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Abstract 

We determine the vacuum structure and phases of N = 1· theories obtained via a 

mass J-l for the adjoint chiral superfield in N .. ~ 2, SO(nc) SQCD. For large number of 

flavors these theories have two group~ of vacua. The first e:x;hibits dynamical breaking 
. . ' ; . 

of flavor symmetry USp(2nt) --+ U(nt) and arises as a relevant deformation of a non-

trivial superconformal theory. These are in the confined phase. The second group, in 

an IR-free phase with unbroken flavor symmetry, is produced from a Coulomb branch 

singularity with Seiberg's dual g'auge symmetry. In the large-J-l regime both groups of 

vacua are well-described by dual quarks and mesons, and dynamical symmetry breaking 

in the first group occurs via meson condensation. We follow the description of these vacua 

from weak to strong coupling and demonstrate a nontrivial agreement between the phases 

and the number of vacua in the two regimes. We construct the semiclassical monopole 

flavor multiplets and argue that their multiplicity is consistent with the number of N = 1 

vacua. 
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1. Introduction and Summary 

Confinement and chiral symmetry breaking are the two central features of strong­

coupling dynamics in non-Abelian gauge theories in general and QCD in particular. In 

their seminal work on the non-perturbative dynamics of SU(2), N = 2 supersymmetric, 

pure gauge theories [1], Seiberg and Witten explicitly demonstrated that confinement in 

the corresponding N = 1 theories could be understood as a dual Higgs mechanism, i.e. 

the condensation of magnetic monopoles. In their subsequent work [2] .they also showed 

that in theories with matter hypermultiplets, flavor symmetries are broken dynamically by 

the condensation of monopole multiplets transforming under certain'repres~ntations of the 

flavor group. Although their analysis of the low-energy effective action and confinement 

mechanism was extended to more general theories ([3] [4J [5] [6] [7]), the dynamics of flavor 

symmetry breaking for more general gauge theories has only recently been investigated in 

[8] for SU(nc) and USp(2nc) gauge groups. Similar techniques, when applied to SO(nc) 
. -· 

gauge theories, yield results with some unexpected features. It is 'the_purpose of this 

paper to discuss the interesting aspects of the dynamics of these theories. One of our 

main objectives is to explore the patterns of flavor-symmetry breaking_ (Uld identify the 

dynamical mechanisms involved. 

The models we discuss haveN= 1 supersymmetry and are constructed by perturbing 

N = 2 supersymmetric SO(nc) gauge theory with nf hypetmultiplets in the vector repre­

sentation; The N = 1 preserving perturbation corresponds to a simple mass-deformation 

via a mass-term for the adjoint chiral N = 1 superfield if> in the N , 2 vector multiplet. 

The Lagrangean for this theory is given by 

where the adjoint mass term 

(1.2) 

reduces the supersymmetry toN · 1, and 

_c(quarks) = ~ I d4fJ { Ql e V Qi + Ql e V Qi} +I d2f} { v'2Qiif>Qi + miQiQi} (1.3) 
~ 
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describes the interactions of then f flavors of hypermultiplets ("quarks"). The complexified 

b 1. t• _(Jo+81ri Th · (Qi Q-i)-(Qi Qn,+i)('-1·2 ) are coup 1ng cons tan lS TcJ = -;r 9~ • e pmrs a, a = a, a z - , , ... , n f 

make up theN = 2 hypermultiplets in the vector representation of the SO( nc) gauge group. 

In the absence of quark masses, the theory also has a global USp(2n f) symmetry under 

which the pair ( Q~, Q~) transforms as a 2n f-plet. The N = 1 chiral and gauge superfields 

~ = </> + V2 () 'lj; + ... , and Wa = -i>. + f (all av)~ FJlv Op + ... are both in the adjoint 

representation of the gauge group. 

As in [8] we shall consider adding, besides the adjoint mass, small generic nonvanishing 

bare masses mi for the hypermultiplets ("quarks"). Non-zero quark masses in the N = 2 

theory lift the flat directions associated with Higgs/mixed branches, leaving a Coulomb 

branch with isolated singularities. As usual, a subset of these singular points are special in 

that they yield N = 1 supersymmetric vacua upon introducing the adjoint mass. Thus we 

obtain a finite number of isolated N = 1 vacua - keeping track of this number in various 

regimes of the (J.L, mi) parameter space allows us to perform highly non trivial checks of 

our analysis. 

For small adjoint masses J.L << AN=Z and mi ---+ 0 (AN=2 is·the dynamical scale of 

the N = 2 theory) we find that the N = 1 vacua are produced as perturbations of two 

singular points on the N = 2 Coulomb branch: 

i) One where the hyperelliptic curve exhibits critical behaNior of the type y2 ex: xn1+4 

for nf even and nc even; y 2 ex: xnJ+
2 for nf even and nc odd; y 2

. ex: x~t+ 3 for nf odd 

~nd nc even or odd. The light degrees of freedom are mutually non~local and th,e theory 

flows to an interacting N = 2 superconformal theory. We shall refer to this point as the 
; ~ . ' - . 

"Chebyshev:. point" because its position in the N = 2 moduli space is given by the roqts 

of a Chebyshev polynomial. 

• ii) The other singular point is the so-called "special po~n.t" which was identified by 

Argyres, Plesser and Shapere (APS) in [9]. At this Coulomb brap.ch singularity the gauge 
. . . . . .,; - . . . 

sym~etry is enhanced to S0(2nf- nc + 4) and Sei~erg's dualgauge group [10] [11] [12], 
'.;.·· ' . . . ... 

makes an appearance. 

The above two points are distinguished from other generic Coulomb branch singular­

ities in that they correspond to points of maximal degeneration of the Ri~mann surface 
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associated with the hyperelliptic curves for the theory. It should be noted that the Cheby­

shev point associated with the N = 2 SCFT was not considered in the work of [9]. How­

ever, as we will see subsequently it potentially plays an important role in the appearance 

of Seiberg's dual theory in the N = 1 limit. 1 By analyzing the curves in the vicinity of 

these points, we find that there are 

(1.4) 

vacua with N = 1 SUSY originating from the Chebyshev singularity upon mass perturba­

tion. The special point of APS gives rise to 

(1.5) 

vacua, N beirrg the total number of supersymnietric vacua given by 

min{[nc/2J,nt} 

N = L w(nc ....:..-2r)n,Cr + n,Cnc/2· (1.6) 
r=O 

Here w(N) is the Witten index for SO(N) gauge group with w(N) = N- 2 for N ~ 5 

and w(N) = 4, 2, 1, 1, 1, for N = 4, 3, 2, 1; 0, respectively. The last term in Eq. (1.6) 

is present only for 2nf ~ nc and nc =even. The physics of these SO(nc) gauge theories 

produced by perturbing the two Coulo!n:b branch singularities in the regi~e where the 

adjoint niass J-l « AN =2, mi ~ 0 and 2n f >. nc - 2, can be summarized as in the Table 1. 

The interacting CFT on the N = 2 Coulomb branch flows to vacua in the confining phase 

upon introducing the relevant perturbation corresponding to the adjoint mass. On the 

other hand, the theory at the spe'cial point flows to a free magnetic phase or non-abelian 

Coulomb phase (depending on. the number of flavors) in the limit where the quarks are 

strictly massless. For finite quark ~asses, it yields a set of isolated vacua in Higgs; Coulomb 

and confining phases. 

1 Similar SCFT's were also discovered in [8] for SU(nc) and USp(2nc) theories. 
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·Label Degrees. of freedom Eff. " Phase Flavor group gauge group 

First group Mutually nonlocal - Confining U(nJ) 

(deformed SCFT) 

Second Group Dual quarks S0(2nj- nc + 4) Free magnetic or USp(2nt) 

non-abelian Coulomb 

. Table 1: Phases ofthe N = 1 SO(nc)theory with 2nt flavors and fL «AN=2· 

, . -'~.As, we discuss below, an extremely non-trivial check of this picture is obtained by 

analyzing the theory in a completely different limit, namely fL > > AN=2· 

Qne feature that distinguishes the two groups of vacua is that the first group exhibits 

dynamical flavor symmetry breaking to [!(nJ), while the full USp(2nt) global symmetry 

remains unbroken in the second grpup. 

Since we do not have a Lagrangean description of the low energy effective theory at 

the Chebyshev point, the symmetry breaking pattern can only be obtained by analyzing 

the theory at large fL > > AN=2 ·where we do have a useful effective description of the 

theory. In the large-J.L regime, the adjoint scalar gets frozen out and the theory may be 

described in terms of mesons and dual quarks (10] [11] [12]; with a classical superpotential 

for the mesons obtained by integrating out. the adjoint scalar. The resulting vacuum 

structure of the large-ft theory mirrors the small-~-t regime outlined above. In particular 

we find two groups of vacua -:one which is USp(2nt )-symmetric, while the other is only 

U( n 1 )~symmetric due to the dynamical condensation pf mesons. Moreover we find a total 

of precisely N 1 = (nc-,. nt·- 2) · 2n1 vacua with U(nt) flavor symmetry, and this allows 

us to identify these theories as the large-I-t coup.terparts of the Chebyshev vacua that we 

encountered above. 

The second group of vacua, with unbroken flavor symmetry, is in the non-Abelian free­

magnetic phase. In the large-I-t regime the low energy degrees of freedom are the dual quarks 

and mesons, whose interactions are described by an infrared-free SO( nc) = S0(2n f-nc+4) 

theory. There are no .meson condensates and thus no dynamical symmetry breaking takes 

place. In the small-~-t regime .these are described by a local-effective Lagrangean which was 
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identified by APS in (9). The multiplicity of the second group of vacua also matches that 

found from the analysis of the. curve at the special point. 

Vacuum counting in both the large and small-f.! regimes thus provides a non-trivial 

demonstration of the fact that the Chebyshev point does indeed yield N = 1 supersymmet­

ric vacua which were not considered in (9). lmportantlr, the behavior of the meson VEVs 

in the decoupling limit (f.l -t oo with theN = 1 dynamical scale fix~d) is rather interesting. 

The meson-condensates vanish and the two classes of vacua merge. This suggests that the 

physics of the Chebyshev point on the N = 2 Coulomb branch needs to be understood in 

order to explain the origin of Seiberg's dual degrees·offreedom {the mesons in particular) 

inN= 1 SUSY-QCD. 

Though we understand the pattern of flavor symmetry breaking at the Chebyshev 

point, we do not have a clear picture of the microscopic mechanism involved. In partic­

ular, while we know that in the large f.l regime the relevant mechanism is the dynamical 

condensation of mesons, we have no clear understanding of the light degrees of freedom 

that condense in the small f.l description of the theory. However, in the case where the 

quark masses are non vanishing and equal, i.e. mi · =. m 0 =/= 0, we can accurately analyze 

the low energy dynamics in the vicinity of the Chebyshev point. Perhaps this will shed 

some light on the physics in the m = 0 case as well. The flavor symmetry group of the 

underlying theory is now broken explicitly to U( n 1 ). Analysis of the theory at largep re­

veals that the first group of vacua splits into several subgroups each labelled by an integer, 

r = 0, 1, 2, ... , (nJI2], and with flavor symmetry U(r) x U(nJ- r). 

In the small-f.l regime on the other hand, the form of the hyperellipti<>curve at these 

singular points confirms this picture. In particular, the curve becomes critical· at each 

of these points and the criticality of the curves (following the classification of (13] and 

(14]) suggests that these theories are in the same universality class as the IR-free theories 

encountered in the work of Argyres, Plesser and Seiberg (15) at the roots of the r-Higgs 

branches of SU(nc) SQCD. Each of.these theories is described ·by a local effective gauge 

theory ala Argyres-Plesser-Seiberg, with gauge group SU(r) X U(l)l ;c J-r+I and n f (dual) 

quarks in the fundamental representation of SU(r). Indeed, the gauge"invariant composite 

VEVS characterizing these theories differ by soine powers of m, and the validity ofeach 
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effectiv,e.theory is limited by small fluctuations of order of m around each vacuum._ In the 

limit m --+ 0 these points in the quantum moduli space (QMS) with different symmetry 

properties collapse into one single point. In this limit, at the Chebyshev point the criticality 

of the curve is of theform y2 ex xn1+4 for nc even .and .y2 ex xn1+3 for nc odd, indicating 

theappearance of an interacting SCFT ([13] [14]). 

~}:'he phases and degrees of freedom in the first group of vacua with mi = m0 -=/= 0 and 

J-1 << AN=2 are summarized in Table 2. 

Label (r) Degrees of freedom Eff. gauge group Phase Flavor group 

r=O monopoles U(1)[n2c] confining U(nt) 

r = 1 monopoles U(1 )[ n2c J confining U(nt -1) x U(1) 

r _= 2, ... , [n f /2] dual quarks SU(r) x U(l)l'~n-r+l confining U(nt- r) x U(r) 

-·Table 2 The first group of vacua of SO(nc) gauge theory with 2nf flavors and 

mi = mo-=/= 0. 

One of the most interesting outcomes of the large J-1 analysis discussed above, is the 

identification and tracking - at large and small mi 's - of vacua in -distinct phases, such as 

Higgs, confinement (magnetic Higgs) or Coulomb. In contrast to the theories considered 

in [8], SO(nc) gauge theories with quarks in the vector representation present a clear 

distinction between Higgs and confinement phases since the behavior ofthe Wilson loop in 

the spinor representation is qualitatively different.in the_ two cases. Therefore, unlike other 

examples (as in [2] for SU(2)) a Higgsed-vacuum in the semiclassical regime (large mi) 

must,remain in the _Higgs phase in the strong-coupling regime (mi --+ 0) as well. Failure 

to do so would imply a phase transition which in -turn is forbidden- by holomorphy in 

mi or_ N = 1 supersymmetry. We find nontrivial agreement between phases and vacuum 

counting in both the semiclassical (large mi) and quantum (small mi) regimes and find 

result_~ consistent with the absence of any phase transitions._ In particular,·vacua which 

appear to be in the Higgs (or Coulomb) phase semiclassically, can be explicitly shown in 

the strong coupling regime to be in a magnetically confined (or magnetic Coulomb) phase. 

The paper will be organized as follows. We first establish, in Section 2, the number of 
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supersymmetric vacua by analyzing the theory semiclassically. By N = 1 supersyrnmetry 

and holomorphy in f.-t ahd mi, these results, valid at large f.-t and mi, are also correct at 

small values of these parameters. 

Next, in Section 3 we determine the pattern of dynamical symmetry breaking in each 

vacuum at large 1-l (and small generic mi)· In all cases we reproduce the correct number 

of vacua starting from the known N = 1 low-energy effective Lagrangean, adding to 'it the 

term arising from integrating out the heavy adjoint field <I>, and minimizing the potential. 

The task turns .. out to be quite nontrivial since in the SO(nc) theory the form of the· 

superpotential and the effective degrees of freedom- vary with nc -and n f and there are 

many cases to be studied separately. 

Section 4 and 5 are devoted to the study of the theory at .small 1-l and small mi's. 

The analysis _requires the exact solution of these theories in the N = _2 (f.-l = 0) limit 

[3] in terms of the corresponding hyperelliptic curves. First we re::-analyze the low-'energy 

effective Lagrangean at the "special point" obtained by Argyres, Plesser and Shapere in 

[9]. However, this effective theory yields only the USp(2nt )-symmetric vacua. We then 

perturb certain superconformal (Chebyshev) points on the exact curve, and show that 

all, the vacua· with dynamical symmetry breaking to U ( n f)- are indeed related to different 

classes of interacting SCFT's. 

