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Abstract

We determine the vacuum structure and phases of N = 1" theories obtained via a
mass y for the adjoint chiral superﬁeld in N =2, 50(n) SQCD For large number of
flavors these theorles have two -groups of vacua The first exhibits dynamical breaking
of flavor symmetry USp(2ng) — U(n f) and arises as a relevant deformation of a non-
trivial superconformal theory. These are in the confined phase. The second group, in
an IR-free phase with unbroken flavor symmetry, is produced from a Coulomb branch
singularity with Seiberg’s dual gauge symmetry. In the large-u regime both groups of
vacua are well-described by dual quarks and mesons, and dynamical symmetry breaking
in the first group occurs via meson condensation. We follow the Heécfipti(')n of these vacua
from weak to strong coupling and demonstrate a nontrivial agreement between the phases
and the number of vacua in the two regimes. We construct the semiclassical monopole
flavor multiplets and argue that their multiplicity is consistent with the number of N =1

vacua.
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1. Introduction and Summary

Confinement and chiral symmetry breaking are the two central features of strong-
coupling dynamics in non-Abelian gauge theories in general and QCD in particular. In
their seminal work on the non-perturbative dynamics of SU(2), N = 2 supersymmetric,
pure gauge theories [1], Seiberg and Witten explicitly demonstrated that confinement in
the corresponding N = 1 theories could be understood as a dual Higgs mechanism, i.e.
the condensation of magnetic monopoles. In their subsequent work [2] -they also showed
that in theories with matter hypermultiplets, flavor symmetries are broken dynamically by
the condensation of monopole multiplets transforming under 'cér.tain%;réﬁreséntationé of the
flavor group. Although their analysis of the low-energy effective action and confinement
mechanism was extended to more general theories ([3] [4] [5] [6] [7]), the dynamics of flavor
symmetry breaking for more general gauge theories has only reéently beén investigated in
[8] for SU (nc) and USp(2n.) gauge groups. Similar techniques, when applied to SO(n.)
gauge fhéorie_s, yield fesulfs with some unexpeéted features. It is .7the“‘1;ur‘po.své of this
paper to discuss the interesti_ng aspects ‘o.f fhe dynamics of thesé theorieé. One of our
main objectives- is to explore the patterns of flavor-symmetry b_rea{ki.ngvia,nd identify the
dynamical mechanisms involved. |

The models we discuss have N = 1 supersymmetry and are constructed by perturbing
N = 2 supersymmetric SO(n.) gauge theory with ns hypermultiplets in the vector repre-
sentation. The N = 1 preserving perturbatién corresponds to a simple mass—deformation
via a mass-term for the adjoint chiral N = 1 superfield & in the V : 2 Vécto; fnultibiet.

The Lagrangean for this theory is given by

L :%hn Tel [ / a9tV d + / 4?6 %WW] folatks) L AL (1)
Whefe fhe adjoiht mass term ‘ ‘v R
Aﬁzf_dzﬁyTr<I>2 (1Y

reduces the supersymmetry to N = 1, and

o S [ 0101670, +01T00 + [ 013000 4 mi0@) (19
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describes the interactions of the n s flavors of hypermultiplets (“quarks”). The complexified
bare coupling constant is 7| = b —i—s’” The pairs (Q4, Q) = (Qt, nf+1) (t=1,2,...,n5)
make up the N = 2 hypermultiplets in the vector representation of the SO(n.) gauge group.
In the absence of quark masses, the theory also has a global USp(2n¢) symmetry under
whlch the pair (Q}, Q') transforms as a 2ns-plet. The N = 1 chiral and gauge superfields
=49+ V204 + ...,and Wo = —iX + £ (0#5”)8 F,, 05 + ... are both in the adjoint
representation of the gauge group.

As in [8] we shall consider adding, besides the adjoint mass, small generic nonvanishing
bare masses m; for the hypermultiplets ( “quarks”). Non-zero quark masses in the N. =2
theory lift the flat directions associated with Higgs/mixed branches, leaving a Coulomb
branch with isolated singularities. As usual, a subset of these singular points are special in-
that they yield N = 1 supersymmetric vacua upon introducing the adjoint mass. Thus we
obtain a finite number of isolated N = 1 vacua — keeping track of this number in various
‘regimes of the (u,m;) parameter space allows us to perform highly non trivial checks of
our. analysis.

- For small adjoint masses y << An=g and m; = 0 (Ay=2 is-the dynamical scale of
the N = 2 theory) we find that the N = 1 vacua are produced as perturbations of two
singular points on the N = 2 Coulomb branch: L

i) One where the hyperelhptlc curve exhibits crltlcal behav1or of the type y* oc gt
- for ny even and n. even; y?> o ™12 for ny even and n, odd, y x x"f+3 for ny. odd
and nc even or odd. The light degrees of freedom are mutually non-local and the theoryv
ﬂows to an 1nteract1ng N =2 superconformal theory. We shall refer to this pomt as the
“Chebyshev point” because its position in the N =2 moduh space is glven by the roots
of a Chebyshev polynomial. _ | - | B

-ii) The other singular point is the so-called “special .POi;I.l-,t” which was identified l;y
Argyres, Plesser and Shapere (APS)_in.[Q]. At this Coulomb b‘ra,rla(_:h singularity the gauge
symmetry is enhanced to SO(2ny — n. +4) and Seiberg’s duel__g‘quge group [10] [11] [12],
makes an appearance.

The above two points are distinguished from other generic Coulomb branch singular-

ities in that they correspond to points of maximal degeneration of the Riemann surface
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associated with the hyperelliptic cﬁrves for the theory. It should be noted that the Cheby-
shev point associated with the N = 2 SCFT was not considered in the work of [9]. How-
ever, as we will see subsequently it potentially plays an important role in the appearance
of Seiberg’s dual theory in the N = 1 limit.! By analyzing the curves in the vicinity of

these points, we find that there are
M =(n.—ns—2)-2" ' (14)

vacua with IV =-1 SUSY originating from the Chebyshev singularity upon mass perturba-
tion. The special point of APS gives rise to

Ny =N — M, (1.5)

vacua, N being the total number of supersymmetric vacua given by

min{[nc/2],ns}

N= Y wne=2)nCr+nCu.. (1.6)

n r=0 L _ . ]
Here w(NV) is the Witten index for SO(N) gauge group with w(NV) =N-2for N3>5
and w(N) =4,2,1,1,1, for N =4, 3, 2. 1,0, respectively. The last term in Eq. (1.6)
is present only for 2n § > n. and n, = even. ‘The physics of these S O(n.) gauge theories
produ:cebd’ by peff;urbing'the two Coulomb branch singularities in the -fegirhé where the
adjoint mass p < AN=2', m; — 0 and an > n, — 2, can'be summarized as in the Table 1.
The interacting CFT on the N=2 Coulofnb Abra"néh ‘ﬂows to vacua in the cOnﬁning phase
upon introducing the relevant perturbation corresponding to the adjoint mass. On the
other hand, the theory at the special point flows to a free magnetic phase or non-abelian
Coulomb phase (depending on the number of ﬂairors)' in the limit where the quarks are
strictly massless. For finite quérk masses, it yields a set of isolated vacua in Higgs; Coulomb
and confining phases. o |

1 Similar SCFT’s were also discovered in [8] for SU(#n.) and USp(2n.) theories..
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‘Label Degrees of freedom | Eff. gauge group Phase Flavor group

First group | Mutually nonlocal - Confining U(ny)
(deformed SCFT)

Second Group Dual quarks | SO(2n f—nc+4)| Free magnetic or USp(2ny)

non-abelian Coulomb

.. Table 1: Phasés of the N =1 SO(n.) theory with 2n flavors and.,u K An=2.

.- .1.As,we discuss below, an extremely non-trivial check of this picture is obtained by
analyzing the theory in a completely different limit, namely p >> An=».

.. One feature that distinguishes the two groups of vacua is that the first group exhibits
dynamical flavor symmetry breaking to U(ny), while the full USp(2n;) global symmetry
remains unbroken in the second group.. '

- -Since we do not have a Lagrangean description -of the low energy effective theory at
the Chebyshev point, the symmetry breaking pattern can only be obtained by aﬁalyzing |
the theory at large p >> Apn=2 where we do have a useful effective description of the
theory. In the large-u regime, the adjoint scalar gets 'frozen out and the theory may be
described in terms of rﬁesons" and dual quarks [10] [11] [12]; with a classical éuperpotential
for the mesons obtained by integrating out. the adjoint scalar. The resulting vacuum
structure of the large-y1 theory mirrors the small-p regirﬁe outlined- above. In particular
we find two groups of vacua —:one which is USp(2n)-symmetric, while the other is only
U(ny)-symmetric due to the dynamical condensation of mesons. Moreover we find a total
of precisely A = (n, = nyg—2) - 2" vacua with U(ny) flavor symmetry, and this allows
us to identify these theories as the large-p counterparts of the Chebyshev vacua that we
encountered above.

