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ABSTRACT

Physiologic systems can be represented by compartmental models which describe the uptake of radio-labeled tracers
from blood to tissue and their subsequent washout. Arterial and venous time-activity curves from isolated heart
experiments are analyzed using spectral analysis, in which the impulse response function is represented by a sum
of decaying exponentials. Resolution and uniqueness tests are conducted by synthesizing isolated heart data with
predefined compartmental models, adding noise, and applying the spectral analysis technique. Venous time-activity
curves are generated by convolving a typical arterial input function with the predefined spectrum. The coefficients
of a set of decaying exponential basis functions are determined using a non-negative least squares algorithm, and
results are compared with the predefined spectrum. The uniqueness of spectral method solutions is investigated by
computing model covariance matrices, using error propagation and prior knowledge of noise distributions. Coupling
between model parameters is illustrated with correlation matrices.
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1. INTRODUCTION

Time-activity curves are modeled by convolving the blood input function with an impulse response function, which
characterizes the transport of tracer of interest in living tissue. Compartmental analysis 1s a useful method of
modeling physiology, but requires a prior: information on the appropriate kinetic model describing the physiologic
processes. Without the proper @ prior: assumptions, misguided conclusions may be drawn regarding physiologic
structure. Data quality also limits the precision to which the model structure may be retrieved.

As an alternative, we continue to investigate the utility of spectral analysis techniques used to determine the
appropriate delineation of physiologic processes in tissues of interest. As outlined by Cunningham and Jones [1],
the general approach of spectral analysis is to model the impulse response function as a sum of a large number of
decaying exponential terms, the coefficients of which are non-negative. Modeling assumptions are thus minimized by
using this large set of model parameters.

The accuracy of the retrieved spectral components will be addressed. The sensitivity of the spectral method can
be evaluated by investigating the nature of results from the spectral method. Turkheimer et al.[2] have used boot-
strapping techniques to assess uncertainty in washout parameters from PET studies using spectral analysis. Bertoldo
et al.[3] have inspected the inverse of the Fisher information matrix to evaluate precision of uptake parameters from
spectral analysis of PET data. In this study, the precision of spectral method uptake and washout parameters will
be investigated by computing model covariance matrices, using error propagation and prior knowledge of noise dis-
tributions. Coupling between model parameters can be illustrated with correlation matrices. Synthetic time-activity
curves will be forward-modeled by convolving the synthetic impulse response function with a blood input functional
form. Synthetic curves simulate data from experiments utilizing the isolated rabbit heart model [4]. In these heart ex-
periments, data are acquired by sampling the venous blood after introduction, via the aorta, of constant proportions
of a tracer of interest and a reference tracer (albumin), which does not leave the vasculature.
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2. METHOD
2.1. Time Activity Curves

The time-activity of perfused tracer in tissue is modeled by convolving in the time domain a blood input function
I(t) with an impulse response function R(¢). That is,

Qt) = /Ot I(t —t)R(t")dt'. (1)

The radio-labeled tracer concentration in venous blood flowing from isolated heart experiments is collected over
finite time intervals. The acquisition can be expressed as

D; = %/j Q(t)dt 2)

i —1 iy

where the ¢;’s are the endpoints of acquisition time intervals, and ¢ = 1,2,3,...N and N is defined by t;,; =ty — 19
where t;,; 18 the total acquisition time, and g is the acquisition start time.

2.2. Synthetic Time Activity Curves

Time activity curves are simulated in order to assess the spectral methodology. Synthetic time activity curves are
computed by convolving functional forms of I(¢) and R(#) in the time domain.

In order to synthesize the blood input function, we use the functional form
I(t) = at™el! (3)
for the input blood curve. The synthetic impulse response function R*(#) then was modeled in two forms:

e as a sum of decaying exponentials

s - s e_t/Ti
R(t)=)"x; — (4)
k=1 k

where ng is a small number of decaying exponentials, and

e as an integration over continuous spectral function:

ro=(5-8) [ L)

The 2, in the range of integration are set to 1, and the integration is performed over 1/7 as we wish to generate
uniformity in rate A, where A = 1/7. On the other hand, in 7-space, the a}’s should fall off as a function of

1/72.