We conclude with a discussion on the semiclassical monopole states in SO(nc) theo­

ries, which display certain qualitative differences from the cases of SU(nc) and USp(2nc) 

theories. In the latter case, an order of magnitude agreement was found between the 

multiplicity of semiclassical monopole states and the number of N = 1 vacua. This fact 

led the authors of [8] to relate the light degrees of freedom condensing in these vacua 

with semiclassical monopole multiplets. A naive attempt to perform a similar analysis for 

SO( nc) gauge group seems to fail because of a mismatch in the counting. We provide an 

explicit ·construction of monopole flavor multiplets and show that this puzzle arises only 

in the case with strictly massless quarks. -Since one obtains isolated N = 1 vacua only 

upon introduction of non-zero quark masses, we claim that the contradiction is resolved. 

Furthermore, this construction will perhaps provide a clue as to which monopole multiplets 

condense at the Chebyshev points to dynamically break the flavor symmetry group. 
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2. Semiclassical Vacua of SO(nc) SUSY-QCD 

We begin by exploring the classical vacuum structure of softly broken N = 2 SUSY­

QCD (with N = 1 supersymmetry) with nf quark hypermultiplets and SO(nc) gauge 

group. Although in general the classical picture will be altered by large quantum cor~ec­

tions, in certain situations (when the quark masses mi arenon-zero and large compared to 

the ~tfong-coupling scale of the theory) the classical analysis may be used to obtain infor­

mati~n that is-~xpected to be valid in the fuu'·quantum theory as well. In particular, useful 

and r~liable information on the number ofvacua and the symmetry breaking patterns (i~ 

some-cases) can in fact be ~bt~ined from, a purely semiclassical analysis. As noted ea:rlier, 

the superpotential for this theory is given by 

W - 1 T ..:F.2 ;o2Q. i..:F. Qi.Jf·· 1 ··QiQi -2,f.l r'±' +vL- a'±'ab b zJ+2,mzJ a a' (2.1) 

where 

(2.2) 

Note that pairs of quark multiplets (Q~, Q~t+i) (i = 1, 2, ... , nf) constitute anN= 2 

hypermultiplet. The scalar field q, b~longing to the N = 2 vector multiplet is in the adjoint 
' . 

representation of t~e gauge group so that q,ab = t1bq,A, with 

(2.3) 

representing the generators of SO(nc) rotations in the ab plane. 

The f.l = 0 theory (with N = 2 SUSY) has a Z2nc-2nt-4 X SU(2)R R-symmetry 2 

which is spontaneously broken.to £?2 x SU(2)R by the VEV of Tr<P. In theN= 1 theory 

with p =f. 0 on the other hand, the adjoint mass explicitly breaks the R-symmetry down 
J::r' 
;--, ' 

to Z2. The additional Znc-nt-2 d~screte symmetry of the parent N = 2 theory then acts 
. -_:'-: i.. C.~· :. ' . .' .. . ' 

on the vacua of the N = 1 theory via permutations. 

2 The U{l)R symmetry of the p, = 0 theory is broken by instantons to Z4nc-4nrs, a Z2 

subgroup ofwhich is isomorphic to { -l)F in the Lorentz group. 
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In the mi --+ 0 limit this theory has a USp(2n f) flavor symmetry under which the 

N = 1 quark multiplets transform as vectors, while all other fields are singlets3 . Although 

the USp(2n f) flavor symmetry is broken to U(1 )nt for generic, non-zero values of the quark 
. ' 

masses, when the quark masses are all taken to be equal and nonvanishing, mi. = m0 =f. 0, 

a U( n 1) global symmetry is preserved. 

As we will see the global USp(2nt) symmetry o~ the mi = 0 theory and the U(n1) 

symmetry of the mi = m 0 =f. 0 theory, will also be broken spontaneously (or dynamically) 

at various N = 1 vacua where certain fields (corresponding to the light degrees of freeqom 

at the Coulomb branch singularities of the 11 = 0 theory) condense and obtainVEVs. 
' ,, 

The classical vacuum structure can be obtained by solving the D and F-term equations: 

(2.4) 

ImQitq~ = 0 
a z ' (2.5) 

(2.6) 

(2.7) 

We will assume that the quark masses take ori generic non-~ero values. 

Since' the D-term equation (2.4) require~· <I> t~ live in the Carta~ subalgebra of the 

gauge gro~p, we may use general gauge rota:tions to write' <I> in the fort'n 

<I>= (2.8) 

' . 
In addition, when nc is odd, there is a null row and null column in the <I> matrix. The F-

' .'.'1 

term condition (2. 7) also implies that non-zero squark fields Qi, ( i = 1, 2, ... , n 1) must be 

3 The superpotential itself is in fact invariant under Sp(2nf) transformations in the massless 

limit. The invariance of the kinetic terms however requires the transformations to be unitary as 

well so that the massless theory has only a USp(2nf) global 'symmetry. 
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eigenvectors of cp with eigenvalues mi/ v'2, while the squarks Qi+nt, (i = 1, 2, -... , n f )must 

be eigenvectors with eigenvalue -md .J2. Since the eigenvalues of cp are in fact ±i¢i, the 

non-zero { cf>i} should be taken to equal { ±imi/ .J2}, modulo permutations which represent 

the action of the Weyl gtoup on a given solution and are therefore gauge equivalent. Solu­

tions with different choices of signs for the { cf>i} can also be shown to be gauge equivalent. 

(However, this is not always true as will be discussed in more detail below.) Finally, for 

every vanishing eigenvalue ¢k both the eigenvectors Qk and Qk+nt must vanish. Hence 

one may classify the semiclassical vacua of the theory according to the number of non-zero 

<Pi's, or equivalently the number of nontrivial eigenvector pairs ( Qi, Qi+nt ). The solution 

for cp.with eigenvalues m1, mz, ... , mr, is then: 

cp = _1_ 
. v'2 

(2.9) 

0 

The corresponding squark VEV s for the flavors i = 1, ... n f are given by 

--+i=1,2 ... nf 

dl 0 0 0 0. :. 
-idl 0 0 0 0 ... 

0 dz 0 0 0 ... 
0 -id'l. 0 0 0 ... (2.10) 

Q~ = 0 ... 
0 0 0 dr 0 ... 
0 0 0 -idr 0 ... 

This form of the VEV s is completely constrained (up to -an overall phase) by the eigenvalue 

equations obtained as a consequence of the F-term conditions. ·The phases may always be 

set t_o zero by independent S0(2) gauge rotations generated by the Cartan subalgebraleav­

ing the VEV of cp invariant. The fields Q~+nt. also obtain .similar-VEVs, their· magnitudes 
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and phases being constrained by (2.5) and (2.6), so that: 

Jl 0 0 0 0 ... 
idi 0 0 0 0 ... 
0 d2 0 0 0 ... 
0 id2 0 0 0 ... 

Qi+nt _ (2.11) a -
0 ... 

0 .0 0 Jr 0 ... 
0 0 0 idr 0 ... 

with 

(2.12) 

Clearly, from the form of the above solutions a classical vacuum with r pairs of nonzero 

eigenvectors, or equivalently r non-vanishing </>i's has an unbroken SO(nc - 2r) gauge 

symmetry. Furthermore, in the presence of the non-zero N = 2-breaking term J.l, it can be 

shown that; all quark multiplets charged only under the unbroken gauge group are massive 

in such a vacuum. The low-energy theory is thus expected to be in the same universality 

class as pure .supersymmetric glue with SO(nc - 2r) gauge group. Such vacua with an 

effective SO(nc- 2r) gauge symmetry will henceforth be referred to as "r-vacua". The 

r nonzero eigenvalues may be chosen in ( 7) distinct ways, each corresponding to a 

distinct classical r-vacuum. By standard arguments, each such classical theory must yield 

w(nc- 2r) quantum vacua, w being the Witten index for the pure SO(nc- 2r) SUSY 

gauge theory. For N ~ 5 the Witten index· w(N) = N- 2 while for N = 0, 1, 2, 3, 4 

it .takes on the values 1, 1, 1, 2 and 4 -respectively. This semi-classical counting therefore 

gives rise to a total of N vacua where 

mi!l-{[ncf2],n,} · ( n ) ( n ) 
N= ~ w(nc-2r) f + · f 

~ r nc/2 ' 
r=O 

(2.13) 

As explained below the last term must be included. only when n f ~ n;j2 for nc' even,' This 

may be understood by first noting that.for nf ~ nc/2 and nc even, the baryon operators 

which label gauge-inequivalent vacua are non-vanishing only when r ='nc./2. Secondly we 

observe that the squark VEVs get interchanged as Qi B Qi+nt under mi -t -mi which 
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corresponds to flipping the signs of certain eigenvalues of <P. (Recall that the eigenvalues 

are determined only up to a sign which can be gauged away when r < nc/2). When 

r = nc/2, under an odd number of Qi \--+ Qi+nt flips the non-zero baryon VEVs change 

sign, thus yielding a new gauge~inequivalent set ofn,Cnc/2 vacua. For r < nc./2 all the 

baryon VEV s are identically zero and the sign flips do not yield new vacuum states4 . 

Note that for 2n f ~ nc - 5, the above series can be summed and gives 

(2.14) 

One expects the above semiclassical enumeration of vacuum states to be valid for 

large hypermultiplet masses (when all the matter fields are very heavy compared to the 

N = 2 dynamical scale). However, holomorphy properties of the stipersymmetric theory 

ensure that the above results for the number of vacua continue to hold as we smoothly 

dial the masses to smaller values.( compared to the dynamical scale). A similar statement 

applies to the flavor symmetry' breaking patterns for the theory with equal and non-zero 

hypermultiplet masses mi = mo # 0. Recall that the theory with mi = m 0 =1- 0 has 

a U ( n f) flavor symmetry. The classical solutions above imply that this flavor symmetry 

is spontaneously broken in the N = 1 vacuum with SO(nc - 2r) gauge symmetry to 

u ( r) X u ( n f ~ r). The first factor of u ( r) can be understood as the combined action of 

flavor and global gauge transformations that leave the VEVs (2.10) and (2.11) unchanged 

(for equal quark masses). The remaining U(nJ- r) is simply the subgroup of U(nt) that 

4 Here we give an alternate explanation for the appearance of the additional n 1Cnc/ 2 vacua 

fm:'nc even and n1 ~ nc/2. This additional set does not appear in the case when nc is odd. As 

noted earlier, the non-zero eigenvalues </>> are determined only up to a sign. However, whenever 

there is at least one zero-eigenvalue (as is always the case for nc odd) this sign can be rotated 

away by an SO(nc) gauge element of the form diag(1, 1, ... , era, 1, ... , -1) where era is the Pauli 

matrix. For even nc, zero-eigenvalues are possible only when r < nc/2. When r = nc/2 (which 

can· happen only when 'nJ ~ nc/2) a solution with{</>;}= (-m1,-m2,+ma, ... ,+mnc/2) for 

ex~~p\e, can, be gauge transformed into { </>;} = { +m;} by the action· of the SO(nc) gauge element 

diag(era, era, 1, ... , 1). In general (for r = nc/2) solutions with an odd number of </>;'s equal to-m; 

(rather than +m;) can be shown to be gauge equivalent, while solutions with an even number of 

<f>;'s equal to -mi form a distinct equivalence class. Since the two classes are gauge inequivalent, 

this leads to an additional set of n 1Cncf2 vacua. 
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rotates the nt- r squarks with vanishing VEVs. One can easily argue that this classical 

pattern of symmetry breaking will be reproduced in the full quantum theory as well, so 

that in each r vacuum the U ( n f) flavor symmetry is indeed broken to U ( r) x U ( n f - r). 

Once again holomorphy guarantees the validity of our conclusions for small masses as well 

(at least for all m 0 =/= 0). In the following sections we will explicitly see how this is realized 

in the full quantum theory. 

We remark that the classical analysis cannot be used to draw any conclusions about 

flavor symmetry patterns in the limit of vanishing quark masses. In the mi ~ 0 limit, 

while classically one would expect the flavor symmetry to be completely restored, quantum 

mechanically we will find very different results. 

3. Dynamical symmetry breaking at large f-l 

In the previous section we obtained the vacuum structure of softly broken N = 2 

SUSY-QCD in the classical (or semiclassical) regime. We will now analyze the same 

theory in a very different limit- namely, when the. adjoint mass f-l is taken to be ,much 

larger than the dynamical scale of the N = 2 theory. In this limit (when /-l· is large, yet 

finite), one may consistently integrate out the adjoint scalar ell to obtain a low-energy 

effective N = 1 superpotential. The latter effective theory can be determined precisely 

using our knowledge ofthe low-energy degrees of freedom of N _:_ 1, SO(nc) gauge theories 

which were extensively studied by Intriligator and Seiberg in [11)[12) and [16). The theories 

studied in [11][12) and [16) can be recovered from the theories we study, only inthe strict 

decoupling limit which corresponds to sending f-l to infinity, holding fixed the effective 

N = 1 strong-coupling scale. Depending on the number of massless flavors in the vector 

representation the low energy degrees of freedom are mesons and/ or monopoles and in 

some cases exotic composites as well; when the number of flavors is sufficiently large, 

the low energy dynamics is described by dual (magnetic) gauge theories with quarks and 

gauge-singlet mesons. 

The analysis of these theories will reveal the flavor symmetry breaking patterns in both 

the mi ~ 0 and mi = mo =/=- 0 cases. We emphasize however, that we will always work 
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with the assumption that the masses are striCtly non-zero and then observe the behavior 

of the symmetry-breaking condensates as we take mi/ AN=2 « 1. 

In what follows, we summarize the results of this section. The reader who wishes to 

skip the technical details can jump to the next section. Based on the analysis, we find that 

the-vacua can be classified into two sets: 

1) A set of N 1 vacua with vacuum expectation values that remain finite in the above­

mentioned small mass limit. These vacua are in the confined phase and obtain a su­

perpotential contribution via gaugino condensation. For 2n f > nc - 2 these vacua are 

appropriately described by mesons and dual quarks. The superpotential is induced by in­

tegrating out the dual degrees of freedom .. These vacua with 'large VEVs' will thus exhibit 

dynamical flavor symmetry breaking since the order p~rameters (namely, the mesons) will 

turn out to have condensates proportional to the dynamical scale of the theory. In the 

massless quark limit, the mesons transform as the rank-two symmetric tensor under the 

USp(2nJ) flavor group, and their condensates break USp(2nJ) -t U(n,). 

2) A set of N2 ground states where VEVs are proportional to various powers of the 

masses mi (in the above-mentioned small mass limit) and where one expects the complete 

USp(2n f) flavor symmetry to remain unbroken in the zero mass limit. This set appears 

only when 2n f 2: nc - 4. Depending on the number of flavors, the relevant degrees of 

freedom are either monopoles, dual quarks and mesons, or other exotic composites. In 

contrast to the first group of vacua, the second group can be in any of Higgs, Coulomb or 

confining phases. These vacua with 'small' VEVs will be loosely referred to as 'USp(2nJ) 

symmetric' even though this is expected to be strictly true only when the quark masses 

are zero. 

The quantum description of these vacua, obtained in the large J-L limit, agrees with 

semiclassical expectations both in terms of phase structure and of vacuum counting. 

3.1. Generic case with 2nf:::; nc- 5, nc 2: 4 

When <I> is sufficiently heavy we may integrate it out to obtain the effective super­

potential for the light degrees of freedom which are known to, be meson-like excitations. 