“The second group of vacua, with unbroken flavor symmetry, is in the non-Abelian free-
magnetic phase. In the large-p regime the low energy degfees of freedom are the dual quarks
and mesons, whose interactions.are described by an infrared-free SO(7i.) = SO(2ns—n +4)
theory. There are no meson condensates and thus no dynamical symmetry. Breaking takes

place. In the small-u regime these are described by a local effective Lagrangean which was
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identified by APS in [9] The multiplicity of the second group of vacua also matches that _
found from the analysis of the curve at the special point. '

Vacuum counting in both the large and small-y regimes thus provides a non-trivial
demonstration of the fact that the Chebyshev point does indeed yield N =1 supersymmet- . -
ric vacua which were not considered in [9]. Imﬁortanﬂy, the behavior of the meson VEVs |
in the decoupling limit (& — 'oo'. with the N = 1 dynamiical scale fixed) is rather interesting.
The meson-condensates vanish and the two-¢lasses of vacua merge. This suégestsf that the
physics of the Chebyshev point on the N = 2 Coulomb branch needs to be understood in
~ order to explain the origin of Seiberg’sd’Ual degrees -of freedom (the mesons in particular)
in N =1 SUSY-QCD.

Though we understand the pattern of flavor symmetry- breaking at the Chebyshev
point, we do not have a clear picture of the microscopic mechanism involved. In partic-
ular, while we know that in the large u regime the relevant mechanism is the dynamical
condensation of mesons, we have no clear understanding of the light degrees ‘of freedom
that. condense in the small p description of the theory. However, in the case where the
quark masses are nonvanishing and equal, i.e. mi = mg # 0, we can accurately analyze
the low energy dynamics in the vicinity of the Chebyshev point. Perhaps this will shed
some light on the physics in the m = 0 case as well. The flavor symmetry group of the
underlying theory is now broken explicitly to U(ny). Analysis of the theory atlarge u re-
veals that the first group of vacua splits into several subgroups each labelled by an integer,
r=0,1,2,...,[ns/2], and with flavor symmetry U(r) x U(ng—r). .

‘In the small-y regime on the other hand, the form of the hyperelliptic-curve at these
singular points confirms this picture. In particular, the curve becomes critical'at each
of these points and the criticality of the curves (following the classification of [13] and
[14]) suggests that these theories are in the same universality class as the IR-free theories
encountered in the work of Argyres, Plesser and Seiberg [15] at the roots.of the r—Higgs
branches of SU(n.) SQCD. Each of these theories is-described by a local eflective gauge
theory 3 la Argyres-Plesser-Seiberg, with gauge group SU(r) x U(1)[F1-7t1 and n; (dual)
quarks in the fundamental representation of SU(r). Indeed, the gauge invariant composite

VEVS characterizing these theories differ by some powers of m, and the validity of each
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effective theory is limited by small fluctuations of order of m around each vacuum. In the

limit m — O these points in the quantum moduli space (QMS) with different symmetry

properties collapse into one single point. In this limit, at the Chebyshev point the criticality
of the curve is of the form y? « 2 ** for n. even.and y* o z™*2 for n. odd, indicating
the appearance of an interacting SCFT ([13] [14]).

. The phases and degrees of freedom in the first group of vacua with m; = mo # 0 and

p << AN=2 are summarized in Table 2.

Label (r) Degrees of freedom | Eff. gaugé groﬁp ~ Phase | - Flavor gréup

r=20 monopoles U(l)["?c » confining U(ny)

r=1 monopoles 7 U(l)(%l - |confining | U(ny —1) x U(1)

r=2,...,[ng/2] dual quarks SU(r) x U(l)[';_c]—rﬂ confining { U(nyg —r) x U(r)

“*Table -2 The first group of vacua of SO(n.) gauge theory with 2n; flavors and

m; :"’I’)’Lo;é 0.

One of the most interesting outcomes of the large  analysis discussed above, is the
identification and tracking — at large and small m;’s — of vacua in distinct phases, such.as
Higgs, confinement (magnetic Higgs) or Coulomb. In contrast to the theories considered
in [8], SO(n.) gauge theories with ‘quarks in the vector-representation present a clear
distinction between Higgs and confinement phases since the behavior of the Wilson'loop in
the spinor representation is qualitatively different.in the two cases. ‘Therefore, unlike other
examples (as in [2] for SU(2)) a Higgsed-vacuum in the semiclassical regime (large m;)
must.-remain in the Higgs phase in the strong-coupling regime (m; — 0) as. well. Failure
to do so would imply a.phase transition which in turn is forbidden by holomorphy in
m; or, N = 1 supersymmetry. We find nontrivial agreement between phases and vacuum
counting in both the semiclassical (large m;) and quantum (small m;) regimes and .find
results consistent with the absence of any phase transitions. In particular, vacua which
appear to be in the Higgs (or Coulomb) phase semiclassically, can be explicitly shown in
the strong coupling regime to be in a magnetically confined (or magnetic Coulomb) phase.

The paper will be organized as follows. We first establish, in Section 2, the number of
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supersymmetric vacua by analyzing the theory semiclassically. By N = 1 supersymmetry
and holomorphy in ¢ and m;, these results, valid at large p and m;, are also correct at
small values of these parameters. |
Next, in Section 3 we determine thevpattern of dynamical symmetry breaking in each
vacuum at largé ¢ (and small generic m;). In all cases we reproduce the correct number
of vacua starting from thé known N = 1 low-energy effective Lagrangean, adding to it the
term arising from integrating out the heavy adjoint field ®, and minimizing the potential.
The task turns-out to be quite nontrivial since in the SO(n.) theory the form of the -
superpoténtial and the effective degree'sl.of' fr\ee.domuv'ary with n. and ny andfhere are .
many cases to be studied separately. ‘ ' |
Section 4 and 5 are de_%/oi:ed to the study of the theory at small 4 and small m;’s. :
‘_ The analysis requires the exact solution of these theories in the N = 2 =0) hrmt
[3] in terms of the corresponding hyperelliptic curves. First we re:analyze the low-energy
effective Lagrangean at the “special point” obtained by Argyres, Plesser and Shaperé in
[9]. However, this effective theory yields only the USp(2n)-symmetric vacua. We then
perturb certain superconformal (Chebyshev) points on the exact curve, and show that
all'the vacua with dynamical symmetry breaking to U(ny) are indeed related to different
classes of interacting SCFT’s. . o
~ We conclude with a discussion on the semiclassical monopole states in SO(n.) theo-
ries, which display certain qualitative differences from the cases of SU(n.) and USp(2n.)
theories.. In the latter case, an order of magnitude agreement was found between the
multiplicity of semiclassical monopole states and the number of N = 1 vacua. This fact
led the authors of [8] to relate the light degrees of freedom condensing in these vacua
with semiclassical monopole multiplets. A naive attempt to perform a similar analysis for
S0(n.) gauge group seems to fail because of a mismatch in the counting. We provide an
explicit construction of monopole flavor multiplets and show that this puzzle arises only
in the case with strictly massless quarks. -Since one obtains isolated N = 1 vacua only
upon’ introduction of non-zero quark masses, we claim that the contradiction is resolved.
Furthermore, this construction will perhaps provide a clue as to which monopole multiplets

condense at the Chebyshev points to dynamically break the flavor symmetry group.
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2. Semiclassical Vacua of SO(n.) SUSY-QCD

We_begin by exploring the classicalvacuum structure of softly brokcn N =2 SVUSY—Y
QCD (with N =1 supersymmetry) Wlth nf quark hypermultlplets and SO(nc) gauge
group Although in general the classical picture will be altered by large quantum correc—
tions, in certain situations (when the quark masses m; are. non zero and large compared to
the strong coupllng scale of the theory) the classxcal analys1s may be used to obtain infor-
mation that is expected to be valid in the full quantum theory as well. In partlcular useful
and relxable information on the number of vacua and the symmetry breakmg patterns (m
some cases) can in fact be obtalned from a purely semiclassical analysxs As noted earlier,
the superpotentlal for thls theory is glven by |

W = §,uTr<I>2 +V2QL2,Q1d 55 + —Z-mijQZqu 2.1)

where

0 1 (o0 1 :
‘]I:(—r 0)’ m=<1 0>®dlag(m1,mz,---,mn,). (2.2)

Note that pairs of quark mult1plets (Q:,Q: +l) (t=1,2,...,n5) constitute an N = 2
hypermultiplet. The scalar ﬁeld P belongmg to the N = 2 vector multiplet is in the ad‘]omt.
representation of the gauge group so that @ab =t 44 with

1
tab =3 (00,408,441 — da,4+10b, 4] (2.3)
representing the generators of SO(n.) rotations in the ab plane.

