energy path is 

the steepest decent path, from the saddle point to the reaction and product 

regions. It is obtained by following the negative of the gradient. The fundamental 

assumption of classical TST is that trajectories cross the diving surface only 

once. Thus classical TST would yield the exact classical thermal rate constant if 

the r·eaction path had a bottleneck that did not allow for returning trajectories. 

Unfortunately, many chemical systems do result in trajectories that recross the 

dividing surface. Some features that might cause such trajectories include having 

more than one transition state along the reaction path or forming long lived 

collision complexes. When trajectories do recross the dividing surface, classical 

TST is an upper bound to the classical thermal rate. 
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Several other assumptions are included in TST. First is a separation of the 

electronic and nuclear motion, a typical assumption for theoretical calculations. 

Secondly, the system is also assumed to obey classical mechanics. This can be an 

unreasonable assumption when light atoms such as hydrogen are involved in the 

reaction, especially at low temperatures where quantum effects can be significant. 

A third assumption is the separability of the orthogonal modes at the transition 

state. However for certain reactions the couplings between the reaction path and 

the orthogonal modes can be quite large and may influence the thermal reaction 

rate. We seek -to modify TST to account -for some of these deficiencies. 

Due to the simplicity of using transition state theories for calculating thermal 

reaction rates, many versions of TST have been derived. One popular method 

has been to vary the location of the diving surface in order to provide the lowest 

upper bound for the thermal rate1o-14 • One such method involves computing the 

optimal dividing surface for each total energy. This is referred to as microcanon­

ical variational TST. A second approach is canonical variational TST, where the 

best dividing surface is found for all total energies and angular momenta that 

contribute to the thermal rate . This is in no way meant to be an exhaustive 

list of transition state theories in current use. Many review articles have been 

written about variations of classical TST that the reader might find informative. 

' 
Handy and Miller have derived the Semiclassical Transition State Theory 

(SCTST) 15- 19 , where the rate is a function of the transmission probabilties through 

each quantum state at the transition state. These transmission coefficients treat 

the reaction path with a semiclassical approximation, which gives a better de­

scription of the tunneling dynamics and leads to more accurate reaction rates. 

The semiclassical transmission coefficients are expressed as a function of the lo­

cally conserved action variables at the transition state. This allows for coupling 

between the reaction path and the orthogonal degrees of freedom. The couplings 

can have a substantial impact on the rate if the curvature of the reaction path is 

large. We also include anharmonic terms in the potential energy, which provides 
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a better parameterization of the true potential surface further from the transition 

state than a purely harmonic analytical potential. 

2.1.1 The Rate Equation 

The thermal rate for a reaction can be expressed as a boltzmann average of 

the cumulative reaction probability20- 22 (CRP) 

- 1 I -~E ) k(T)- (21r1iQr) dEe N(E , (2.1) 

where Qr is the reactant partition function per unit volume, and /3 is inversely 

proportional to the temperature in the common definition (!3 = k~). The reac­

tant partition function 1s calculated using the traditional rigid-rotor harmonic 

oscillator approximation. 

Using the semiclassical approximation we express the CRP as a sum over the 

tunneling probabilities through a given quantum state, nt, 

N(E) = L P(nt, E), (2.2) 
nt 

where the tunneling probabilities are functions of the barrier penetration integral 

(0) 

t - 1 
P(n 'E) - 1 + e28(nt,E). (2.3) 

The previous equations give us a simple expression for calculating thermal reac­

tion rates for states with zero angular momentum. For J =I= 0 states the cumula­

tive reaction probability can again be written as a sum of tunneling probabilities 

N(E) = L PJ,K(nt, E), (2.4) 
nt,J,K 

where we sum over all quantum states and rotational levels. The individual 

tunneling probabilities are calculated by adding the rotational energy to Equation 

2.8 

(2.5) 

·' 
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Since the functional form of the rotational energy is dependent on the geometry 

of the system, we set it aside for now. We will revisit the issue for each chemical 

reaction that we investigate. All that remains is deriving an expression for B. We 

adopt atomic units from here on out, such that h = 1. 

In this chapter we apply SCTST to two chemical reactions in order to calculate 

the thermal reaction rates. In Section 2.2 we introduce SCTST and derive the 

necessary equations. We modify SCTST to include the quantum mechanical 

tunneling coefficient in Section 2.3. We present background and results on the 

OH + H2 -+ H20 + H and Cl + H 2 -+ ClH + H reactions in Section 2.4. We 

find that SCTST gives excellent agreement with experimental and fully quantum 

mechanical results. Section 2.5 concludes. 

2.2 Semiclassical Transition State Theory 

At a minimum on a potential energy surface, we perform an expansion in 

terms of the normal coordinates ( Qk) up to fourth order 

1 F 

+
24 

L fktmnQkQlQmQn+ ... , 
k,l,m,n 

(2.6) 

where Vo is the potential energy at the minimum, and F is the dimensionality 

of the problem (F = 3N- 6, where N is the number of atoms in the system). 

wk are the vibrational frequencies calculated from the force constant matrix, and 

!klm and !klmn are the third and fourth derivatives of the potential surface at the 

minimum. The derivatives of the potential energy surface can be calculated from 

an analytical potential energy surface either numerically or analytically, or from 

ab initio calculations. 

We then use second order perturbation theory23,
24 to derive an expression for 
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the energy levels in terms of these parameters. 

where ( nk + ~) are the quantum numbers, or in classical mechanics the good ac­

tion variables for the vibrations27
•28 . Eo is a spectroscopic constant dependent on 

!klm and fklmn· Xkl are the anharmonic force constants and are also determined 

from the third and fourth derivatives of the surface at the minimum. Equations 

used.for evaluating the necessary spectroscopic constants have been derived and 

Handy consolidates them24
-

26
. Even though our energy levels are only quadratic 

in the quantum numbers, this is usually sufficient to obtain accurate results for 

the vibrational energy levels even at fairly high levels of excitation29
. 

Miller has shown that there are also good action variables at a saddle point 

on the surface30 . Thus the vibrational energy levels at the transition state can 

be written in the same format as above. 

where we define mode F as the reaction coordinate, and n* denotes the quan­

tum state at the transition state. One should note that the harmonic frequency 

of the reaction path at the saddle point is completely imaginary. Similarly the 

anharmonic terms coupling the reaction path to the other orthogonal degrees of 

freedom, XkF, are also imaginary. 

We draw parallels between the quantum number for the reaction path and 

the barrier penetration integral, (}. For a one-dimensional potential well one uses 

the Bohr-Sommerfeld quantization rule, which is a semiclassical expression for 

the quantum number31 

( n~ + ~) 1r = J dQV2(E- V(Q)), (2.9) 
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where again coordinate F is the reaction coordinate. We also know that the 

barrier penetration integral in an integral of the action through the barrier 

O(E) =I dQV2(V(Q)- E). (2.10) 

Thus a correspondence between n~ and(} can be seen 

t 1 iO(E) 
np +- ---t --. 

2 7r 
(2.11) 

Using equation 2.8, we replace the quantum number for the reaction coordi­

nate with the above relationship. 

where 

and 

1 
Wp = --;Wp, 

z 

(2.12) 

(2.13) 

(2.14) 

This equation for the energy in terms of the barrier penetration integral is in­

verted to solve for (} at a given energy and a given quantum state. Each (} is then 

used in conjunction with equations 2.1 through 2.3 to calculate the thermal rates. 

The former equations work well if we use only second order perturbation the­

ory, where the energy levels are quadratic in 0. However, if we use a higher level 

of perturbation theory for the energy levels we obtain an expression for the en­

ergy that is of higher order in (}, and the inversion becomes nontrivial. This is 

also true if the system includes other phenomena such as Fermi resonances. It 
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would be advantageous to avoid the inversion, and thus make the evaluation of 

the reaction rate feasible. 

We begin by combining equation 2.1 through equation 2.3 and interchanging 

the order of integration and summation 

k(T) = __!._ ~ J dEe-flE(nt,o) 1 . 
Q L....J 1 + e20(nt,E) 

r nt 
(2.15) 

Next a change in the integration variable from energy to B yields 

- __!._ "'/oo dBaE e-flE(nt,o) 1 
- Qr ~ -oo 8B 1 + e20(nt,E). 

