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Abstract 

Using a Hamiltonian approach, we construct the classical and quantum theory of 
open WZW strings on a strip. (These are the strings which end on WZW branes.) The 
development involves non-abelian generalized Dirichlet images in an essential way. At 
the classical level, we find a new non-commutative geometry in which the equal-time 
coordinate brackets are non-zero at the world-sheet boundary, and the result is an 
intrinsically non-abelian effect which vanishes in the abelian limit. Using the classical 
theory as a guide to the quantum th~ory, we also find the operator algebra and .the 
analogue of the Knizhnik-Zamolodchikov equations for the conformal field theory of 
open WZW strings. 
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1 Introduction 

Affine Lie algebra [1, 2, 3] has played a central role in string theory over the decades, first in 
open string theory, then closed string theory and no'.'r back again to open strings. Vve refer in 
particular to the theorya of D-branes (6, 7], open descendants (8, 9] and WZW branes [10-24]. 
The present paper is concerned with open WZW strings, which end on WZW branes. 

In particular, we shall construct the classical and quantum theory of open WZW strings 
on a strip, following the principles: 

• At the quantum level, open string WZW dynamics on the Lie algebra g must follow 
from the Hamiltonian 

H9 = L9(0) = L~b L : Ja(m)Jb( -m) : (1.1) 
mEZ 

. 
where the current modes { Ja(m)} generate the affine Lie algebra of g and L9(0) is th~ 
zero mode of the affine-Sugawara construction (2, 25-28, 3] on g. Thus, open WZW 
strings are controlled by a single non-abelian chiral current. 

• The dynamics of open WZW strings on the strip 0 ~ ~ ~ 1r must be locally WZW in 
the bulk 

(1.2) 

that is, the same as the ordinary WZW model (29, 30]. The classical gro11p elements 
g(T, ~' t) of the open WZW string must satisfy generalized Dirichlet boundary condi
tions (14] 

g-1(T, ~' t)fhg(T, ~' t) = g(T, ~' t)fLg- 1(T, ~' t) at ~ = 0, 1r (1.3) 

at the boundary of the strip. 

As we will see, both the classical and quantum theory involve generalized non-abelian Dirich
let image charges in an essential way. 

At the classical level (see Sees. 2-6), we find that the. single non-abelian chiral current 
algebra determines both the phase space and the coordinate space formulation of open WZW 
theory. In the phase space formulation, we obtain the complete bracket algebra of the 
theory and, in particular, we find a new equal-time non,..commutative geometry in which the 
coordinate brackets 

{xi(c t) xi( t)} = { =/= 0 if~= ~ = 0 or 1r 
~' ' 'TJ, 0 otherwise (1.4) 

are non-zero at the boundary. This effect (which is not related in any simple sense to known 
(31-35] non-commutative effects) is intrinsically non-abelian and vanishes in the abelian limit. 

aEarly papers on Dirichlet boundary conditions in string theory include Refs. [4, 5]. 
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Using the classical theory as a guide, the quantum theory of open strings is constructed 
in Sec. 7. Here we find the operator algebra of the theory, the differential equations for the 
vertex operators and the analogue of the Knizhnik-Zamolodchikov equations [26, 27] for the 
conformal field theory of open WZW strings. We mention in particular that the open string 
vertex operators g(T) can be factorized into chiral vertex operators Y±(T) 

{1.5) 

but, in distinction to ordinary WZW theory, g_(T) and g+(T) do not form independent 
subspaces and the open WZW string correlators do not factorize into left and right mover 
correlators. 

2 Open WZW Strings 

2.1 Quantum Formulation 

The Hamiltonian H of any open string theory is the zero mode L(O) of a single set ofVirasoro 
generators L(m), so open WZW string theory on the Lie algebra g is described by the zero 
mode L9 (0) of the affine-Sugawara construction [2, 25-28, 3] on g 

1 121!" H 9 = L 9 (0) = .- df, L:b : la(f,, t)Jb(f,, t) : = L:b L : la(m)Jb( -m) : 
211" 0 '71 mEtu 

(2.la) 

[Ja(f,, t), Jb('fJ, t)] = 21ri(fab c lc(f,, t)o(f, - TJ) + Gaba{o(f, - TJ)) (2.1b) 

o(f, =f TJ) = 2~ 2: eim({'f7J), o:::; f,, 'fJ:::; 21r, a, b, c = 1, ... dimg . (2.1c) 
mEZ 

Here fa{ and Gab are the structure constants and metric of g 

g = ffi1l, !abc= ffidtbc, Gab= ffiiki'fJ~b (2.2) 

where I is the semisimplicity ihdex and k1 is the level of the simple component g1
. The 

coefficient L~b 

(2.3) 

is the inverse inertia tensor of the affine-Sugawara construction on g. 
The Hamiltonian (2.la) guarantees the chirality of the single non-abelian chiral current 

J(f,, t) 

8tA(f,, t) = i[H9 , A(f,, t)] 

a_Ja(f,, t) = 0, a_ =at- a{ 
la(f,, t) = L la(m)e-im(t+{) 

mEZ 
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and Eq. (2.4d) is the affine Lie algebra [1, 2, 3) of g. 
The affine-Sugawara Hamiltonian above is defined on the cylinder 0 ~ e ~ 21r, but it is 

conventional to consider open string theory on the strip 0 ~ e ~ 1r. Since the single chiral 
current is periodic when ~ -+ ; + 2r., the affine-Sugawara Hamiitonian may be rewritten in 
the open string picture 

(2.5) 

but where are the WZW branes? In what follows we answer this question first in the classical 
formulation of the theory, returning to the quantum theory in Sec. 7. 

2.2 Classical Currents and Stress Tensors 

The classical version of the affi.ne-Sugawara system on the cylinder is 

1
211" 

Hg = o de T9 (e, t) 

T9 (e, t) = 2~ L~~ooJa(e, t)Jb(e, t) = 4~ cab Ja(e, t)Jb(e, t) 

Ja(e + 21rn, t) = Ja(e, t), T9 (e + 2~rn, t) = T9 (e, t) 

{ la(e, t), Jb(rJ, t)} = 21ri(Jab c Jc(e, t)b"(e- 17) + Cabo€b"(e -17)) 

{T9 (e', t), T9 (17, t)} = i(T9 (~, t) + T9 (17, t) )o€b"(e- 17) 

{T9 (e, t), Ja(rJ, t)} = iJa(e, t)o€b"(t; -17) 

o ~ e, 11 ~ 21r 

{2.6a) 

{2.6b) 

(2.6c) 

(2.6d) 

(2.6e) 

(2.6f) 

(2.6g) 

where Ja(/;, t) and T9 (e, t) are the classical non-abelian chiral current and its classical stress 
tensor respectively. In (2.6) {-,·}are Poisson brackets multiplied by a convenient extra factor 
of i. 

To go to the open string picture, we decompose the single non-abelian cylinder current· 
and its single stress tensor into components on the strip as follows: 

Ja(t;, t), 0 ~ e ~ 27r -+ Ja(±t;, t), 0 ~ e ~ 7r 

T9 (t;; t), 0 ~ e ~ 27r -+ T9 (±t;, t), 0 ~ t; < 1r 

1 
T9 (±e, t) = 

4
7r cab Ja(±e, t)Jb(±e, t) 

Hg = 111" dt; (T9 (e, t) + T9 ( -t;, t)) 

=__!_ 111" de cab( Ja(e, t)Jb(e, t) + Ja( -e, t)Jb( -t;, t)) . 
47f 0 
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(2.7d) 
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The bracket algebra of the components on the strip 0 ~ t;,, Tf ~ 1r then follows from (2.6c-e) 

{ Ja(t;,, t), Jb(Tf, t)} = 27ri(fabc Jc(t;,, t)8(t;,- Tf) + Gab8(.8(t;,- 17)) 

{ Ja(t;,, t), Jb( -17, t)} = 21ri(Jab c Jc(t;,, t)8(t;, + 77) + Gab8f.8(t;, +77)) 

{ Ja( -t;,, t), Jb( -17, t)} = 27ri(/ab c Jc( -t;,, t)8(t;,- 77) - Gab8f.8((- 77)) 

{T9 (t;,, t), T9 ( 17, t)} = i(T9 (t;,, t) + T9 ( 17, t) )8f.8(t;,- 17) 

{T9 (t;,, t), T9 ( -Tf, t)} =i(T9 (t;,, t) + T9 ( -Tf, t) )8f.8(t;, + 77) 

{T9 ( -t;,, t), T9 ( -17, t)} = - i(T9 ( -t;,, t) + T9 ( -Tf, t) )8f.8(t;,- Tf) 

{T9 ((, t), Ja(17, t)} = iJa(f;., t)8(.8(f;,- 17) 

{T9 (t;,, t), Ja( -17, t)} = iJa(t;., t)8f.8(t;, + 77) 

{T9 ( -t;,, t), Ja(17, t)} = - ila( -t;,, t)8f.8(t;, + 77) 

{T9 ( -t;,, t), la( -17, t)} = - ila( -t;,, t)8f.8(t;,- 77) . 

(2.8a) 

(2.8b) 

(2.8c) 

(2.9a) 

(2.9b) 

(2.9c) 

(2.10a) 

(2.10b) 

(2.10c) 

(2.10d) 

In (2.8-2.10), the delta function 8(t;,- 17) has support only at ( = 17, while the delta function 
8(t;, + 17) has support only at the strip boundary t;, = 17 = 0 or 1r. We will refer to terms 
proportional to 8 ( t;, - rJ) and 8 ( t;, + 17) as bulk and boundary terms respectively. In what 
follows, we interpret the form of the strip current algebra (2.8), remarking only that a 
similar interpretation applies to (2.9) and (2.10). 