The 1 = 0 theory (with N = 2 SUSY) has a Zan,—2n, -4 X SU(2)r R-symmetry ?
which is spontaneously broken to Zz x SU(2)g by the VEV of Tr¢?. Inthe N =1 theory
with ,u # 0 on the other hand the adJ01nt mass exphc1tly breaks the R—symmetry down
to Zz The addltlonal ch_n -2 dlscrete symmetry of the parent N = 2 theory then acts

2406

on the vacua of the N =1 theory via permutat1ons

2. The U(1)r symmetry.of the g4 = 0 theory is broken by instantons to Lisni-ang -8, @ Lo

subgroup of which is isomorphic to {=1)F in the Lorentz group.
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In the m; — 0 limit this theory has a USp(2n £) flavor symmetry under:which the
N =1 quark multiplets transform as vectors, while all other ﬁeldsare singlets®. Although
the USp(2n ) flavor symmetry is broken to U (1) for generlc non-zero values of the quark
masses When the quark masses are all taken to be equal and nonvamshmg, m; = mg 76 0
al (n ) global symmetry is preserved

As we will see the global USp(Qn f) symmetry of the m; = O theory and the U(ny)
symmetry of the 7 m; = mo # 0 theory, will also be broken spontaneously (or dynamlcally)
at various N = 1 vacua Where certain fields (correspondmg to the hght degrees of freedom
at the Coulomb branch singularities of the y = 0 theory) condense and obtaln VEVs.

The classical vacuum structure can be obtalned by solvmg the D and F-term equatlons:

[cﬁﬂ];o, _ | (2.4)
mQitQ! o V' (2.5)
VaQUQi opat =0, (29)
Va8 Q]I + mi QL = 0. (2.7)

We Wlll assume that the quark masses take on generlc non-zero values
Since the D-term equation (2. 4) requ1res ' to live in the Cartan subalgebra of the

gauge group, we may use general gauge rotatxons to wrlte & in the form

(Lo *) o \

. (&™) S

o i ‘.' l“‘” ﬁ¢wdn)
\ - <-¢@Jﬂ' "))

In add1t1on when n, is odd there is a null row and null column in the <I> matrlx The F-

ferm condmon (2.7) also implies that non-zero squark ﬁelds Q’ (z = 1, 2,_. .,n f)-must be

3 The superpotential itself is in fact invariant under Sp(2ny) transformations in the massless
limit. The invariance of the kinetic terms-however requires the transformations to be unitary as

well so that the massless theory has only a USp(2hy) global symmetry. -
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eigenvectors of ® with eigenvalues m;/+/2, while the squarks Q*+"s, (+=1,2,...,nf)must
be eigenvectors with eigenvalue —m;/+/2. Since the eigenvalues of ® are in fact +ig;, the
non-zero {¢;} should be taken to equal {£im;/+/2}, modulo permutations which represent
the action of the Weyl group on a giveﬁ solution and are therefore gauge equivalent. Solu-
tions with different choices of signs for the {¢;} can also be shown to be gauge equivalent.
(However, this is not always true as will be discussed in more detail below.) Finally, for
every vanishing eigenvalue ¢; both the eigenvectors QF and Q**" must vanish. Hence
one may classify the semiclassical vacua of the theory according to the number of non-zero
$:’s, or equivalently the number of nontrivial eigenvector pairs (Q*, @**"/). The solution

for ® with eigenvalues mq,ms, ..., m,, is then:

(<.—im:1.liiml> o | \
)

d=_ 2.9
(. . z'mr) |
—im, ‘
\ 7 o)
The corresponding squark VEVs for the flavors i = 1,...ny are rg_i.ven by
' —)Z':'l,'z...nf
/ d 0 0 -0 0.-;.\
—1d, 0 0 0 0...
0 d, 0 0 0...]
. 0 —idy O 0 0.. (2.10)
Il P Fooo.. R
0 0o o0 - d- 0..
0 0 0 --- —id. 0...

Thisform of the VEVs is completely constrained (up to.an overall phase) by the eigenvalue
| equations obtained as a cbnsequence'of the F-term conditions.* The phases may always be
“set to zero by independent SO(2) gauge rotations generated by the Cartan subalgebra leav-

ing. the VEV of ® invariant. The fields Qf,+n’ : also'obtainzsimilar»VE\/s, their magnitudes
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and phases being constrained by (2.5) and (2.6), so that:

(Ci;[ 0 0 0 0.\
{id 0 0 0 0...
0 dy, 0 0 0..
.y 0 i, O 0 O0..
2 ’nf _ .
Q=1 S0 (2.11).
0 0 . 0..
0 0 0 id, 0..
\ o S
with . ,
) i i .
Idr| = |dx; Re (d;d;) = —p : (2.12)

~ Clearly, from the form of the above solutions a classical vacuum with r pairs of nonzero
eigenvectoﬁs, or equivalently 7 non-vanishing ¢;’s has an unbroken SO(n. — 2r) gauge
symmetry. ?’Furthermore, in the presence of the non-zero N = 2-breakiﬁg term ,u,‘ it can be
shown thati all quark multiplets charged only under the unbroken gauge group aré massive
in such a vacuum. The 10w—energy theory is thus expected to be in the same universality
class as pure supersymmetric glue with SO(n. — 2r) gauge group. Such vaé'ua with an
effective SO(n, — 2r)b gauge symmetry will henceforth be referred to as “r-vacua”. The
T nonzero eigen\}al.ues may be vc.hosen in (nrf ) distinct ways, each corfesponding to a
distinct classical r-vacuum. By standard arguments, each such classical theory must yield
w(ne — 2r) quantum vacua, w being the Witten index for the pure SO(n. — 2r) SUSY
gauge theory. For N > 5 the Witten index w(N) = N —2 while for N =0, 1, 2, 3, 4
it takes on the values 1, 1, 1, 2 aﬁd 4 respectively. Thisse_rhi—classical counting therefofe

gives rise to a total of A vacua where

min{[n./2],ns} - n n '
N = Z w(ne — 2r) < rf) + (nj2> ) (2.13):

r=0

As explained below the last-term-must be included only when ny > n;/2 for n; even: This
may be understood by first noting that for ny > n./2 and n, even, the baryon operators
which label gauge-inequivalent vacua are non-vanishing only when r =n;/2. -Secondly we

observe that the squark VEVs get interchanged as Q' < Q**"/ under m; — —m; which
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corresponds to flipping the signs of certain eigenvalues of ®. (Recall that the eigenvalues
are determined only up to a sign which can be gauged away when r < n./2). When
r = n./2, under an odd number of Q; <> Qitn, flips the non-zero baryon VEVs change
sign, thus yielding a new gauge-inequivalent set of ,,Cy_/, vacua. For r < nc/2 all thé
baryon VEVs are identically zero and the sign flips do not yield new vacuum states?.

Note that for 2nf < n. — 5, the above series can be summed and gives
,/\/ Nl (nc—nf——Z) 2" = (27%—271{— 4)~2"f—1. (2.14)

" One expects the above semiclassical enumeration of vacuum states to be valid for
large hypermultiplet masses (when all the matter fields are very heavy compared to the
N =2 dynaﬁical scale). However, holomorphy properties of the supersymmetric théory
ensure that the above results for the number of vacua continue to hold as we smoothly
dial the masses to smaller values.(compared to the dynamical scalé). A similar statement
applies to'the flavor symmetry breaking patterns for the theory with equal and non-zero
hypermultiplet masses m; = mgo # 0. Recall that the theory with m; = mgo # 0 has
a U(ny) flavor symmetry. The classical solutions above imply that this flavor symmetry
is“spontaneously broken-in the N = 1 vacuum with SO(n. — 2r) gauge symmetry to
U(r) x U(ns = r). The first factor of U(r) can be understood as the combined action of
flavor and global gauge transformations that leave the VEVs (2.10) and (2.11) unchanged
(for equal quark masses). The remaining U(ns — r) is simply the subgroup of U(ny) that

4 Hére we gi;/e an alternate explanation for the appearance of the additional » C., /3 vacua
forin. even and n; > n./2. This additional set does not appear in the case when n. is odd. As’
notéed-earlier, the non-zero eigenvalues ¢; are determined only up to a sign. However, whenever
there is at least one zero-eigenvalue (as is always the case for n. odd) this sign can be rotated
away by an SO(n.) gauge element of the form dxag(l L...,03,1,...,-1) where o3 is the Pauli
matrix. For even Ne, zero—elgenvalues are possible only when r < ﬁc/2 When r=n./2 (Wthh
can happen only when 7y > n./2) a solution with {¢;} = (=, —ma,+ms, ..., +my,,2) for
example, can be gauge transformed into {¢;} = {4+m;} by the action of the SO(n.) gauge element
diag(os,03,1,...,1). In general (for 7 = n./2) solutions with an odd number of ¢;’s equal to —m;
(rather than +m;) can be shown to be gauge equivalent, while solutions with an even number of
¢i’s equal to —m,; form a distinct equivalence class. Since the two classes are gauge inequivalent,

this leads to an additional set of , C.,_ /2 vacua.
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rotates the ny —r sqﬁarks with vanishing VEVs. One can easily argue that this classical
pattern of symmetry breaking will be reproduced in the full quantum theory as well, so
that in each r vacuum the U(ny) flavor symmetry is indeed broken to U(r) x U(nf —r).
Once again holomorphy guarantees the validity of our conclusions for small masses as well
(at least for all mg #°0). In the following sections we will explicitly see how this is realized
in the full quantum theory.

We remark that the classical analysis cannot be used to draw any conclusions about
flavor symmetry pattérns in the limit of vanishing quark masses. In the m; — 0 limit,
while classically one would expect the flavor symmetry to be completely restored, quantum

mechanically we will find very different results.