(2.16) 

This assumes that there is a one-to-one correlation between the energy and B. 

Note that the resulting equation is of the same format if this is not the case32
• In­

tegrating the previous equation by parts and again interchanging the integration 

and summation yields our final expression 

(2.17) 

Similarities between this expression and traditional transition state theory 

can be seen. TST states that 

Q'T) 
k(T) = kT Qr\T), (2.18) 

where Qr is the reactant partition function, and Q' is the reactive partition func­

tion. One can see in our theory that the reactive, partition function is a weighted 

average 

Q'(T) ~I: dB~sech2 (B)Q(T, B), (2.19) 

where Q(T, B) is the pre-reactive partition function 

Q(T, B) = L e-f3E(nt,o). (2.20) 
nt 
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2.3 SCTST /QM 

If we expand equation 2.17 and gather terms, we can make some observation 

. as to. the nature of SCTST expression 

k(T) = kT L e-pvJ rX) d0~sech2 (0)e-Pwnt ~e-P(-xFF)~' 
Qr nt 1-oo 2 . 

(2.21) 

where 

(2.22) 

and 

F-1 ( 1) 
Vnt = Vo + Eo + L wk nk + - . 

k=l 2 
(2.23) 

We see that the expression for the rate includes the semiclassical transmission 

coefficient for state n+ of the activated complex 

f~) = i: d0~sech2 (0)e-Pwnt ~e-P(-xFF)~. (2.24) 

The reader will recall that the energy at the transition state is quadratic 

in term of 0 using second order perturbation theory. In the case of the Eckart 

potential, the energy is quadratic in 0 for infinite order perturbation theory. 

Thus it is consistent to replace the semiclassical transmission coefficient in the 

above equation with the exact quantum mechanical transmission coefficient for 

the Eckart barrier. One must take care to define the coefficients of 0 and 02 

appropriately, and this gives 

(2.25) 

where a and 11 are the two parameters used by Johnston33 

(2.26) 
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(2.27) 

We change the integration variable from energy to x, 

(2.28) 

where x = f3E. 

The evaluation of the rate using the quantum expression for the tunneling 

requires a quadrature as does the treating the tunneling semiclassically. It is 

hoped that treating the tunneling quantum mechanically will provide a more 

accurate tunneling rate through the barrier. However, if the reaction path varies 

greatly from the shape of Eckart barrier, we may experience a divergence from 

the experimental rates. 

2.4.1 Computational Specifics 

We use the potential energy surface oflsaacson for the H2 + OH--+ H20 + H 

and D 2 + 0 H --+ H DO + H reactions35 . The paper cited gives several param­

eterizations of a single functional form of the potential function. We use the 

variant that he labels "Surface 3". The surface reproduces the experimental data 

of Walch and Dunning36 . In fact the parameters of this particular formulation 

of the potential surface have been designed to accurately describe the barrier 

region. This has positive implications on the accuracy of the anharmonicity of 

the barrier and the coupling between the modes. 

The spectroscopic constants are calculated by Handy and coworkers18 . They 

use finite difference differentiation with quadruple precision in order evaluate the 

constants. The optimal step length is found by finding an island of stability in 
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the fourth derivatives. The derivatives are entered into SPECTR037 , a computer 

program which calculates the necessary constants. Handy and coworkers calcu­

late the force constants in both Cartesian and internal coordinates. They find 

little difference between calculations using each choice of coordinate systems. De­

tails ~f the calculations and an in depth discussion of the resulting constants can 

be found in their paper18 . Unfortunately, a few minor mistakes are found in the 

rate calculations in that paper~ Current calculations correct for these oversights. 

The partition functions are calculated using a harmonic oscillator rigid rotor 

approximation. The relevant constants are taken from Herzberg38 . It is found, 

similar to Handy's calculations, that the partition functions converged by J=9 

for the H2 + OH reaction and J=61 for the D2 + OH reaction. 

The rotational energy levels of our system are solved perturbatively. We use 

the Watson reduction for the energy levels of an asymmetric top23 • The elements 

of the rotational energy matrix are of the form 

(J, KIHJIJ, K) = ~ (B: + B~) J (J + 1) + [n:- ~ (B: + B~)] K 2 

-!J.JJ2 (J + 1)2
- !J.JKJ (J + 1) K 2

- !J.K K 4 

+¢>JKJ2 (J + 1) K 4 + if!EK6
, (2.29) 

and 

(2.30) 

where 

(2.31) 

(2.32) 



p = ¢JJ2 (J + 1)2 + ~¢JKJ (J + 1) [(K ± 2)2 + K2] 

+~</JK [( -K ± 4)
2 + K 4

], 

K01 = J (J + 1) - K (K ± 1), 

K 12 = J ( J + 1) - ( K ± 1) ( K ± 2) . 
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(2.33) 

(2.34) 

(2.35) 

This matrix is diagonalized for each value of J and the energy levels are inserted in 

the appropriate equations above. The constants used in calculating the rotational 

energy levels are also calculated using the SPECTRO program and can be found 

in Handy's paper18
• 

2.4.2 Results 

Results for the H2 + OH and D2 + OH reactions are shown in Figures 

2.1-2.4. The theoretical results are compared· to the experimental results of 

Ravishankara39 • No experimental results are available for the J=O case, but 

we have included a plot of J=O data to emphasize the contribution of nonzero 

angular momentum states to the thermal rates. . 

Figure 2.1 shows the zero angular momentum contribution to the rate for 

the H2 + OH reaction. The J=O partition functions are used to calculate these 

rates. The results designated with the boxes show the effect of using a harmonic 

potential. One can see that using a harmonic potential significantly raises the 

rate. This means that the true barrier is wider than the harmonic equivalent. 

Even with only the J=O contributions the rate is already too large at all temper­

atures, but especially at low temperatures. This shows the importance of using 

an anharmonic potential surface. On the other hand, the SCTST results appear 

promising. SCTST using the semiclassical (quantum) tunneling coefficient are 

denoted by circles (stars) and a dashed (dotted) line. We maintain this conven­

tion for all graphs. 
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Figure 2.2 shows the converged thermal reaction rates using all the above 

methods. We see that the SCTCT does indeed do an excellent job at calculating 

the rates. This reaction is one of the most challenging to the SCTST method 

due to the large quantum effects associated with hydrogen motion. At higher 

temperatures where the contribution from tunneling effects are less important 

the theoretical values fall within experimental uncertainty. Notice that at very 

low temperatures, the SCTST methods have underestimated the thermal rates. 

However, the use of the quantum tunneling coefficient has significantly increased 

the accuracy over the semiclassical tunneling coefficient at 298 K. 

We see similar trends with the D2 + OH. For J=O, the harmonic potential 

presents us with a barrier that is also too narrow. Figure 2.4 shows that the 

calculated thermal reaction rates using the anharmonic potential fall well within 

experimental uncertainty. Even at low temperatures, SCTST yields accurate 

results. We see that using the quantum tunneling coefficient again increases the 

reaction rate, but to a much lesser degree than the previous reaction. This is 

reasonable since less tunneling occurs in the deuterated species. 

2.5 Cl + H2 -+ HCZ + H 

2.5.1 Computational Specifics 

The Cl + H2 --+ HCl + H reaction plays a important role in atmospheric 

chemistry40
•
41

. It has been studied extensively both experimentally40 and 

theoretically41- 44 . In our calculations, we use a potential energy surface from 

Truhlar and coworkers43 • The reaction occurs through a linear transition state. 
r 

This surface has been used in several theoretical investigations42- 44 . 