The synthetic time-activity curves, °(t), are convolved numerically in the time domain, and we synthesize
the data D! by defining an acquisition time schedule for concentration of the tracer of interest (Equation (2)) in
accordance with typical isolated heart studies. Normally distributed random noise is then added to each time point
D7 . By specifying variances for each measurement D;, the errors can be propagated so that it will be possible to
define uncertainties for model parameters x; and 7y.



3. Model estimation

Adopting the spectral approach, the mean value of the data can be predicted by
b= Ax (6)

where b is a vector of time activity, x is the vector of tracer amounts defined in Equation (7), and A is the data
kernel matrix.

In the forward problem, data from isolated heart reference tracer time-activity are measured for I(t), and the
impulse response function is expressed as a sum of decaying exponentials

DI

where the coefficients xj and 1 represent, respectively, amount of tracer uptake and time constant of tracer washout
by channel k. The z;’s are required to be positive values or zero. The lower and upper bound for the range of time
constant 73 1s chosen in accord with physiologically reasonable values and experimental design. The 7 interval is
segmented evenly on a logarithmic scale, where the choice 7, = 1.1* (seconds) has been made here, and K = 98.
Thus, 7, = [1.10s,1.21s,...,11388.945]. A single exponential function indexed by k shall be referred to as Ry(¢).

The elements of A are then
e (t t )/Tk
Ajp = / / ——dt'dt (8)

wherei =1,2,...,Nand k= 1,..., K. I(t') is modeled to be piecewise constant over each time interval ¢’ = [t;_,,¢}].
One additional column of A contains the piecewise constant values of I(¢), and another column is populated with
1’s, for a constant DC component, bringing the total number of columns in A to 100.

—t/Tk

(7)

Then, given a synthetic time series of Dj’s, the minimum of the criterion

E = (D°=b)IW-(D°—b)
= (D* - Ax)TW~{(D* — Ax) (9)

is sought, subject to the constraint that x > 0. W is a weighting matrix consisting of data covariance estimates. W
is diagonal as the activity measurements at each time point are independent of each other. We use a non-negative
weighted least-squares algorithm [5] to estimate the spectral values x. The non-negativity constraint is used to help
stabilize the solution. Estimates for which z; > 0 are often interpreted to correspond with identification of washout
rates 13’s.

2.4. Covariance and Correlation

The non-negative least squares algorithm which we employ, NNLS by Lawson and Hanson [5], solves the problem
A gxp = b for the solution vector xg in which all elements of xg > 0. The matrix Ag is reduced from A such that
it consists of the columns of A corresponding to positive values in x. The covariance of model parameters xg can
then be calculated from

[covxr] = (ARW'Ap) " ARW[cov D' TW ! AR(ARW ' Ag) ! (10)
= (ARW™'AR)T

where [cov D?] is the covariance matrix of data vector D® and is equal to the diagonal weighting matrix W.

Typically, the spectral technique returns estimates for ; > 0 which either have non-zero neighbors; or are isolated,
with neighboring zero values (zr-1 = 41 = 0). How are the 7, corresponding to non-zero xj’s considered to be
either coupled or isolated? Neighboring non-zero #’s could be considered to be coupled. But without uncertainty
measurements for time constants 7, the resolution of the spectral technique when analyzing tracer kinetics would
be indicated by the segmentation of 7, or inversely, of washout rate constant A = 1/7, in the basis set. As the
segmentation width of the basis set is specified by the investigators, the space spanned by the basis functions may
be either redundant or incomplete. We calculate the correlation coefficient ¢, 1 between model parameters z; and
zp as this can offer insight into coupling between basis functions Ry (¢) and Ry (¢).