The leading effect (in a 1/ J-t-expansion) of integrating out the:adjoint scalar is captured by 
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simply solving the classical equation of motion for cl> from (2.1). The classical superpoten­

tial is then -Tr(.lfM.lfM)/21-l + Tr(mM)/2 where we have introduced the gauge-invariant 

meson fields Mij = Qi · Qi. However, ,to this· we must add the dynamically generated 

superpotential induced by gaugino condensation or instanton effects as in [11], to obtain 

1 1 L 
W = --

2
. Tr(M.JfM.Jf) + -

2
Tr(mM) + ( )ll · 2 2 , J-l detM nc- n,-

(3.1) 

where 

L - ~( - 2 - 2). (16A3nc-2n,-6)1fnc-2nt-2 - nc nf Wn -2nf-2 n 2n · 2 . c c, I . (3.2) 

Here Wn denotes the n-th root of unity while An~,2nl is the strong-coupling scale of the 

N = 1 tlieory obtained by decoupling cl>. 'It is related to the N = 2 dynamical sc'ale AN=2 

· A2(nc-2-nf) n -2 A3(nc-2)-2nf 
Vla N=2 J-l c = nc,2nf . 

Differenti~ting Eq. (3.1) with respect to the meson fields Mij yields the vacuum equa­

tions 

where (CofacM)ij ~ (M-1 )ji(detM). Then using the following parametrization for the 

meson matrix, 

A=Ar, C=CT 

and 

we are led to a set ~f equations for the n r x n f submatrices: 

i) ((Br) 2 - CA)/ J-t- mBr <X 1; 

ii) (B 2 
- AC)j fl'"""" mB <X 1; 

iii) (BTC- CB)/J-t = mC; 

iv) (-ABT+BA)/f.l =rnA. 

' 
(3A) 

(3.5) 

It is easy to see that conditions (i) and (ii) together require m and B to be commuting 

matrices 'SO that they are simultaneously diagonal. On the other hand, the symmetry 
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-------

properties of A and C along with equations (iii) and (iv) lead to A= C = 0. The solutions 

to Eq. (3.3) are therefore of the form 

A= C = 0, 

The resulting equations of motion for the Ai are, 

'- ;, 

1 2 1 
--.A.+ -m·.A· +X= 0 J-ll 21Z l 

X=---L __ 
nc- nf- 2 

nt (IJ Aj)-2/(nc-2nt-2). 

j=l 

(3.6) 

(3.7) 

(3.8) 

These cannot, however, be solved exactly in general. Nevertheless, .we can certainly deter­

mine the number of distinct solutions (or equivalently, the number of distinct vacua) and 

the symmetry breaking patterns in certain limiting regimes. The total number of vacua is 

always independent of the specific values of the mass parameters. 

mi = 0: In the mi--+ 0 limit (mi « AN=2,J1), the solution to (3.7) is 

(3.9) 

and 

X . 2-;rik/(nc-nt-2)A2 
ex: e . , . . N =2 J1 ' k = 1, 2, ... , nc- nf- 2. (3.10) 

If r is the number of .Ai's equal to +.A, then there are (nc- nf- 2) (;) such distinct 

s?lutions and the total number of N = 1 vacua is thus, 

(3.11) 

which agrees precisely with the total number of the semi-classical vacua. (2.13), with 

2nt··~ nc - 5. Ho:wever, unlike the classical case in the mi --+ 0 limit, the quantum­

corrected effective action of the large-J-t theory exhibits a spontaneous breakdown of the 

global USp(2n f) symmetry since some of the meson VEVs remain non-zero in this limit;· 

This disagreement does not lead to any contradiction since the classical analysis was after 
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all argued to be reliable only when the quark masses were non-zero. In particular, the 

vacuum solutions for the meson fields are of the generic form 

M= 

0 
(

±A 0 ... ) 
0 ±A .. . 

. . . . 

(

±A 0 ... ) 
0 ±A .. . 

. . . . 
0 

(3.12) 

We will now show that this preserves a U ( n f) subgroup ~f the flavor symmetry. 

It is easiest to see this in the case where all the Ai's have the the same phase (or sign) 

(
0 B) . 

s~ that M = B 
0 

and B = A1. A general USp(2nf) generator G that leaves such 

a solution invariant must satisfy [G, M] = 0. Parametrizing G as ·( 9! · 92r) ·with the 
92 -:-91 

usual constraints 9{ = 91 and 9i = 92, we find that 91 and 92 rriust satisfy 9[ = ~91 and 

92 = 92· In other words, the purely imaginary; antisymmetric 91 and real, symmetric 92 

are the unbroken generators. We can rewrite Gin a more familiar form after performing 

a similarity transformat_ion G ---+ G' = h ( _!-1 ~) G J2 ( _!-
1 

~) -
1 

which yields 

G' = ( 91 +O 92 0 
) . Given the constraints on 91· and 92 this is clearly the most 

91-92 
general form for a U(nJ) generator. 

It is now easy to see that even when some of the nonvanishing meson elements have 

different signs, the unbroken symmetry group is still U(nJ)· Suppose that one of the 

nonvanishing elements has a minus sign: 

(3.13) 

Consider a USp(2n f) transformation P which acts as the SU(2) matrix ( ~1 ~) in 

the ( i, n f + i) subspace, but has the trivial action on other elements. This transforms 

Mi,nt+i---+ -Mi,nt+i, and so changes the sign of the. condensate (3.13). Therefore U(nJ) 

transformations generated by G when combined with the constant USp(2n1 ) rotation P, 

will leave the meson VEVs invariant. A straightforward generalization. of these arguments 

demonstrates that the meson VEVs with either choice of phase for the nonzero elements 

do indeed leave a U ( n f) global symmetry unbroken .. 
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mi = m 0 =/= 0: When the hypermultiplet masses are all equal and nonvanishing, each 

eigenvalue Ai is one of the two solutions (as a function· of X) of Eq. (3. 7), A± = (p,m0 ± 

y'p,2m6 + 16p,X)j4. Solutions of the full nonlinear, coupled equations (3.7) and (3.8) may 

be classified according to the number of .Ai's which take on the value ).+· Although the 

total number of solutions is the same, the symmetry breaking patterns are completely 

different from the mi = 0 case. In vacua where, say r of the Ai 's are equal to A+ (and the 

remaining are equal to ).._ ), a generalization of the argument above reveals the unbroken 

flavor symmetry group to be U(r) x U(nJ - r) which agrees with the classical analysis 

of the symmetry breaking patterns in the previous s~ction. ·In fact the number of such 

"r-vacua" also coincides with the semiclassical prediction. For large enough quark masses 

AN=2 <K m <K p,, and assuming that X <K p,m2 we find from Eq. (3.8) 

k = 1, 2, ... , nc - 2r - 2. (3..14) 

Note that the multiplicity of solutions, nc - 2r - 2 is precisely the Witten index for the 

SO(nc-2r) SUSY Yang-Mills with nc-2r::::: 5. Note also that the solutions are consistent 

with the assumption X <K p,m2
. Finally, as there are ( n/) ways of picking a vacuum 

configuration with r nonzero Ai's, the number of vacua with U(r) X U(nJ- r) symmetry 

is (nc- 2r- 2) ( n/) which again agrees with semiclassical predictions. 

3.2. Case: 2n f = nc - 4 

As described in [11], the squark VEV s in the N = 1 theory (in the p, -+ oo limit) 

break SO(nc) to SO( 4) rv SU(2)L X SU(2)R· 'The dynamically generated superpotential 

now arises due to the combined effect, of gaugino condensation in.each independent SU(2) 

sector. Since there are two possible choices of phase for the gluino condens(l.te from each 

SU(2), one finds twoinequivalent branches in theN= 1 theory, withsuperpotential [12], 

(3.15) 

where E£ = ±1; ER = ±1. The branches withE£ = ER give 

(3.16) 
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solutions exactly as in the earlier ~xample, with unbroken U(nt) symmetry in the limit of 

massless quarks (mi = 0). However, now we have additional vacua from the two possible 

phases with E£ · -ER. The instanton-induced superpotential vanishes and the tree level 

terms alone account for the exact superpotential: 

1 1 
W = --

2 
Tr(.JfM.JfM) + -TrmM. 

f.L . 2 
(3.17) 

The vacuu~ expectation value of M is thus uniquely determined to be M = I ( ~ ~). 
When the quark masses vanish, the meson condensate simultaneously vanishes, thus pre­

serving the full USp(2n f) symmetry. Since there are two choices of phases with €£ = -ER 

we obtain 

(3.18) 

vacua in which the USp(2n f) global symmetry remains unbroken in the mi -+ 0 limit. The 

total.number of N = 1 vacua N = N1 + N2 is now in perfect agreement with the general 

semiclassical formula Eq. (2.13) which gives in this case 

(3.19) 

the last term being the correction due to the irregularity of the Witten index for the term 

with r = n1: w(nc- 2nt) = w(4) = 4 instead of nc- 2nt- 2 = 2. Thus the N1 + 2 

vacua found above from the large f.L analysis precisely match the total number N found by 

semiclassical methods. 

As before, with equal and rion-zero · hypermultiplet masses the N1 vacua split into 

groups of "r-vacua", each with U(r) x U(nt- r) flavor symmetry. The N2 vacua on the 

other hand with M = tLr;o ( ~ ~) preserve a U(nt) global symmetry in the equal mass 

case. They are smoothly connected to some of the semiclassical vacua with r = n f and 

U ( n f) symmetry. 

3.3. Case: 2nt = nc- 3 

Now the squark VEV s in the N = 1 limit (i.e. in the absence of the adjoint scalar) 

break the gauge group to 50(3) ~ SU(2). It is useful however, to consider the limit where 
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2n f -1 squark VEV s (or meson eigenvalues) are taken to be much larger than the remaining 

one. In this regime a description in terms of an SU(2)L x SU(2)R gauge theory with one 

flavor becomes appropriate. This flavor obtains an expectation value which breaks the 

gau,ge group to a diagonally embedded SU(2). The dynamical superpotential is generated 

via instantons both in the diagonal SU(2) and also in the broken parts of SU(2)L and 

SU{2)R· On.ce again, the corresponding N = 1 theory has two inequivalent branches, with 

superpotential [12], 

(3.20) 

and E = ±1. The branch withE= 1 yields 

(3.21) 

vacua with U(n!) symmetry in the limit of massless quarks, and groups of r-vacua when 

the quarks have equal masses. 

The description of the E = -1 branch is incomplete as it stands. Upon decoupling one 

of the flavors it fails to reproduce the two vacua of the EL = -ER branch of the 2n f -:- nc -4 

theory. Intriligator and Seiberg argued [11] that this apparent conflict can be rectifie~ if 

there are additional color singlet, massless particles qi ( i = 1, 2, ... , 2n f), cour,led to the 

mesons through the sl1perpotential, 

T~rN=l .-..- Mijq·q. 
Ill' 2 ""' z J. (3.'22) 

Th!.,is when a· flavor f is decoupled by adding a large mass, m 1M ff, the equation of motion 

for ,Mff gives two vacua qf = ±J-mJI2, with vanishing superpotential. Furthermore, 

the theory (at M _: 0) with the massless particles M and q satisfies the't Hooft anomaly 

m~tching conditions 5 . 

The low energy theory at large p, is described by the superpotential, 

. 1 1 . 
W = --Tr(JfMJfM)+ -TrmM +Tr(qqTM), 

. . . 2p, 2 . 
(3.23) .., 

' 5 : The field q; was identified by I~triligator and Seiberg as an exotic com'posite (Q)n"-4W~Wa 

which is a glueball for. nc = 4. · 
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where q is a 2nt component vector. The equations of motion for q and Mare 

Miiq.- 0· 
J- ' 

1 1 T 
--(.JfM.Jf)+-m+qq =0. 

f.t 2 
(3.24) 

These two equations have a unique solution corresponding to qi 0 and M = f.tm/2. 

This result may be inferred from the two expressions obtained by multiplying the second 

equation by M - first on the left and then on the right. Direct comparison of the two 

resulting expressions yields .JfMm.Jf = -mM. This in turn implies that M ' ( ~ ~) 
and [B, m] = 0, and consequently qi = 0. So the branch with E = -1 has M = f.tm/2, 

which is just N2 = 1 additional vacuum that is USp(2n f) symmetric in the mi ---+ 0 

limit (since the meson VEV is proportional to the mass matrix). The total number of 

vacua .N = nt2nf + 1 agrees with (2.13). When mi = mo =/::. 0 this additional vacuum 

with M = f.tm/2 is clearly U(nt) symmetric and can be smoothly related to on~ of the 

semiclassical r-vacua with r = nf and SO(nc- 2nt) = S0(3) unbroken gauge symmetry. 

3.4. Case: 2nt · nc- 2 

All the theories with 2n f ~ nc - 2 pose an interesting question that did not arise 

in the previous examples. This concerns the appearance of semiclassical ( mi large) vacua 

which seem to be in the Higgs and Coulomb phases. One may then ask what happens to 

such vacua as we tune the quark masses to smaller and smaller values and semiclassical de­

scriptions cease to hold; i.e. can we identify the quantum (mi small/vanis.hing) description 

of these vacua in the large f.t theory? This question assumes a certain importance in an 

SO(nc) gauge theory with matter in the vector representation wherein one expects a clear 

distinction between the confining phase and a Riggs/Coulomb phase. The phases can be 

unambiguously distinguished by the expectation value of a spinorial Wilson loop, i;e. the 

large-distance potential between two electric charges in the spinor representation of the 

gauge group. Since supersymmetry (holomorphy) disallows a phase transition as we dial 

mi from large to small values,,we should expect to find non-confining vacua in precisely the 

same phases (Riggs/Coulomb as determined semiclassically) in the quantum (or small mi) 

regime as well. It should therefore be possible to follow these vacua to the regime of small 

mi and identify the mechanisms in the quantum theory responsible for confinement, Higgs 
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or Coulomb-like phases. We will address this issue in what follows. Note that there is no 

such distinction in SU(nc) theories with fundamental matter. Indeed, as is well-known, 

the SU ( nc) Seiberg-Witten theories (see [2]) provide examples where one may continu­

ously pass between solitons (monopoles) of the theory and elementary particles (quarks) 

and therefore smoothly interpolate from a confining to a non-confining (Higgsed) theory. 