We calculate the derivatives of the potential energy surface in Cartesian co­

ordinates. Again we use finite difference differentiation with quadruple precision, 

and the optimal step length is found by finding an island of stability in the fourth 
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-, Figure 2.1: Thermal rates for the H2+0H-+ H20+H reaction with zero angular 
momentum. Results are shown for temperatures of 298, 400, 600, and 1000 K. 
SCTST results are shown as circles connected by a dashed line, SCTST with a 
harmonic potential as boxes connected by a dashed-dotted line, and SCTST with 
the quantum tunneling coefficient as stars connected by a dotted line. The solid 
line is the experimental results of Ravishankara39 . 
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Figure 2.2: Thermal rates for the H2 + OH--+ H20 + H reaction. Results are 
shown for temperatures of 298, 400, 600, and 1000 K. SCTST results are shown 
as circles connected by a dashed line and SCTST with the quantum tunneling 
coefficient as stars connected by a dotted line. The solid line is the experimental 
results of Ravishankara39 . 
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Figure 2.3: Thermal rates for the D2 + OH-+ H DO+ H reaction with zero an­
gular momentum. Results are shown for temperatures of 298, 400, 600, and 1000 
K. SCTST results are shown as circles connected by a dashed line, SCTST with 
a harmonic potential as boxes connected by a dashed-dotted line, and SCTST 
with the quantum tunneling coefficient as stars connected by a dotted line. The 
solid line is the experimental. results of Ravishankara39 . 
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Figure 2.4: Thermal rates for the D2 + OH-----* H DO+ H reaction. Results are 
shown for temperatures of 298, 400, 600, and 1000 K. SCTST restult are shown 
as circles connected by a dashed line and SCTST with the quantum tunneling 
coefficient as stars connected by a dotted line. The solid line is the experimental 
results of Ravishankara39 • 
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derivatives. The derivatives are then entered into SPECTR037 , which calculates 

the necessary spectroscopic constants. The partition functions are calculated us­

ing the harmonic oscillator rigid rotor approximation, and the relevant constants 

are taken from Herzberg38
• 

J:he rotational energy levels of a linear system are expressed as a truncated 

sum 

E(J, L) = Bv [J(J + 1)- L2
]- DJ [J(J + 1)- L 2r 

+HJ [J(J + 1)- L 2r, (2.36) 

where 1 is the vibrational angular momentum quantum number for the degen­

erate mode. Note that there is a twofold degeneracy associated with 1, and a 

(2J + 1) degeneracy associated with M. Therefore, the reaction probabilities are 

multiplied by (2J+l) for 1=0 states and 2(2J+l) for 1#0 states. 

2.5.2 Results 

Figure 2.5 compares SCTST results for the thermal reaction rates to the true 

quantum results of Wang and coworkers42 • Wang performed a full dimensional 

quantum calculation using this same potential surface. His results are denoted by 

the solid line. We maintain the same convention in labeling our plots ; SCTST 

results using the semiclassical (quantum) tunneling coefficient are denoted by 

circles (stars) and a dashed (dotted) line. From our previous results we have seen 

that an anharmonic potential surface is necessary, and we have found a similar 

effect with this reaction. Again the semiclassical tunneling coefficient leads to an 

underestimation of the rate. However, the quantum tunneling coefficient greatly. 

improves the accuracy of SCTST especially at lower temperatures where the role 

of tunneling is greater. In fact the quantum SCTST rates are quite good for this 

reaction. 
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Figure 2.5: Thermal rates for the Cl + H2 -+ HCl + H reaction. Results are 
shown at temperatures for intervals of 100 K, beginning at 200 K. SCTST results 
are shown as circles connected by a dashed line, and SCTST with the quantum 
tunneling coefficient as stars c~mnected by a dotted line. The solid line is the 
fully quantum results of Wang and Miller42 

• 
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2. 6 Conclusions 

We have seen that Semiclassical Transition State Theory provides an inex­

pensive and fairly accurate way of calculating thermal reaction rates. SCTST 

improves on classical TST by allowing tunneling through the barrier using a 

semiclassical or quantum description. The method allows the use of an anhar- · 

monic potential, and includes the effects of coupling between the reaction path 

and the orthogonal degrees of freedom. Results using SCTST generally fall within 

experimental error and agree well with full quantum results. Unlike full quantum 

calculations, the scalability of SCTST makes the' calculation of rates for large 

systems feasible. SCTST can be a valuable tool for calculating rate constants for 

a variety of reactions. 
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Chapter 3 

Dissociation of Triplet Ketene 

3.1 Introduction 

The dissociation of ketene has been a topic of interest in the past few years. 

Various aspects of reactive and non-reactive processes involving the molecule have 

been studied at length both experimentally45-6° and theoretically61-67 . 

By labeling the carbon atoms in ketene, Moore and coworkers saw an intrigu­

ing energy dependence in the internal isomerization rate of ketene through the 

oxirene intermediate52•53 • Gezelter and Miller performed theoretical calculations 

to identify the basis for the energy dependence of the isomerization63 • Although 

they obtained results qualitatively similar to experiments, they were unable to 

draw any definite conclusions as to the source of the structure. 

The dissociation of ketene is the main aspect of focus in the chemical commu­

nity. While some studies have examined the dissociation on the singlet surface, 

where there is no barrier to recombination of the products56- 62 , more recently 

attention has been lavished on the dissociation on the triplet surface54•55•63 • The 

dissociation on the triplet surface is a simple barrier process. We examine the 

dissociation of triplet ketene onto the triplet methylene surface in this chapter. 
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Moore and coworkers use a super sonic molecular jet to prepare rotationally 

cold ketene on the S0 (ground state singlet) surface at around 5 degrees K. They 

use a UV laser to excite these rotationally cold molecules onto the S1 (first ex­

cited singlet) surface at the dissociation threshold. The ketene then undergoes 

an intersystem crossing to the T1 (triplet) surface and dissociates. In order to 

detect the rate of reaction, Moore et al. use laser-induced fluorescence to detect 

the CO molecule. The resulting rate shows a definite step structure in the energy 

dependence that results from the opening of new channels at the transition state. 

Initial RRKM calculations seemed to explain the structure seen in the disso­

ciation rate. However, these calculations have not withstood recent scrutiny. In 

order to resolve the origin of the step structure, Gezelter and Miller performed 

quantum mechanical calculations of the dissociation rate of triplet ketene. Un­

fortunately, the potential surface available to them at that time was at a low level 

of theory, and only the stationary points on the surface had been mapped. As 

a result they were unable to reproduce the step structure of the rate. In their 

paper they determined that the barrier frequency·was too large to reproduce the 

step structure. They showed that the reaction barrier frequency would need to 

be on the order of 100 cm-1 in order to reproduce the desired structure. In 

their paper Gezelter and Miller suggested three hypotheses as to why they did 

not see the step structure. Hypothesis 1: A second transition state is present 

further out in the product region. Hypothesis 2: The current ab initio surface is 

not sufficiently accurate. Hypothesis 3: The singlet and triplet surfaces have an 

intersystem crossing near the transition state. The last hypothesis was suggested 

by Ttoe and Moore68 • In this chapter we use a newly available, highly accurate 

potential energy surface to evaluate these hypotheses. 

The microcanonical dissociatiqn rate is a function of the cumulative reaction 

probability (CRP) 

N(E) 
kd(E) = 21rp(E), (3.1) 
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We calculate the CRP quantum mechanically and semiclassically in this chap­

ter in an attempt to illuminate the processes behind the step structure seen in 

the dissociation rate. In the above equation, p is the density of reactant states 

per unit energy. In theoretical calculations, one generally l1ses a rigid-rotor, har­

monic oscillator approximation for the density of states. However, Moore has 

determined that the actual density of states for ketene is two to four times as 

big as the rigid- rotor harmonic oscillator treatment predicts69
•55 • As a result, 

Allen has derived a new expression for the density of states from the number of 

reactant vibrational states available70• The number of states available is fit to a 

functional form 

lnN = j(E)jE- E0 , (3.2) 

where 

f(E) =a+ bE+ cexp -dE (3.3) 

which is then differentiated analytically. The constants in the previous equations 

are found in Table 3.1. The resulting equation for the density allows for anhar­

monicity in the potential surfaee. 

We describe a new potential energy surface for the dissociation of triplet 

ketene in Section 3.2. Section 3.3 elaborates on the methods used to calculate 

the CRP. We use a quantum scattering methodology with a Discrete Variable 

Representation (DVR) and Absorbing Boundary Conditions (ABC) to calculate 

the CRP quantum mechanically, and the Semiclassical Perturbation (SCP) and 

Infinite Order Sudden (lOS) approximations for the corresponding semiclassical 

calculations. The resulting dissociation rates are presented in Section 3.4, and 

Section 3.5 concludes. 