3. Dynamical symmetry breaking at large u

In the previous section we obtained.,the vacuum structure of softly broken N = 2
SUSY-QCD in the classical (or semiclassical) regime. We will now analyze the same
theory in a very different limit— namely, when the adjoint mass y is taken to be.much
larger than the dynamical scale of the N = 2 theory. In this limit (when p-is large, yet
finite), one may consistently integrate out the adjoint scalar ® to obtain a low-energy
effective N. = 1 superpotential. Thellatter effective theory can be determined precisely
using our knowledge of the low-energy degrees of freedom of N = 1, SO(n.) gauge theories
which were extensively studied by Intriligator and Seiberg in [11]{12] and [16]. The theories
studied in {11][12] and [16] can be recovered from the theories we stu(iy, dnly_ in the strict
decoupling limit which corresponds to sending u to infinity, holding fixed the effective
N = 1 strong-coupling scale. Depending on the number of massless flavors in the vector
representation the low energy degrees of freedom are mesons and/or monopoles and in
some cases exotic composites as well; when the numbef of ﬂavors is sufficiently large,
the low energy dynamics is described by dual (magnetic) gauge theories with quarks and
gauge-singlet mesons. | |

. The analysis of these theories will reveal the flavor syrr_;mvetr-y‘ bfeaking patterns in both

the m; — 0 and m; = mg # 0 cases. We emphasize however, that we will always work
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with the assumption that the masses are strictly non-zero and then observe the behavior
of the symmetry-breaking condensates as we take m;/An=2 < 1.

In what follows, we summarize the results of this section. The reader who wishes to
skip the technical details can jump to the next section. Based on the analysis, we find that
the-vacua can be classified into two sets:

1) A set of N} vacua with vacuum expectation values that remain finite in the above-
mentioned small mass limit. These vacua are in the confined phase and obtain a su-
perpotential contribution via gaugino condensa,tion. For 2ny > n. — 2 these vacua are
appropriately described by mesons and dual quarks. The sup‘erpotential is induced by in-
tegrating out the dual degrees of freedom. These vacua with ‘large VEVs’ will thus exhibit
dynamical ﬂévor symmetry breaking since the order parameters (namely, the mesons) will
turn out to have condensates proportional to the dynamical scale of the theory. In the
massless quark limit, the mesons transform as the ra_,nk—two s&ymmetric tensor under the
USp(2ny) flavor group, and their condensates break USp(2nys) — U(ny).

2) A set of M, ground states where VEVs are proportional to various powers of the
masses m; (in the above-mentioned small mass limit) and where one expects the complete
USp(2ny) flavor symmetry to remain unbroken in the zero mass limit. This set .appears
only when 2ny > n. — 4. Dei)énding on the number of flavors, the relevant degrees of
freedom are either monopoles, dual quarks and mesons, or other exotic corhposites. In
contrast to the first group éf vacua, the second group can be in any of Higgs, Coulomb or
confining phases. These vacua with ‘small’ VEVs will be loosely referred to as ‘USp(2ny)
symmetric’ even though this is expected to be strictly true only when the quark masses
are zero.

The quantum description of these vacua, obtained in the large p limit, agrees with

semiclassical expectations both in terms of phase structure and of vacuum counting.

3.1. Generic case with 2ny <n.—5, n. >4

When @ is sufficiently heavy we may integrate it out to obtain the effective super-
potential for the light degrees of freedom which are known to-be meson-like excitations.

The leading effect (in a 1/u-expansion) of integrating out the.adjoint scalar is captured by
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simply solving the classical equation of motion for @ from (2.1). The classical superpoten-
tial is then —Tr(JMJIM)/2p + Tr(mM)/2 where we have introduced the gauge-invariant
meson fields M¥ = @Q* - Q7. However, to this'we must add the dynamically generated

superpotential induced by gaugino condensation or instanton effects as in [11], to obtain-

L

1 1
W= =g T(MIMI) + 5Te(mM) + = (3.1)
where ‘
1 ' ' 3ne—2nF—6\1 /n. —2m,— -
L:E(m_znf_z)wnc_zn,fz(wAn Sy ineani=2, (3.2)

Here wy denotes the n-th root of unity WhilélAn‘; 2n, 15 the strong-couplihg scale of the

N =1 theory obtained by decoupling ®. Tt is related to the N = 2 dynamical scale An=2

2(nC 2=mnf) po—2 _ 23(n.—2)— 2”)‘
via Ay e Anc’%f

Diﬁ'erentidting Eq. (3.1) with respect to the meson fields M; ; yields the vacuum equa-
tions " ' ' '
ne —2ng — 2 (det M)t/ (ne—2n;-2)+1

1 1
—;(JMJ)U +3

(CofacM);; =0,  (3.3)

where (CofacM);; = (M™1);i(detM). Then using the following parametrization for the

meson matrix,

| _ :A B AT _ T , _
M—(BT_ C')’ A=A", C—C,_ - (3:4)
and
7 = diag(mi,ma,...,mp,) v (3.5)

we are led to a set of equations for the ns x ns submatrices:
i) (BT)? — CA)/u—mBT o 1;
ii) (B? — AC)/u~mB  1;
iii) (BTC — CB)/u = mC;
iv) (=ABT+ BA)/u = mA.
It is easy to see that conditions (i) and (ii) together require 7 and B to be commuting

matrices 'so that they are-simultaneously diagonal. On the other hand, the: symmetry
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properties of A and C along with equations (iii) and (iv) lead to A = C = 0. The solutions
to Eq. (3.3) are therefore of the form

A=C=0, B=dagh,hr,..., ). | (3.6)

The resulting equations of motion for the A; are,

1 1 »
—=A{ + omidi + X =0, :
P + 5™ + YO (3.7
X = — . -2 TLC—an—2)‘ - » .
| ——— (j:Hl_ i) (3.8)

These cannot, however, be solved exactly in general. Nevertheless, we can certainly deter-
mine the number of distinct solufidns (or equivalently, the number of distinct vacua) and
fhe symmetry breakir;g it)_atterns in éertaiﬁ limiting regimes. The total number of vacua is
always independent of the specific values of the mass parameters.

m; = 0: In the m; — 0 limit (m; € An=2z, i), the solution to (3.7) is

/\i::i:)\Z:}:\/uX, i:1,2,...,nf, ‘ (3.9)
and , v
X x e?’f?k/(n°__7‘f_2)A%V=2p , k=1,2,...,nc—ns—2.. | (3.10)

If r is the number of A;’s equal to +), then there are (n. — ny — 2) ( ”Tf> such distinct

solutions and the total number of N = 1 vacua is thus,

A

N =(n.—ny—2) i (—nf) ={(n. - nf— 2)2":‘ : (3.11)

r=0

-which agrees precisely with the total number of the semi-classical vacua‘(2.13), with
2ny.< n. — 5. However, unlike the classical case in the m; — 0 limit, the quantum-
corrected effective action of the large-y theory exhibits a spontaneous breakdown of the
| global USp(2ny) -symme_trgf since some of the meson VEVs remain non-zero in this limit.-

This disagreement does not lead to any contradiction since the classical analysis was after
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all argued to be reliable only when the quark masses were non-zero. In particular, the

vacuum solutions for the meson fields are of the generic form

+A 0
0 0 +£A
M = X0 (3.12)
0 =£A 0

We will now show that this preserves a U(ny) subgroup of the flavor symmetry.
It is easiest to see this in the case where all the A;’s have the the same phase (or sign)

so that M = (g Zg) and B = AL. A gener31 USp(2ny) genefator G that leaves such

a solution invariant must satisfy [G, M] = 0. Parametrizing G as (g ! .-—g °r )"with the

‘ g2 —91
usual constraints g;r = g1 and g7 = go, we find that g; and g, must satisfy g = —g1 and

i =gp. In other Words, the purely imaginary, antisymmetric g1 and real, s_';fmmetric g2
are the unbroken generators. We can rewrite @ in a more familiar form after performing

. -1
a similarity transformation G - G/ = .\}_5 ( jll ill) G V2 ( }1 ]11> which yields

G = (g 1+ 92 0 ) Given the constraints on ¢;-and gs this is clearly the most

0 91— g2
general form for a U(ny) generator.