In discussing (2.8), it is instructive to bear in mind the equal-time current algebra of 
affine (g x g) 

{ la(t;., t), Jb( 17, t)} = 27ri(/ab c lc(t;,, t)J(t;, - TJ) + Gab8f.8(t;,- 17)) 

{ la(f;., t), Jb('TJ, t)} . 0 

{Ja(t;., t), Jb(17, t)} = 21ri(/abc Jc(f;,, t)J(t;,- TJ)- Gab8(.8(t;,- 17)) 

0 ~ t;,, 17 ~ 27r 

(2.1la) 

(2.1lb) 

(2.11c) 

(2.11d) 

which holds in the ordinary WZW model. One sees that the brackets (2.8a) and (2.8c) are 
locally isomorphic under J( -t;,, t) -t J(t;,, t) to the brackets (2.11a) and (2.11c), but (2.8b) 
tells us that this isomorphism fails at the boundary of the strip, where 

{Ja(t;,, t), Jb(-TJ, t)} =/= 0 at t;, = rJ = Oor1r (2.12) 

due to the boundary term 8(( + rJ). As we will see, this difference controls many important 
aspects of open WZW theory. 
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Although (2.8b) is non-zero at the boundary, the strip current system (2.8) is loc~lly 
WZW in the bulk, where the boundary terms do not contribute. 

We may also interpret the boundary terms proportional too(~ +77) in (2.8-2.10) as due to 
the interaction of a non-abeiian charge at~ (or 77) with a generalized non-abelian Dirichlet 
image charge at -77 (or -~). 

2.3 Classical Dynamics 

In classical open WZW string theory, the time dependence of the fields is determined by 

(2.13) 

where H 9 is given in (2.7e). For such computations, it is useful to record the following 
identities 

1
1r { ~f(O) 

d77 8(77- ~)f(rJ) = !(~) 
0 ~!(~) 

11r { ~f(O) 
d7] 0(77 + ~)!(77) = 0 

0 ~!(~) 

if~= 0 
if 0 < ~ < ~ 
if~=~, 

if~= 0 
if 0 < ~ < ~ 
if~=~ 

(2.14a) 

(2.14b) 

which will allow us to evaluate brackets of integrated quantities. Then we find from (2.13) 
and (2.14) that the strip currents and stress tensors are chiral 

f)_Ja(~, t) = a+Ja( -~, t) = 0, a±-at± a~ 

la(~, t) . L la(m)e-im(t+O, la( -~, t) = L la(m)e-im(t-~) 
mEZ mEZ 

{ la(m), Jb(n)} = ifab c lc(m + n) + mCabOm+n,O 

a_T(~, t) = a+T(:-~, t) = 0 

as expected from the quantum theory. 

(2.15a) 

(2.15b) 

(2.15c) 

(2.15d) 

We may also consider the natural candidate for a momentum operator, which we call the 
bulk momentum operator P: 

P9 (t) = 11r d~ (T9 (~, t)- T9 ( -~, t)) (2.16a) 

= 4~ 11r d~ cab( la(~, ~)Jb(~, t) - la( -~, t)Jb( -~, t)) (2.16b) 

' cab 
atP9 (t) = ~(Ja(~, t)Jb(~, t)- la(O, t)Jb(O, t)) . (2.16c) 
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According to its name, iP generates 8t; only in the bulk. In the case of the currents, one 
finds for example 

"{P. (t) 1 (±'" t)} =a { Ja(±~, t) if 0 < ~ < 7r 
Z 9 ' a "-' t; 0 if~= 0, 7r (2.17) 

where we have used the equal-time current algebra (2.8) and the relations (2.14). In fact (as 
seen in this example) the correct form of 8t;A for any A can be obtained from the form of 
i{ P, A} in the bulk 

(2.18) 

by smoothly extending this form to the boundary. This observation will be useful in the 
quantum theory. 

3 Phase Space Realization of the Currents 

In what follows, we postulate the following phase space realizationhof the equal-time current 
algebra (2.8) 

. 1 . b 
Ja(~, t) _27re(x(~, t))azPi(B, ~' t) + 28t;xz(~, t)e(x(~, t))i Gba (3.1a) 

Ja(-~, t) -21re(x(~, t))aiPi(B, ~, t)- ~8t;xi(~, t)e(x(~, t))ibGba (3.1b) 

0::; ~::; 1r . (3.1c) 

The quantities which appear in (3.1) are defined as follows 

1 . . 
Pi(B, ~, t) =Pi(~, t) + 

4
7r Bii(x(~, t))8t;x3 (~, t) 

8iBik(x) + 8iBki(x) + 8kBii(x) = -i Tr( M(k, T)ei(x, T)[ei(x, T), ek(x, T)]) 
. ~ 

[Ta, n] = ifabcTc, Tr(M(k, T)Tan) =Gab, Ta = EBrTf, M(k, T) = EBr ( I) 
Yr T 

(3.2a) 

(3.2b) 

(3.2c) 

(3.2d) 

(3.2e) 

where Ta is any matrix irrep of the Lie algebra g, g(T) are the group elements in irrep T 
and eia and eia are the left and right invariant vielbeins on the group manifold, respectively. 
The antisymmetric tensor Bii is the B field of the open WZW string and the data matrix 

bOther realizations of the equal time current algebra can be obtained by replacing Ja ( -~, t) on the left 
of (3.lb) by J:;'( -~, t) = Wa b Jb( -~, t), where w is an element of the automorphism group of g. This leads to 
the theory of twisted open WZW strings, which will not be discussed in this paper. 
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M stores information about the Dynkin indices y1(T) of the simple factors T 1 . In (3.2), the 
matrices T and g(T) are square, and matrix multiplication is defined as 

a,p,"(= 1, ... ,dimT (3.3) 

with a summation convention for repeated indices. 
In Eq. (3.1), our phase space realization of the currents J(E, t) and J( -E, t), 0 ~ E ~ 1r is 

the usual [36] WZW ph.ase space realization of the left and the right mover currents J(E, t) 
and J(E, t), 0 :::; f. ~ 21r. As we shall see, this realization will allow us to require that the 
open WZW string has the same bulk dynamics ( 0 < E < 1r) as the WZW model. 

Indeed, Eq. (3.1) gives the phase space form of the Hamiltonian 

H9 = 11r dE 1l9 (3.4a) 

cab .. 1 . . 
1£9 = 

4
1r (la(E)Jb(E) + la( -E)Jb( -E)) = 2JrG'1pi(B)pi(B) + 

8
1r a~x~a~X'Gii (3.4b) 

(3.4c) 

whose density 1£9 is the same as that of the WZW model. The bulk momentum operator 

(3.5) 

also has the usual WZW momentum density. 
Moreover, the equal-time current algebra (2.8) and its phase space realization (3.1) imply 

a system of constraints on the phase space variables, which will allow us to obtain the phase 
space bracket algebra itself. As a first example of these constraints, we note two equivalent 
forms of the boundary conditions 

la(O, t) = la( -0, t), 1a(1r, t) = la( -1r, t) or 

47r(e(E, t)ai- e(E, t)ai)Pi(B, E, t) = a~xi(E, t)(e(E, t)ib + e(E, t)ib)Gba atE= o, 1r 

(3.6a) 

(3.6b) 

which follow from the 21r periodicity of the cylinder current. We will see below that these 
boundary conditions are equivalent to the generalized Dirichlet boundary conditions of 
Ref. [14]. 

4 Phase Space Algebra: First Results 

4.1 The Inverse Relations and fJf.g 

In this section, we will use the equal-time current algebra (2.8) and its phase space realization 
(3.1) to begin our analysis of the phase space brackets of open WZW theory. 
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In preparation for this analysis, we will need the inverse relations 

8~xi(~, t) = la(~, t)Gabe(~, t)bi- la(-~, t)Gabe(~, t)bi 

Pi(B, ~' t) = 4~ ( e(~, t)ia la(~, t) + e(~, t)ia la( -~, t)) 

which follow from (3.1). 
As a first application of the inverse relations, we note the following form of Of.g 

(4.1a) 

(4.1b) 

8~g(T, ~' t) = 8~xi8ig(T, ~' t) = i(g(T, ~' t)J(T, ~' t) + J(T, -~, t)g(T, ~' t)) (4.2a) 

J(T, ±~, t) = la(±~, t)Gabn (4.2b) 

which is obtained by chain rule from (4.1) and (3.2). The result (4.2) is the usual form (with 
J{~)--+ J( -~)) of o~g in the wzw model. 

4.2 · Bracket of J with x 

Using the equal-time current algebra (2.8) and the inverse relations (4.1), we may derive a 
differential equation for the bracket of J(~, t) with x, 

81){ la(~, t), xi(7J, t)} ={ la(~, t), o1)xi(7J, t)} 

={ la(~), Jb(7J )Gbce(7J)ci - Jb( -7} )Gbce(7J )ci} 

=27ri(fabcJc(~)b(~ -77) + GabO~b(~ -rJ))Gbde(rJ)i 

- 27ri(fabc lc(~)b(~ + 77) + Gab8~b(~ + 77) )Gbde(rJ)i 

+ {1a(O,xi(7J)}(oje(7J)biGbcJc(7J)- Oje(7J)biGbcJc(-rJ)). (4.3) 

The same equation with ~ --+ -~ is obtained for the bracket of J( -~, t) with x(7J, t). We 
have checked that the ordinary WZW bracket 

(4.4) 

is not a solution to (4.3). A particular solution to these equations is 

{ la(~, t), xi(TJ, t)} = -27ri( e(7J, t)aib(~- 7J) + e(7J, t)aib(~ + 7J)) (4.5a) 

{ la( -~, t), xi(7J, t)} = -27ri{ e(TJ, t)aib(~- 7J) + e(7J, t)aib(~ + 7J)) . (4.5b) 

Among these terms only the bulk terms (proportional to b ( ~ - 7J)) are present in the ordinary 
WZW model, while the terms proportional to b ( ~ + TJ) are boundary terms which represent 
non-abelian generalized Dirichlet images. 