3.2 Potential Energy Surface 

We use the triplet ketene fragmentation surface of Allen and coworkers71 . This 

new surface goes several steps beyond any surface that has been available in the 
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Eo 7231.1 

a .1161 

b -2.8581 (-7) 

c -.29487 

d 3.1621 (-4) 

Table 3.1: Parameters for use in calculating the reactant partition function of 
ketene. Units are consistent with energies in cm-1 . 

past. The stationary structures of the reaction are computed using a TZ(2dlf,2p) 

basis set at a coupled-cluster singles and doubles [CCSD] level. In addition, 

the potential energy along the reaction path is determined using coupled-cluster 

methods through triple excitations [UCCSD(T)] with a cc-pVQZ/TZ basis set. 

Allen and coworkers have calculated not only the stationary structures at these 

high levels of theory, but they have also provided a parameterization of all con­

stants necessary for the evaluation of the reaction path hamiltonian. The one­

dimensional form of the potential energy surface as a function of the reaction 

path is 

V[R(s)] = -d1 + d1 [ 1- e-c1(R-Rl)f 

+d2Sech[c2(R(s)- R2)] + d3Sech[c3(R(s) - R3)], (3.4) 

where, 

(3.5) 

and 
n 

Pn(s) = L Cm(s- so)m. (3.6) 
m=l 
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Ro 1.44637 

So -4:12 

d1 -1.6785 

d2 6.585 (-1) 

d3 1.0383 

c1 -7.97 (-3) 

c2 1.34 (-1) 

c3 -3.410 (-1) 

c4 3.174(-1) 

c5 -4.597 (-3) 

c6 '5.739 (-4) 

Table 3.2: Parameters for calculating the potential energy along the reaction 
path. Units are consistent with energies in cm-1 . 

Parameters for the previous equations are shown· in Table 3.2. All other con­

stants for the calculation of the full dimensional potential surface are supplied by 

a subroutine available from Allen. 

The transition state configuration is shown in Figure 3.1, where the C-C crit­

ical bond distance is 2.257 A. Over the course of the reaction the C-0 bond 

contracts from 1.1863 A to 1.1252 A, and the H-C-H angle increases from 120.13 

degrees to 133.48 degrees. Notice that at the transition state the system has al­

ready undergone 86 % and 78 % of its change in these two coordinates. Allen also 
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R(C-C)=2.1835 

R(C-0)= 1.1340 

R(C-H1)=1.0722 

R(C-H2)=1.0743 

a=115.42 

y=130.88 

~f3=.087 

29 

Figure 3.1: Cf1 Transition State of Triplet Ketene. Lengths are in units of A and 
bond angles are in degrees. 
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-2 0 2 4 

s (Arclength in Ato-mic Units) 

Figure 3.2: One-dimensional potential energy of triplet ketene as a function of 
the reaction path, s. The arclength is in atomic units. The reaction has a barrier 
of 1045 cm-1 . 
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sees a monotonic decay in the tail of the reaction path and concludes that there 

is only one transition state along the reaction path, thus ruling out hypothesis 1 

of Gezelter and Miller63 . 

Using the singlet-triplet splitting of methylene, Allen finds that the reaction 

threshold energy is 26969 cm-1 . The barrier height of the triplet surface is 1045 

cm-1 (See Figure 3.2},which lies 115 cm-1 above the product region. The reaction 

path displays a barrier frequency of 321i cm-I, which is much greater than the 

theoretical value of 100 cm-1 that Gezelter found necessary to reproduce the step 

structure in the rate63 . However the barrier in the transition state region displays 

a fair amount of anharmonicity, and Gezelter's calculations assumed a harmonic 

barrier. The anharmonicity in the reaction path has the effect of widening the 

barrier, which may or may not result in the appearance of the step structure. 

Considering the level of theory used in these calculations, Allen has concluded 

that the barrier frequency is unlikely to be significantly smaller than current 

calculations and declares hypothesis 3 as improbable. 

3.3 Theoretical Methods 

3.3.1 DVR-ABC 

We use the DVR-ABC methodology for calculating the CRP quantum me­

chanically. Unfortunately, such grid methods do not scale favorably with an 

increasing number of dimensions. We therefore perform a one-dimensional calcu­

lation and fold in the other degrees of freedom using a canonical transformation 
00 

N(E) = L N1d (E- E~- 1 )' (3.7) 
n=O 

where 

F-1 . .f-. ( 1) 
E0 = L..J Wk nk + 2 . 

k=2 

(3.8) 

These calculations are in the same vein as those performed by Gezelter with the 

previous surface. We present the necessary equations here and point the reader 
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to Gezelter's paper for a detailed discussion64
•
63

. 

Seideman and Miller73 showed that the CRP could be written as a quantum 

mechanical trace 

N(E) . 4tr [ilG(E)ipG(E)il] , 

where G(E) is the greens function 

(3.9) 

(3.10) 

fi is the hamiltonian for the system, and E is an absorbing potential that absorbs 

outgoing amplitude and ensures that the boundary conditions of the wave func­

tions are enforced. Er is the absorbing potential in the reactant region, and Ep is 

the corresponding absorbing potential in the product region. The Hamiltonian 

for our one-dimensional system is 

fi = Ts + V(s). (3.11) 

where V(s) is a diagonal matrix of the potential energy and Ts is the kinetic 

energy. Using a sine function DVR basis, the elements of the kinetic energy 

matrix are 

( -1 )i-j (7!"2 1 ) 
Ti,i = 2pJJ.R2 3 - 2i2 

(-1)i-j ( 2 2 ) 
= 2J-L!:l.R2 ( i - j)2 - ( i + j)2 

1, =], 

i =I= j, (3.12) 

where !:l.R is dependent on the number of grid points per deBroglie wavelength, 

NB 

!:l.R = 27r . 
NBJ(2J-L(Ehigh- Viow) 

(3.13) 

Ehigh is the highest energy at which we wish to calculate the rate, and Viow is the 

lowest point on the potential energy surface. The absorbing potential is of the 

form 

( 
Rr R )Zr 

Er(R) =a Rr _ Rmin h(Rr- R) (3.14) 
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' 

Rr 2.30 

Zr 5 

Rmin 1.7 

Rmax 3.5 

Rp 2.85 

Zp 4 

a .02 

Table 3.3: Parameters for the calculation of the absorbing potentials. All param­
eters are in atomic units. 

( 
R- Rp )zp 

Ep(R) =a Rmax _ Rp h(R- Rp). (3.15) 

Table 3.1 presents typical values for the parameters of the absorbing potentials. 

3.3.2 SCP-IOS 

The reader will recall from Chapter 2 that the semiclassical cumulative reac­

tion probability can be expressed as a sum of individual tunneling probabilities 

(Equation 2.2). Those individual tunneling probabilities are a function of the 

barrier penetration integral (Equation 2.3). Using the Vibrationally Adiabatic 

Zero Curvature (VAZC) approximation on the hamiltonian along with energy 

conservation yields 

B(n, E) = J dsJ2 (Vn(s) -E), (3.16) 
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where 

F-1 ( 1) 
Vn(8) = Vo(8) + L wk(8) nk + 2 · 

k=1 

(3.17) 

Notice that this approximation doesn't allow for an anharmonic reaction path 

potential, nor does it take coriolis or curvature couplings into account. These 

curvature couplings can significantly affect the rate. In fact, Truhlar has shown 

that the VAZC approximation does not yield accurate results for the collinear 

1 H + H 2 reaction. In the case of ketene, the step structure of the rate is not seen 

using the VAZC approximation. This might be corrected if we somehow include 

the coupling between the reaction path and the vibrational modes. 

In order to introduce the effects of reaction path curvature, we use the Semi­

classical Perturbation and Infinite Order Sudden Approximations in a unified 

theory derived by Miller74 (SCP-IOS). We begin by writing the hamiltonian in 

action-angle variables, ( n, q) 

_ ~ [Ps- 'EBk,k'(8)V(2nk+ 1)(2nk' +1) msinqkcosqk'r 
H(n, q, 8,Ps) - [ F 1 2n +1 ] 

1 + 'Ek::-1 Bk,F(8) ~ sinqk 

F-1 ( 1) 
+Vo(8) + L wk(8) nk + 2 , _ 

k=1 

(3.18) 

where wk(8) are the harmonic frequencies, Bk,k'(8) are the coriolis coupling, and 

Bk,F(8) are the curvature couplings. This is the reaction path formulation of the 

hamiltonian 75 • The barrier penetration integral according to Miller's paper is 

expressed in a slightly different form than before. 