In the theory with 2n f = nc - 2, while there seems to be no semiclassical Higgs 

vacuum, there is a single vacuum with r = nf = nc/2- 1 and S0(2) c::: U(1) gauge 

symmetry. Unlike all the previous examples and all other "r-vacua", this vacuum is non­

confining and in particular is in a Coulomb phase. Therefore in the absence of phase 
:,' . 

transitions we should find a single Coulomb vacuum in the small mass theory as well. 

mi = 0: It is known from [12] that in the limit where the adjoint <I> is decoupled, the 

low energy N = 1 theory is broken to S0(2) c::: U(1) by squark VEVs. In this case, there 

is no superpotential for the mesons - the theory has a quantum moduli space labelled by 

the expectation value of Mij. The effective gauge-coupling T of the photon multiplet in the 

Coulomb phase can depend only on the flavor singlet det M, and as usual it is interpreted as 

the complex structure of an elliptic curve. The gauge-coupling T is singular (as a function 

of det M) at det M = 0 and det M = U1 = 16A~2n~-~~ where additional light degrees 
' c, c 

of freedom appear. The light particle spectrum can be inferred from the monodromies 

resulting from taking M around the singular (or degeneracy) points of the elliptic curve 

describing the low energy Coulomb phase. One finds that near det M = U1 a pair of 

light monopoles E± with magnetic charges ±1 appear while at det M = 0, 2nt pairs of 

monopoles ( qt, qi) with magnetic charges ±1 become light. In the vicinity of det M = U1 

the monopoles E± are described by a superpotential, wN=l = (detM- UI)E+E-. In 

the large tt theory this leads to an effective superpotential of the form · 

1 1 
W = (detM- UI)E+ E--

2
/-l Tr(.JTM.JTM) + 2TrmM; (3.25) 

It must be emphasized that this superpotential is expected to be valid only near det M ~ 

U1 . The equations of motion following from it are 

1 1 
(det M)E+ E-1- -.JTM.JTM + -mM = 0, 

J-l 2 
(3.26) 
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and 

(3~27) 

As in the theories with 2n f .:s; nc - 5, it can be readily shown that M = ( ~ ~) and 

B = diag(AI, A2, ... , An1 ), where the A/s satisfy 

1 1 
--A~+ -m·A· +X= O· J-lz 2zz ' 

nt 

det M = II Ar = ul; 
i='=l 

(3.28) 

with X = E+E-U1 • The magnitudes of E+ and E- are related as usual by the D-term 

condition,' jE+j =IE-,. The phase of E- (say) can always be removed by a (dual) U(1) 

gauge rotation, while that of E+ is then fixed by the conditionE+ E- = XjU1 • In the 

mi ---+ 0 limit, then 

k= 1,2, ... ,n1. (3.29) 

These solutions therefore yield nt2nt possible vacuum configurations. These meson VEVs 

also preserve a U ( n f) flavor symmetry- arguments for this proceed exactly as in subsection 

(3.1); we will not repeat them. Note that all these solutions satisfy det M = U1 and 

hence the use of (3.25) is justified. There are also "fake" solutions, E = 0, M = 0, and 

E = 0, M = J-Lm/2, which however lie far from the point det M = 16A~n'n _2 and must 
C! C 

therefore be discarded. Hence we have found a total of N1 vacua with U ( n f) symmetry in 

the mi ---+ 0 limit: 

(3.30) 

Turning to the singularity at det M = 0, the light degrees of freedom near this point, 

namely the mesons and the 2n f light monopoles are described by the effective superpo­

tential, 

W = _ _2_Tr(.JfM.JfM) + ~TrmM + f(det M) qt qj Mii. 
2j-L . 2 

(3.31) 

f is an undetermined holomorphic function of det M satisfying f(O) = 1 so that near 

det M ~ 0 we may write f ~ 1 + t det M. The equations of motion are 

(3.32) 
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and 

q-:- Mii = 0 
J . ' (3.33) 

Following the arguments in the case of the theory with 2n f = nc- 3, the meson condensate 

is found to be M = ( ~ ~) where B is diagonal; B = diag(>.I, >.2, ... , An1 ). However, 

unlike the previous case, in addition to the vacuum with q± = 0 and M = J-Lm/2, there are 

also vacua where monopoles condense. To see this, let us write q± = ( ~=) where at, bf 

are n ~-component vectors.· Now suppose that ai =/= 0. This along with the equations of 

motion (3.32) and (3.33), then automatically implies that except for ai and b! all other 

rn6nopole fields must vanish and that AI = 0. Furthermore, the D-term condition leads to 

!ail= lb!l· The phase ofai can be fixed by a U(1) gauge rotation and then the phase of 

b! is uniquely determined by the equations of motion, namely· 

!ail= lb!l; (3.34) 

In the massless limit, these meson VEVs preserve USp(2nt) symmetry. Since the above 

arguments would apply equally well if we chose any one of the qt 's to be non-zero, we have 

found 2n f new solutions where monopoles condense and the meson VEV s preserve the full 

USp(2nt) global symmetry (for massless quarks). Thus, including the vacuum with q± = 0 

and M = J-Lm /2 we get N2 = 2n f + 1 vacua with unbroken flavor symmetry when the quark 

masses are zero. The total number ofvacuais N1 +N2 = (nc- nt- 2)2nt + 2nt + 1 which 

is indeed the correct number. 

. mr = m 0 =/= 0: when mi = mo =/= 0, the 2n f vacua with monopole qf condensation 

have a U(1) x U(nt -1) symmetry and correspond to a half of the semiclassical vacuum 

stil.tes with r = n t -1 and SO( 4) gauge symmetry. The first group of N 1 ground states can 

oe shown as :before to split into groups of r-vacua with U(r) X U(n f -r) global symmetry, all 

in confined phase. The subset with r = 1 corresponds to the other half of the semiclassical 

vacuum states with .S0(4) gauge symmetry. 

The remaining vacuum, with M = J-Lm/2 and q± = 0 preserves a U(nt) global sym­

metry group. The absence of monopole VEV s indicates that the theory in this vacuum 

is non-confining and in fact continues to be in the Coulomb phase rather than an IR free 

phase, since all monopoles are massive. Hence; we have found a unique U ( n 1 )-symmetric 
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vacuum in the Coulomb phase which, as we dial the quark masses mo, must smoothly 

transform into the unique r = nf semiclassical vacuum with S0(2) ~ U(1) gauge sym­

metry. In particular, the quantum (or small m) description consists of dual photons that 

couple locally to the (massive) monopoles- however the potential betweentwo electric 

test charges at a separation R still behaves as 1/ R corresponding to the usual Coulomb 

phase. 

3.5. Case: 2nf = nc- 1 

In the infrared, the corresponding N = 1 theory is dual to a magnetic S0(3) gauge 

theory with 2n f flavors of dual quarks and singlet mesons Mij. Since 2n f ~- 5, this theory 

is infrared free. In the presence of the heavy (but finite mass) adjoint q> and in the presence 

of quark masses, the superpotential (near M = 0) turns out to be 

1 detM 1 1 . 
W = 

2
,._. Mi1·qi · q1·- ----;;--------=--- -

2 
Tr(.JfM.JfM) + -TrmM. 

"' 64A~:~n~~ 1 /1 . _ 2 
(3.35) 

K is a dimensionful normalization scale (we assume that K rv Anc,nc-1 ) which relates the 

mesons M of the electric theory to the corresponding· dimension one operators in· the 

magnetic description via Mm = Mj K • .The dynamical scales Anc,nc:-1 and A3,nc1 of the 

electric and magnetic descriptions respectively and K are related via 

(3.36) 

As before, we will analyze the vacuum structure of the theory when the quark masses 

mi are non-zero and then focus on the .special cases where the masses are all equal, and 

also when they are vanishingly small compared-to theN..:... 2 dynamical scale .. For generic, 

non-zero quark masses the mesons will'conderrse and-render the dual quarks massive. We 

will classify the vacua according to the rank .of the meson VEV s. 

When rank(M) = 2nf, all the dual quarks are massive and can be integrated out, 

leaving behind a pure, magnetic,S0(3) gauge theory wherein a super-potential is generated 

as usual via gaugino condensation. We remark that the equations of motion for the dual 

quarks, following from (3.35), namely Mijqj = 0 ensure that when rank(M) = 2nf the 

magnetic squarks have vanishing VEVs and so the dual S0(3) symmetry is unbroken. The 
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- -, . 
low energy, pure gauge, magnetic S0(3) theory then has a scale A~,o = A3 ;ri.~:_ 1 det(MIK) 

and has two branches, each labelled by the phase of the gluino condensate. The con­

tribution to the superpotential from instanton effects in the magnetic theory is thus 

2£A~;ri.~:_ 1 det(MIK) with £ = ±1 labelling the two possible phases of the gaugino con­

densate. Using Eqs. (3.35) and (3.36) we find that the£= +1 branchhas a superpotential 

given by 
1 1 

W+ = --. Tr(.JfM.JfM) + -TrmM, 
2f-l 2 

(3.37) 

while the £ = -1 branch develops a superpotential W _: 

dciM 1 1 
W = -----:::-----,.--

2
!-lTr(.JfM.JfM) + -

2
TrmM. - 32A2nc-5 

nc,nc-1 

(3.38) 

The £ = + 1 branch yields a single vacuum with 

f-l ( 0 (M) = f-Lml2 =-2 m ~)· (3.39) 

At this point we should clarify the various mass scales involved. Since the meson 

VEVs rv f-lm, the dual quarks have masses rv f-Lml K. On the other hand the meson masses 

rv K:2 I f-l· Since we have chosen to retain the mesons as the light degrees of freedom, we 

must have K2 I f-l « f-Lm I K. which in turn· means that 

n-4 

(
AN=2) 2n-s m -- «--, 

f-l AN=2 
(3.40) 

if we assume that K,. rv Anc,nc-1· Within this range of parameters (even if we assume 

ml AN=2 « 1), we expect our analysis to be valid. 

Interesting conclusions may be drawn from the form of the meson VEVs (3.39) in 

this vacuum. Firstly, since £ is the phase of the gluino condensate, it may be thought 

of as the theta angle of the dual theory. Thus the £ = + 1 branch corresponds to the 

confinement of dual quarks while £ = -1 (changing theta by 1r). corresponds to dyonic or 

oblique confinement in the dual theory. Confinement of the magnetic degrees of freedom 

in the£ =+1 vacuum can be interpreted as condensation of electric charges of the original 

theory. Secondly, the meson VEV (3.39) coincides precisely with the classical prediction for 

the meson condensates in the r-vacuum with r = nc2-
1 which, semiclassically corresponds 
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to a Higgs phase. Finally, since the instanton effects disappear when E :.._ + 1, the classical 

superpotential does not receive any quantum corrections. It is therefore reasonable to 

conclude that the single E = + 1 vacuum in the dual theory can be smoothly connected 

to the single semiclassical vacuum in the Higgs phase in the original description, while 

preserving the distinction between confining and non-confining phases in SO(nc) gauge 

theories without spinorial matter fields. When the quark masses are taken to be vanishingly 

sm'all, thi_s vacuum has an unbroken USp(2n f) flavor symmetry, while the equal mass limit 

mi = m 0 =/= 0 leaves a U ( n f) symmetry. These patterns of flavor symmetry breaking alS~ 

agree with the classical analysis of the r = nf = (nc -1)/2 theory where the gauge group 

appears to be completely Higgsed. 

Using the superpotential W_ (3.38), the meson VEVs in the E = -1 branch can be 

shown to have the form M = ( ~ ~) with B = diag(>.b A2, ... , An1 ). 

For mi « AN=2 we find that there is one solution with 

(3.41) 

which preserves the full USp(2nt) symmetry in the massless limit, while leaving a U(nJ )~ 

symmetric vacuum in the equal (non-vanishing) mass case. 

The E = -1 branch also yields a whole other set of vacua with non-vanishing meson 

VEVs in the mi --t 0 limit with 

k = 1, 2, ... , n f -,- 1, · ( 3.42) 

and these yield a total of 

(3.43) 

vacua. The global group is broken to U(n f) in the massless limit in all these vacua, while 

in the equal mass case they reproduce the groups of r-vacua with U( r) xU( n f - r) flavor 

symmetry. 

We now look for possible ground states with rank(M) < 2nt. We find that supersym­

metric ground states exist only when rank(M) = 2n f- 2. Below the squark-mass scale set 

by the meson expectation-values "' (M) / /'\, the theory looks like a magnetic S0(3) gauge 

27 



theory with two light dual quarks. The S0(3) gauge theory with two light flavors is known 

to be either in a Higgs phase or in an IR free phase and hence there can be no further 

dynamical corrections to the superpotential. In fact the equations of motion from (3.35) 

indicate dual squark-condensation and consequent Higgsing of the dual gauge group. We 

find that M = ( ~ ~) , where 

(3.44) 

(3.45) 

so that 

(3.46) 

Note that the relative magnitudes of i]I and q1 are fixed by the D-term constraint. Also, 

the overall signs can be brought in the above form (with d = +J-m1K/2) by combining 

dual S0(3) gauge and global S0(2n r) C USp(2n f) ·rotations. Analogous solutions can 

be constructed by choosing any one of the n f pairs of squarks to be non vanishing so that 

there are n f solutions of this type, <:~,11 USp(2n f) symmetric. Therefore, including the single 

Higgs vacuum we have found a total of 

(3.47) 

V<fCUa with vanishing VEVs and USp(2nt) symmetry in the theory.with massless quarks. 

The total number of vacua is then N = N1 + Nz = ( n f - 1 )2n I + n f + 2 which matches 

t~e semiclassical result in Eq. (2.13). We remark that we have not found any Coulomb 

vacua in thelarge-J-t theory, which is also completely consistent with classical expectations. 

io: Case: 2n f = nc 

These theories have a dual description in terms of an SO( 4) ~ SU(2)L x SU(2)R 

gauge theory with 2nt flavors of dual quarks in the (2, 2) representation, and S0(4) 

singlet mesons with superpotential 

wN=l- _!_M··q·. q· - 2K ZJ z J l (3.48) 
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where "' is related to the dynamical scales of the electric and magnetic descriptions through 

A~~~n-:6 Anc rv Knc. The complete low-energy, effective superpotential for our theory is 

simply 
1 1 1 

W = -M··q· · q·- -Tr(JfM.JfM) + -TrmM. 2K ZJ z } 2p 2 (3.49) 

Proceeding as in the previous case, we classify vacuum states according to the rank of the 

meson VEVs. 

When rank( M) = 2n f we integrate out the dual quarks to obtain a gaugmo­

condensate-induced superpotential in the pure, magnetic SO( 4) theory. Since the dual 

SO( 4) decomposes into two-independent SU(2)'s,, we must have two inequivalent branches, 

one with no dynamically generated superpotential. The dynamical contribution to the su­

perpotential in these branches is = 2( €£ + t:R)A 3 where A denotes the scale of either one 

of the SU(2)'s contained in the dual S0(4), and €£,€R are the phases of (>.>.)L,R in the 

respective SU(2) sectors. 

The branch with €£€R = -1 results in an effective theory with no instanton contribu­

tions to the superpotential which therefore is purely classi~al: 

1 . 1 
W(ELt:R = -1) =-

2
p Tr(JfMJTM) + 2TrmM. (3.50) 

and yields two vacua (since there are two possible choices of phase with €£ + ER = 0) with 

M = pm/2. In the equal mass theory this preserves a U(nt) symmetry while in the limit of 

vanishing masses the full USp(2n f) flavor group is restored. The form of the meson VEV, 

the number of vacua, the flavor symmetry patterns and finally, the absence of quantum 

corrections to the superpotential in these vacua with €£€R = -1, strongly suggest that 

these are in fact the large-p, small m counterparts of the two Higgs vacua which appear 

in the semiclassical description of the original electric theory. This is actually in perfect 

accord with our knowledge of the vacuum structure of SU(2)I X SU(2)2 gauge theory with 

two massless flavors in the (2, 2) representation. The theory is known to have a moduli 

space of vacua with two singular submanifolds at. which magnetic and dyonic degrees of 

freedom become light. ·upon turning on masses for the flavors, each singular submanifold 

gives two vacua where monopoles (or dyons) condense. In the dual theory the two vacua 
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associated with dual quark confinement (and not oblique confinement) must correspond 

to the Higgsed ground states of the electric theory. 

The branch with E£ ~ ER leads to a superpotential with a form similar to what we 

have encountered in several previous examples: 

vdetM 1 1 
W(c£ER = 1) = -(c£ + ER) 3 - -Tr(JTMJTM) + -TrmM. SA nc- · 2 · . 2 nc,nc J.l 

(3.51) 

This leads to two vacua with VEVs proportional to the quark masses in the small mass 

regime and N1 = (nt- 2)2n' vacua with finite VEVs. The two vacua with vanishing VEVs 

(and consequently unbroken flavor group) have the usual off-diagonal form for the meson 

V~Vs with Ai :::::J p,m/2(1 ± O(m/ AN=2)n'-2). The finite VEV vacua which dynamically 

break flavor to U(nt) can be found as in many previous examples. 