" It is now easy to see that even when some of the nonvanishing meson elements have
different signs, the unbroken symmetry group is still U (ng)- Sﬁppose that one of the

nonvanishing elements has a minus sign:

Mi’nf-H _ Qf, Z,+i - ) : . L . (3.13)
! in

-1 0

the (i,ns + 1) subspace, but has the trivial action on other elements. This transforms

Consider a USp(2ny) transformation P which acts as the SU(2) matrix

Mums+t s —M5™+ and so changes the sign of the condensate (3.13). Therefore U(ny)
transformations generated by G when combined with the constant USp(2ny) rotation. P,
will leave the meson VEVs invariant. A straightforward generalization: of these arguments
demonstrates that the meson VEVs with either choice of phase for the nonzero elements

do indeed leave a U(ny) global symmetry unbroken.-
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m; = mg # 0: When the hypermultiplet masses are all equal and nonvanishing, each

eigenvalue )\; is one of the two solutions (as a function of X) of Eq. (3.7), Ax = (umo +

V/1?md + 16pX)/4. Solutions of the full nonlinear, coupled equations (3.7) and (3.8) may
be classified according to the number of A;’s which take on the value Ay. Although the
total number of solutions is the same, the symmetry breaking patterns are completely
different from the m; = 0 case. In vacua Where, say r of the \;’s are equal to A4 (and the
remaining are equal to A_), a generalization of the argument above reveals the unbroken
flavor symmetry group to be U(r) x U(ns — r) which agrees with the classical analysis
of the symmetry breaking patterns in the pre{)ious séétiof;. ‘In fact the number of s.uéh v
“r_yacua” also coincides with the semiclassical prediction. For large enough quark masses

An=2 € m < p, and assuming that X < pum? we find from Eq. (3.8)

) 2(71,—21‘) 2(nc—n£—é)
X ~ e2mik/(ne=2r=2) me=2r=2 ANH=C2—2T~2 ;o k=12,...,n.—2r—2. (3.14)

Note that the multiplicity of solutions, n. — 2r — 2 is precisely the Witten index for the

SO(n.—2r) SUSY Yang-Mills with n, —2r > 5.  Note also that the solutions are consistent

with the assumption X <« pm?. Finally, as there are n;f ways of picking a vacuum
configuration with r nonzero \;’s, the number of vacua with U (r) x U(ns —r) symmetry

is (ne — 2r — 2) (if ) which again agrees with semiclassical predictions.

3.2. Case: 2n} =n.,—4

As described in {11], the squark VEVs in the N = 1 theory (in the g — co limit)
break SO(n.) to SO(4) ~ SU(2)r x SU(2)r., The dynamically generated superpotential
now arises due to the combined effect of gaugino condensation in each independent SU(2)
sector. Since there are two possible choices of phase for the gluino condensate from each

SU(2), one finds two inequivalent branches in the N =1 theory, with superpotential [12],

_ 1/2 v
1 1642~ 1)
VVN—1 = —2-(6L -+ GR) (—@:’1\2—4 (315)
where €7, = &1; eg = 1. The branches with ¢, = egr give

M =(nc—ng—2)2" (3.16)
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solutions exactly as in the earlier example, with unbroken U(ns) symmetry in the limit of
massless quarks (m; = 0). However, now we have additional vacua from the two possible
phases with €, = —eg. The instanton-induced superpotential vanishes and the tree level

terms alone account for the exact superpotential:

W = —ZI’I_‘I‘(JMJM) + §TrmM. (3.17)
The vacuum expectation value of M is thus uniquely determined to be M = £ 9 73’ .
When the quark masses vanish, the meson condensate simultaneously vanishes, thus pre-

serving the full USp(2n ) symmetry. Since there are two choices of phases with e, = —eg

we obtain

Ny =2 (3.18)

vacua in which the USp(2n¢) global symmetry remains unbroken in the m; — 0 limit. The
total number of N = 1 vacua A = Ny + A, is now in perfect agreement with the general

semiclassical formula Eq. (2.13) which gives in this case
N = (nc—np—2)2" +2, o (3.19)

the last term being the correction due to the irregularity of the Witten index for the term
with r = nyp: w(ne — 2ny) = w(4) = 4 instead of n, — 2ny — 2 = 2. Thus the N; + 2
vacua found above from the large u analysis precisely match the total number A found by
semiclassical methods.

As before, with equal and rion-zero'-hypermultiple_t masses the Nj vacua split into
groups of “r-vacua”, each 'with U(r) x U(n f —r) flavor symmetry. The A, vacua on the
other hand with M = £3¢ (]? g) preserve a U(ny) global symmetry in the equal mass -

case. They are smoothly connected to some of the semiclassical vacua with r = ny and

U(ny) symmetry.

3.8. Case: 2nf =n,—3

Now the squark VEVs in the N = 1 limit (i.e; in the absence of the adjoint sc;ﬂar) '
break the gauge group to SO(3) ~ SU(2). It is useful however, to consider the limit where
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2ns—1squark VEVs (or meson eigenvalues) are taken to be much larger than the remaining
one. In this regime a description in terms of an SU(2);, x SU(2)r gauge theory with one
flavor becomes appropriate. This flavor obtains an expectation value which vbrea,ks the
gauge group to a diagonally embedded SU(2). r'I‘he dynamical superpotential is generated
via instantons both in the diagonal SU (2) and also in the broken parts of SU(2), and
SU(2)r. Once again, the corresponding N = 1 theory has two inequivalent branches, with

2(n.—1)

N=1 ne,ne—3 )
WN=! = 4(1 4 ) —tenet, | (3.20)

superpotential [12],

and e = +1. The branch with € = 1 yields
Ny = (ne —ng —2)2%7 | (3.21)

vacua Wlth U (n f) symmetry in the limit of massless quarks and groups of r-vacua when
the quarks have equal masses.

The description of the ¢ = —1 branch is incomplete as it stands. Upon decoupling one
of the ﬂavors it fails to reproduce the two vacua of the e, = —ep branch of the 2n f= e 4
theory Intrlhgator and Selberg argued [11] that this apparent conflict can be rectlﬁed if
there are additional colqr singlet, massless particles g (z = 1,2,...,2n £), coupled to the

mesons through the sqperpetential,
W=~ M g;q;. | | (3.22)

Thus when a flavor f is.decoupled by adding a large mass, m s M ¥¥, the equation of motion

for:M*f gi\‘res two vacua qf = 4./—mj/2, with vanishing superpotential.- Furthermore,

the theory (at M = 0) with the massless particles M and q satisfies the 't Hooft anomaly
5 ,

matching conditions

. The low energy theory at large y is described by the superpotential,

W= - TAMIM) + S TomM + Te(ed"M),  (323)

"5 'The field ¢; was identified by Intriligator and Seiberg as an exotic .con'fp(')site‘ (@)W W*e

which is a glueball for n, =4." -
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where ¢ is a 2ny component vector. The equations of motion for ¢ and M are

) 1 1
MYq;=0; ——(IMI)+gm + 9" =0. (3.24)

These two equations have a unique solution corresponding to ¢; = 0 and M = um/2.
This result may be inferred from the two expressions obtained by multiplying the second
equation by M - first on the left and then on the right. Direct comparison of the two

resulting expressions yields JMmJ = —mM. This in turn implies that M = (g g)
and [B,m] = 0, and consequently ¢; = 0. So the branch with e = —1 has M = pm/2,
which is just M, = 1 additional vacuum that is USp(2ny) symmetric in the m; — 0
limit (since the meson VEV is proportional to the mass rﬁatrix). The total number of
vacua N = ny2™ + 1 agrees with (2.13). When m; = mo # 0 this additional vacuum
with M = pum/2 is clearly U(ns) symmetric and can be smoothly related to one of the

semiclassical r-vacua with r = n ¢ and SO(n. —2n¢) = SO(3) unbroken gauge symmetfy.

3.4. Case: 2ny =n,—2

All the theories with 2ny '> n. — 2 pose an interesting question that did not arise
in the previous examples. This concerns the appearance of éemi:claésical (m; large) vacua
which seem to be in the Higgs and Coulomb phases. One may then ask what happens to
such vacua as we tune tHe quark masses to smaller and smaller values and semiclassical de-
scriptions cease to hold; i.e. can we identify the quantum (m; small/vanishing) description
of these vacua in the lérge p theory? This question assumes a certain importance in an
S0(n.) gauge theory with matter in the vector representation wherein oné expects a clear
distinction between the confining phase and a Higgs/Coulomb phase. The phases can be
unambiguously distinguished by the expectation value of a spinorial Wilson loop, i.e. the
large-distance potential between two electric charges in the spinor representation of the
gauge group. Since supersymmetry (holomorphy) disallows a phase transition as we dial
m; from large to small values, we should expect to find non-confining vacua in precisely the
same phases (Higgs/Coulomb as determined semiélassically) in the duantum (or small m;)
regime as well. It should therefore be possible to follow these vacua to the regime of small

m; and identify the mechanisms in the quantum theory responsible for confinement, Higgs
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or Coulomb-like phases. We will address this issue in what follows. Note that there is no
such distinction in SU(n.) theories with fundamental matter. Indeed, as is well—knéwn,
the SU(n.) Seiberg-Witten theories (see [2]) provide examples where one may continu-
ously pass between solitons (monopoles) of the theory and elementary particles (quarks)
and therefore smoothiy interpolate from a éonﬁning to a non-confining (Higgsed) 4theory.