O(n, qo) = -Ps(8)8i!~ + rs2 

Ps(8)d8, Js1 (3.19) 

where 8 1 --+ -oo and 8 2 --+ +oo. But a careful inspection proves this is the same 

as equation 3.16. We then use energy conservation to determine Ps 

I [ F-1 2nk + 1 . l 
p8 (8) = y2(Vn- E) 1 + {; Bk,F(8) wk(8) smqk(8) 

\==! 1 · wk'(8) + L... Bk,k'(8)y (2nk + 1)(2nk' + 1) -(-) sin Qk cos Qk'' 
k,k1=1 Wk 8 

(3.20) 
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where V0 is the adiabatic approximation to the potential 

F-1 1) 
V0 = ~(s) + L wk(s) ( nk + 2 . 

k=1 

(3.21) 

At this point we differ from Miller's original derivation. In his journal article, 

Miller goes on to express the action-angle variables as functions of s, the reaction 

path. Instead, we assume that the action-angle variables are independent of s. We 

also choose to neglect the coriolis coupling, Bk,k' ( s). Doing so should not affect 

the rate since the coriolis couplings are often much smaller than the curvature 

couplings, Bk,F(s). Thus the forn{er equation becomes 

[ 

F-1 2nk + 1 
Ps(s) = V2(Vn- E) 1 + L Bk,F(s) ( ) 

k=1 Wk S 
(3.22) 

Substituting this result into our rate equation, the CRP is now 

N(E)-'"' 
1 

- L.J 2[8(E)-"'F-l () (E)] ' 
n 1 + e L..,k=l k 

(3.23) 

where 

I 
F-1 2n + 1 

Ok(E) = dsJ2 (Vn -E) L Bk,F(s) k ( ) . 
k=1 Wk S 

(3.24) 

Notice that we are in effect calculating a correction factor to the barrier penetra­

tion integral that accounts for curvature in the reaction path. 

3.3.3 J-Shifting 

We incorporate angular momentum into our calculations of the CRP by using 

the J-shifting approximation. This approximation assumes that P1 (E) is merely 

a shifting of the J =0 probabilities 

(3.25) 

where E1 is the rotational energy of the system. To calculate the rotational 

energy levels, the J-shifting approximation assumes that the rotational constants 
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A* 4.297 

B* .244 

C* .224 

Table 3.4: The rotational constants of the C{1 transition state for the dissociation 
of triplet ketene. The constants are in units of cm-1 . 

along a reaction path are constants. Traditionally the rotational constants at 

the transition state are used in the calculation. Table 3.4 shows the rotational 

constants for the dissociation of triplet ketene. These constants are· calculated 

using the transition state in Figure 3.1. Previous calculations have shown that 

the J-shifting approximation produces rates in excellent agreement with quantum 

calculations and experiment 78
•
42

• 

3.4 Results 

Figure 3.3 shows the one-dimensional CRP calculated using DVR-ABC. Both 

the current results (solid line) and Gezelter's results (dashed line) are shown:No­

tice that both rise slowly over a long period. The current result rises faster due 

to a slightly smaller barrier frequency, 321i cm-1 versus 371i cm-1 • The reaction 

rates resulting from folding in the other degrees of freedom are denoted as a solid 

line in Figure 3.4. Notice that the rate still rises smoothly; the step structure is 

not reproduced. This is expected given the barrier frequency. Gezelter has shown 

that a decrease in the barrier frequency to 100 cm-1 would reproduce the step 
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Figure 3.3: The one-dimensional cumulative reaction probability for the dissoci­
ation of triplet ketene. The solid line is the result of current calculations. The 
dashed line is the result of previous calculations by Gezelter and Miller.63 

structure63
. This is due to the fact that the frequencies of the vibrational modes 

are small compared to the barrier frequency. Thus the interval between the steps 

is smaller than the interval over which the steps rise.· While the current potential 

does predict a wider barrier than the previous surface, the barrier frequency is 

still not small enough to produce the desired steps. 

In Figure 3.4, we have also included the result of SCPIOS but setting all curva­

ture coupling constants to zero (dotted line). Notice that the SCP-108 with zero 

curvature agrees qualitatively with the DVR-ABC results. This is logical since 

the DVR-ABC does not account these couplings. The similarity of the results of 

these two methods is encouraging. We see that the semiclassical approximation 
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Figure 3.4: The dissociation rate for triplet ketene. DVR-ABC results are shown 
as a solid line. SCPIOS results are shown as a dashed line. SCPIOS results with 
no curvature effects are shown as a dotted line. The. circles are the experimental 
results of Moore. 54•55 
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Figure 3.5: . The dissociation rates for triplet ketene. The curvature couplings 
between the reaction path and the orthogonal modes are multiplied a factor of 
1, 50, 100, 250, and 500. As the coupling increases the step structure comes into 
focus. 



40 CHAPTER 3. DISSOCIATION OF TRIPLET KETENE 

used in treating the tunneling through the barrier is sufficiently accurate. The 

dashed line in Figure 3.4 represents the SCP-IOS model described in Section 

3.3.2. Notice that both SCP-IOS methods yield similar rates, which means that 

the curvature of the reaction path has very little effect on the tunneling rate. 

Again, the reaction rates do not portray the desired step structure. 

At what point does the curvature affect the reaction rate? From Equation 3.21 

we see that the sum of all ()k must be on the order of() in order to affect the barrier 

penetration integral. Out of curiosity, we multiply all coupling constants by a 

constant factor. Figure 3.5 shows the reaction rates for these inflated coupling 

constants. As the curvature of the reaction path increases, we begin to see the step 

structure appear (See Figure 3.5). Thus we conclude that a reaction path with 

more curvature wouid indeed reproduce the step structure seen in experiments. 

3.5 Conclusions 

In this chapter, we have presented theoretical rates for the dissociation of 

triplet ketene. These results agree closely with experimental trends. However, 

the step structure seen in the experiments of Moore54•55 is not reproduced in our 

calculations, despite a substantial increase in the accuracy of the potential energy 

surface. 

The current surface is obtained using the latest in ab initio methods, and the 

full reaction path has been mapped. Hence, we are inclined to draw the conclu­

sion that the noticeable absence of the step structure is not due to precision of 

the potential surface. 

In order to reproduce the step structure in the dissociation rate, the effective 

barrier needs to be wider. In the calculations of Gezelter and Miller, the barrier 

frequency of the Eckart potential that is necessary to reproduce the desired struc­

ture in the rate is 100 cm-1 . Current calculations use an analytical form of the 
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potential surface with a wider barrier. However, this new surface fails to produce 

the step structure seen in experiments. In order to reproduce the step structure, 

the effective barrier to reaction must be widened from it's current shape. 
'· 

As for the question of the existence of a second transition state in the product 

region, Allen has determined that there is only one transition state. However, a 

dynamical bottleneck could occur if the perpendicular modes tightened after the 

transition state. We see no evidence of such an event. 

This leaves us with one remaining hypothesis - the crossing of the triplet and 

the singlet surfaces at a geometry near the transition state. This could give rise 

to an effective widening of the barrier or some structure in the dissociation rate. 

Initial studies of the surface crossings have been presented67 • We await further 

theoretical studies of the surface interactions. We hope that these studies of 

the non-adiabatic surfaces will explain the source of the step structure in the 

dissociation rate of triplet ketene. 
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Chapter 4 

Time Averaging the SCIVR 

4.1 Introduction 

The Semiclassical Initial Value Representation (SCIVR) has undergone are­

birth of interest recently79•80 . It presents a practical way to obtain quantum 

mechanical dynamical properties while restricting the computational complexity, 

allowing the investigation of more complex chemical systems. The SCIVR approx­

imates quantum mechanical effects while requiring little more than the evaluation 

of classical trajectories. The Herman Kluk SCIVR81 •82 replaces a quantum me­

chanical trace with a phase space average over initial coordinates and momenta. 