We assume that the Rj(t)’s corresponding to zj’s correlated in series are coupled and compute a central value
T. by taking an average of 7;’s weighted by their corresponding zp’s. That is, given a criterion value x defining
correlation, a combined 7, for which |sz g+1| > &, Sk k42| > &, to |sp k15| > &, is specified by

J
D=0 Thtj Th

Te = 7
Zj:O Lk+j

The variance of the combined 7. value can then be computed with

9 A or. 9 or.
UTC - Z ka+m,k+n a$k+n . (12)

The combined amplitude z. and Ugc corresponding to 7. are simply

J
Le = Zxk+]" (13)
j=0

and

J
Uzc = Zzaikmn (14)

i=0 j=0

3. SIMULATION RESULTS AND DISCUSSION

In the simulations which follow, a realization for the input blood function is composed by fitting the coefficients «, 3,
and n as defined in Equation (3) to data from a particular isolated heart experiment [4]. The values o = 0.001832,
3 =0.521914, and n = 7.432533 were estimated by using a simplex fitting package from MATLAB (The Mathworks,
Sherborn, MA). These values are used to model the input blood curve in all subsequent tests.

Impulse response functions are specified for isolated spectra, and for a spectral continuous function. The impulse
response function for each will be detailed in the following sections describing the experiment. The data acquisition
schedule of a typical heart study is approximately ¢; = 4 seconds for the first 180 seconds of acquisition, then ¢; =7
seconds up to 600 seconds of acquisition, and then ¢; = 10 seconds until 1800 seconds of acquisition.

3.1. Individual Spectra

We investigate the sensitivity of our method with impulse response functions expressed as individual and separate
components, according to Equation (7).

3.1.1. Single peak

In this first experiment, the impulse response function is defined by Equation 7 such that n; = 1, 2] = 1, and
78 = 100s . Gaussian distributed random noise was added to the output response function at the 10% level.
Keeping in mind the dynamic range of realistic measurement error, the uncertainties in the measurement were the
chosen to be 10% of D7, and allowed to asymptotically approach a predefined minimum value of uncertainty as D
decreased to very small values. These uncertainties were used as weights in the non-negative least squares routine.

Figure 2a displays the results of the NNLS for a basis set in which the range of 7, = [1.1,1.1%,...,1.1%%] seconds.
There are two adjacent components in the neighborhood of 7 = 100 s . Using Equations (11)-(14), we find for this
realization of the synthetic data, that

z., = 1.02334+0.0106
. = 98.9308+0.1103

The standard deviations computed by Equations (11)-(14) for this one realization of data are in agreement with the
statistics of z. and 7. results from 1000 Monte Carlo generations of synthetic data. Figure 1 shows histograms of
x.’s, 05.’s, T.’s, and o, ’s computed from each of the 1000 NNLS solutions.
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Figure 1. Histograms of combined a) z.’s, b) ¢,.’s, ¢) 7c’s, and d) o, determined from 1000 Monte Carlo generations
of synthetic data. The mean and standard deviations of each histogram are a) (z.) = 1.008 &+ 1.054 x 1072, b) {(0z.) =
1.075 x 1072 £1.051 x 1072, ¢) {rc) = 99.01 £ 1.107 x 107" d) {o..) = 1.143 x 107" £ 1.137 x 1072,

3.1.2. Basis set shift

In order to determine the sensitivity of Equation (11) to the basis set, we test Equation (11) by using 10 different
basis sets. To do so, we shift the time constant 73 range on the logarithmic scale, while preserving the 7 interval as
previously defined, so that 7 now becomes

7 = (14 negd)1.1%, (15)

where £ is a shift increment, and n¢ is a shifting factor. Then a given amount of basis set shift is n,§. We define
the shift increment to be & = 0.01, so that for n, = 0 and ng = 10, the basis sets would consist of functions with the
same time constants, differing only at the first and last 7.