In finding these solutions from ( 4.3), we used the relation 

la(~, t)b(~ + TJ) = la( -7], t)b(~ + TJ), 0::; ~' TJ::; 7r (4.6) 

8 



which holds because the cylinder current is 21r periodic. Verification of these solutions 
requires considerable algebra: In particular, one needs the explicit form (3.1) of J(±~, t) and 
the Cartan-Maurer identities, as well as the identities 

-a bn a ei. = -ei Hb , 

where n is the adjoint action. 

8. l""' b _ .f d Cl""' b iHa - Jac ei Hd l (4.7) 

The general solution to the differential equations for these brackets is obtained by adding 
to the particular solution ( 4.5a-b) the terms 

8{ Ja(~, t), xi('f}, t)} = /(~, t)B('f}, t)ai 

8{ Ja( -~, t), xi('f}, t)} = h(~, t)B('f}, t)ai 

/(0, t) = h(O, t), j(1r, t) = h(1r, t) 

o11 B(TJ, t)ai = B(TJ, t)ai ( 8ie(rJ, t)biGbc Jc(TJ, t) - 8ie( TJ, t)biGbc Jc( -TJ, t)) 

where/(~, t) and h(~, t) are arbitrary except for the boundary conditions in (4.8c). 

(4.8a) 

(4.8b) 

(4.8c) 

(4.8d) 

Following our program, we set these terms to zero in order to maintain the ordinary 
WZW term -21rieai8(~- TJ) in the bulk. 

Note that the solutions ( 4.5) are consistent with the generalized Dirichlet boundary 
conditions (3.6a) because 

8( -TJ) = 8(TJ), 8(11"- TJ) = 8(11" + rJ). (4.9) 

Moreover, the boundary terms proportional to 8(~ + TJ) are necessary for this consistency. 
By chain rule from the brackets of J(±~, t) with x, we also find the brackets of the 

currents with the group elements 

{ Ja(~, t), g(T, TJ, t)} = 21r(8(~- rJ)g(T, TJ, t)Ta ~ 8(~ + TJ)Tag(T, TJ, t)) 

{ Ja( -~, t), g(T, TJ, t)} = 21r(- 8(~- TJ)Tag(T, TJ, t) + 8(~ + rJ)g(T, TJ, t)Ta) . 

(4.10a) 

( 4.10b) 

As seen for { J(±~), x }, these brackets are also consistent with the generalized Dirichlet 
boundary conditions (3.6a). Here the first relation shows a right rotation in the bulk and 
a left rotation at the boundary, and vice-versa for the second relation. The brackets ( 4.10) 
will be central in the quantization of the open WZW string in Sec. 7. 

As an application of Eqs. (4.10) and (2.14), we may compute the action of the bulk 
momentum operator (2.16) on the group elements 

"{P. (t) (T c t)} = { i(g(T, ~' t)J(T, ~' t) + J(T, -~, t)g(T, ~' t)) if 0 < ~ < 1r 
't 9 'g '.,, 0 if~= 0, 7f. 

(4.11) 

Comparing this result with 8~;g in Eq. (4.2), we see that the correct form of 8~;g can be 
obtained by smoothly extending to the boundary the form of i{ P, g} obtained in the bulk. 
The same conclusion was obtained for the currents in (2.17). 
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5 Coordinate Space 
5.1 Equations of Motion 

We postpone further study of the phase space bracket algebra, because we already know 
enough to make the transition to coordinate space. 

Consider the computation 

Otxi(~, t) =i{ H9 , xi(~, t)} 

=Gab 11r d17 [(e(~)aiJb(TJ) + e(~)aiJb(-TJ))8(TJ- ~) 

+ ( e(~)ai -!b(TJ) + e(~)ai Jb( -TJ) )8(TJ + ~)] 

=Gab( e(~)ai Jb(~) + e(~)ai Jb( -~)) 

=47rGii(~, t)pi(B, ~' t) -
1 . 

Pi(B,~, t) = 
4

7r Gii(~, t)8tx1 (~, t) 

(5.1a) 

(5.1b) 

where we have used the results (4.5), (2.14) and (3.6a}. This is the usual local relation 
between OtX and pin the WZW model. Then the relations (5.1), (4.1) and the chain rule 
give the time-derivative of the group elements in terms of the currents. We record this result 
along with the space-derivative of g derived in (4.2): 

8tg(T, ~' t) = i(g(T, ~' t)J(T, ~' t)- J(T, -~, t)g(T, ~' t)) (5.2a) 

8t;g(T, ~' t) = i(g(T, ~' t)J(T, ~' t) + J(T, -~, t)g(T, ~' t)) (5.2b) 

o+g(T, ~' t) = 2ig(T, ~' t)J(T, ~' t),. o_g(T, ~' t) = -2iJ(T, -~, t)g(T, ~' t) . (5.2c) 

The same result for Ot9 can be obtained from (2.13) and the brackets {J(±~),g}. From the 
phase space realization of the currents and the relation between p and OtX, we obtain the 
coordinate space form of J: 

_1 i b 1 . b 
Ja(~, t) - 28+x (~, t)e(~, t)i Gba, Ja( -~, t) = 2a_xt(~, t)e(~, t)i Gba (5.3a) 

J(T, ~' t) = -~g-1 (T, ~' t)&+g(T, ~' t), J(T, -~, t) = -~g(T, ~' t)8_g- 1(T, ~' t) (5.3b) 

&_(g-1(T, ~' t)&+g(T, ~' t)) = &+(g(T, ~' t)8_g-1(T, ~' t)) = 0 . (5.3c) 

The results in (5.3b) are equivalent to Eq. (5.2c). The relations in (5.3c) (which are the usual 
WZW equations of motion) follow from (5.3b) and the chirality (2.15a) of the currents. 
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5.2 Generalized Dirichlet Boundary Conditions 

Using (5.lb), we see that the boundary conditions (3.6) can now be written in the following 
three equivalent forms: 

J(O, t) = J( -0, t), J(1r, t) = J( -1r, t) or 

8txi(f., t)(e(f., t)ia- e(f., t)ia) = 8exi(f., t)(e(f., t)ia + e(f., t)ia) or 

g-1(T, f,, t)8+g(T, f., t) = g(T, f,, t)8_g-1(T, f., t) at f.= 0, n 

. (5.4a) 

(5.4b) 

(5.4c) 

where (5.4c) is the generalized Dirichlet boundary condition of Ref. [14]. The result (5.4) 
shows that our open WZW strings end on WZW branes. 

5.3 The Bulk Lagrange Density 

We define a bulk Lagrange density .C9 for the open WZW string by the usual Legendre 
transformation 

(5.5a) 

(5.5b) 

The bulk density £ 9 in (5.5a) is the sigma model form of the usual WZW Lagrange density, 
and M in (5.5b) is the data matrix defined in (3.2). The local equations of motion of this 
density agree in the bulk with our Hamiltonian equations of motion (5.3c) so; again, our 
Hamiltonian formulation is locally WZW in the bulk. 

6 New Equal-Time Non-Commutative Geometry 

In this section, we continue our phase space construction to find the equal-time coordinate 
brackets 

(6.1) 

In particular, we may use the inverse relations (4.1) and the equal-time brackets (4.5) of 
J(±f.) with x to find the differential equation 

&TJb.. ii (f., 1], t) ={xi (f., t), &TJxi ( 1], t)} 

={ xi(f.), Ja(1J)Gabe(1J)bi - Ja( -1])Gabe( 1] )bi} 

=27riwii (f., 17)8(f, + 1J) + b._ik (f., 17)A(17)ki (6.2a) 

wii(f_, 1J, t) _ e(f., t)aiGabebi(1J, t)- e(f., t)aiGabebi(1J, t) = -wii(1J,f., t) (6.2b) 

A(f., t)/ Ja(~, t)Gabaiebi (f., t)- Ja( -f., t)Gabaiebi (~, t) (6.2c) 
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and a similar equation for aeD... 
In a matrix notation, these two equations read 

a11D..(f., TJ, t) = 27riW(f., TJ, t)o(f. + TJ) +D..( f., TJ, t)A(TJ, t) 

aeD..(f., TJ, t) = 21ri\ll(f., TJ, t)o(f. + TJ) + AT(f., t)D..(f., TJ, t) 

wT(TJ,f.) = -w(f.,TJ) 

where T is matrix transpose. The integrability condition for this system is 

(6.3a) 

(6.3b) 

(6.3c) 

a~aT/D..(f.,_ TJ, t) = aT/aeD..(f., TJ, t) iff (6.4a) 

( a11 w(f., TJ, t) - w(f., TJ, t)A(ry, t) )o(f. + TJ) = ( ae w(f., TJ, t) -AT (f., t)w(f., TJ, .t) )o(f. + TJ) . 
(6.4b) 

Using the definitions of Wand A in Eq. (6.2), we find after some algebra that the integrability 
condition is satisfied. The inhomogeneous terms in (6.3) are boundary terms associated to 
the interaction between a non-abelian charge at f. (or TJ) and a generalized non-abelian 
Dirichlet image charge at -TJ (or -f.). Note that, because of the inhomogeneous terms, the 
WZW bracket b..wzw(f., TJ, t) = 0 is not a solution of the equations (6.3). 