~ In the theory with 2ny = n. — 2, while there seems to be no semiclassical Higgs
{(acﬁum, there is a single vacuum with r = ng = hc/2 —1 and SO(2) ~ U(1l) gauge
symmetry. Unlike all the previous examples and all other “r-vacua”, this vacuum is non-
confining and in par;{?’icular is in a Coulomb phase. Therefore in the absence of phase
transitions we should find a single Coulomb vacuum in the small mass theory as well.

m; =0: It is knbwn from [12] that in the limit where the adjoint ® is decoupled, the
low energy N =1 theory is broken to SO(2) ~ U(1) by squark VEVs. In this case, there
is no superpotential for the mesons — the theory has a quantum moduli space labelled by
the expectation value of M;;. The effective gauge—coupling T of the photon multiplét in the
Coulomb phase can depend only on the flavor éinglef det. M, and as usual it is interpreted as
the complex structure of an elliptic curve. The gduge—goﬁpling 7 is singular (as a function
of det M) at det M = 0 and det M = U, = 16A£f:;:2 where additional liéht .degrees
of freedom appear. The light particle spectrum cdh be inferred from the monodromies
resulting from taking M around the singular (or degéneracy) .pbivnts’of the elliptic curve
describing the low energy Coulomb phase. One finds that near det M = U a pair of
light monopoles E¥ with magnetic charges +1 appear while at det M = 0, 2ny pairs of
rho‘nopoles (¢ ,q7) with magnetic charges +1 become light. In the vicinity of det M = U,
the monopoles E* are described by a superpotential, WN=l = (det M — U;)EYE~. In
the large ¢ theory this leads to an effective superpotential of the form

W = (detM — U, )ETE™ — ;/;Tr(JMJM) + %TrmM; U; = 16A2n’ (3.25)

Ne,Ne—2°

It must be emphasized that this superpotential is expected to be valid only near det M =

U,. The equations of motion followving from it are
P 1 1 :
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and

(det M —U)EY =(det M —U)E~ =0. (3.27)

As in the theories with 2n f <nc—35, it can be readlly shown that M = <g g) and
B = diag(A1, Az, ..., An, ), where the A;’s satisfy o

1 » ny _. )
_/lj,/\? + imz‘/\i +X =0 det M = H)\f =Uy; (3.28)

i=1 ' : -
with X = EYE~U,. The magnitudes of ET and E~ are related as usual by the D-term
condition, |ET| = |E~|. The phase of E~ (say) can always be removed by a (dual) U(1)
gauge rotation, while that of Et is then fixed by the condition ETE~ = X/ U1 In the

m; =0 limit, then
A =+/pX; and X =U/™MEmk e k=12 .. n,. (3.29)

These solutlons therefore yield n 2%/ possible vacuum conﬁguratlons These meson VEVS
also preserve a U (n f) ﬂavor symmetry — arguments for this proceed exactly as in subsectlon
(3.1); we lel not repeat them. Note that all these solutxons satisfy det M = U1 a.nd
hence the use of (3.25) is justified. There are also “fake” solutlons E=0 M=0, and
E =0, M um/2, which however lie far from the point detM = 16A4nf _o and must
therefore be dlscarded Hence we have found a total of A vacua with U (n f) symmetry in
the m; — 0 hmlt |

Ny =ng2™ =(n,—n;—2)2%. (3.30)

- Turning to the singularity at det M = 0, the light degrees of freedom near this point,
namely the mesons and the 2ny light monopoles are described by the effective superpo-
tential,
| W = —é%Tr(JMJM)—t- %'I;rmMA-f(det M) q;t'q;Mij. ' (3.31)

~

f is an undetermined holomorphic function of det M. satisfying- f(0) = 1 so that near
det M =~ 0 we may write f ~ 1 4 ¢t det M. The equations of motion are

1 1
M(JMJI)JF Fm+ 2[ gt T +q¢tT] =0, (3.32)
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and

g M7 =0, g M=o - ~ (3.33)

Following the arguments in the case of the theory with 2nf = n,— 3, the meson condénsate

is found to be M = (1(; g) where B'is diagonal; B = diag(A1, A2,...,An, ). However,

unlike the previous case, in addition to the vacuum with ¢* = 0 and'M = pum/2, there are
aléo vacua where monopoles condense. To see this, let us write ¢ = (Zi: ) where az , bih
are ng-component vectors. Now suppose that af # 0. This along with the equations of
motion (3.32) and (3.33), then automatically implies that except for a} and b; all other
| .ﬁ'iv:'c‘)’)nopole‘ﬁeldé must vanish and that A\; = 0. Furthermore, the D-term conrdf-i'tionvle:ads to

laf | = |b; |- The phase of . at can be fixed by a U (1 (1) gauge rotation and then the phase of

b is uniquely determined by the equatlons of motion, namely
atby + §m1, =0; [az1 | = |by | B = Ediag(O,mz, oo sMp,). (3.34)

In the massless limit, these fnes_on VEVs preserve USp(2ny) symmetry. Since the above
arguments would apply equally well if we chose any one of the ¢;’s to be non-zero, we have
found 2ny new solutions where monopoles condense and the meson VEVs preserve the full
USp(2ny) global sym_fnetry‘(for massless.quarks). Thus, including the vacuum with ¢t = 0
and M = pum/2 we get Ny =2n f+1 vacua with unbroken flavor Symmefry when the quark
masses are zero. The total number of vacua is Ni+N; = (nc—nsp— 2)2”1‘ +2n¢+1 which
is indeed the correct number.

- m; = mg # 0: when m; = mo # 0; the 2ny vacua with moenopole qz?t ._condensation :
have a U(1) x U(ns — 1) symmetry and correspond to a half of the semiclassical vacuum
states with 7 = ny—1and SO(4) gauge symmetry. ‘Thve first group of N; ground states can
be shown as before to split into groups of r-vacua with U(r) xU(ns—r) global symmetry, all
in confined phase. Thé subset with 7 = 1 corresponds to the other half of the semiclassical
vacuum states with SO(4) gauge symmetry. |
iz The remaining vacuum, with M = pum/2 and ¢* = 0.preserves a U(ny) global sym-
metry group. The absence of monopole VEVs indicates that the theory in this vacuum
is non-confining and in fact continues to be in the Coulomb phase rather than an IR free

phase, since all monopoles are massive. Hence; we have found a unique U(n ¢)-symmetric
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vacuum in the Coulomb phase which, as we dial the quark masses mg, must smoothly -
transform into the unique r = ny semiclassical vacuum with SO(2) ~ U(1) gauge sym-
metry. In parﬁcular, the quantum (or small m) _des_criptioni(;onsists of dual photons that
couple locally to the (massive) monopoles — however the potential between»twcv) electric
test charges at a separation R still behaves as 1/R corresponding to the usual Coulomb

phase.

3.5. Case: 2nf =n,—1

- In the infrared, the corresponding N = 1 theory is dual to a magnetic S 0(3)' gauge
theory with 2n flavors of dual quarks and singlet mesons M;;. Since 2ny > 5, this theory
is infrared free. In the presence of the heavy (but finite mass) adjoint ® and in the presence |

of quark masses, the superpotential (near M = 0) turns out to be

1 det M 1 1 " |
W= ﬂMijQi “q; W - ZTI‘(JMJM) -+ §TrmM (335)
’ . ) fe,Me~—1 ] .. . . -

% is a dimensionful normalization scale (we assume that & ~ Ap, n.—1) which relates the
mesons M of the electric theory to the corresponding-dimension one operators in- the
magnetic description via M,, = M/x. The dynamical scales Ap_ n,—1 and /N\g,nc_l of the

electric and magnetic descriptions respectively and k are related via

NS RiTne gt (336

Ne,Mc—

As before, we will analyze the vacuum structure of the theory when the quark masses
m; are non-zero and then focus on the special cases  where the masses are all equal, and
also when they are vanishingly small compared to the N = 2 dynamical scale.. For generic,
non-zero quark masses the mesons will'‘condense and render the dual quarks massive. We
will classify the vacua according to the rank.of the meson - VEVs.

When rank(M) = 2ny, all the dual quarks are massive and can be integrated out,
leaving behind a pure; magnetic:SO(3) gauge theory wherein a superpotential is generated
as usual via gaugino condensation. ‘We remark that the equations of motion for the dual
quarks, following from (3.35), namely M;;qj = 0 ensure that when rank(M) = 2ny the
magnetic squarks have vanishing VEVs and so the.dual SO(3) symmetry is unbfbken. The
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low energy, pure gauge, magnetic SO(3) theory then has a scale ]\g,o = ]\;;:C_ ydet(M/k)
and has two branches, each labelled by the phase of the gluino condensate. The con-
tribution to the superpotential from instanton effects in the magnetic theory is thus
26]\‘;;’:1 L det(M/x) with € = %1 labelling the two possible phases-of the gaugino con-
densate. Using Eqgs. (3.35) and (3.36) we find that the ¢ = +1 branch has a superpotential
given by | . . _. v
W, = —%;Tr(JMJM) + %TrmM, o (3.37)
while the e = —1 bre_mch'develops a superpotential W_: |

det M 1 1 X
= —Tr(JMIM) + =T S .
3925 2% [r(JMIM) + 2TrmM (3.38)

Ne,e—1

. The € = +1 branch yields a single vacuum with -

w0 @Y
(MY =pm/2 = 5 (rh 0). (3.39)
‘At this point we should clarify the various mass scales involved. Since the meson
- VEVs ~ um, the dual quarks have masses ~ ym/x. On the other hand the meson masses
~ k%/u. Since we have chosen to retain the mesons as the lighf degrees of freedom, we

must have x?/u < pm/k. which in turn means that

n—4

AN=2)2"_5 m T '
< y 3.40
< “ AN=2 ‘ ( )

if we-assume that £~ A, n,-1. Within this range of pdrameters (even" if we assume
m/AN=2 < 1), we expect our analysis to be valid.