For the same realization of data as in Section 3.1.1, Figure 2 shows the results of the weighted NNLS in finding
xy, values for the 7;,’s in each basis set defined by its ng. Note that in the neighborhood of 7 = 100 s , when the 7;’s
straddle 7 = 100 s as in Figure 2h, the non-zero x;’s become close to equal in value, as one would expect. As the
use of all basis sets returns two adjacent non-zero x; values from the weighted NNLS, we can compute an z, and 7.
and their corresponding standard deviations, and they are displayed in Figures 3a and 3b for each basis set. z., 7,
and x? vary smoothly as the basis set is increasingly shifted (i.e., as ng increases), except for the cusp at ng = 3. For
this basis set, ng = 3, z, and x? are minimized while 7, reaches a peak. In this basis set, there is a 7, &~ 100 s which
is closer to the value of 7§ defined in this test than in the other basis sets. At ng = 4 however, the uncertainties
0z, and o;, experience a sharp increase. In Figures 2c—e, we see that the larger xj in the pairs of channels switches



from being the left of the pair to being the right. Although there appears to be only a single channel in the solution
in Figure 2d, z; ~ 1073 to the right of the large channel. For ng < 4, the solution zj’s fall on 7, ~ 100 s and
Tr4+1 ~ 110 s. As the basis 7;,’s are increasingly shifted, at ng = 4, the solution falls back on 7, ~ 905 and 7, ~ 100 s.
ng ’s are larger for lower valued 13 channels as they are more closely spaced on a linear scale. As the basis set shifts,
the solution also shifts to include a lower value 73, which gives a ng estimation, and in turn, from Equation (12),
also results in a higher 0'72_k. Then, as the basis set has “reset” and continues to increasingly shift, the inclusion of

higher 71, and therefore lower variances on g, 1s gradual.
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Figure 2. a)-j) 10 different basis sets are used to estimate zx from NNLS. 7 for each set is defined by Equation 15.
z; = 1,7, = 100 s are used in simulating data, with 10% Gaussian random noise. Weights are described in the text. The
square marker indicates the values of the solution vector x. Note that neighboring zero values of x5 appear to be a bold solid
line along the abscissa.
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Figure 3. a) 2. b) r. and ¢) x* are plotted for 0 < n¢ < 10 with closed square markers. The results of RFIT for this
realization of data is plotted at ng = 11 with the open square marker.

At ng = 11 in Figures Ja-—c, the results of the shifting basis set tests are compared to computations from RFIT
[6], an application which estimates parameters for a predefined compartmental model from a closed form solution of
D(t) [7]. RFIT also reports uncertainties for the model parameter estimates. The spectral technique defines a grid
upon which the solutions must lie, whereas RFIT has freedom to estimate parameters in continuous space. Given
that the forward models differ between RFIT and the spectral technique, the uncertainty values computed by both
methods are in good correspondence.

3.1.3. Multiple components

As tissue is typically heterogeneous rather than homogeneous, we now investigate Equation (7) such that n, = 2,
) =25 =1, 7§ = 50s, and 75 = 100s. 20% Gaussian noise was added to the synthetic, and the weights were
defined using the same consideration as described in Section 3.1.1, except for 20% of D*(t).

From one realization of synthetic data, the weighted NNLS routines returns two sets of coupled channels,

channel zy T S
1 1.3940e — 01  41.1448
2 7.1842e — 01  45.2593
3 9.3502¢ — 01  97.0173
4 1.5272¢ — 01 106.7190,

as seen in Figure 4a. The coupling can be defined either by the observation that the channels are adjacent to each
other in the spectrum, or by inspecting the correlation between the non-zero z’s:

Sz Szo Sz Szy
o 1.0000e + 00
G, —9.9536e—01  1.0000e+ 00
G,  5.1504e—01 —5.5346e—01  1.0000e -+ 00
G,  —4.2482e —01  4.5795¢— 01 —9.3976e— 01 1.0000e -+ 00.

If the correlation criterion is determined so that |¢; g/| > & defines coupling, and we set k = 0.9, then we can see
by the boldface values in the correlation matrix that channels 1 and 2 and channels 3 and 4 are coupled. Then for



each coupled pair, we find the values listed in (Table 1) and compare them with statistics of 1000 Monte Carlo (MC)
tests, and find good agreement.

Table 1. Comparison of results from one realization of a synthetic, n. = 2, 25 = 25 = 1, 74 = 50s, and 75 = 100s, to
statistics of 1000 Monte Carlo runs.