By standard methods, one finds the solution for the coordinate brackets 

D..(f., TJ, t) =UT(f., t)~(O, 0, t)U(TJ, t) 

+ 1ri 111 

dTJ' ( w (f., ry', t)o (f. + ry') + uT (f., t) w (o, TJ', t)o( TJ')) u-1 
( ry', t)U( TJ, t) 

+1rirfT(~,t) l dt; u-1 T((,t)(W((,~,t)O(( +~) + W((,O,t)O(()U(~,t)) 
(6.5) 

where ~(0, 0, t) is so far undetermined and we have introduced the ordered product U of A 

a~U(f., t) = U(f., t)A(f., t), a~uT(f., t) = AT(f., t)UT(f., t) (6.6a) 

u(o, t) = uT(o, t) = 1 . (6.6b) 

To check, for example, that (6.5) solves (6.3), one needs the identity 

a{ 117 

dry' w(f., ry', t)u- 1 (TJ', t)o(f. + TJ') =AT(f., t) 117 

dTJ' w(f., ry', t)u- 1 (ry', t)o(f. + ry') 

+ w(f., TJ, t)u-1(TJ, t)o(f. + TJ)- w(f., o, t)o(f.) (6.7) · 

· which itself follows from the integrability condition (6.4). If we assume that the coordinate 
brackets are matrix antisymmetric at f. = TJ = 0 

fl. T (0, 0, t) = -b..(O, 0, t) (6.8) 
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then (6.5) shows the correct antisymmetry of the coordinate brackets for all~' 'f/ 

(6.9) 

because W has the same antisymmetry. We may also evaluate (6.5) explicitly, with the result 

.::l(~, rJ, t) = uT(1r, t)(A(O, 0, t) + i1r\li(O, 0, t))U(1r, t) + i1rW(1r, 1r, t) if~= rJ = 1r 
{ 

.::l(O, 0, t), if~ = 'f/ = 0 

uT(~, t){.::l(O, 0, t) +i1rW(O, 0, t))U(rJ, t) otherwise. 

(6.10) 

This expression is suitable for the computation of ~-derivatives in the bulk, but one must 
return to (6.5) to compute ~-derivatives at the boundary. 

The preferred choice of .::l(O, 0, t) is 

.::l(O, 0, t) = -i1rW(O, 0, t) (6.11) 

because in this case, as in the WZW model, the coordinate brackets vanish in the bulk: 

.::l(~, TJ, t) =- i1rUT(~, t)w(O, 0, t)U(TJ, t) 

+ 7ri 1TJ d'f/1 
( w(~, 'f/1

, t)b(~ + TJ1
) + UT (~, t)w(O, r/, t)b(rJ') )u-1 (rJ', t)U(TJ, t) 

{ . 
+ niUT(~, t) 1 d( u-l T(~', t)(w(~', TJ, t)b(~' + rJ) + w(~', 0, t)b(~')U(TJ, t)) 

{ 

-inwii(o, o, t) if~=,.,= o 
{xi(~, t), xi(rJ, t)} = Aii(~, ,.,, t) = +inwii(n, n, t) if~= 'f/ = 1r 

0 otherwise 

wii ( ~, rJ, t) = e( ~' t)a iGab ebi ( TJ, t) - e( ~' t)a iQab ebi ( TJ, t) . 

(6.12a) 

(6.12b) 

(6.12c) 

Eq. (6.12), which shows the new non-commutative geometry of open WZW strings, is a 
central result of this paper. 

We emphasize that this new non-commutative geometry is an intrinsically non-abelian 
effect, because the antisymmetric tensor W vanishes in the abelian limit: 

(6.13a) 

(6.13b) 

In this abelian limit, our coordinates become Dirichlet and no non-commutativity is expected 
for Dirichlet coordinates. Our new non-abe_lian non-commutativity is therefore unrelated in 
any simple sense to the standard [31-35] non-commutativity found for Neumann coordinates 
in the presence of a constant magnetic field. At B = 0, other aspects of the abelian limit 
are noted in App. A. 
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Using (6.12), (3.2a) and the chain rule, we have also computed the brackets of the group 
elements among themselves 

{

i7r(g(O, t)Ta)a.Bcac(n-1 (0, t)- !1(0, t))cb(g(O, t)Tb)-/ if~= TJ = 0 
{g(~, t)l, g(TJ, t)/}= -i1r(g('1r, t)Ta)a.Bcac(n-1 (11", t) - 0(1r, t))cb(g(1r, t)Tb)-/if ~ = TJ = 7r 

0 otherwise 

(6.14a) 

a, {3, "(, 8 = 1, ... dimT (6.14b) 

where n is the adjoint action in ( 4. 7). 
All other phase space brackets can now be straightforwardly obtained from the known 

brackets { J ( ±~), x} and { x, x}, without solving any further differential equations. In par
ticular, App. B gives the explicit form of the brackets: 

{xi(~, t),pj(B, TJ, t)}, {xi(~, t),pj(TJ, t)}, {Ja(±~, t),pj(B, TJ, t)} 

{Pi(B, ~, t),Pi(B, TJ, t)}, {Pi(~, t), Pi(TJ, t)} . 

(6.15a) 

(6.15b) 

The last set of brackets {p, p} is again non-zero only at the boundary, and this effect again 
vanishes in th~ abelian limit. 

7 The Conformal Field Theory of Open WZW Strings 

7.1 The Quantum Vertex Operators g(T) 

The Hamiltonian of the quantum theory of open WZW strings was given in Sec. 1 

1 {7r 
Hg = L9 (0) = 

2
7r Jo d~ L:b : Ja(~, t)Jb(~, t) + Ja( -~, t)Jb( -~, t) : (7.1a) 

=L:b L : Jo.(m)Jb( -m) : (7.1b) 
mEZ 

00 

(7.1c) 
m=l 

: Ja(m)Jb(n) : O(m 2: O)Jb(n)Ja(m) + O(m < O)Ja(m)Jb(n) (7.1d) 

[Ja(m), Jb(n)] = ifabc Jc(m + n) + mGabOm+n,O (7.1e) 

8tA(~, t) = i[A(~, t), t] (7.1f) 

where the current modes Ja(m) generate the affine Lie algebra [1, 2, 3] of g and L9 (0) is the 
zero mode of the affine-Sugawara construction [2, 25, 26, 27, 28, 3) on g. 

Using the classical theory as a guide, and in particular (4.10), we may now augment the 
quantum system (7.1). with the equal-time commutators 

[Ja(~, t), g(T, TJ, t)] =27r(g(T, TJ, t)Tao(~- TJ) - Tag(T, TJ, t)o(~ + TJ)) (7.2a) 

[Ja( -~, t), g(T, TJ, t)] =27r( - Tag(T, TJ, t)o(~- TJ) + g(T, TJ, t)Tao(~ + TJ)) (7.2b) 
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of the currents with the open string quantum vertex operators g(T). We emphasize that, 
as in the classical theory, these commutators are consistent with the generalized Dirichlet 
boundary conditions (5.4a). Moreover, using the mode expansions (2.15b) of the currents, 
we find that the combined system (7.2) is equivalent to the algebra 

[Ja(m), g(T, e, t)] = g(T, e, t)Taeim(tH) - Tag(T, e, t)eim(t-~) (7.3) 

of the current modes with the vertex operators. We have checked that the commutator (7.3) 
satisfies the J, J, g Jacobi identity, as it must. The Hamiltonian (7.1) and the commutators 
(7.2) or (7.3) will allow us to find the analogues of the Knizhnik-Zamolodchikov equations 
for the conformal field theory of open WZW strings. 

7.2 Time Dependence 

Towards this goal, we first follow standard methods (see e.g. Halpern and Obers [37]) to 
obtain the time differential equation for the open string vertex operators. The result is 

8tg(T, e, t) = i[H9 , g(T, e, t)] 

8tg(T, e, t) =2iL~b : g"(T, e, t)Ja(e, t)n- la( -~, t)ng(T, e, t) : 

- 2iL:bTag(T, e, t)Tb + 2i.6.9 (T)g(T, ~' t) . 

Here the normal ordering is defined as 

: g(T, e, t)Ja(±e, t) : J~->(±e, t)g(T, ~' t) + g(T, e, t)J~+)(±~, t) 

J~+)(±e, t) = L la(m)e-im(t±~) J~->(±e, t). L la(m)e-im(t±~) 

(7.4a) 

(7.4b) 

(7.5a) 

(7.5b) 

(7.5c) 

and .6.9 (T) is the conformal weight of irrep T under the {tffine Sugawara-construction on g 

(7.6) 

In Eq. (7.4b), the normal-ordered terms have the same form as the classical result Eq. (5.2a), 
while the extra terms are quantum effects from the normal ordering. 