Now we turn to the cases with rank(M) < 2nt and we find two sets of supersymmetric 

ground states, for rank(M) = 2nt - 4 arid for rank(M) = 2nt- 2. When rank(M) = 

2n1 -4, at long distances the theorylooks like a magnetic S0(4) theory with four flavors of 

dual quarks. The corresponding N = 1 theory (studied by lntriligator and Seiberg) is at a 

non-trivial fixed point of the beta function. In our theory, in fact using the superpotential 

(3.49) we find squark and meson VEVs of the form 

(3.52) 

(3.53) 

where 

(3.54) 

These VEV s break the dual gauge symmetry completely, and should correspond to confin­

ing vacua in the electric description. Since we could have chosen the non-vanishing flavors 

in ( n;) ways, there are 2n,C2 vacua 6 where the dual gauge group is completely Higgsed 

6 The factor 2 in front of n 1C2 is due to the sign choices in Eq. (3.54) which cannot be undone 

by gauge or global transformations, and hence are inequivalent. 
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and the flavor symmetry group in the massless limit remains unbroken, while in the limit 

of equal masses the flavor group appears to be U(2) x U(nt- 2). 

When rank(M) = 2nt- 2 the low energy description is that of the magnetic S0(4) 

theory with two quark flavors which is known to be in the Coulomb phase. This is 

confirmed by the solution to the equations of motion from (3.49) which lead to dual 

squark condensates that break S0(4) to S0(2) ~ U(1) and meson VEVs are given by 

B = Idiag(O,m2,m3,···)· There are nt such solutions, whichare clearly the large-p 

(dual)descriptions of the nf Coulomb vacua that are apparent in the semiclassical limit. 

Therefore the number of vacua with vanishing VEV s is 

(3.55) 

while the total number of supersymmetric vacuum states is 

(3.56) 

which agrees with Eq. (2.13). 

3. 7. Case: 2n J > nc 

The corresponding N = 1 theories (when P is decoupled) are dual to the magnetic 

SO(nc) _ S0(2nt- nc + 4) gauge theory with 2nt dual squarks and singlet mesons Mij 

with the effective superpotential 

1 1 1 
W = 

2
/'\: Mijqi · qi-

2
J.l Tr(JfMJfM) + 2Tr(mM). (3.57) 

As before /'\: relates the scales of the electric and magnetic theories via 

(3.58) 

The vacuum structure of this theory can be easily inferred by looking at the solutions 

to the classical equations that follow from the superpotential (3.57). These solutions are 

of the form: 

dl dl 0 0 
idl -idl 0 0 
0 0 d2 d2 

ql = 0 ql = 0 q2 = id2 q2 = -id2 etc., (3.59) 

0 0 0 0 
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so that, 

iii · qi = 2di = mu>:, i = 0, 1, 2, ... r, (3.60) 

while all other scalar products among q's and ij's are zero, and 

(3.61) 

r 

E~idently, nt Cr solutions of this type can be constructed by choosing any r pairs of 

dual squarks to have non-vanishing expectation values. The solution also indicates that 

a' SO( iic - 2r) gauge symmetry is left unbroken and therefore for every r one obtains 

w(n~- 2r)n1 Cr vacuum states with USp(2nJ) symmetry in the limit of vanishing masses. 

Finally, when nc is even, an additional set of n 1 Cnc/2 vacua appear 7 so that there will be 

a total of 
[iic/2] 

Af2 = L w(nc- 2r)n1 Cr + nJCnC/2 
r 

vacua with small VEV s. The symmetry breaking patterns implied by the meson conden- . 

sates (3.61) for equal and nonvanishing masses, are also in complete agreement with the 

semiclassical predictions. 

. Strictly speaking however, these solutions provide only a qualitative picture of :what 

happens in these vacua. The VEVs and solutions in Eqs. (3.61) will receive quantum 

corrections. A quantitatively correct description of the physics can be obtained only after 

the dynamical contributions to the superpotential are taken into account. Without going 

int9,too much detail, we discuss these aspects of the dynamics briefly below. As indicated 

by_;-the "classical" solutions described above, the vacua must be classified according to 

th¢·.rank of the meson VEVs. When rank(M) = 2nf- 2r, with 2r < nc- 4; the low 

energy theory is the magnetic SO( ric) theory with 2r dual quarks. This theory obtains a 

dynamical superpotential similar to that encountered in Eq. {3.1}. The couplings of·the 

dual quarks to the mesons Mij ensure that they all get small masses and lead to nc- 2r- 2 · 

supersymmetric ground states (and no runaway vacuum solutions). 
· ... , 

When nc is even and 2r = nc- 4, the magnetic theory flows to an S0(4) c:=.SU(2) x 

SU(2) theory with two branches as usual, where dual quarks are confined. In two of 

7 This point was explained in detail in section 2. 
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these vacua, the effective theta angle of the dual theory is zero and the confinement of the 

magnetic degrees of freedom may be interpreted as condensation of the original electric 

degrees of freedom (and not dyon condensation). Taking into account that there are 

n, C:nc/2 _ 2 distinct solutions with rank(M) = 2n f- iic + 4, the total number of Riggs­

like vacua in this description is therefore 2n1 Cnc/2-2 = 2n1 Cnc/2 which precisely matches 

the semiclassical counting. of Higgs vacua. For reasons that were discussed earlier, the 

dynamical contributions to the superpotential cancel out in these vacua. Thus the solutions 

(3.61) for r = iic/2- 2 are in fact the exact ones and the meson VEVs coincide with 

semiclassical values of the condensates in the semiclassical Higgs vacuum. For equal masses, 

mi = m 0 =/= 0, in both the limits a U(nJ- nc/2) x U(nc/2) flavor symmetry is preserved. 

For even nc the dual theory can also be in a Coulomb phase. This occurs when 

r = iic/2 - 1. The combinatorial factor determining the multiplicity of these vacua is 

n,C:nc/2_1 which is also equal to n1 Cnc/2_1, the number of semiclassical Coulomb vacua. 

When nc is odd and 2r = iic- 3, the dual theory flows to an 50(3) gauge :the'" 

ory which has two branches, one without a quantum superpotential. This branch yields 

n 1 C:nc/2-3/2 = n 1 C[nc/2] vacua with a vanishing effective theta angle and magnetic con­

finement, Once again the meson VEVs given by Eq. (3.61) for this case are the exact 

results and are in complete agreement with the semiclassical results for the Higgs vacuum 

with a U ( [ ~c]) X U ( n f - [ ~c]) global symmetry. 

Having completely classified and clarified the N2 vacua with small VEVs, let us turn 

to the .finite VEV vacua where the flavor group is expected to be broken dynamically to 

U(nJ ). Such vacua must have rank(M) = 2nf rendering all the dual quarks massive. The 

dual quarks must be integrated out giving a low-energy, pure SO(iic) gauge theory with 

gaugino-condensation. The dynamical scale of this pure superglue theory is obtained as 

usual by a one-loop matching and results in the following superpotential: 

( ) 

1/(2nt-nc+2) 
1 detM 

W -- n - 2n -2 • · · · -2( c f ) 
16

A3nc-2n,-6 · 
nc,2n 1 (3.63) 

1 1 
- -Tr(.JfM.JfM) + -Tr(mM). 

2f-l 2 . . 

Note that this is just a continuation of (3.1) to the large flavor case.· Solutions of the 
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equations of motion are of two types. The first type is a USp(2n f)-symmetric set of iic-2 = 

2n f- nc + 2 vacua which has already been qualitatively discussed earlier. These vacua are 

characterized by the meson eigenvalues Ai = pmi(1+e2Trik/(nc-2)0((m/ AN=2)2nc-2n,-4)). 

Ground states with dynamical flavor-breaking can be located in exactly the same way 

as before, with a multiplicity, 

(3.64) 

The meson VEVs in this group of vacua is also proportional to pAN=2. 

The discussion of the equal mass case mi = m0 # 0 also proceeds in the same way 

as before. While the first category ofN1 theories yields groups ofr-vacua with U(r) x 

U(n1 -r) flavor symmetry, the second group of vacua have semiclassical VEVs (Eqs. (3.59) 

and (3.61))which also preserve U(r) x U(nt- r) flavor group in the equal mass ca:se. 

Finally, we turn to the enumeration of all the quantum vacua and comparison with 

the semiclassical formula (2.13). Let us first assume that iic is even. Then we have 

nc/2 nc/2-3 

N2 = L w(iic- 2r)n1 Cr + n1 Cnc/2 = L (iic- 2r- 2)n1 Cr+ 
r r (3.65) 

2~1 Cnc/2 + n1 Cnc/2-1 + 4n1 Cnc/2-2· 

A change of variable r -+ n f - r allows us to rewrite the above as 

(3.66) 

and hence N1 + N2 'agrees with the semiclassical result (2.13). Note that the terms 

n1 Cnc/2 and n1 Cnc/2 appear only when nc is even. When nc is odd the number of 

USp(2n f)-symmetric, vacua is 

(iic~ii/2 (nc-1)/2-2 

N2 = · L w(iic- 2r)n1 Cr = L (iic- 2r- 2)n1 Cr+ 
r 

n 1 C(nc-1)/2 +2n, C(nc-1)/2-1· 

Changing the variable r -+ n f - r we find 

r 

which is exactly what we expect from the classical analysis. 
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4. The effective descriptions of the small p theory 

In this section we attempt to provide a description of the theory in the limit of small 

1-" and small mi. This is the regime in which N = 2 supersymmetry is only softly broken. 

The low-energy degrees of freedom in some of the N = 1 vacua were actually identified 
- -

by Argyres, Plesser and Shapere (APS) in (9]. Below, we briefly review the arguments of 

APS presented in (9]. We also identify an' important ingredient of the physics that was 

missing in the analysis by these authors. Counting the vacua and keeping. track of the 

flavor, symmetries therein provides a powerful check on the resulting picture. 

As described in detail in [9] the moduli space of N = 2 SO( nc) SUSY-QCD consists of 

Coulomb (<I> #0, Q = 0), Higgs (<I> = 0, Q # 0) andmixed (<I> # 0, Q # 0) br~nches. The 

Higgs and mixed bran,ch 'roots' (i.e. where they meet the Coulomb branch) are singular 

submanifolds with massless hypermultiplets and enhanced gauge symmetry respectively. 

The mixed branchroots have SO(r) x U(1)(nc::-r)jz gauge symmetry with nf massless 

flavors and nc-r even. Since they exist only for 0 :=:; r :=:; n f, the theories at the roots are all 

IR free. Upon breaking SUSY toN= 1, these singular submanifolds get completely lifted 

with the exception of isolated points where the corresponding Seiberg-Witten curves are 

maximally degenerate - that is, where (nc-r) /2 mutually local monopole hypermultiplets 

{ ek, ek} charged under the U(1)'s become massless. In fact there is precisely one such 

point at the r-branch roots where this occurs, and has r = 2nj- nc + 4. Thus Seiberg's 

~ual gaugegroup S0(2nf- nc + 4) [10] makes a natural appearance, although this does 

not by itself constitute a proof or derivation of N = 1 duality. In fact the actual story, as 

we describe below, is perhaps more complex. 

S0(2nj- nc + 4) U(l)I ... U(1 )nc _,z-n1 

n1 x Q 2nr-nc+4 0 ... 0 

el 1 1 ... 0 

enc-2-nt 1 0 ... 1 

Table 3: Charges of light degrees of freedom at the special point. 
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Choosing a basis where each light monopole multiplet ek at the special point has 

charge 1 under one of the Coulomb factors U ( 1) k, we may summarize the charges of the 

light degrees of freedom as in Table 3. 

Following the conventions of [9], the scalar tl> at the special point with r = nc, splits 

into an adjoint field¢> of the SO(r) group and (nc- r)/2 scalars {¢k} belonging to the 

U(1) N = 2 multiplets. The following is the effective superpotential governing the light 

degrees of freedom at the special point after addition of a microscopic adjoint mass term: 

( 4.1) 

The Xi are simply dimensionless numbers of order 1 while the Q's are the nf light hy­

permultiplets that appear at the root of the r-Higgs branch. These are to be thought of 

as analogues of the dual quarks present in Seiberg's description of certain N = 1 gauge 

theories. The quark mass perturbation shows up in the low-energy superpotential as a 

correction, 

(4.2) 

Here Sl represents the i-th quark charge of the monopole multiplet ek. It appears in 

the central extension of the supersymmetry algebra and consequently contributes to the 

masses of the BPS monopoles [2]. Since the theory at the r-branch root is IR free, the 

degrees of freedom appearing in ( 4.1) are indeed weakly interacting and all the vacua of 

t~e resulting theory should be accessible via a straightforward semiclassical analysis of the 

~quations of motion of the effective theory. The solutions of the F and D-term equations 

(4.3) 

(4.4) 

(4.5) 

ImnitQi = 0 "!:a b ' (4.6) 

(4.7) 
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(4.8) 

are similar to the classical solutions of the microscopic theory. By performing appropriate 

gauge rotations cjJ can be put in the form 

c/J= (4.9) 

For an odd nc there is a null nc-th column and null nc-th row above. The solutions can be 

again classified according to the number of the nontrivial pairs of "eigenvectors" Q~ with 

eigenvalues ±md V'i. A solution with r nonzero eigenvalues has { c/Ji} = {mi} and 

dl 0 0 0 
-idl 0 0 0 

0 d2 0 0 0 ... 
0 -id2 0 0 0 ... 

Q~ = 0 ... 
(4.10) 

0 0 0 dr 0 0 ... 
0 0 0 -idr 0 0 ... 

where 0 < r < [nc] . - - 2 (4.11) 

These characterize the VEV s of the squark flavors i = 1, ... , n f, ·while the squark conden­

sates with i = n f + 1, ... '2n f are of the form ( 4.10) with dr -+ dr and -idr -+ idr, and 

with8 

( 4.12) 

Although these solutions are superficially similar to the classical solutions of the mi­

croscopic theory, the physics is clearly very different. The theory at the r-branch root is 

IR free (n t> nc) and so the values of r can run only from r = 0 tor = [nc/2]. 

8 The p~ssible overall minus sign of d;'s can be rotated away by a center element of SU(nJ) C 

USp(2nJ ). 
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The solution with r pairs of -nonvanishing elements of</;> leaves SO(nc - 2r) gauge 

symmetry unbroken with iic - 2r- 2 vacua. Therefore, summing over all such vacua there 

are 
[ iic /2] 

N2 = L w(iic- 2r) n1Cr + n1Cnc/2 (4.13) 
r 

ground states with all VEVS (tr~nsforming nontrivially under flavor) vanishing in the 

mi --+ 0 limit. 

It is clear from ( 4.13) that not all the vacua of the N = 1 theory arise from perturbing 

the theory at the special point. The latter seems to yield only the vacua with vanishing 

VEVs i.e. the USp(2nt )-symmetric ones. Therefore the APS effective theory appears to 

miss the complete vacuum structure of the softly broken N = 2 theory. We must therefore 

understand better the nature of and the role played by the other group of vacua which 

cannot be associated with the theory at the special point. 

To understand the microscopic origin of the remaining N 1 vacuum states we turn to 

the hyperelliptic curves describing the Coulomb branch of the corresponding N = 2 theory. 

The special point is associated with a maximal degeneration of the curve and corresponds 

to mutually local, charged monopoles becoming light. However, the degeneration of the 

Seiberg-Witten curve can also occur in a way that describes mutually non-local particles 

becoming simultaneously massless leading to an interacting N = 2 superconformal field 

theory [17] [18]. 

As we demonstrate in the next section, in the massless (mi = 0) theory there are ad­

ditional maximal singularities on theN = 2 moduli space where the low-energy effective 

theories are critical (scale-invariant). We refer to these singularities as the "Chebyshev 

points". The Chebyshev points split up under a generic mass perturbation and subse­

quently yield the first group of N1 vacua when an adjoint mass is added. The enumeration 

of vacua and tJ:.eir symmetry-breaking patterns can be best understood in the case where 
.·'\ 

the quark masses are equal and non-zero - mi = mo =/= 0. 