L [ Te S Or. J
8.578e-01 + 7.626e-02 | 44.591 =+ 3.7867
1.088e+00 &4 3.842e-02 | 98.379 =+ 0.2895 | 2

[\]

MC | 8.636e-01  + 1.360e-01 | 48.19 +4.313 | N/A
1.055e+00 =+ 4.420e-02 | 98.58 £ 0.3004 | N/A

3.2. Continuous Spectral Model

Spectral analysis of tracer kinetic data has in general retrieved a small (< 5) number of exponential components
[1,4,8]. The robustness of the spectral technique is investigated with impulse response functions which are defined as
an integral over a continuous range of exponential functions of equal amplitude. The spectrum of such an impulse
response function is a continuous function in exponential decay constant space.

We specify the impulse response function as an integration of a continuous function, according to Equation (5),
with 71 = 50s and 7 = 100s. 20% noise is added to the synthetic, and the weights are designated as previously
described. The weighted NNLS returns the solution shown in Figure 4b. Rather than returning a large number of
neighboring peaks continuously distributed over the continuous range, the inversion returned a small number (~ 5)
of discrete spectral peaks distributed over the continuous range. There are actually 6 non-zero values in x. The first
z1 ~ 107% in the DC channel. Inspecting the correlation matrix,

Sz Szo Sz Szy Sz Sz
&, 1.0000e + 00
G, —3.0520e —01  1.0000e + 00
. 3.3408¢ — 01 —9.9373e — 01 1.0000e + 00
G, —3.6639¢—01  9.7364e— 01 —9.9280e — 01 1.0000e + 00
G,  4.8220¢ — 01 —8.4530e— 01  8.9115e— 01 —9.3337e—01  1.0000e + 00
o —5.2712e—01  7.9744e— 01 —8.462Te—01  8.9356e — 01 —9.9197e— 01 1.0000e + 00

we see that, given the criterion for correlation x = 0.9, each channel is not only correlated with its neighbor, but
each is also correlated with the next channel in the sequence.

The separation of channel clusters is distinct in the example given in Section 3.1.3, while the correlation between
channel clusters is notable in Section 3.2 and gives indication towards a continuous range of 7;’s. For narrower
window limits, 71 = 70 s and 7 = 100 s for example, distinguishing between a continuous range of 7;,’s and distinctly
separate 7;’s becomes impossible, as the behavior of the correlation matrices in each case is similar. That is, there
is high correlation between solution #;’s. The correlation matrices are not shown in the interest of conserving space.
On the other hand, the correlation matrices may be useful in determining 7 range segmentation—that is, 7 bin width.
In future investigations, the correlation matrix behavior will be evaluated as the bin width is modified, in hopes of
reducing redundancy in the span of the basis set.

4. CONCLUSIONS

Spectral decomposition in general refers to systems for which the bases which span the system space are orthogonal
functions. In the case of the basis set comprised of 100 decaying exponentials, which is utilized for this kinetic
spectral analysis, there is a redundancy in the expression of the feasible solution space.

Analysis of real biological data may not allow the refined precision of spectral intervals defined in our exponential
basis set, due to the presence of noise, and the data acquisition procedures. Although there are acquisition gaps in
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Figure 4. Estimates for z, from NNLS. The basis set used is one for which ng = 0. a) plotted with stars, 7 = 1,74 =
505,25 = 1,75 = 100 s are defined for the data simulation, with 20% Gaussian random noise. b) The impulse response is
defined according to Equation 5, using limits 71 = 50 s and 7» = 100 s, and plotted with a dashed line. The square marker
indicates the values of the solution vector x.

the late times in actual heart experiments, where the time activity of tracer concentration has stabilized and the
gradient is very small, we do not simulate these gaps, and take data continuously. As a result, the synthetic data set
includes more time points than a typical heart study.

Model covariance matrices which include the variance of the data have been computed to assess the precision of
model parameter estimates z;. By doing so, we have also measured central time constants 7. and their variances. It
has been demonstrated that there is good correspondence between our measurements of o2 and o2, and uncertainties
estimated from separate methods [6] used to determine kinetic model parameters. Model covariance matrices were
also used to investigate the correlations between model parameters set up by the modeling theory in the synthetic
tests. Correlation matrices may be useful in determining the basis set bin width which could reduce redundancy in
basis functions.
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