In order to study correlators of the open string vertex operators, we introduce the usual 
affine ground state 

la(m ~ O)IO) = (O!Ja(m :S 0) = 0 

J~+)(±e, t)IO) = .(OIJ~-)(±e, t) = o. 
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This gives immediately the g-global Ward identities 

A(T, f,, t),/3 
- A(T, f,, t)0f.~.~·~n = (g(T1

, 6, ti}0 /
1 
.•. g(Tn, f.n, tn)o/n) 

ai, f3i = 1, ... dim T 
n 

A(T, f,; t) = (g(T1, 6, t1) ... g(Tn, f.n, tn)), Qa - L ~ 
i=l 

for the open string WZW correlators A(T, f,, t). 
Continuing to follow Ref. [37], we next obtain the KZ-like equations 

Ot;A =2i~9(Ti)A- 2iL:bT~ATt 

2 .Lab~( AT1Tt TjATt · 
+ z 9 L..J 1 - ei(<P;-t/J;) - 1 - ei(<P;-<P;) 

#i 

Ti AT.i TiT/ A _ a b_ + ab ) 
1 - ei(<P;-t/J;) 1 - ei(<P;-<P;) 

</>i - ti + f.i ¢i - ti - f.i, i, j = 1, ... , n 

(7.8a) 

(7.8b) 

(7.8c) 

(7.9a) 

(7.9b) 

for the time dependence of the correlators A - A(T, f,, t) .in open WZW theory. Tensor 
products are assumed in (7.9), as illustrated in the example: 

(7.10a) 

(7.10b) 

To obtain these differential equations, we used the vertex operator equation (7.4b), the 
commutators 

Tjg(Ti,f,i,ti) 
1 _ ei(t;-~j-(t;±~;)) 

(7.11a) 

g(Ti, f,i, ti)Td 
1 _ ei(tiHi-(t;±~;)) (7.11b) 

and the ground state condition (7.7). 
The system (7.9) resembles the usual [27] KZ equations, but it is in fact quite different: 

• In (7.9), the variables </>i and ¢i are the locations of the i-th non-abelian charge and 
the i-th generalized non-abelian Dirichlet image charge respectively. 

• The ordinary KZ equations for the time dependence of the left and right' mover WZW 
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correlators A~zw and A~zw on the cylinder are 

f) .Awzw =i~ (Ti)Awzw + Awzw 2iLab"" T1Tt 
t, + g + + 9. L- 1 - P.i(<Pi-<Pi) 

j:f.i . -

(7.12a) 

i d 
f) .Awzw =i/:1 (Ti)Awzw + 2iLab"" TaTb _ Awzw 

t, - g - g L- 1 - ei(t/>j-1/>i) - • 
#i 

(7.12b) 

The coefficients of A~zw in (7.12) also appear in (7.9): However in (7.9) the ATiTi 
terms represent the interactions among the non-abelian charges, while the TiTi A terms 
represent the interactions among the non-abelian image charges. 

• In (7.9), the terms proportional to TiATi and TiATi are interactions between the 
charges and the image charges. Such terms, with a simultaneous left and right action, 
are unfamiliar in standard KZ theory. 

• The extra term -2iL:bT~ATi in (7.9) will be interpreted below. 

It will be convenient to write the system (7.9) in the more conventional form 

Ot;A = 2i~9 (Ti)A + Awi + wiA- wf AT~- T~Awf (7.13a) 

Wi- 2iL:b~T~T/J(¢Jj- rPi), Wi -"2iL:b~T~T/J((/>j- (/>i) (7.13b) 
j#i j#i 

wf = 2iL:bL:T/J((/>i- rPi), wf- 2iL:bL:T/f(rPi- (/>i) (7.13c) 
j j 

1 
f(x)- . , f(x) + f(-x) = 1 . 1- ezx 

(7.13d) 

where we have used the identity (7.13d) tore-express the -2iL:bT~ATt term in (7.9) as the 
j = i terms of the completed sums in (7.13c). In this way, we interpret the -2iL:bT~ATi 
term in (7.9) as equivalent to two types of interaction between a given charge at rPi and its 
own image at lf>i· In what follows, thew's of Eq. (7.13) are referred to as connections. 

We have checked explicitly that these KZ-like differential equations satisfy the appropriate 
integrability condition 

(7.14) 

and that the differential equations are also consistent with the g-global Ward identities (7.8). 
We will postpone the details of this discussion, however, while we develop a simpler and more 
comprehensive description of this system. 

7.3 Constituent Vertex Operators 

In this subsection, we introduce constituent vertex operators 9±(T) which provide an en
lightening alternative derivation of the vertex operator differential equation (7.4). 
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The constituent vertex operators are defined as followsc: 

g(T, ~' t) = 9- (T, ~' t)g+(T, ~' t) 

[Ja(m), 9+(T, ~' t)] =g+(T, ~' t)Taeim(t+{) 

[Ja(m), 9-(T, ~' t)] =- Ta9-(T, ~' t)eim(t-{) . 

(7.15a) 

(7.15b) 

(7.15c) 

Taken together, the simple commutation relations in (7.15) reproduce the algebra (7.3) of 
the current modes with the full vertex operators 9(T). 

By direct computation with (7.15), we find the simpler time differential equations 

8t9±(T, ~' t) = i[H9 , 9±(T, ~' t)] 

8t9+(T, ~' t) 2iL:b : Ja(~, t)g+(T, ~' t)Tb : +i~9(T)9+(T, ~' t) 
8t9-(T, ~' t) =- 2iL:b: Ja( -~, t)Tbg-(T, ~' t) : +i~9(T)9-(T, ~' t) 

(7.16a) 

(7.16b) 

(7.16c) 

for the constituent vertex operators. The normal ordering here is the same as in (7.5) with 
g ~ 9±· Then we find that the time derivative (7.4b) of the full 9(T) is a consequence of 
the constituent equations (7.16) as follows: 

8t9(T, ~' t)=8t9-(T, ~' t)9+(T, ~' t) + 9-(T, ~' t)8t9+(T, ~' t) (7.17a) 

=- 2iL:b( :Ja( -~, t)ng-(T, ~' t): 9+(T, ~' t)- g_(T, ~' t) :Ja(~, t)g+(T, ~' t)n: ) 

+ 2i/::).9 (T)9(T, ~' t) (7.17b) 

=2iL:b : g(T, ~' t)Ja(~, t)n- Ja( -~, t)n9(T, ~' t) : 

- 2iL:bTag(T, ~' t)n + 2i~9 (T)g(T, ~' t) . (7.17c) 

In this computation, the expression in (7.17b) was not completely normal ordered, so we 
used the equal-ti~e commutators 

[J(+)(_c t) (T c t)] = 9+(T, ~' t)Ta 
a .,, ,g+ ,.,, 1- e2i{ 

[J(-)(c t) '(T c t)] = Tag-(T, ~' t) 
a .,, ,g_ ,.,, 1- e-2iE 

1 1 
----,-2.,.,-"t: + 2"(; = 1 1 - e- z., 1 - e z., 

to obtain the final completely normal ordered form in (7.17c). 

(7.18a) 

(7.18b) 

(7.18c) 

We emphasize that the -2iL:bT~ATi term in Eq. (7.4b) or (7.17c) is a result of this final 
normal ordering. 

cconstituent vertex operators can also be introduced in the same way for the classical theory, and all the 
same properties obtained below for the quantum constituents can be obtained as w~ll at the classical level 
{see also Eq. {7.29)). In particular, we will not need to know the explicit multiplication law for 9- times 9+, 
which presumably involves quantum groups. 
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We also consider the action of the Virasoro generators L 9 (m) of the affine-Sugawara 
construction 

L9 (m) = L;b L : la(p)Jb(m- p} : (7.19a.) 
' ~ I 

pEZ 
c 

[L9 (m), L9 (n)] = (m- n)L9 (m + n) + 
1
;m(m2 

:- 1)8m+n,o (7.19b) 

on the constituent vertex operators. By direct computation with {7.15b-c) and (7.16b-c) we 
find that 

[L9 (m), 9±(T, ~' t)] = eim(t±~) (- i8t + mtl9 (T) )g±(T, ~' t) . (7.20) 

We have checked that these commutators satisfy the L, L, 9± Jacobi identities. 

7.4 The Constituents are Chiral 

We begin this discussion with the quantum version of the bulk momentum operator 

(7.21a) 

(7.21b) 

(7.21c) 

(7.21d) 

(7.21e) 

where L 9 (m) are the Virasoro generators in (7.19a). By direct computation with (7.20), we 
find that 

' ~ ~ 

i[P9 (t), 9+(T, ~' t)] =4ifo d'TJ eir,6(2'TJ) )at9+(T, ~' t) + 4ei~b(2~)tl9 (T)g+(T, ~' t) (7.22a) 

1
~ ~ 

i[P9 (t), g_(T, ~' t)] =- 4( 
0 

d'TJ e-i11 6(2'TJ) )atu-(T, ~' t) + 4e-i~8(2~)tl9 (T)g_(T, ~' t) 

(7.22b) 

41~ d'TJ eiTJ6(2'TJ) = 41~ d'TJ e-i11b(2'TJ) = { ~ ~i ~ < ~' ~-11' (7.22c) 

The summation identities 

e±i(2n+l)~ 1~ . L 
2 1 

= ±27ri d'TJ e±211 b(2'TJ) 
'71 n+ o nEtu 

(7.23) 

19 



were used to obtain these results. 
The last terms in (7.22a-b) are quantum effects which contribute only at the boundary, 

so that 

o{g±(T, ~' t) = i[P9 (t), Y±(T, ~' t)] = ±8t9±(T, ~' t) 0 <~ < 1r (7.24) 

is obtained in the bulk. Following our classical intuition, we extend~ this result smoothly to 
include the boundary 

which tells us that the constituent vertex operators g+(T) and g_(T) are respectively chiral 
and antichiral. 