Interesting conclusions may be drawn from the form of the meson VEVs (3.39) in
this vacuum. Firstly, since € is the phase of the gluino condensate, it may be théught
of as the theta angle of the dual theory. Thus the € = +1 branch corresponds to the
confinement of dual quarks while ¢ = —1 (changing theta by =) corresponds to dyonic or
oblique confinement:-in the dual theory. Confinement of the magnetic degrees of freedo}rl
in the € = +1 vacuum can be interpreted as condensation of electric charges of the original
theory. Secondly, the meson VEV (3.39) coincides.precisely with the classical prediction for

n°T_1 which, semiclassically corresponds

the meson condensates in the r-vacuum with r =
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to a Higgs phase. Finally, since the instanton effects disappear when € = +1, the classical
superpotential does not receive any quantum corrections. It is therefore reasonable to
conclude that the single € = +1 vacuum in the dual theory can be smoothly connected
to the single semiclassical vacuum in the Higgs phase in the original description, while
preserving the distinction between confining and non-confining phases in SO(n.) gauge
theories without spinorial matter fields. When the quark masses are taken to be vanishingly
small, this vacuum has an unbroken USp(2n #) flavor symmetry, while the equal mass limit -
m; = mg # 0 leaves a U(ns) symmetry. These patterns of flavor symmetry breaking also
agree with the classical analysis of the r = ny = (n. — 1)/2 theory where the gauge group
appears to be completely Higgsed. |

Using the superpotential W_ (3.38), the meson VEVs in the ¢ = —1 branch can be
shown to have the form M = ( 0 B) with B = diag( ), '/\.2, .. ,}\nf). |

B 0
For m; < Apn=2 we find that there is one solution with

ool e

which preserves the full USp(2ny) symmetry in the massless limit, while leaving a U(ny)-

symmetric vacuum in the equal (non-vanishing) mass case.

The € = —1 branch also yields a whole other set of vacua with non-vanishing meson

VEVs in the m; — 0 limit with

| det M 4 : '
Ai=EVpX; X = —?Q/;T ~ TR DALk =1,2,... 05— 1, (3.42)
ncync_l .

and these yield a total of oL _
| N = (nf —1)2™ |  (3.43)

- vacua. The global group is broken to U(ny) in the massless limit in all these vacua, while
in the equal mass case they reproduce the groups of r-vacua with U(r) x U(ns — r) flavor
symmetry.

We now look for possible ground states with rank(M) < 2ny. We find that supersym-
metric ground states exist only when rank(M) = 2ny — 2. Below the squark-mass scale set |

by the meson expectation-values ~ (M)/x the theory looks like a magnetic. SO(3) gauge
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theory with two light dual quarks. The SO(3) gauge theory with two light flavors is known
to be either in a Higgs phase or in an IR free phase and hence there can be no further
dynamical corrections to the superpotential. In fact the equations of motion from (3.35)

indicate dual squark-condensation and consequent Higgsing of the dual gauge group. We

0 B
find that M = (B 0 ) , Where
B = gdiag(o,m2,m3, 2, , (3.44)
and, den?ting Gi+n, by G
| d d | »
q1 = Zd " 61 = | _Zd 9 . - (3.45)
0 ' 0
so that
o Ga=4G-4=0 G- -q=2d"=-rmy. (3.46)

Note that the relative magnitudes of ¢; and ¢ are fixed by the D-term constraint. Also,
thg overall signs can be brought in the above form (with d = ++/=my#x/2) by combining
dual SO(3) gauge and global SO(2ns) C US p(2h #) rotations. Analogous solutions can
be constructed by choosing any one of the ny pairs of squarks to be nonvanishing so that
there are n s solutions of this type, all USp(2ns) symmetric. Therefore, including the single

Higgs vacuum we have found a total of
Ny = nf + 2 v 7 (3 47)

vacua with vanishing VEVs and Us p(2n f) symmetry in the theory with massless quarks
.. 'The total number of vacua is t_hen N =M4+N, = (nf—1)2" +n¢+2 which matches
the semiclassical result in Eq. (2.13). We remark that we have not found any Coulomb

vacua in the large-y4 theory, which is also completely consistent with classical expectations.

5’ 6 Case: 2ny = n,

_ " These theories have a dual description in terms of an SO(4 ) o SU( )L X SU(2)
gauge theory with 2n; flavors of dual quarks in the (2 2) representa,tlon and S 0(4)
smglet mesons w1th superpotentlal
: L

%MijQi'Qja S (3.48)

wh=t =
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where & is related to the dynamical scales of the electric and magnetic descriptions through

A?:C‘fn_c 6An, k™. The complete low-energy, effective superpotential for our theory is
simply
| W= M Ly (JMIM) + L TrmM (3.49)
W = —M;;q; -q; — — 1r ‘ —= . .
ok 1 & 2u 2

Proceeding as in the previous case, we classify vacuum states according to the rank of the
mesoﬁ VEVs.

When rank(M) = 2ns we integrate out the dual quarks to obtain a gaugino-
condensate-induced superpotential in the pure, magnetic SO(4) theory. Since the dual
S50(4) decomposes into two-independent SU (2)’81, we fnust have two inequivalent branches,
one with no dynamically generated superpotential. The dynamical contribution to the su-
perpotential in these bran‘ches is =2(er, + € R)./~\3 where A denotes the scale of eithef one
of the SU(2)’s contained in the dual 50(4) and eL,v er are the phases of (AA)p g in the
respective SU(2) sectors. -

The branch with e L€r = —1 results in an effective theory with no instanton contribu-

tions to the superpotential which therefore is purely classical:
1 : 1 g
W(eper = —-1) = —ﬂTr(JMJM) + §TrmM. (3.50)

and yields two vacua (since there are two possible choices of phase with €7, + eg = 0) with
M = pm/2. In the equal mass theory this pfesérves a U(ny) symmetry while in the limit of
vanishing masses the full USp(2n ) flavor group is restored. The form of the meson VEV,
the number of vacua, the flavor symmetry patterns and finally, the absence of quantum
corrections to the superpotential in these vacua with erer = —1, strongly suggest that
these are in fact the large-u, small m counterparts of the two Higgs vacua which appear
in the semiclassical description of the original electric theory. This is actually in perfect
accord with our knowledge of the vacuum structure of SU(2); x SU(2 ( )2 gauge theory with
two massless flavors in the (2,2) representatlon The theory is known to have a moduli
space of vacua with two singular submanifolds at which magnetlc and dyomc degrees of
freedom become light. Upon turning on masses for the ﬂavors, each singular sitbmanifold

gives two vacua where mondpoles (or dyons). condense. In the dual theory the two vacua
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associated with dual quark confinement (and not oblique confinement) must correspond
to the Higgsed ground states of the electric theory.
The branch with € = €gr leads to a superpotential with a form similar to what we

have encountered in several previous examples:

vdet M 1

W(erer =1) = —(er + €r) SATD e

Tr(JMJM) + %TrmM. (3.51)

This leads to two vacua with VEVs proportional to the quark masses in the small mass
régime and V; = (ny — 2)2" vacua with finite VEVs. The two vacua with vanishing VEVs
(and consequently unbroken flavor group) have the usual off-diagonal form for the meson
VEVs with A; & um/2(1 £ O(m/An=2)"™ ~2). The finite VEV vacua which dynamicaﬂy
B-r.eak flavor to U(ng) can be found as in many previous exa;npl.es.

Now we turn to the cases ';vith rank(M ) < 2njy and we find two sets of supersymmetric
ground states, for rank(M) = 2ny — 4 and for ran.k(M) = 2ny — 2. When rank(M) =
2n ¢ —4, at long distances the theory looks like a magnetic SO(4) theory with four flavors of
dual quarks. The corresponding N = 1 theory (studied by Intriligator and Seiberg) is at a

non-trivial fixed point of the beta function. In our theory, in fact using the superpotential

(3.49) we find squark and meson VEVs of the form

0 B i )
M = (B 0 ) ;i B= §d1a,g(0,0,m3,m4,-...,mnf); : (3.52)
dl dy | o 0 ' 0
| iy .| - ) o] . _ 0
ql - 0 b QI - O , q2 - d2 ] q2 - d2 “y (3.53)

where
di = +y/—mik[2;  dy = £/~mar/2. o (3.54)
These VEVs break the dual gauge symmetry completely, and should correspond to confin-

ing vacua in the electric description. Since we could have chosen the non-vanishing flavors

in ( n2f ) ways, there are 2,,C; vacua 6 where the dual gduge group is co:mpletely Higgsed

® The factor 2 in front of n,;C2 is due to the sign choices in Eq. (3.54) which cannot be undone

by gauge or global transformations, and hence are inequivalent.
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and the flavor symmetry group in the massless limit remains unbroken, while in the limit
of equal masses the flavor group appears to be U(2) x U(ns — 2).