The equal mass theory has singularities where the curve has the form 

y 2 ex (x- m6)2 r; 0:::; r:::; [nt/2], 

y 2 ex (x- m6) 2(n,-r); nt ~ r > [nt/2]. 
(4.14) 
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Since the underlying flavor group of the equal-mass theory is U(nJ), using the results of 

[13] and [14] we know that the theories at such singular points are in the universality class 

of SU(r) (or SU(n f-r)) gauge theories with n f flavors. Depending on the values of r these 

are IR-free gauge theories (Class 1 according to [13]) or non-trivial SCFTs when r = nt/2 

(Class 3 theories). Except the cases with r = n f /2 they can be described by the effective 

Lagrangeans at the r-branch roots of SU(nc), N = 2 theories, derived by Argyres, Plesser 

and Seiberg [15]. The vacuum structure of the r-branch theories was studied in detail in [8] 

and it was shown that the theory at r-branch root yields n1 Cr vacua with flavor symmetry 

U(r) x U(nJ- r). Taking discrete symmetry factors into account, the total number of 

vacua from the Chebyshev points is then 

(4.f5) 

which correctly reproduces the number of vacua with finite VEV s. 

When the masses are sent to zero the r-branch roots merge, the criticality of the hy­

perelleptic curve changes and the flavor symmetry of the microscopic theory is enlarged to 

USp(2n f). We believe that this point (the Chebyshev point) describes an SCFT belonging 

to a new universality class and which is strongly-interacting due to the appearance of light, 

mutually non-local degrees of freedom. 

4.1. Remarks on suggested derivations of N = 1-duality 

At this point we would like to make a few remarks about the possible derivation 

of N = 1 Seiberg duality which was suggested by Argyres, Plesser and Shapere in [9]. 

This "derivation" was made possible by the idea that by moving along the N . 2 moduli 

space and by smoothly changing J-l, we can continuously interpolate between the small-J-l 

description of the special point SO(iic) theory to the large-J-l SO(nc) gauge theory with 

N = 1 supersymmetry. However, we have seen above that the N = 1 theory obtained 

by introducing an adjoint mass has vacua emerging both from the special point and the 

superconformal Chebyshev point (to be studied below). The question then is, what role 

(if any) do the Chebyshev vacua play iri the derivation of N = 1 duality? To under­

stand this it is instructive to look at the behaviour of the condensate u 2 = (Tr<I> 2
) in 
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the N = llimit at these two points, namely the Chebyshev point and the special point. 

Upon integrating out the adjoint field 1>, we have an N = 1 theory with dynamical scale 

3n -2n1 -6 n 2A2nc-2n,-4 A · th · · h 1 h · Anc~2n1 = J-l c- N=2 . s seen m e previOus sectiOn, t e ow-energy t eory 1s 

the Intriligator-Seiberg magnetic theory with dual quarks and mesons, with a superpoten­

tial W = 2
1,_qMq- 2

1
JL TrM.JfM.Jf. 

At the special point, which is USp(2nt) symmetric, neither M nor q acquire expecta­

tion values and hence W .:..... 0. This automatically implies that u2 = 0 at the special point, 

since it is the J-l derivative of the expectation value of the superpotential. On the other 

hand; at the Chebyshev point, where det M f- 0, we can integrate out all the magnetic 

quarks to obtain a pure Yang-Mills theory at low energy with a gaugino condensate-induced 

superpotential for the mesons (3.63). As was discussed in detail in the previous section, 

by minimizing the superpotential we find (M) "'J-LAN=2· This implies that W "'J-LA'Jv-=2, 

and consequently u2 "'A'Jv-=2 at the Chebyshev point. The "distance" between the special 

and _the Chebyshev points at fixed AN=2 remains the same in the large J-Llimit. However, 

in the true N = 1limit wherein Anc,2n1 is kept fixed, the locations of the two singularities 

appear to merge (since AN=2 "'---7 0). It must be pointed out that the vanishing of u2 alone 

does not imply merging of the two points. One should look at the expectation values of 

all the other gauge invariant order parameters. 

This suggests that in order to understand the physics of N = 1 SO(nc) gauge theory 

with 2n f > nc - 2 flavors, one must understand the physics of both sets of vacua. Con-

-sequently, from the viewpoint of the corresponding N = 2 theory it appears that we must 

investigate the descriptions of both the special point and the Chebyshev point in order to 

understand the origin .of Seiberg duality in the N = 1 limit. We therefore see that the 

derivation of Seiberg duality as presented in [9] was incomplete in this aspect. 

5. Quark mass perturbation of hyperelleptic curves 

We will now investigate the low-energy physics on the Coulomb branch of the N = 2 

gauge theory (J-l = 0) which is described as usual by the moduli space of certain hyperel­

liptic curves. The complex structure r of the curves controls the physics of the Coulomb 
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branch in that it is identified with the effective gauge-coupling of the low energy theory. 

Singularities on the Coulomb branch due to the appearance of new massless states in the 

low-energy theory are signalled by the degeneration of the hyperelliptic curves - where 

certain specific cycles of the Riemann surface associated with the curve pinch off. Some of 

these singularities are rather special. These are the Coulomb branch singularities which, af­

ter N = 2-breaking perturbations (J-L =/= 0) become vacua of theresulting theory with N = 1 

supersymmetry. Therefore, by inspecting the hyperelliptic curves of the N = 2 SO( nc) 

gauge theory with n f hypermultiplets we can identify which points on the Coulomb branch 

correspond to N = 1 vacua and how many such points there are. Furthermore we will also 

be able to identify the two groups of vacua and unravel the physics of the first group of 

vacua whose origin cannot be explained by the effective picture of the previous section a 
la Argyres-Plesser-Shapere [9]. 

Our first task will be to identify the points on the Coulomb branch of the N = 2 theory 

which give rise to the first group N1 of N = 1 vacua and, as is evident from the discussion 

in the previous section, these are distinct from the so-called special point of APS. Since 

they survive the breaking toN= 1, they must be points of maximal degeneracy i.e. where 

[~c] pairs of branch points coincide. It is well-known that such singularities may be of 

two distinct types: a) Where the' light degrees of freedom are mutually local,. as in the 

case of the special point at the r-branch roots; b) where mutually non-local particles are 

simultaneously massless. Theories of the second type with N = 2 supersymmetry were 

argued to be superconformal in [18]. We will argue below that the first group of N = 1 

vacua emerge upon perturbing such superconformal theories. 

The curve for the SO( nc) N = 2 theory is [3], 

(nc/2] nf 

Y2 =X IT (x- </>~)2- 4A 2(nc-2-nf )x2+~ IT (x- m;), (5.1) 
a=I i=l 

where E = 1 if nc is even and E = 0 if nc is odd. Since we are mainly interested in the 

limit where the bare masses mi of the quark hypermultiplets are vanishingly small, we first 

consider the curves with mi = 0, 

nc/2 

Y2 =X IT (x- </>~)2- 4A2(nc-2-nJ)xn!+3, nc = 2f, (5.2) 
a=I 
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(nc-1)/2 . 

l =X II (x- </;~)2 -4A2(nc-2-nt)xnt+2, nc = 2/! + 1. (5.3) 
a=l 

We will subsequently treat the effects of the non-zero masses as a perturbation and then 

enumerate the N = 1 vacua and their properties. 

As before we will treat the equal mass case mi m 0 =/= 0 and the case of generic 

unequal masses separately. For either of these two situations, the actual form of the curves 

depends on whether nf and nc are even/odd and hence we must consider four independent 

possibilities. 

5.1. Unequal mass perturbation at Chebyshev points 

i) n f even; nc even 

The singular points which yield the first group of vacua can be located (when mi = 0) 

by following the methods of [19] and [20]. This is achieved by first choosing nJ/2 + 1 of 

<Pa's to be vanishing so that the curve (5.2) has the form 

(5.4) 

The remaining <Pa 's can be obtained by using the properties of Chebyshev polynomials. 

The Chebyshev polynomial TN ( x) of order .N .is defined as 

N 

·,,: __ _ . TN(x) = cos(N arccosx) = 2N-I II (x --:wk), (5.5) 
k=1 

with Wk = cosrr(k- ~)JN, k = 1,2, ... N. Note that for N odd, there exists a value of k, 

k = (N + 1)/2, such that Wk = 0. Note also that WN-k+1 = -wk, so that for even N 

while for odd N 

1 
N/2 

TN(vfx/2) = 2 II (x- 4w~); 
k=I 

1 
(N-1)/2 

TN( vlx/2) = 2Vx II (x- 4w~), 
k=I 

These properties will be useful in what follows. 
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Now we identify the first term in the brackets in Eq. (5.4) with 2Tnc-n,-2(Vx/2) 

and set A == 1 for notational convenience. Then we must have </>~ = 4w~, with Wa = 

cosn(a- !)/N, a= 1,2, ... N/2, and N = nc- nf- 2. At this point, which we will 

henceforth refer to as the "Chebyshev point", the curve becomes 

This curve has a zero at the origin of order nf + 4, and N/2 -1 = (nc- nf- 2)/2 -1 

double zeroes at x = 4cos2 kn/N, k = 1,2,~ .. (N/2 -1) and a single zero at x = 4. Thus 

we have located a point of maximal degeneracy. 

Upon a generic mass perturbation, i.e. introduction of N = 2-preserving quark masses 

mi « AN=2 , the point of maximal degeneracy will not only shift somewhat but will also 

split into a group ofsingularities. Our goal is to find the nature and number of points in 

this singular group. 

We will first consider the special case where n f = nc ....,... 4. The more general problem 

can be reduced to this example, as we will argue subsequently. At the Chebyshev point, 

the curve for this theory is 

and </>2 = ±2A2 (this multiplicity corresponds to the discrete Znc-n,-2 symmetry factor 

with nc - n f - 2 = 2). The zero at the origin is of order n f + 4, and there is a single zero 

at 4A 2 (or -4A 2). Let us consider the point </>2 = 2A 2. 

Denoting the positions of the new singular points in the N = 2 moduli space as 

(5.10) 

the perturbed curve 

nc/2-1 n1 

y2 = x II (x- </>~) 2 (x :___ 2A2
- J</>2

)
2

- 4A4x3 II(x- m;), (5.11) 
a=l i=l 

must be identical to 
nc/2 

y2 = II (x- aa) 2 (x- (3). (5.12) 
· a=l 
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Here, the unperturbed zero of order n f + 4 has been assumed to split into n f /2 + 2 double 

zeros at x = O:a some of which could be degenerate. The important point to note is that 

the aa are necessarily "small" and proportional to positive powers of the mi so that they 

vanish in the zero mass limit. On the other hand j3 is the perturbed value of the single 

zero at 4A2 . 

The explicit factor of x in Eq. (5.11) means that one of the aa's is zero. However, 

this in turn implies that (5.11) has actually at least a double zero at the origin. Since the 

second term of ( 5.11) has a cubic zero there, it means that one of the cPa's is zero: 

<P~d2-1 = 0 (5.13) 

and consequently, (5.12) has at least a cubic zero, so that in fact two of the aa 's are 

zero. To obtain the location of the critical points we must then solve the following identity 

(y2 = x3 F( x)): 

nc/2-2 nc-4 

F(x) = II (x- <P~) 2 (x- 2A2
- J</;2 )

2
- 4A4 II (x- mr) 

a=I i=l '(5.14) 
nc/2-2 

x II (x -· aa) 2 (x- j3) 
a=I 

Using F(O) = 0 one can argue that 

(5.15) 

'' ! ' 

~bile comparison of the coefficient of X on both sides reveals that all eta except one are of 

~~de~ m 2 : 

(5.16) 

Similarly one may also show that 
:: 

(5.17) 

In the x-plane, we must then have for lxl "'m2 (recall y 2 = x3F(x)), 

nc/2-2 nc-4 nc/2-3 

F(x)= II (x-</;~)2 - II(x-m;)=cx II (x-o:b) 2
, (5.18) 

a=I i=l b~I 
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where c ~ 4A2a~c/2 _2 . Moving terms around, we get 

nc-4 

II (x- m;), 
i=l 

(5.19) 

which, under the variable change X = z2 leads to 

nc-4 

II (z + mi)(z- mi)· 
i=l 

(5~20) 

Now note that the operation z--+ -z exchanges the two terms on the left hand side as well 

as the factors on the right hand side. We also note that the masses mi are all generic and 

distinct. We may therefore equate each factor on the left to a product of nc- 4 distinct 

( z ± mi) factors so that the resulting equations get exchanged under z --+ - z. For instance, 

one possible set of solutions may be obtained by solving 

nc/2-2 nc/2-3 nc-4 

II (z2
- ¢~) + vcz II (z2

- ab) = II (mi + ;). (5.21) 
a=l b=l i=l 

Dividing the expression on the right hand side into even and odd powers of z, we note that 

the sum of the even terms is a polynomial in z2 of order nc/2 - 2 with coefficients which 

are functions of m;. The even terms must therefore be identified with IT:~12 -2 (z2 - ¢~). 

Consequently, the set { ¢~} is determined uniquely (up to Weyl group transformations) in 

terms of quark masses. Similarly, identifying the odd terms from I1~~~4 (mi + z), with 

yiC z I1~~2 -3 
(z2 

- a b) uniquely determines yc and the set { ab}- The location of the 

singularities on the Coulomb branch is determined uniquely by the set { ¢~} and yc, the 

latter being directly proportional to J¢2
. 

All other possible solutions are found by choosing different signs in front of z in 

Eq. (5.21). (As long as all masses are different, the reduction from Eq. (5.20) to Eq. (5.21) 
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is consistent). Since there are 2nc - 4 = 2n f possible distinct sign choices we find 2n I 

solutions. The copies generated by the action of the Zncn,-2 discrete symmetry factor 

yield a total of JV1 = ( nc- n f- 2)2nf points of maximal degeneracy each of which becomes 

an N = 1 supersymmetric vacuum upon introducing an adjoint mass. 

Finally, let us now see how the general n f even, nc even cases reduce to the problem 

studied above. This can be easily deduced from the form of the hyperelleptic curve near 

the Chebyshev point of the mi = 0 theory. Writing the curve as 

n 1 j2+1 (nc-n,-2)/2 n1 

y2 =x II (x- 4>~)2 II (x- q)~f- 4x3A 2(nc-n,-2) II (x- m;), 
a=1 k=1 i=1 

(5.22) 
nc/2 

=II (x- ad) 2 (x- 4A2 -{3), 
a=1 

we note that near the Chebyshev point (the maximally degenerate point) n f /2 + 1 <I> a's 

must be "small" (i.e. vanishing in the zero mass limit) while the rest, being (perturbed) 

roots of the Chebyshev polynomial of the mi = 0 theory must all be finite and proportional 

to theN= 2 dynamical scale. The fact that the mi = 0 curve in Eq. (5.8) has a zero at the 

origin of order n f + 4, automatically implies that only n f /2 + 2 of the a a are vanishingly 

small, the rest being determined essentially by the N = 2 dynamical scale. We further 

know from arguments following Eqs. (5.11) and (5.12) (which apply in the general case 

as well), that one of the <Pa 's and two of the aa are identically zero. Putting all these 

requirements together, for lxl « AN=2, the curve for the theory has the form 

y' "'4A2(no-•t-2)/2 x' [ Jf {x _ </>~)' _ g (x _ mi}] 
(n! /2-1) 

(5.23) 

= 4A2(nc-nt-2)/2 X4 II. (x- aa?. 

a=1 

Note that this is the form of the curve m Eq. (5.18) and consequently the arguments 

determining the number of solutions to this identity are identical. The only difference is in 

the number of copies resulting from the discrete symmetry factor ( nc - n f - 2). Therefore 

the total number of N = 1 vacua from the Chebyshev points is JV1 = 2n'(nc- nt- 2). 

ii) nt even, nc odd 
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The Chebyshev point is once again characterized by n f /2 + 1 vanishing <Pa 's: Setting 

A = 1 for notational convenience, the curve becomes· 

(5.24) 

Identifying the .first term in the brackets with (2Tnc -n1 -2 ( Vx /2) )2 the curve for the mass­

less theory at the Chebyshev point is 

Now the order of the zero at the origin is n f + 2; there is a single zero at x = 4 and 

(N -1)/2 = (nc- nf- 3)/2 double zeroes at x = 4cos2 (br/N); k = 1,2, ... ,(N -1)/2. 