It is simple to check that this extension to the boundary is consistent: First, the chirality 
of 9± (T) in the form 

(7.26) 

allows us to rewrite the equations for Ot9± in (7.16b-c) as light-cone differential equations 
for the constituent vertex operators 

1 
2a+9+(T, ~' t) =2iL:b: Ja(f,, t)g+(T, f,, t)n : +i6.9 (T)g+(T, f,, t) 

~f)_g_(T,~,t) =- 2iL:b: Ja(~f,,t)ng_(T,f,,t): +i6.9 (T)g_(T,~,t). 
(7.27a) 

(7.27b) 

Then one easily checks that these equations are consistent with the chirality conditions (7.25) 

(7.28) 

because g+(T), J(+~) are chiral and g_(T), J(-~) are antichiral. 
As another check on the consistency of the chiralities (7.25), we remark that the relations 

in (7.15), (7.25) and (7.27) are nothing but the quantum versions of the classical relations 

g(T, ~' t) g_(T, f,, t)g+(T, ~' t) 

{ la(±~, t), 9+(T, 'fJ, t)} =21fl5(~ =t= 'fJ)g+(T, ~' t)Ta 

{ la(±f,, t), g_(T, ~' t)} =- 21r8(~ ± 'fJ)Tag-(T, ~' t) 

f)_g+(T, f,, t) = o+g-(T, ~' t) = 0, 0 ~ ~ ~ 1r 

o+g+(T, ~' t) =2ig+(T, ~' t)J(T, ~, t) 

f)_g_(T, ~' t) =2iJ(T, -f,, t)g_(T, ~' t) 

(7.29a) 

(7.29b) 

(7.29c) 

. (7.29d) 

(7.29e) 

(7.29f) 

which should be taken to supplement our classical discussion above. As in Ref. [30], the 
relations (7.29a) and (7.29d-f) solve the classical relations for o±g(T) in (5.2c). 
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The constituent vertex operator equations (7.27) are cylindrical analogues of the vertex 
operator equations for the left and right mover vertex operators in ordinary WZW theory (see 
e.g. Ref. [37]), and indeed these equations guarantee that 9+ correlators and 9- correlators 

obey cylindrical analogues of the ordinary KZ equations 

1 . 
28i+A+ =i6.9 (Tz)A+ + A+wi 

1 . 
28i_A_ =i6.9 (Tz)A_ + wiA-

Oi-A+ = oi+A- = 0 

oi+ = Ot; + 8t;; oi- = 8t; - 8t;; . 

The connections wi,wi are defined in Eq. (7.13b). The commutator identities 

[ (+)( ) ( i )] 9+(Ti, ~i' ti)T1 
Ja ±~i, ti , 9+ T , ~j, tj 1 _ ei(ti+t;;-(t;±t;;)) 

[ (+)( . ·) ( i . ·)] __ T19-(Ti,~i' ti) 
Ja ±~z, tz , 9- T , ~J' tJ - 1 _ ei(tj-t;j-(t;±t;;)) 

[JC-)(±t:. ·) (Ti ~:. ·)] _ _ 9+(Ti, ~i' ti)T1 
a . ':.Zl tz '9+ '':.J' tJ - 1 - ei(tj+{j-(t;±t;;)) 

[ C-)( . ·) ( i . ·)] _ T19-(Ti, ~i' ti) 
Ja ±~z,tz ,9- T '~J,tJ -1- ei(ti-t;i-(t;±t;;)) 

(7.31a) 

(7.31b) 

(7.31c) 

(7.31d) 

(7.32a) 

(7.32b) 

(7.32c) 

(7.32d) 

are needed in the derivation of (7.31). Because the correlators A± are chiral, the equations 
in (7.31) are identical to the cylindrical KZ equations given in (7.12). 

But in open WZW the.ory, the full correlators A of the full vertex operators 9 cannot be 
factorized into the constituent correlators A±: 

9(i) - 9(Ti, f.i, ti) = 9-(i)9+(i) 

A= (9(1) .. . 9(n)) =f. (9-(1) .. ·9-(n))(9+(1) .. ·9+(n)) = A_A+. 

(7.33a) 

(7.33b) 

This follows because, in open string theory, the current modes J(m) have non-trivial action 
on both 9+ and 9- so that 9+ and 9- do not form independent subspaces [37] as in the WZW 
model. Looking back, this phenomenon can also be understood as the fact that the strip 
current J(~, t) does not commute with the strip current J( -~, t) at the boundary. 

Finally, we may use Eq. (7.26) to recast (7.20) in the form 

(7.34) 

and this form also satisfies the L, L,, 9± Jacobi identities. Here { L 9 (m)} acts on 9+(T) as a 
left mover Virasoro acts on a left mover Virasoro primary, but {L9 (m)} also acts on g_(T) 
as a right mover Virasoro {L9 (m)} acts on a right mover Virasoro primary. 
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7.5 The Full Open String Vertex Operator Equations 

In this subsection, we use the results above for the chiral vertex operators 9± (T) to find the 
differential equations for the full vertex operators g(T). 

Our first step is to use (7.25) and (7.27) to obtain the light-cone differential equations 
for 9(T) 

~8+g(T, e, t) =2iL~b: Ja(e)9(T, e, t)n: -2iL~bTaf~ ~~2:~n + ib..9 (T)g(T, e, t) (7.35a) 

~8-9(T, e, t) =- 2iL~b: Ja( -e)Tbg(T, e, t) : -2iL~bTa~(~, !~i~)n + ib..9 (T)9(T, e, t) . 

(7.35b) 

In the final step of this computation, the commutators (7.18) are needed again to obtain 
the fully normal ordered form. This result is the quantum version of the classical result . 
in Eq. (5.2c): The normal ordered terms have the same form as the classical result, and 
the remaining terms are quantum effects from the normal ordering. The consistency of the 
system (7.35) 

(7.36) 

follows by construction from g = 9-9+· 
Taking linear combinations of Eqs. (7.35a-b), we also find the Ot and Ot; equations for the 

vertex operators g(T): 

8tg(T, e, t) =2iL:b : Ja(e)g(T, e, t)Tb- Ja( -e)n9(T, e, t) : 

- 2iL:bTa9(T, e, t)Tb + 2ib..9 (T)9(T, e, t) 

8t;g(T, e, t) =2iL~b : Ja(e)g(T, e, t)Tb + Ja( -e)ng(T, e, t) : 

- 2L:bTag(T, e, t)Tb cote 

1 1 1 
-----::-2..,.,-"t: + 2"t: = 1• 2"t: 1 - e z., 1 - e- z., 1 - e z., 

1 . 
---=-2:-:-.t: =?.cote 1- e- z., 

· (7.37a) 

(7.37b) 

(7.37c) 

where we have used the relations in (7.37c). The equation in (7.37a) agrees of course with 
the earlier result in (7.4). 

As a simple application, we use the vertex operator equations (7.37), the ground state 
conditions (7. 7) and the g-global Ward identity to compute the one-point correlators of the 
open WZW string 

[Ta, (g(T, e, t))] = 0 

Bt(g(T, e, t)) = 0, Bt;(g(T, e, t)) = -2D..9 (T) cot (e)(g(T, e, t)) . 

The solution of (7.38) is 

(g(T,e, t)) = nc(sine)-2!\g(T) 
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(7.38a) 

(7.38b) 

(7.39) 



where Cis an undetermined number. As another application, the vertex operator equations 
(7.35) or (7.37) can be used to study the operator product g(1)g(2) and its operator product 
expansion. 

7.6 The Fuil Open String KZ Equations 

Using (7.7), (7.11) and the vertex operator equations (7.35), we now obtain the full open 
string KZ equations 

A= (g(T\ 6, t1) ... g(Tn, ~n, tn)) 

oq,iA =i~9(T)A + Awi- wf ATc! 

84>iA =i~9 (Ti)A + wiA- T:Awf 

<Pi = ti + ~i, <fii = ti - ~i, i = 1, ... , n 

Wi = 2iL~b'LT~TtJ(</Jj- <Pi), Wi- 2iL~b'LT~TtJC<i>j- (fii) 
j~ j~ 

wf = 2iL~bLTlf({fii- <Pi), wf = 2iL~bLTlf(<Pi- (fii) 
j j 

1 
f(x) . 

1- eZX 

n 

[Lr:,AJ = o 
i=l 

(7.39a) 

(7.39b) 

(7.39c) 

(7.39d) 

(7.39e) 

(7.39f) 

(7.39g) 

(7.39h) 

for the correlators A of open WZW theory. This system is a central result of this paper. 
The n-point .correlators in this system satisfy 2n partial differential equations in the 2n 

independent variables { </Ji, (fii}, so the complexity of the n-point correlators in open WZW 
string theory is comparable to the complexity of the 2n-point correlators of the ordinary KZ 
equations. The solution for the open string one-point correlators is given in (7.39). 

Because the form of this system is unfamiliar, we have checked its integrability conditions 
carefully. Aside from considerable algebra using the form of the connections w, the only 
identities needed are 

f(x- y)f(z- x) + f(z- y)f(y- x)- f(z- y)f(z- x) = 0, V x, y, z 

f(x) + f(-x) = 1. 