The average is then evaluated using Monte Carlo methods. Recent studies have 

shown the flexibility of the SCIVR, and many encouraging results have, been 

reported 79- 113 • 

However, there are still some difficulties in applying the SCIVR, which have 

not been completely solved. The main barrier is the evaluation of the phase space 

integral. The integrand of the SCIVR is highly oscillatory. In chaotic systems, 

the pre-exponential factor can become quite large. This leads to an integrand that 

is not only rapidly oscillating but also large in magnitude. As a result of these 

two factors, Monte Carlo integration methods have trouble efficiently evaluating 

the integral. Often many millions of trajectories are required for convergence in 
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highly chaotic systems. 

In this chapter we examine the utility of applying time integration to the 

Herman-Kluk SCIVR. This is an attempt to smooth the integrand, thus improv­

ing the rate of convergence. We compare results using the straightforward SCIVR 

and the time integrated version. Section 4.2 introduces the basic SCIVR in the 

coherent state formalism. The introduction of the time integration is covered in 

Section 4.3. Various approximations are applied to simplify the resulting equa­

tions and provide an physical understanding of the problem. In Section 4.4 we 

implement the previous methods using a model system of two harmonic oscilla­

tors with a quartic coupling term. The results are presented in Section 4.5, and 

Section 4.6 summarizes and concludes. 

4.2 The SCIVR Formalism 

The time correlation function can be used to express many dynamical prop­

erties of a molecular system 

(4.1) 

where the operators and A and iJ depend on the molecular quantity of interest. 

Semiclassically the time evolution operator ,e-iflt, is replaced by the Herman­

Kluk or coherent state SCIVR expression81•82 

where F is the number of degrees of freedom. ( q0 , p 0 ) are the initial positions and 

momenta of the classical trajectories. ( qt, Pt) are the time evolved coordinates 

and momenta, which are dependent on the initial positions and momenta. "( is 

an F-dimensional diagonal matrix, where element 'Yi is the width parameter for 

the coherent state of the ith degree of freedom. An individual element of 'Y can be 

declared as constant or as a function of time. We will assume for now that 'Y is a 

function of time. If 'Y is instead constant, the equations can easily be simplified. 
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Ct( q0 , p0) is the pre-exponential factor which is calculated from the elements of 

the monodromy matrix 

( ) 

1/2 

C 
- 1 ! aqt -! -! apt ! . ! aqt' ! . -! apt -! 

t - -2 'Yt -a 'Yo + "'t -a 'Yo - 't"ft -a 'Yo + 't"ft -a 'Yo 
Qo Po Po Qo 

St ( q0 , p0 ) is the classical action integral along the trajectory 

St = lot dt (pq - H) . 

(4.3) 

(4.4) 

The F -dimensional coherent state wave function in the coordinate space repre­

sentation is 

(

"' ) F/4 "~ 2 . (xlpo, Qo) = : e-~!x-qol +ipo·(x-qo). (4.5) 

Unfortunately the integrand in equation 4.2 has proven to be difficult to in­

tegrate. It is highly oscillatory and can become quite large due to the pre­

exponential factor. Many approaches can be taken to smooth out the integrand. 

An early solution was to simply throw away the chaotic trajectories if there were 

only a few such trajectories inhibiting convergence114 . More recently, Filinov 

smoothing has proven to be a valuable tool115- 118 . 

A third method to smooth the integrand involves using the Forward-Backward 

SCIVR. The trajectory is integrated forward in time to time t, experiences a pos­

sible jump in coordinates and/ or momenta, and j.ntegrated back to time 0119
-

123
. 

If the forward and backward hamiltonians are the same, this method can be ap­

plied .only when the operator B is not unity. Otherwise the trajectory would 

travel forward and backward along the same path and up at the initial phase 

point of the trajectory. If the forward and backward hamiltonians are not equal, 

a phase jump at time t is not imperative, and operator B may be unity. \ 

Kay and coworkers have also implemented a time integration scheme for re­

active systems, replacing one of the phase space integrals with an integral over 
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time124•125 . They have seen a marked improvement in the convergence rates us­

ing this method. In the next section we use an integral over time to smooth 

the integrand. Unlike Kay, we insert identity in the form a time integral, while 

keeping all phase space integrals. This leads to a severe decrease in the number 

of trajectories necessary for convergence. 

4.3 Time Averaging 

The spectrum of a molecule can be written in the standard form as a function 

of the hamiltonian 

I(E) = (1/JI<5(E- H)I1/J). (4.6) 

We can express the delta function in Its Fourier representation to get an equation 

of the proper form for implementing the SCIVR 

I(E) = ~ReI eiEt{1/Jie-ifiti1/J)dt. (4.7) 

Using equation 4.2, our correlation function becomes 

(1/Jie-ifiti1/J) = (27r)-F I dqo I dpoCt(qo,Po)eiSt{qo,Po) 

x { 1/J IPt, qt, 'Yt) ( qo, Po, 'Yo 11/J), ( 4.8) 

Again the integrand is highly oscillatory. We introduce an average over time in 

order to smooth the integral. This is equivalent to inserting the identity operator 

as shown below. We simplify the previous equation 

=I dqodPo~ (loT dt') A(qo, Po) (4.9) 

and interchange the order of integration so that the phase space integral is com­

puted first. The result of the phase space integral does not depend on timet' 

= ~loT dt' (1/Jie-ifiti1/J). (4.10) 

The integral over time t' yields T that cancels with the T in the denominator, 

leaving us with the original result. 
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Using equations 4.6 and 4.8 and inserting the time integral, the expression for 

the spectrum becomes 

/(E) = 1 Re j dqo j dpo {T dt 1.oo d~'Ct(t')eiSt{qo,po)-Se(qo,po) 
T1r(21r)F lo t ' 

X ('l/Jiqt', Pt', "it') (qt, Pt, 'Yti'l/J). ( 4.11) 

The pre-exponential factor, actions, and the overlaps correspond to our earlier 

definitions. However, now we are in essence integrating over trajectories that 

begin at time t and end at time t'. If we start a trajectory at time 0, then the 

pre-exponential factor has a new form 

I 1 ( l 8qt' _l -l 8pt' l l 8qt' l _l 8Pt' -l) l/
2 

Ct(t) = 2 'Yt~ 8qt 'Yt 2 + 'Yt' 2 8pt 'Yl - ht~ 8pt 'Yl + ht' 2 8qt 'Yt 2 ,(4.12) 

where the individual elements in the monodromy matrix are calculated using the 

chain rule 

8(qt', Pt') 
8( qt, Pt) 

8(qt',Pt') 8(qo,Po) 
8( Qo, Po) . 8( Qt, Pt) · 

(4.13) 

Examining equation 4.11, we see a correspondence between the terms that are 

factors of time t and those of time t'. Most of the terms dependent on time t are 

complex conjugates of the terms dependent on timet'. The only term that does 

not follow this trend is the pre-exponential factor. If the pre-exponential factor 

was factorable into two parts, and if these two parts were complex conjugates of 

each other 

Ct(t') = r(t)eio:(t)r(t')e-io:(t'), (4.14) 

then the expression for the whole integrand could be factored. 

In order to get the pre-exponential factor in the desired format, we evaluate 

the monodromy matrix using the adiabatic approximation 

Mqq = L · n;~ ·cos (fot ntdt) · nb · Lr, (4.15) 
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1 _l ( rt ·) _l T 
Mqp = m L · nt 2 ·sin Jo ntdt · n0 

2 
• L , (4.16) 

( 4.17) 

(4.18) 

where nt are the local vibrational frequencies at time t, and L is the eigenvector 

matrix. We allow r to vary with time as a function of the local vibrational 

frequencies at time t. We choose r wisely in order to make some cancellations, 

resulting in a simplified expression for the pre-exponential factor 

'Yo = mL . no . LT' (4.19) 

(4.20) 

This choice of r results in the following pre-exponential factor 

( 4.21) 

From equation 4.21 we see that the pre-exponential factor is in the desired format. 