As before, it is sufficient to restrict our analysis to a special case with n f = nc - 3, the 

more general analysis beirig similar. For n f = n~ - 3 the curve at the superconformal point 

IS 

(5.26) 

All <Pa 's are zero, and this is consistent with the fact that the discrete symmetry factor is 

nc- nf- 2 = 1. Upon perturbation then, all the <Pa's get small non-zero VEVs, 

(5.27) 

( ¢2 all small) and the curve 

(nc-1)/2 n1 

y2 = x II (x- ¢~) 2 - 4A2x2 II(x- m;}, (5.28) 
a=l i=l 

must be identical to 
(nc-1)/2 

y2 = II (x- aa)2 (x- 4A2 + (3). (5.29) 
a=I 

This identity requires one of the <Pa and orie of the O:a to vanish identically: 

(5.30) 
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leading to the condition, 

(nc-3)/2 nc-3 (nc-3)/2 

x II (x- qi)2
- 41\2 II (x- m;) = II (x- aa) 2 (x- 41\2 + (3). (5.31) 

a=l i=l a=l 

This is solved by assuming 

~2 ~2 2 
'Pl' ... ''P(nc-5)/2 rv m ' (5.32) 

In fact, near x rv m 2 , the curve can be rewritten in the following form after the variable 

change, x = z2
, 

(5.33) 

Here ylc ~ 4>(nc-3)/2 /2A. The rest of the arguments are identical to the previous case 

and we thus find 2nc-3 = 2n1 solutions. We must of course include the discrete symmetry 

factor as well so that we find N1 = (nc- nf- 2)2nl vacua. Similar arguments apply for 

the general case with n f even and nc odd. 

iii) n f odd, nc even 

The Chebyshev point is characterized by (nt + 3)/2 vanishing cf>a's and the curve 

(taking A = 1 ): 

(5.34) 

The first term in parentheses can be identified with (2Tnc-n,-3(-JX/2))2 so that the curve 

can be rewritten as 

with a zero at the origin of order n f + 3. Focussing attention on the special case with 

n f = nc - 3, the curve takes the form 

(5.36) 
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All c/Ja 's are zero, again consistent with the discrete symmetry factor being nc- n 1-2 = 1. 

Upon perturbation the small VEV s cp~ = ( c/Ji, cp~, ... , cfJ!c/2 ), modify the curve to 

nc/2 n1 

y 2 = x II (x- c/J~) 2 - 4A2x3 II(x- m;), (5.37) 
a=1 i=l 

which must be identical to 

nc/2 

y2 = II (x- aa?(x- 4A2 + (3). (5.38) 
a=1 

Now, we must require two aa 's and one c/Ja to vanish identically, 

(5.39) 

and we find an identity of the form 

nc/2-1 nc-3 '-- nc/2-2 

II (x .:._ cfJ!?- 4A2 II (x- m;) = x II (x- aa) 2 (x- 4A2 + (3), (5.40) 
a=1 i=1 a=l 

which cari be solved consistently by assuming 

-+..2 -+..2 2 
'+'1' •.. ''+'nc/2-2 ,....., m ' (5.41) 

As in the earlier cases, for small x,....., m 2 , the identity (after the customary variable change) 

assumes the form: 

nc-3 

II (z + mi)(z- mi), 
i=l 

(5.42) 

where y'c ':::::. 4J!c/2 _ 1 /2A. This has 2n1 distinct solutions with 'rtc-":J-2 copies. Extending 

the above arguments to the general case, we find that the Chebyshev (superconformal) 

point yields N 1 = ( nc - n 1 - 2 )2n t vacua upon mass perturbation. 

iv) n f odd, nc odd 
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We now turn to the final possibility wherein both n f and nc are odd. The Chebyshev 

solution is obtained by taking ( n f + 1) /2 of the <Pa 's to be zero: 

(5.43) 

The first term in parentheses can be identified with the square of the Chebyshev polynomial 

Tnc-n 1 -2(vfx/2) and the curvebecomes: 

Now the order of the zero at the origin is n f + 3. For the special case with n f .....: nc - 4, 

the curve is of the form · 

(5.45) 

All except one of the <Pa 's are zero and the non-zero <Pa can have two possible val­

ues ±2A 2 which is consistent with the Z 2 discrete symmetry. Upon perturbation, 

</J~ = (</Ji,</J~, ... ,</J(nc-i)/2 ), where all the VEVs are small except </J(nc-1)/2 "'A2
, the · I 

curve takes the form 

(nc-1)/2 n1 

y2 = x II (x- <P~?·- 4A4x2 II(x- m;), (5.46) 
a=1 i=1 

which must be identical to 

(nc-1)/2 

y
2 = II (x- aa)2 (x_- 4A2 + {3). (5.47) 

a=1 

Since the curve (5.46) has a zero at the origin, we conclude that one of the aa's is zero 

which in turn implies that one of the <Pa 's must be zero also, 

(5.48) 

Therefore, we find 

(nc-3)/2 nc-4 (nc-3)/2 

x II (x- </J~) 2 - 4A4 II (x- m;) = II (x- aa?(x- 4A2 + {3). (5.49) 
a=1 i=1 a=1 
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A consistent solution can be found by assuming 

~2 ~2 2 
'+'ll'''l'+'(nc-5)/2 I'V m' (5.50) 

Further we also need to assume that 

(5.51) 

For small x rv m 2 , this allows us to rewrite the above identity in a simplified form after a 

variable change x = · z 2 : 

(5.52) 

This equation has precisely 2n1 solutions with nc- nt- 2 copies required by the discrete 

symmetry of the theory. Gen~ralizing these arguments appropriately we conclude that 

for general nc odd and n f odd. the total number of N = 1 vacua generated· by mass 

perturbation of the Chebyshev point is N1 = (nc- nt- 2)2nf. 

5.2. Equal mass perturbation at Chebyshev points 

We now turn to the case where the quark masses are all equal and non-zero, mi = 

m 0 =/= 0. Recall that this theory was analyzed earlier in the large-jilimit. It has a U(nt) 

flavor symmetry which is spontaneously broken to U(r) x U(nt- r). Let us now see how 

this comes about in the small-J-t regime from the viewpoint of the associated Seiberg-Witten 

curves. 

We study the case where both n f and nc are even and n f = nc- 4. The generalization 

of the relevant arguments to different numbers of flavors and colors is quite straightforward. 

When the quark masses are all equal mi = m 0 =/= 0, Eq. (5.20) takes the form 

["[((z2- ¢~)+,fez ""f[(z2- <>b)] 

=(z2 - m~)(nc-4). 

(5.53) 
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A direct application of the arguments of the previous section reveals that there are only 

(nc- 4)(nc- 3)/2 distinct solutions. However, this is not equal to the number of vacua 

remaining after SUSY-breaking. The vacuum number and the physics of these points 

is revealed by the form of the curve at these points. Recall that solutions to the above 

equation may be found by equating one of the factors on the left hand side to the product of 

any nc -4 terms on the right hand side so that the two resulting equations are interchanged 

under z -t -z: 

nc/2-2 nc/2-3 

II (z 2
- <t>~) + vc z II (z 2

- ab) = (z + mo)(nc-4-r)(z- mor. (5.54) 
a=l b=l 

Thus solutions may be classified by the integer r (0 :S: r :S: nc - 4). When 2r :S: nc - 4, 

a factor of (z2 - m6Y appears and this leads to a solution of Eq. (5.54) where r of the 

</>a's and r of the aa's are equal to m5. The remaining 4>a and aa at this point" can be 

determined uniquely. 

Therefore at this particular singularity the Seiberg-Witten curve itself has an overall 

factor of (z2 - m6)Zr = (x - m6)2r. When 2r > nc - 4, the curve in the vicinity of 

the singular point is y2 ex (x- m5) 2(nc-4 -r). Such degeneracies have been analyzed and 

classified in detail in [13] and [14]. In particular in theories with m 0 # 0 and U(nJ) flavor 

symmetry, singularities of the above type were shown to be critical points representing 

N = 2 SCFTs. For 2r # (nc--' 4) these SCFTs are in the same universality class as the 

Class 1 thoories of Eguchi et al [13]. Specifically, when r < ·(nc - 4)/2 the theories at 

the critical points are in the universality class of SU(r) gauge theories with n f flavors, 

and ·that of SU ( nc - 4 - r) gauge theories with n f flavors when r > ( nc - 4) /2. These 

so-called Class 1 theories are trivial (IR free) theories. The r = (nc- 4)/2 theory flows to 

a non-trivial fixed point with SU((nc- 4)/2) gauge symmetry and nf hypermultiplets. 

'. • The emergence of such IR-free and non-trivial superconformal SU(r) gauge theories 

was also noticed in N = 2 USp(2nc) theories in [8]. The physics of the IR-free theories 

is,contained in the Argyres-Plesser-Seiberg [15] effective Lagrangeans which describe the 

degrees of 'freedom appearing at the r-branch roots (non-baryonic roots) in the moduli 

space of SU(nc), N = 2 theories. The SU(r) gauge theories which can be understood 

semiclassically survive in the small mass regime as well, due to the non-renormalization 
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theorems which protect the Higgs branches emanating from the r-branch roots. Upon 

perturbation to N = 1, each r-branch root yields n 1 C r vacua with global symmetry U ( r) x 

U(nt- r)- this result was also established in [8]. The flavor symmetry breaking patterns 

are identical to those observed semiclassically. Therefore, including the discrete symmetry 

factors , the total number of N = 1 vacua from the Chebyshev point in the equal mass 

theory 

(5.55) 

The above arguments and statements can be directly carried over to all the other cases, 

except that when n f is odd no nontrivial theories of Class 2 or Class 3 are encountered -

only the IR free theories of Class 1 are found at the critical points. 

What happens if we now send the masses to zero? Clearly, all the r-branch roots 

merge together in this limit and the curve has the form y 2 
rv xnc for nc-even and y 2 

rv xnc-l 

with a USp(2n f) global symmetry. The criticality of the curves and the USp(2n f) global 

symmetry suggests that these theories belong to a new universality class of nontrivial 

conformal field theories. We conjecture that these are strongly-interacting theories with 

mutually non-local degrees of freedom. Such interacting SCFT's were also encountered in 

the analysis ofthe N ... 2, USp(2nc) gauge theories in (8]. In that context, the monodromies 

of the singularities were also explicitly checked to show the appearance of mutually nonlocal 

light degreef'i of freedom. 

5.3. Mass perturbation at the APS special point 

The analysis of [9] showed that along the roots of the r~branch there exists a special 

point with r = nc -:- 2n f- nc + 4 where the hyperelliptic curve degenerates maximally, and 

leads to an N = 1 vacuum on introducing an adjoint mass term. As we saw earlier this 

singularity appears as a consequence of mutually local monopoles becoming simultaneously 

light. We have also seen, using the effective Lagrangean at this point, thatin the presence 

of quark masses this special point gives rise to N2 ground states belonging to the so­

called second group of vacua with approximate USp(2n f) symmetry. Let us now see how 
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this group of vacua shows up m the language of the hyperelliptic curves after a mass 

perturbation. 

Since the special point is at the root of an r-branch with r = nc, and a gauge symmetry 

enhanced to SO(nc), we must set r = nf- ~c +2 </>a's to zero when nc is even and 

r = n f - nc2- 3 <l>a 's to zero when nc is odd. 

For even nc the curve at this point becomes , 

(5.56) 

As argued in (9] the remaining </>a's are given by</>~= (w,w 2 ; ... ,wnc-nt-2 )A2 , where 

w = exp nc-~1 _2 . With this choice of the Coulomb branch VEVs, the expression in the 

brackets in Eq. (5.56) becomes a perfect square, 

y2 = x2n1 -nc+5 ( xnc-n1 -2 _A 2(nc-n1 -2)) 2, (5.57) 

implying maximal degeneracy of the Riemann surface. Similarly, for odd nc, we set r = 

nt- nc2-3 <!>a's to zero, and the curve becomes 

(5.58) 

By choosing the remaining </>a's as above, the curve takes the form 
. . . 2 

y2 = x2n1 -nc+4 (xnc-n 1 -2 _ A2(nc-n1-2)) (5.59) 

Note that in both cases the order of the zero at x = 0 is odd, implying that the mass 

splitting of this point gives just one class of vacua, as in the U Sp(2nc) case [8]. Therefore 

upon mass perturbation, all large zeros remain doubled, near the roots of xnc-nt-2 -

A2(nc-nf - 2 ) = 0, with linear shifts which are uniquely determined. 

In order to find the number of vacua, it suffices to study the small branch points, i.e. 

the perturbation of the roots at x = 0 by the quark masses. Consequently we may ignore 

.;r.-dependence of the factors (x- </>~) 2 wherethe unperturbed </>a's are large (comparable 

to the nonperturbativescale). Now the small </>'s must be such that 

~c/2 nt 

y 2 = A4(nc-2 -n,) x 11 (x- </>~?- 4A2(nc-2-n')x3 IT(x- my), nc =even, (5.60) 
a=l i=l 
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or 
(iic-1)/2 n1 

y2 = A4(nc-2-nt) X II (x- c/>~)2- 4A2(nc-2-nt)X2 II(x- m;}, nc =odd, (5.61) 
a=l 

is maximally singular. These are precisely the curves of theIR free SO(iic) theories with 

n f hypermultiplets having generic nonzero masses. Potential N = 1 vacua can now be 

identified by choosing r of the c/>~ 's to match r of the•distinct quark masses mf. This can 

of course be achieved in n 1 Cr ways. Then, for jxj << mf, (i = 1, ... r) the curve has the 

form 
(iic/2-r) r n1 

Y2 = A4(nc-2-nt) X II (x- c/>~? II(mt)- 4A2(nc-2-:-nt);z;3 II(mf); nc =even, 
a=l i=l i=l 

(5.62) 

when there are an even number of colors. Up to overall multiplicative constants this is the 

curve for a pure N ,; 2 gauge theory with SO( iic - 2r) gauge symmetry. This theory will 

obviously yield w( nc - 2r) vacua upon deforming to N = 1. Analogous arguments apply 

for the nc odd case and therefore we have shown that the special point of APS does indeed 

give rise to 
[iic/2] 

N2 = L w(iic- 2r) n 1Cr + n 1Cnc/2 (5.63) 
r 

N = 1 ground states. 

In all the cases analyzed above the location of the Chebyshev vacua (e.g. number of 

vanishing cPa's) is simply not compatible with that of the special point. For instance, for 

n f even, nc: even, the coincidence of the· two points would imply· n f · _:__ ~c + 2 • = . n; + 1, 

which is·an impossible relation (since we limit to AF cases nt <nc- 2.) This means that 

the Chebyshev points and the special points·are distinct and well-separated in theN= 2 

moduli space. 