In detail, we find that the integrability conditions are satisfied in the following way: 

[oq,;, oq,i]A = 0 because: 

oq,;Wj - oq,iwi = 0, 8q,;wjDT1- oq,iwf DT: = 0 

[wi,wi] = 0, [wf,wJ]DTtT: +wjD[wi,T1]- wfD[wi,T~] = 0, Vi,j 
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(7.40a) 

(7.40b) 

(7.41a) 

(7.41b) 

(7.41c) 



[ 8.pi, 8.pi] A = 0 because : 

8;pJi;i- 8;p/iJi = 0, T1D8;pJilj- T~D8.p/ilf = 0 

T i'T'iD[-a -b] + [- Ti]D-a [-. 'T'i]D-a _ 0 a.Lb Wi,Wj Wi, a Wj- w3 ,.La Wi- , 

[84>n 8;pi]A = 0 because : 

8tJ>;Wj = 8;piwi = 0, T1D84>;wj- 8;piwfDT~ = 0 

Here, D is an arbitrary square matrix in the space of correlators. 

Vi,j 

Vi,j. 

(7.42a) 

(7.42b) 

(7.42c) 

(7.43a) 

(7.43b) 

(7.43c) 

The compatibility between the open string KZ equations (7.39) and the g-global Ward 
identity (7.8) 

· can also be checked in the same way. 
We also give the full open string KZ equations in the alternate form 

Bt;A =2i~9 (Ti)A + Awi + wiA- wf AT~ - T~Awf 

8~;A =Awi- wiA- wfAT~ +T~Awf, i = 1, ... ,n 

(7.44a) 

(7.44b) 

(7.45a) 

(7.45b) 

where the derivatives are now with respect to the basic world~sheet variables { ti, ~i}· In this 
system, Eq. (7.45a) is the same as (7.13). 

Still another form of our open string KZ system is given in App. C, where we use dual 
matrix representations to present the equations for the open n-point correlators as a single 
"chiral'' KZ system in 2n variables. 

Finally, we record the action of the Virasoro generators L9 ( m) on the full vertex operators 
g(T) 

[L9 (m), g(T, ~' t)] =( eimfP( -i8;p + m~9 (T)) + eimf/>( -i84> + m~9 (T)))g(T, ~' t) (7.46a) 

=eimt( cos(m~)( -i8t + 2·m~9 (T)) + sin(m~)a~)g(T, ~' t) . (7.46b) 

The result follows from Eq. (7.34) and the chirality (7.25) of the constituents. 
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7. 7 General Open String CFT 

In this subsection, we extend our discussion to general open string conformal field theory, 
using what we now know about open WZW theory as a model. In particular, we assume 
that the genera.l open string CFT is goverued by a single set of Virasoro generators L( m) 

c 
[L(m), L(n)] = (m- n)L(m + n) + 

12
m(m2

- l)<>m+n,o 

L(lml ::; l)IO) = (OIL(Iml < 1) = o 

(7.47a) 

(7.47b) 

with an SL(2) invariant ground state IO). For open CFT's based on a current algebra, IO) 
is the affine ground state. The set of all open CFT's is very large, including open analogues 
of coset constructions [2, 25, 38, 3], affine-Virasoro constructions [39, 40, 3] and conformal 
sigma models. 

In each open CFT, we also consider the set of open string Virasoro primary fields { <I>i}, 
which are defined to satisfy 

(7.48) 

Open string Virasoro quasiprimary fields Xi(~, t) are defined to satisfy (7.48) for lml ::; 1. 
Then the SL(2) Ward identities 

(7.49a) 
n 

L(O): LBt;A = 0. (7.49b) 
i=l 

n 

L(±l) : L e±it; ( cos~i( -iBt; ± 2~i) ± sin~i8{J )A~ 0 (7.49c) 
i=l 

follow in the usual way for open string correlators of sets of Virasoro quasiprimaries. The 
relation (7.49b) expresses the time translation invariance of the correlators. 

The open string WZW vertex operators g(T) above are examples of open string Virasoro 
primary fields with ~i = ~9 (Ti) and, indeed, the SL(2) Ward identities (7.49) are satisfied 
by the correlators of the open string KZ system (7.39). In particular, we have checked that 
the compatibility conditions 

n 

L9 (0): L(2i~9 (Ti)A + Awi + wiA- wf AT~- T~Awf) =0 (7.50a) 
i=l 

n 

L
9

( -1): L ( e-i(t;-'-{;)(wiA- T~Awf) + e-i(t;+{;)(Awi- wf AT~)) =0 (7.50b) 
i=l 

n 

L
9
(+1): L (ei(t;-~;)(i~9 (Ti)A + wiA- T~Awf) + ei(t;+€;)(i~9 (Ti)A + Awi- wf AT~)) =0 

i=l 

(7.50c) 
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are satisfied by the connections w, using also the g-global Ward identity for (7.50a) and 
(7.50c) .. 

The S£(2) Ward identities (7.49) can be put in a more recognizable form 

(7.51a) 

n 

L(-1): L:(ai + ai)F = o . (7.51b) 
i=l 
n 

L(O) : L((ziai + ~i) + (ziai + ~i))F = o (7.51c) 
i=l 

n 

£(1) : L:(zi.(ziai + 2~i)+ zi(ziai + 2~i))F = o (7.51d) 
i=l 

Z . = ei(t;H';) 
z- ' 

a 
Z-. = ei(t;-{i) £::1 _ 
z- , Vi= -a , 

Zi 
(7.51e) 

so the SL(2) Ward identities for the open string n-point F factor have the form of the 
ordinary SL(2) Ward identities, now for a correlator with 2n points ZlJ z1 ... ZnZn· The 
solutions to these equations are easily read off from the general solution of SL(2) Ward 
identities given in Ref. [41]. 

As a simple example, we find for the open string one-point correlators 

( Zizi)Ll; 1 
(Xi(~i, ti)) ex ( - )2Ll· ex ( · ~ )2Ll· 

Zi - Zi ' Sln i ' 
(7.52) 

in agreement with our solution (7.39) of the open string KZ equations and the g-global Ward 
identity. In the solution (7.52), the open string one-point F factor 

. 1 
F ex -:-------=---=--

( Zi - Zi) 2Ll; 
(7.53) 

has the form of the usual two-point correlator between a closed string quasiprimary field at 
zi and another closed string quasiprimary field at a point called zi: In open string theory, 
however, the points zi. and Zi are the locations of the charge and the image charge respectively. 

The S£(2) forms of the open string correlators will be helpful in solving the open string 
KZ equations for the multi-point correlators on the strip. · 
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Appendix A. The Abelian Case 

In order to compare with the discussion in the text, we consider the classical action formu
lation of the simplest abelian Dirichlet string: 

s = 11r d~ £ 

£ = 8~ a+x a_x = 8~ ((8tx) 2
- (8~x)2 ) 

(oi- ol)x(~, t) = 0, 8tx(0, t) = 8tx(7r, t) = 0 . 

The solution of (A.lc) is 

1 L sin(mc) . 
-x(~, t) = q + J(O)~ + J(m) '> e-zmt 
2 m 

m;i:O 

atx(~, t) =- 2i L: J(m) sin(m~)e-imt = J(~, t)- J( -~, t) 

8ex(~, t) =2 L J(m) cos(m~)e-imt = J(~, t) + J( -~, t) 
mEZ 

where the current modes J(m) satisfy the usual abelian current algebra 

J(~, t) = L = J(m)e-im(t+()' J( -~, t) = L = J(m)e-im(t-() 
mEZ 

We also assume that 

{J(~, t), J(rJ, t)} =27ri8el5(~- rJ) 

{J(~, t), J( -rJ, t)} =27ri8~15(~ + rJ) 

{ J( -~, t), J( -rJ, t)} =- 27ri8el5(~- rJ) 

{J(m), J(n)} = m~Sm+n,o . 

{q, J(m =I= 0)} = 0 

27 

(A.la) 

(A.lb) 

(A.lc) 

(A.2a) 

(A.2b) 

(A.2c) 

(A.3a) 

(A.3b) 

(A.3c) 

(A. 3d) 

(A.3e) 

(A.4) 



but we leave the bracket { q, J(O)} undetermined for the moment. The string coordinate 
x(~, t) can also be written as 

e-im(t+{) e-im(t-{) 

x(~, t) = 2q + (J(O)(t + ~) + i"' J(m) . ) - (J(O)(t- ~) + i L J(m) ) L.....- m m 
m:f:O m:f:O 

(A.5) 

and exponentials of x(~, t) show the abelian analogue of the right and left mover product 
structure of the non-abelian vertex operator 9 = 9-9+ discussed in the text. 

The momentum p canonical to x follows from the Lagrange density (A.1): 

p(~, t) = 4~ 8ix(~, t) = 4~ (J(~, t)- J( -~, t)) . (A.6) . 

Using the forms (A.2c) and {A.6) for a{x and p, we find the phase space realization of the 
currents 

and from the current algebra (A.3), we compute the phase space brackets 

{x(~, t), x(TJ, t)} =4(77- ~){ q, J(O)} 

{x(~, t),p( 17 , t)} =i(o(~ - 11)- o(~ + 77)) 

{p(~, t),p(TJ, t)} =0 

{ J(~, t), x(TJ, t)} =- 21ri(o(~- 77)- o(~ + 77)) + 2{ J(O), q} 

{ J( -~, t), x(11 , t)} =27ri(o(~- 11) - o(~ + 77)) + 2{ J(o), q} 

(A.7a) 

(A.8a) 

(A.8b) 

(A.8c) 

(A.8d) 

(A.8e) 

in terms of the unknown quantity { q, J(O)}. We remark in particular that the second term 
in (A.8b) corresponds to the presence of a Dirichlet image charge. 