We can then factor the pre-exponential factor into two parts that are complex 

conjugates of each other, leading to an expression for the spectrum that involves 

only one time integral 

According to the previous equation, we have effectively added the zero point 

energy to the hamiltonian. This is valid for real frequencies, but what happens 

when imaginary frequencies come into play? We look at a one-dimensional prob­

lem for intuitive insight. Take for instance a morse oscillator. When in the 



48 CHAPTER 4. TIME AVERAGING THE SCIVR 

reactive regime, we have a contribution to the zero point energy. However, when 

the trajectory is at the transition state, there is no contribution to the zero point 

energy. Is it therefore reasonable to ignore the imaginary frequencies when they 

occur? In an upcoming section, we present an example of a system that has such 

frequencies. 

4.4 Computational Specifics 

4.4.1 Hamiltonian 

A model hamiltonian of two harmonic oscillators with a quartic coupling term 

is used for the calculations 

(4.23) 

where m is the mass, w is the frequency of the modes, and A is the coupling 

between the two modes. The mass is set equal to 1837 amu, and the frequencies 

of both modes are set to 2000 cm-1 • The coupling, lambda is varied between zero 

and one. When lambda is equal to zero (ie there is no coupling) the potential is 

spherically symmetric (see Figure 4.1). Trajectories on this potential are periodic 

over a short time period. As the coupling increases, the walls of the potential 

become steeper. The resulting trajectories become more chaotic, and the phase 

space integral is more difficult to converge. 

4.4.2 The Wave Function and Overlaps 

We choose 1'1/J) to be a product of two harmonic oscillator wave functions 

1'1/J) = ~e-'f(qo-qo)2' (4.24) 

where the gaussians are centered about q0 . The coherent states for use with 

the Herman-Kluk SCIVR are centered about the same point, (q0 , p0 = 0), and 

'Y = w, which is a constant. Our overlaps are 

(4.25) 
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(4.26) 

For the time integration studies, recalling that 'Y is a function of time, and 

our overlaps take on a more complex form 

VWYi e-!{qt-q0 )'yt{'Yt+w)- 1w(qt-q0 ) 

(~) 
X e- !Pt (w+Yt)- 1 Pte- ~Pt( qt -q0

) (4.27) 

(4.28) 

4.4.3 HK-SCIVR 

As we showed in a previous section, the HK-SCIVR expression of the spectrum 

of a molecule is 

I(E) = 
1 

RejdteiEtjdqojdpoCt(qo,Po)eiSt(qo,Po) 
n(2n)F · 

x ('1/Jiqt, Pt, "!) (qo, Po, 'YI'I/J) · ( 4.29) 

Evaluating the above equation is fairly straightforward. We use a gaussian weight­

ing function and Monte Carlo sampling to evaluate the integrals over initial po­

sitions and momenta. 

The reader should pay special attention to the calculation of the 

pre-exponential factor. When taking the square root of a complex number, one 

must be clear which branch is taken. For example, if the phase of C0 (t)2 is just 

under 180 degrees, then the phase of the pre-exponential factor ( C0 (t)) is just 

under 90 degrees (See Figure 4.2). However, when the phase of C0 (t)2 is just 

over than 180 degrees, the phase of the pre-exponential factor is just over 270 

,. ' 
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Figure 4.1: Contour lines for various values of>., the coupling parameter. Contour 
lines are shown at intervals ·of 2.5 cm-1 , and E(O,O)=O for all surfaces. 
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degrees. The pre-exponential factor is off by rr. Thus we must keep track of the 

phase of the pre-exponential factor along the trajectory and use it to correct for 

the branch cuts 

(4.30) 

where v is the maslov index. The maslov index is an integer and is increased 

(decreased) by one every time the phase of the pre-exponential factor increases 

(decreases) by more than rr. This necessitates a time step that is sufficiently 

small to capture all branch cuts. 

In fact the pre-exponential factor is the most cumbersome part of the cal­

culation. As the coupling between the two modes is increased, the trajectories 

become more chaotic, and a tiny change in initial position and momenta leads 

to a large deviation in the final phase point. This causes the magnitude of the 

pre-exponential factor to rise exponentially. _{Jltimately the chaotic nature of the 

trajectories causes the pre-exponential factor to grow so large that the Herman­

Kluk SCIVR breaks down. 

4.4.4 Time Averaging 

The reader will recall our original expression for the time integrated SCIVR. 

I(E) = 1 ReI dqo I dpo {T dt rXJ dt'Ct(t')eiSt(qo,po)-Se(qo,po) 
Trr(2rr )F lo lt 

X ('1/Jiqt', Pt', '/'t') (qt, Pt, '"Yti'I/J) · ( 4.31) 

Unfortunately the calculation of the pre-exponential factor makes this method 

prohibitively expensive. For each trajectory the pre-exponential factor must be 

evaluated n~imesteps and involves multiplying two 2n by 2n matrices. The maslov 

index must also be calculated, limiting the length of our time step. 

After making the approximation to the monodromy matrix and our judicious 
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C(t) 

... 
' 

C(t) 

Figure 4.2: One must be car~ful when taking the square root of a complex number, 
as in the calculation of the pre-exponential factor. When the phase of (C0 (t)) 2 

is just under 1r, the phase of the pre-exponential factor (C0 (t)) is just under 
~· However, when the phase of (C0 (t))2 is just over 1r, the phase of the pre­
exponential factor ( C0 ( t)) is just over 3

;. This is off by a factor of 1r. 
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choice of 'Y 

Notice that we no longer need to keep track of the maslov index because we are 

no longer taking the square root of a complex number. Also note that there 

is no obvious weighting function in the previous equation for use in the Monte 

Carlo sampling. In this case, we can perform the phase space integral using a flat 

distribution. However, others have shown that in the case of a harmonic oscillator 

system, sampling from a Husimi distribution126 provides for faster convergence. 

In order to get the desired distribution, we divide and multiply equation 4.32 by 

I ( Qo, Po, 'Yo 11/1) 1
2 
· 

I(E) = 27rTt27r)F I dqo I dqo j(qo,Po,"fol1/1))12 

X I {T eiEt (1/ljqt, P!l 'Yt) e-i J;[Pti-H- 2;:k !wk(t')]dt'l
2 

lo (qo, Po, 'Yol1/l) 
(4.33) 

where the final term is the above expression is used as sampling function in the 

Monte Carlo evaluation of the phase space integral. 

4.5 Results 

We compare results using equations 4.29(HK-SCIVR) and 4.33(Time Aver­

aging SCIVR). Calculations using time averaging without the approximation to 

the pre-exponential factor do not result in a decrease in the number of trajec­

tories necessary for convergence. In addition, time integration SCIVR with a 

flat sampling function does yield a higher rate of convergence. However, using 

the Husimi distribution results in far superior convergence rates. We report the 

results of the Herman-Kluk SCIVR and the time averaged SCIVR with the adi­

abatic approximation to the pre-exponential factor. 

We calculate the eigenvalues of the system by diagonalizing the hamiltonian 

and compare them with the results of the SCIVR methods. As seen in Figure 
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4.3, both the Herman-Kluk SCIVR and time integrated SCIVR produce peaks 

at the correct energies. With no coupling between the modes, we already see an 

significant increase on the rate of convergence by using a time averaged version 

of the SCIVR. While the Herman-Kluk SCIVR requires at least 1000 trajectories 

to converge, the time average method results in convergence after only five tra­

jectories. Not only does the time averaged SCIVR converge in fewer trajectories, 

but the time spent evaluating the trajectory is decreased due to the elimination 

. of the maslov index and the simplified expression for the pre-exponential factor. 

As the coupling slowly increases, the Herman-Kluk SCIVR fails to converge 

at even low couplings. We use the Manolopoulus SCIVR115 in an attempt to 

stretch the usefulness of the Herman-Kluk SCIVR, but the magnitude of the pre­

exponential factor for many of the trajectories prohibits successful convergence. 

On the other hand, the time averaged SCIVR continues to perform magnificently. 

At a coupling of>.= .01, the agreement with the calculated eigenvalues is again 

quantitatively accurate. From this point on, we present only the time averaged 

results since conventional Herman-Kluk SCIVR fails. 