5.4. Summary 

In all cases we find that each of the nc - n f ~ 2 Chebyshev points on quantum moduli 

space gives rise, upon generic mi perturbation, to 2n1 singularitiGS of the desired type, so 

that the total number of N · 1 vacua of the first group is 

(5.64) 
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The situation is rather similar to the case of U Sp(2nc) theories. Around the special point 

(baryonic like root), there are J\!2 singularities (N = 1 vacua). J\!1 + J\!2 coincides with the 

total number of the vacua found from the semiclassical analysis and and at large f.-L· 

6. Semiclassical monopole multiplets and singularities of QMS 

In their seminal papers on the exact solution of N = 2 supersymmetric gauge theories, 

Seiberg and Witten assumed that the monopoles which become massless at a singularity of 

the quantum moduli space are smoothly related to the massive semiclassical monopole of 't 

Hooft and Polyakov present at large u = (Tr<I>2
). Such a connection has been confirmed in 

SU(2) theory with nonvanishing flavors, through the study of the flavor multiplet structure 

and fractional quark numbers of these monopoles (21],(22]. 

The situation is however much less obvious in a more general class of N = 2 gauge 

theories studied in [8]and here. In generic SU(nc) and USp(2nc) theories, it was found that 

at the singularities of QMS which survive theN= 1 perturbation J.-LTrci> 2 jp the massless 

states are either dual quarks and flavor singlet monopoles or nonlocal set of dyons. At 

generic r- vacua (in the notation of (8]) the flavor symmetry is broken by condensation of 

the dual quarks. Flavor multiplets of ma~sless monopoles relate smoothly to semiclassical 

't Hooft - Polyakov monopoles only in a restricted set of vacua (namely r = 1, in the 

notation of (8]). It was argued in (8] that the dual quarks appearing in the generic r­

ve~;cua of SU(nc) are the "baryonic components" of the semiclassical monopoles, in the r­

antisymmetric representation of the flavor SU ( n f) group . 

. , . Both in SU(nc) and USp(2nc) gauge theories, an agreement was found between the 

number of N = 1 vacua i~ the first group and the total multiplicity of semi-classical 

monopole states, both of which turn out to be of order 2n1 times a discrete symmetry 

factor which depends on the gauge group. 

•,' We h'ave already seen that the first group of vacua of the SO(nc) theory ~ith equal 

qmirk masses is in the same universality class as the r- vacua discussed above. Therefore, 

it would be interesting to understand the relationship between the light degrees of freedom 

(dual quarks) and the semiclassical monopole flavor multiplets of the SO( nc) gauge theory. 
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However in the generic SO(nc) theories studied in this paper, a puzzle emerges. There 

appears to be an ord~r-of-magnitude discrepancy between the multiplicity of the semi­

classical monopole states in the massless theory (which turns out to be rv 22nt, as shown 

below) and the number of the singularities corresponding to the N = 1 vacua (which is 

rv 2n1 ). Since the number of the latter is well-defined only for generic, nonvanishing bare 

quark masses, we are not facing any paradox here. It is nonetheless interesting to attempt 

to understand the origin of the difference between the situation in the SO( nc) theory on. 

the one hand and SU(nc) or USp(2nc) theories on the other. 

The flavor contents of the semiclassical monopole states in the latter theories have 

been studied in an Appendix of [8]. For SO(nc) gauge group, we first observe that in 

the massless theory (i.e. with vanishing bare quark masses) each Dirac fermion has two 

zero modes in the background of the 't Hooft - Polyakov monopole, in contrast to the 

SU( nc) and USp(2nc) theories. The doubling of the zero modes for each Dirac fermion 

follows from the symmetry of the classical equations. 9 Namely, the Dirac equations for 2nt 

fermions '~Pt, ... , '1/Jn 1 , (/;I, ... , -0n 1 are invariant under US p( 2n f) transformations generated 

by (; -~T); where Bt = B; AT = A. Suppose that one zero mode.for the Dirac 

pair ('1/;I;(/;1) = (iry(r),ry(r)) is found. Now, USp(2nt) transformations generated by Ati, 

A;'1 , which act as an SU(2) C USp(2n f), contain elements 

· ; 2 a a 
ewr1

'
2 =cos-+ i T1 2 sin-

2 , 2' (6.1) 

which act on the ( '1/;1, (/;1) subspace. By choosing a = 1r, the above elements become 

proportional to 

or (6.2) 

showing that if ( '1/;1 , (/;I) (iry(r),ry(r)) is a s<;>lution, so is ('!/;1 ,(/;I) = (-iry(r),ry(r)). Qf 
course, the transformations generated by U(nt) C U,Sp(2nt) give riseto th~zeromodesJor 

other flavors, in the standard way. In all, there are 2n f zero modes. The doubling of the 

zero modes in the massless theory can be also established by the study of Callias' index 

theoremfor SO(nc) theories, which we summarize in Appendix A. Quantization of the 

9 One of the authors (K.K.) thanks D. Kaplan for discussions on this point. 
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fermions introduces theri 2n f pairs of creation and annihilation operators in the zero mode 

sector. One thus expects to find 22
n I monopole states semi classically. We now turn to the 

nontrivial task of explicitly constructing these monopole states in terms of the creation 

operators. 

Call the 2n f zero mode operators b~, where i = 1, 2, ... , n j, a = 1, 2. Let us define 

2nf .operators by 

( i = 1, 2, ... , n f), (6.3) 

where E
21 = 1. (Of course, only 2n f operators among c~ and their adjoints are indepen­

dent.) The standard quantization conditions 

(i,j = 1,2, ... ,nf) (6.4) 

then translate into 

·(i=1,2, ... ,2nf), (6.5) 

which is indeed invariant under USp(2nt)· In terms of c~,c:J the USp(2nt) charges are· 

c2nJt) .( B 
a A* (6.6) 

where(; -~T) is the standard USp(2nt) generators with Bt _:_ B; AT= A. Equiv­

alently, in terms of the original independent operators they are: 

b~ 

n1) ( B ... b2 A* 

(6.7) 

+ ( b~t bnJt -bl . ( B . -ABT. ). 
2 1 ... - b~~) A* 

58 



It is convenient to introduce also "SU(2)" generators, even though they are not symmetry 

operators of the full quantum theory: 

(6.8) 

(6.9) 

nf nf 

1 "'(btibi btibi) 1 "'( ti i ti i) 1 J i j 73 =-~ 1 1- 2 2 =-~ cl C1- C2 C2 =- ijc1c2, 
2 . 4 . . 2 

z=l z=1· 

(6.10) 

for the purpose of constructing the semiclassical spectrum of monopoles. Note that all of 

7i are singlets of USp(2nJ)· Vice versa, the generators of USp(2nJ) in (6.7), are obviously 

all SU(2) singlets, showing that USp(2n f) and SU(2) commute w;ith each other. 

One can construct the Fock space of states by treating any set of 2n f independent 

operators as annihilation operators and defining the vacuum with respect to them. In order 

to see the multiplet structure of USp(2n f) (which is the true symmetry of the system) it 

is convenient to introduce a "vacuum" state IO) defined by 

c~IO) = o, i=l,2, ... 2n1 . 

Various USp(2n f) tensors can then be constructed as follows: 

i) U Sp(2n 1) singlets, 

IO), 7+10), 7iiO), ... , 7~1 jO): 

(6.11) 

(6.12) 

they form a "spin" n; multiplet, with multiplicity n f + 1. Note that 7-~1 + 1 10) = 0; 

ii) 2nf of USp(2nJ), 

(6.13) 

which form the "spin" n 1
2-

1 SU(2) multiplet, with multiplicity 2n
1

C2 X n1; 

iii) Second rank antisymmetric irreps of USp(2nJ), constructed from clicPIO), by sub­

tracting the singlet, 

(6.14) 
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and those obtained by acting on these states with r + up to n f - 2 times. The multi­

plicity is 

(6.15) 

iv) General rank r antisymmetric irrep of USp(2nJ), constructed from 

(6.16) 

by subtracting all possible contractions with Jij. Other rank r antisymmetric irreps 

can be obtained by acting on these with T + up to n f - r times. For instance, for r = 4 

the resulting multiplicity of an irrep of USp(2n f) is 

(6.17) 

In general, for general r, the multiplicity is 

(6.18) 

where the second factor is due to the "SU(2) spin". 

v) Finally, the n ,-antisymmetric tensor, 

(6.19) 

with multiplicity, 

(6.20) 

Clearly, the maximum rank of the antisymmetric U Sp(2n f) t~nsor construct~d this way is 

nf, so the total multiplicity of the states is 

nt 

L(2n,Cr- 2n,Cr-2)(n,- r + 1) + 2n,Cl. nf + 2n,Co. (n, + 1) 
r=2 
_nf n,-2 __ 

= Lzn1 Cr(~J- r +1)- L 2n1 Cr(nt- r- 1) (6.21) 
r=O r=O 
nf-2 2nf 

=2 L 2n,Cr+2·2nlCn,-1+2n1 Cn1 = L2n1 Cr=22nf, 
r=O 
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as expected. 

Semiclassically, these monopole are all massive, and only the degeneracy within the 

same USp(2n 1) multiplet is expected to survive the full quantum effects. When bare quark 

masses are added to the theory, each USp(2n 1) multiplet above decomposes into a sum of 

SU(nJ) multiplets. 

The number <;>f the singularities corresponding to N = 1 vacua we found ("' 2n1) is 

much smaller than that of the multiplicity of the semiclassical monopole states, of the order 

of 22 n1, in contrast to the situation in SU(nc) and USp(2nc) theories. This fact can be 

"understood" from the details of our analysis in section (5.1) on the mass perturbation. 

Indeed, one component of the adjoint VEVS <Pa was found to vanish in all cases for 

the nonvanishing quark masses, see (5.13), (5.30), (5.39) and (5.48). According to the 

Callias index theorem (Appendix A) it means that there is only one zero mode for each 

Dirac fermion in such a background. The surviving zero mode is perfectly normalizable 

due to the exponential damping factor at the spatial infinity, while the other would-be 

zero mode becomes non-normalizable for the case of a finite mass. (The massless limit 

is tricky as there is no exponential damping factor with <P = 0 and the would-be zero 

mode is marginally non-normalizable.) Under these circumstances, one can construct only 

monopole states in the representations of U( n 1) C USp(2n f) group, not of the full group 

USp(2n f), as can be seen from (6. 7)- Aij being symmetric, one needs two independent zero 

modes b~, (a = 1, 2} to get non vanishing N oether charges of US p( 2n 1) / U ( n 1) in the zero 

mode sector). This precisely corresponds to what the authors of [13] found, namely that in 

the massive SO(nc) theory the SCFT's of the first group are in the same universality class 

as those found in the SU(nc) gauge theory. Different r vacua are described by an effective 

SU(r) x U(1)l'~n-r+I theory with n1 dual quarks in the fundamental representation of 

SU(r). (See Table 2.) The sum of these N = 1 vacua then gives ((5.55)) the total number 

of singularities (nc- n1- 2) 2n1. 

The above discussion demonstrates that the counting of monopole multiplicity is a 

subtle issue in the massless quark limit, and clarifies to some extent the differences be­

tween the SO(nc) and SU(nc)/USp(2nc) theories with regard to the flavor structure of 

semiclassical monopole states. Unfortunately it does not shed much light on the dynamical 
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details of these vacua. The physics of these "deformed SCFT" vacua, the precise mech­

anism of symmetry breaking and confinement and the role of the magnetic monopoles 

therein remain to be further elucidated. 
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Appendix A. Callias Index Theorem for SO(nc) Theories 

Start from the index theorem. for the Dirac zero modes [23] 

e w·f3(a) 
N = L na L /32 sgn[(w · <P)- m], 

a=I w 

(A.1) 

where £ and f3(a) are the rank and simple roots of the gauge group considered, w are 

weight vectors of a given representation to which the fermion belongs, and na is the integer 

monopole magnetic charge associated to the a-th U(1) factor of the Cartan subgroup. For 

50(2£), the simple roots are ei - ei+I ( i = 1, 2, ... '£- 1) and ee-l + ee, where ei's are 

orthonormal vectors in an £ dimensional Euclidian space, and one finds 

• e w. f3(a) 
N=LnaL f3Z sgn[(w·<P)-m] 

a=I w · 

1 ' . . 
::;:=2 [ ni { sgn( </J1 - m) - sgn( -<PI - m) - sgn( <Pz - m) + sgn( -<P2 - m)} 

+nz{sgn(<Pz- m)- sgn( -<Pz- m)- sgn(<Pa- m) + sgn( -<P3 - m)} 

+ ... 
+ne-I {sgn( <Pe-1 - m) - sgn( -<Pe-I - m) - sgn( <Pe- m) + sgn( -<Pe - m)} 

+ne {sgn(</Je-1- m)- sgn( -<Pe-I- m) + sgn(<Pe- m)- sgn( -<Pe- m)} ]. 

(A.2) 

The reason for the dependence on signs of ( ±<P - m) is because the would-be zero mode 

behaves as e-(±4>-m)r at the spatial infinity and the zero mode exists only if it is normal­

izable. For example, for SO( 4), £ = 2, the index is given by the formula 

1 
N =2" [ n1 {sgn(</JI- m)- sgn( -<PI- m)- sgn(<Pz- m) + sgn( -<Pz- m)} 

+nz { sgn( <P1 - m) - sgn( -<PI - m) + sgn( <Pz - m) - sgn( -<Pz - m)}], 

so 

</JI > <Pz > m > 0 --+ N = 2 nz; 

<P1 > m > <Pz > 0 ·--+ N = n1 + nz; 

m > <PI > <Pz > 0 --+ N = 0. 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

For general 50(2£), the number of the zero modes depends on the field configuration as: 

<PI><Pz> ... ><Pe>m>O--+ N=2ne; (A.7) 

<P1 > <Pz > ... > <Pe-1 > m > <Pe > 0 --+ N = ne-1 + ne; (A.8) 
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. -.~···· 

<PI > <P2 > ... > <Pe-2 > m > c/>e-1 > 0 --+ N = ne-2; 

<P1 > m > <P2 > ... > <Pe > 0 --+ N = n1; 

m > <P1 > <P2 > ... > <Pe > 0 --+ N = 0. 

(A,9) 

(A.10) 

(A.ll) 

(A.12) 

For S0(2R.+ 1), the simple roots are ei- ei+1 (i = 1,2, . .. ,R. -1) and ee: the index 

. formulais 

1 
N = 2 [ n1 { sgn( ¢1 - m) - sgn( -¢1 - m) -'- sgn( <P2 - m) + sgn( -¢2 - m) 

+ ... 
+ne-1 { sgn( c/>e-1 - m) - sgn( -<Pe-l - m) - sgn( <Pe - m) + sgn( -<Pe - m)} 

+2ne {sgn(<Pe- m)- sgn( -<Pe- m)} ]. 

(A.13) 

In this case the zero mode multiplicity depends on the configuration and .on the monopole 

charges as: 

<P1 > <P2 > ... > <Pe > m > 0 --+ N = 2ne; 

<P1 > <P2 > ... > <Pe-1 > m > <Pe > 0 --+ N = ne-1; 

cP1 > cP2 > ... > <Pe-2 > m > <Pe-1 > 0 --+ N = ne-2; 

cP1 > m > cP2 > ... > <Pe > 0 --+ N = n1; 

m > <P1 > c/>2 > ... > <Pe > 0 --+ N = 0. 

(A.14) 

(A.15) 

(A.16) 

(A.17) 

(A.18) 

(A.19) 

We note that both in S0(2R.) and S0(2R. + 1) theories, the doubling of the zero modes of a 

given Dirac fermion requires that all the <P's to be larger than the mass m. Therefore the 

massless limit and the monopole spectrum discussed in Section 6 is valid when all <P are 

non-vanishing, but when one of the¢> vanishes the would-be zero mode loses the exponential 

damping factor at the spatial infinity and the number of zero modes is ill-defined. It is not 

clear what the spectrum of semi-classical monopole is when one (or more) of <P vanishes 

for the massless quark case . 
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