To determine the unknown quantity {q, J(O)}, we require the consistency of the action 
and Hamiltonian formulations of the system. The Hamiltonian of the Dirichlet string follows 
by Legendre transformation 

H = 11r d~ 1i (A.9a) 

1 1 
1i = 8txP- C = 21rp2 + -(8{x)2 = -(J2 (~) + J2( -~)) 

87r 47r 
(A.9b) 

and then we may recompute 8tx from the Hamiltonian equations of motion 

8tx(~, t) = i{H, x(~, t)} = 47rp(~, t) + 2i{ J(O), q}J(O) (A.10) 
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using the brackets in (A.8). For agreement with (A.6) we must set 

{J(O), q} = 0 (A.ll) 
' 

and then all the previous relations of this appendix are in agreement with the abelian limit 

xi --t x, pi --t p, Bii --t 0 

Gab --t 1, !abc --t 0, eia --t 1, eia --t -1 

of our discussion in the text. 

(A.12a) 

(A.12b) 

In the abelian case, there is a second possible phase space realization of the currents 

(A.13) 

which differs from Eq. (A.7) only by the overall sign in the realization of J( -~, t). Periodicity 
of the cylinder current in this case gives the Neumann boundary conditions 

J(O, t) = J( -0, t), J(1r, t) = J( -1r, t) or 

8~x(O, t) = 8~x(1r, t) = 0 . 

(A.14a) 

(A.14b) 

The realization (A.13) must be taken with the same Hamiltonian (A.9) and the same current 
algebra (A.3). (The Neumann system is T-dual to the Dirichlet system.) The solution to 
the equations of motion with Neumann boundary conditions is · 

~x(~, t) = q + J(O)t + i L J(m) cos(m~) e-imt . 
2 m 

m:;i:O 

In this case all is consistent when 

{q, J(O)} = i 

and then (A.15) and (A.3) give the phase space brackets 

{x(~, t), x(7J, t)} =0 

{x(~, t),p(1J, t)} =i(8(~ -1]) + 8(~ + 7J)) 

{p(~, t),p(1J, t)} =0 

which show a Neumann image charge in the second term of (A.17b). 
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(A.l5) 

(A.l6) 

· (A.l7a) 

(A.l7b) 

(A.l7c) 



Appendix B. The Remaining Phase Space Brackets 

In this appendix, we use the results of the text and the chain rule to compute the rest of 
the phase space brackets of open WZW theory. In particular we need Eqs. (4.1), (4.5) and 
(6.3), and the results are given in terms of the coordinate brackets~= {x,x} in (6.12): 

{xi(~, t),p;(B, 17, t)} _:_{xi(~), :7r (e(17)/ Ja(17) + e(17)/ Ja( -17))} 

=i8/8(~ -17) + ~(e(17)/e(~)ai + e(17)/e(~)ai)8(~ + 17) 

+ 4~~ik(~,17)(8ke(ry)/Ja('f1) + ake(ry)/Ja(-ry)) (B.1) 

. . 1 k 
{xz(~, t),P;('rJ, t)} ={xz(~),P;(B, 17)-

4
7r B;k('fJ)8T/x } 

=i8/8(~- ry) + ~( e(ry)/e(~)ai + e(ry)/e(Oai + wik(~, 17)Bjk(17) )8(~ + 11) 

+ 4~ ~ik(~, ry)(ake(ry)/ Ja('rJ) + ake(17)/ Ja( -ry)) 

+ 4~ _6.ik(~, ry)(A(17)k1Bit('fJ) + 8kB;t(17)8T/x1
) (B.2) 

{Ja(~, t), Pi(B, 17, t)} ={ Ja(~), 4~ ( e('rJ)ib Jb(17) + e(17)ib Jb( -17))} 

z b . 
=2e(17)i Gba8~8(~- 'fJ) + 27ri8ie('rJ)a3P;(B, ry)8(~- ry) 

z . . . 
+ 2e(17)ibGba8~8(~ + ry) + 27ri8ie(17)a3P;(B, 17)8(~ + 17) (B.3) 

{Pi(B, ~, t), P;(B, 17,_ t)} _={ 4~ ( e(~)ia Ja(~) + e(~)ia Ja( -~)), Pi(B, 'fJ)} 

=- 4~!abdGdceiae/ekca~xk8(~- 'fJ) 

+ -1 (e(~)iaGabe(ry)/- e(~)iaGabe(17)/)8~8(~ + ry) 
87r 

+ ~[(e(~)iaaie('rJ)ak + e(~)t8;e(ry)ak)Pk(B, ry) 

- ( e(ry)/8ie(~)a k + e(17)/8ie(~)a k)Pk(B, ~)]8(~ + 17) 

- 8~Jab c( Jc(~)e(~)iae(17)/ + Jc(17)e(~)iae(ry)/)8(~ + 17) 

1 kl - - . + 167f2 ~ (~, 'fJ)J\ki(~)Ati('rJ) , 

Ai;(~) aie(~)/ Ja(~) + aie(~)/ Ja( -~) . 
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The momentum bracket {Pi(~, t),pj(TJ, t)} follows from Eq. ({B.4)) and the definition {{3.2c)): 

{Pi(~, t),pi(TJ, t)} = 8~ ( e(~)iaGabe(TJ)/- e(~)iaGabe(TJ)/)8{t5(~ + TJ) 

- 8~[Bik(~)(e(TJ)/e(~)ak + e(TJ)/e(~)ak) 
+ (e(TJ)/~e(~)/ + e(TJ)iae(~)ak)Bkj(TJ)]8{t5(~ + 1J) 

+ ~ [ ( e(~)iaaie(TJ)/ + e(~)iaaie(TJ)a k)Pk(B, TJ) 

- ( 8ie(~)a ke(TJ)/ + 8ie(~)a ke(TJ)/ )Pk(B, ~)]t5(~ + TJ) 

- 8~ lab c( Jc(~)e(~)iae(TJ)/ + Jc(TJ)e(~)iae( TJ)/)t5(~ + TJ) 

+ 8~ [(e(~)iae(TJ)a1 + e(~)iae(rJ)a1)8tBjk(1J)871xk(TJ) 
- 8tBik(~)8{xk(~)(e(TJ)/e(e)a1 + e(TJ)/e(e)a1)]t5(e + TJ) 

+ 8~ [(e(e)iaake(1J)a1 + e(e)iaake(TJ)a1)811xk(1J)Bit(1J) 

- Bit(e)(e(1J)/8ke(e)a1 + e(TJ)/8ke(e)a1 )8~xk(e)]t5(e + 1J) 
1 kl - -+ 

16
7r2 ~ (e, TJ)Aki(e)Atj(TJ) 

1 
-

4
n Bik(e)atBjm(TJ)871xm(TJ)(2ni'ii!k1(e, 1J)tS(e + TJ) + ~kn(e, TJ)A(TJ)n1

) 

1 . 
-

4
n 8kBim (e)a~xm(e)Bjt(TJ) ( 2nz\IIk1(e, 1J)tS(e + TJ) + A(On1 ~ kn(e, TJ)) 

· + 16~2 8mBik(e)a~xk(e)onBjt(TJ)871x1 (1J)~mn(e, TJ) 

1 kl + 16n2 Bik(e)Bit(TJ)8~871~ (~, TJ). (B.5) 

This final result for {p,p} contains no bulk terms (proportional to tS(e- TJ)), so it vanishes 
except at the boundary. Moreover, as in the case of { x, x }, this non-commutativity is 
essentially non-abelian and vanishes cwith ~) in the abelian limit. 

Appendix C. Presentation as a Single "Chiral" KZ system 

In this appendix, we present our open string KZ system for the open n-point correlators A 
as a single "chiral" KZ system in 2n variables J.-t: 
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The variables 4>i ·and ¢i were defined in (7.9). The result is 

81-'A =AWl' 

wtf>i =iil9 (Ti) + 2iL~b(LT~Tlf(4>;- 4>i) + LT~Tlf(¢;- 4>i)) 
#i j 

#i j 

n 

AQa = 0, Qa = L(T~ + f:!) 
i=l 

(C.2a) 

(C.2b) 

(C.2c) 

(C.2d) 

where the function f is defined in (7.13). In (C.2) the matrices Ti are associated to the 
charges at </>i, and the matrices f'i are associated to the image charges at ¢i· The matrix fi 
is the representation dual to the irrep Ti 

(C.3) 

In this notation, the matrix A of the text is treated as a single large row A and the matrices 
on the right of A act to the left as a tensor product. As an example, we work out a 
representative term of the ATif'i type in (G.2), starting with the notation of the text, 

(TiATi)a/ =(Ti)a ')' A-/(Ti)l = -A6'Y(Ti)l(f'i)'Y a 

- (AT;® fi)f3a = -(ATifi)f3a 

A(3a = Aa.B 

(C.4a) 

(C.4b) 

where Aa.B is the correlator (7.8a) of the te~t. In this example, we have suppressed inactive 
indices for simplicity. More generally, one finds that 

(C.5) 

where, in the chiral form A, the T's operate to the left on the f3 indices and the T's operate 
to the left on the a indices. 

In this presentation one finds that the consistency conditions (7.41-7.44) take the simple 
form 

a~-' Wv - av W" = [W~-', Wv] = 0 

[Qa, WI']= 0 

so that the connection W~-' is abelian flat. . 

(C.6a) 

(C.6b) 

This "chiral" description of our system is now in standard KZ form, and one may apply 
standard (42] formal methods in KZ theory to obtain solutions of our open string KZ sys
tem as integral representations. This appendix was worked out in a conversation with N. 
Reshetikin. 
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