At larger couplings, the time averaged method begins to show signs of weak­

ness. At a coupling of >. = .1, we begin to see trajectories where some of the 

local frequencies are imaginary. As we questioned earlier, we need to identify 

what to do with these trajectories. Shown in Figure 4.6 are the results of two 

different approaches. The dashed line is the result of setting any imaginary fre­

quencies equal to zero for the purpose of evaluating the spectrum. We stated 

earlier that this is equivalent to having no zero point energy contribution on top 

of a one-dimensional barrier. The solid line in Figure 4.5 is the result of reject­

ing the trajectories where a frequency meanders into the imaginary regime. We 

note both methods exhibit the same structural components. As we increase the 

coupling an increasing number of trajectories exhibit imaginary frequencies. See 

Table 4.1 for the percentages of such trajectories. 
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% of trajectories 
A. with imaginary 

local frequencies 

0 0% 

.01 0% 

.1 4% 

. 2 12% 
' . 5 43% 

1.0 61% 

Table 4.1: Percent of trajectories with imaginary local frequencies for several 
values of the coupling parameter, .X. 

, .. 
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Figure 4.5: Spectrum of the model hamiltionian, fi = ~ + ~w2 (x2 + y2
) + 

_ A.x2y2 , where ).. = .5 and 1.0. The solid verticle lines are the eigenvalues of the 
hamiltonian. The dashed line is the time averaged SCIVR result. 
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o~~~~~-~~~~~~~~~~~~ 
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-1 
Energy (em ) 

Figure 4.6: Spectrum for X= .5. The solid line is the result of throwing out all 
trajectories that have imaginary local frequencies. The dashed line is the result of 
setting the zero point energy contribution to zero when those frequencies occur. 
Notice that both methods result in similar features. 
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For these larger couplings, time averaging provides good qualitative results. 

The reader will notice that not all peaks are present. This is due to our choice· 

of 1'¢), and should not cause concern. As the coupling is further increased, we 

see some spurious peaks in the spectra which do not disappear upon the addition 

of more trajectories. Most of the peaks are still centered about the eigenvalues, 

but a few have deviated slightly. The splittings in the spectra, while in generally 

good agreement, are overestimated to.~ small degree. 

4.6 Conclusions 

We have derived a modified version of the Herman-Kluk SCIVR. By inserting 

a time integral into the phase space integral, the rate of convergence using Monte 

Carlo techniques is greatly increased. Performing time integration (as well as us­

ing the adiabatic approximation for the monodromy matrix) extends the utility 

of the SCIVR to more chaotic systems where the HK-SCIVR can fail. In addi­

tion, the 'computational cost of each trajectory is significantly decreased. For zero 

coupling, we see a marked decrease in the number of trajectories necessary for 

convergence of the spectrum versus straightforward Herman-Kluk SCIVR. While 

the basic structure of the spectrum is reproduced, the splittings can be overesti­

mated to a small degree in coupled systems when using the time averaged SCIVR. 

Whether or not this effect would be diminished or accentuated in a more complex 

chemical system remains to be seen. As the system becomes more chaotic, we 

are increasingly likely to encounter such imaginary local frequencies, which may 

or may not cause further deviation from the true spectra. Future studies may 

illuminate the matter. 
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Chapter 5 

Summary and Conclusions 

5.1 Summary 

In this work, we have presented several semiclassical methods for obtaining 

the chemical properties of reactive and non-reactive systems. As mentioned in 

Chapter 1, quantum mechanical calculations become intractable as the number 

of dimensions in the chemical system of interest increases. Since we must deal 

with the computer resources available, semiclassical mechanics yield accurate re­

sults while diminishing the computational complexity of the problem. For several 

cases, we have shown the accuracy of various semiclassical approximations. While 

the agreement with experimental and quantum mechanical results is quite good, 

semiclassical techniques are approximations. Keeping this in mind, semiclassics 

still provides valuable insight into the dynamics of chemical systems. 

In Chapter 2 we showed that Semiclassical Transition State Theory provides 

accurate rates for several reactions. SCTST improves on classical transition state 

theory by including a semiclassical description of the tunneling through the re­

action barrier. The present formulation allows for an anharmonic parameteriza­

tion of the potential energy surface and includes coupling between the reaction 

path and the orthogonal degrees of freedom. We saw that at higher temperatures 

agreement between SCTST, experiment, and quantum calculations was excellent. 
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Unfortunately, for reactions that involved hydrogen motion, the SCTST results 

underestimated the tunneling probabilities at lower temperatures. However, re­

sults for deuterium motion were in line with both experimental and quantum 

results. Thus, SCTST can be a valuable tool in the calculation of reaction rates 

where the reaction doesn't involve light atoms. 

We reexamined the dissociation of triplet ketene into triplet methylene in 

Chapter 3. Experimental dissociation rates obtained by Moore and coworkers 

demonstrat~d a definite step structure54
•
55

• Unfortunately, previous calculations 

performed by Gezelter and Miller failed to reproduce the step structure seen in 

experiments63 • However, they were able to determine that using RRKM the­

ory and a barrier frequency as high as 100 cm-1 did yield the desired structure. 

Recently a new, more complete potential surface has become available. We per­

formed semiclassical calculations of the dissociation rate using the semiclassical 

perturbation and infinite order sudden approximations. Despite the inclusion of 

curvature coupling terms and an anharmonic potential, we were unable to repro­

duce the step structure with the improved potential surface. However, we did 

find that increasing the curvature coupling factors yielded the desired form. It 

is possible that the current surface underestimates the true curvature couplings. 

Another possible source of the structure is non-adiabatic intersystem crossings. 

This is currently under investigation in several research groups. 

Finally we looked a new technique for smoothing the integrand of the Herman­

Kluk Semiclassical Initial Value Representation. Recently there has been renewed 

interest in semiclassical initial value methods, where the propagator is represented 

by a phase space average. Unfortunately, the integrand is oscillatory which makes 

evaluating .it difficult using Monte Carlo techniques. Many physical properties of 

molecules can be obtained using SCIVR methods. We chose to look specifically 

at the spectrum of a bound molecule. We proceeded by introducing identity in 

the form of a time integral into the equation for the spectrum. It was hoped 

that this would smooth the integrand, thus decreasing the number of trajectories 
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necessary for convergence. In fact we did see a dramatic decrease in the number 

of trajectories necessary for convergence. We also found that this allowed us to 

calculate properties for chaotic systems where traditional SCIVR fails. While 

time integration did yield noticeable benefits, the splittings in the spectrum were 

unfortunately overestimated as the chaotic nature of the system was increased. 

This is probably due to the approximation used for the pre-exponential factor 

that effectively adds the zero point energy. As the system became more chaotic, 

a greater number of trajectories experienced local imaginary frequencies, and the 

calculated spectrum deviates further from the true spectrum. 

5.2 The Future of IVR Methods 

Although significant progress has occurred recently in SCIVR methods, there • 

are still difficulties to overcome. The forward-backward IVR method (mentioned 

briefly in Chapter 4), the Filinov transform, and adaptive sampling methods have 

proven useful. The ability of these methods to smooth the integrand is significant,.' 

allowing calculation of previously intractable systems. While these techniques are ~ 

promising, they still fail in certain situations.· Thus, we must continue to search · 

out new smoothing methods. 

Just recently, a new smoothing protocol has been developed by Wang, 

Manolopoulos and Miller127. Called the Modified Filinov, this method in effect 

shifts the Filinov transform. In the Filinov transform, we insert identity into the 

phase space integral in the form of a gaussian integral 
1 

1 = ( ;) 
2 
/_: dze-a(zo-z?. (5.1) 

Instead Wang has proposed inserting the following equation 

(a) t 2 oo 1 = ; e=li- /_00 dze-a(zo-z)2-fj(zo-z). (5.2) 

Similar to the derivation of the Filinov transform, Wang assumes that the sys­

tem obeys linear dynamics. He then expands the integrand in a power series 
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around z = z0 . By assuming that j3 is purely imaginary, Wang is able to re­

duce the oscillatory nature of the integrand. Initial studies using this method are 

promising. 

5.3 Conclusions 

Although we would ideally be able to calculate all chemical properties quan­

tum mechanically, this is impossible for large systems at this point in time due 

to hardware and theoretical constraints. As computers become more powerful, 

previously intractable calculations will become possible. Until then we must suf­

fice to use approximate methods. However, our current efforts are not in vain. 

The results of many such techniques are in qualitative agreement with quantum 

mechanical calculations. Today, semiclassical mechanics offers a feasible method 

for calculating quantum mechanical properties. 
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