When rank(M) = 2ny — 2 the low energy description is that of the magnetic SO(4)
theory with two quark flavors which is known to be in the Coulomb phase. This is
confirmed by the solution to the equations of motion from (3.49) which lead to dual
squark condensates that break SO(4) to SO(2) ~ U(1) and meson VEVs are given by
B = £diag(0,m3,m3,...). There are n £ such solutions, which are clearly the large-u
(dual) descriptions of th¢ ny Coulomb vacua that are apparent in the semiclassic_al lim_it.

Therefore the number of vacua with vanishing VEVs is
Ny =4+ ns+2,,C, ' (3.55)
while the total number of supersymmetric vacuum states is
N = Ny + Ny = (ng — 227 + 4+ g+ n,Cs O (3.56)
which agrees with Eq. (2.13).
3.7. C.a'sé: 2ny > n,
The corrésponding N =1 theories (when @ is decoupled) are dual to the nvlagnetivc

SO(7i.) = SO(2ng¢ — n. + 4) gauge theory with 2ny dual squarks and singlet mesons M;;

with the effective superpotential

1 1 1 .
W = %Mij(ﬁ - qj — ZTX‘(JMJM) + §Tr(mM). (3.57)
As before « telates the scales of the electric and magnetic theories via
3(n.—2)—2n; 73(2nsy—nc.+2)—2n n
Anc,an fA2nf—fnc+4,2nf T~ g2 (3.58)

‘The vacuum structure of this theory can be easily inferred by looking at the solutions

to the classical equations that follow from the superpotential (3.57). These solutions are

of the form:
dy dy 0 0
1dy —1idy : 0 0
0 _ . 0 : d2 d2 )
q1 = 0 y 1= v 2= 4d, | G = —idy | ete., (3.59)

0 ' 0 1 O 0
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so that. -
Gi-qi =2d7 =mik, 1=0,1,2,...r, (3.60)

while all other scalar products amohg ¢’s and ¢’s are zero, and

A=C=0; B=% diag(0,0,...,0,mpp1,...,mn,). (3.61)
2 NGAEASRE D | : e
E;idently, n;Cr solutions of this type can be constructed by choosing any r pairs of
dual squarks to have non-vanishing expectation values. The solution also indicates that
aJS'O(ﬁC — 2r) gauge symmetry is left unbroken and therefore for every r one obtains
w(ﬁC —2r), f'C'r vacuum states with USp(2n £) éymmetfy in the limit of vanishing masses.
Finally, when n. is even, an additional set of ,, ;C&. /2 vacua appear 7 so that there will be
a total of -
‘ (e /2] : o S
Np= > w(fic = 2r)n, Cr + nsCa, [2 (3.62)
- v

vacua with small VEVs. The symmetry breaking patterns implied by the meson conden- .
sates.(3.61) for equal and nonvanishing masses, are also in complete agreement with the
semiclassical predicﬁons. | |
- Strictly speaking however, these solutions provide only a qualitative picture of what

happens in these vacua. The VEVs and solutions -iﬁ_Eqs. (3.61) will receive quantum
corrections. A quantitatively correct description of the physics can be obtained only after
the dynamical contributions to the superpotential are taken into account. -Without going
into .too much detail, We-discuss these aspects of the dynamics briefly below. As indicated
by'._;fthe “classical” solutions. described above, the vacua must be. classified according:to
thé;rank of the meson VEVs. When. rank(M) = 2ny — 2r, with 2r < 7, — 4, the low
energy theory is the magnetic SO(7.) theory with 2r dual quarks. This theory obtains a
dynamical superpotential similar-.to that encountered iﬁ Eq. (3.1). The couplings of -the
dual quarks to the mesons M;; ensure that they all get small masses and lead to 7i,—2r—2
supersymmetric ground states (and no runavmy vacuum solutions).

.‘VVhen ne is even and 2r = 7, — 4, the magnetic theory flows to an SO(4) ~ SU(2) x

SU(2) theory with two branches as usual, where dual quarks are confined. In two of

7 This point was explained in detail in-section 2.
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these vacua, the effective theta angle of the dual theory is zero and the confinement of the
magnétic degrees of freedom may be interpreted as condensation of the original electric
degrees of freedom (and not dyon condensation).‘ Taking into account that there are
ny Ci.j2—2 distinct solutions with rank(M) = 2ns — fi. + 4, the total number of Higgs-
like vacua in this description is therefore 2, Cj, /5_2 =2, ;Cr./2 which precisely matches
the semiclassical counting of Higgs vacua. For reasons that were discussed earlier, _th_e'
dynamical contributions to the superpotential cancel out m these vacua. Thus the solutions
(3.61) for r = 7i,/2 — 2 are in fact the exact ones and Jtl‘le mesdn VEVs coincide with
semiclassical values of the coﬁdensatés in the semiclassical Higgs_ vacuum. For equal masses, |
m; = mg # 0, in both the limits a U(nf = ne/2) x U(nc/2) flavor symmetry is preserved.

Fof even n. the dual theory can also be in a Coulémb phase. Thi.s occﬁrs when
r = n./2 — 1. The combinatorial factor determining the multiplicity of these Vacua. is
ns Ci./2—1 which is also equal to ,,Cy, /2—i, the nufnber of semiclassical Coulomb vacua.

When n. is odd and 2r = 7i. — 3, the dual theory flows to an SO(3) gauge ‘the-
ory which has two branches, one without a quantum superpotential. This branch yields
n;Ca./2-3/2 = nyCln, 2] vacua with a vanishing effective theta angle and magnetic con-
finement. Once again the meson VEVs given by Eq. (3.61) for this case are the exact
results and are in complete agreement with the semiclassical results for the Higgs vacuum
with a U([%]) x U(ny —[%]) global symmetry.

Having completely classified and clarified the A, vacua with small VEV s,‘let us turn
to the finite VEV vacua where the flavor group is expected to be broken dynamically to
U(ny). Such vacua must have rank(M) = 2ny rendering all the dual quarks rriassive. The
dual quarks must be integrated out giving a low-energy, pure SO(7i.) gauge theory with
gaugino-condensation. The dynamical scale of this pure superglue theory is obtained as

usual by a one-loop matching and results in the following superpotential:

: ' ' 1/(2ns—n.+2
vl o o detpr )T
=3(nec —2ns - 2) Tondm=6 |

Ne,2ny

(3.63)

1 1
— .%Tr(JMJM) + §Tr(mM)

‘Note that this is just a continuation of (3.1) to the large flavor case. - Solutions of the
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equations of motion are of two types. The first type isaUS p(2nf)-symmetric set of i, —2 =
2n ¢ —n.+ 2 vacua which has already been qualitatively discussed earlier. These vacua are
characterized by the meson eigenvalues \; = pm; (142 (e =D O((m | A y=g)?7e—271 1)),

Ground states with dynamical flavor-breaking can be located in exactly the same way

as before, with a mulfiplicity,
Ny = (ne — 2ngp —2)2% (3.64)

The meson VEVs in this group of vacua is also proportional to pAy—q.

The discussion Qf ‘the equal mass case m; = mg # 0 also proceeds in the same way
as before. While the first category of N theories yields groups of r—vacua with U(r) x
U(ns—r) flavor symmetry, the second group of vacua have semiclassical VEVSs (Egs. (3.59)
and (3.61))which also preserve U(r) x U(ny — r) flavor group in the equal mass case.

Finally, we turn to the enumeration of all the quantum vacua and comparison with

the semiclassical formula (2.13). Let us first assume that 7i. is even. Then we have

fie /2 : _ fic[2—3
Ny = w(ie—2r)n,Cr+n,Cia= Y (fic—2r—2)n, Crt (3.65)
27‘1‘.’ c"hc/2 + ny Cﬁ'c/2_1 + 4nf Cﬁc/2_2'
A change of variable r — n f—r allows us to rewrite the above as
nc /2 |
Z,:o w(ne = 2r)n, Cr + n, Cnjs — N1, (3.66)

and hence N; + N2.z’ag.fees with the semiclassical result (2.13). Note that the terms

nyCn, /2 and ny Ch./2 ka,ppearvor.ﬂy when n. is even. When n. is odd the number of

USp(2ns)—symmetric. vacua is

(fe—1)/2 ‘ | (Re—1)/2-2
Ny= Z w(fie — gr)nf- Cr = Z (fic — 2r — 2)n, Crt (567)
n; Cic-1)/2 + 20, Clic—1)72-1-
Changing the variable r — ny — r we find
Z(rf:o—l)ﬂw(nc _ 2T)nf C,— M, ‘ . (3.68)

which is exactly what we expect from the classical analysis. -
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4. The effective descriptions of the small y theory:

In this section we attempt to prpvide a description of the theory in the limit of smaﬂ
w and small m;. This is the regime in which N =2 éupersy'mmetry is only softly broken.
The low-eﬁérgy degrees of freedom in some of the N =1 vacu.au were actually identiﬁed
by Argyres, Plesser and Shapere (APS) in [9]. Below, we briefly review the .argumeAnts bf
APS presented in [9]. We also identify an'important ingredient of the physics that was
missing in the analysis by these authors. Counting the vacua and keeping track of the
flavor symmetries therein provides a powerful check on the resﬁlting picture.

As described in detail in [9] the moduli space of N = 2 SO(nc) SUSY-QCD consists of
Coulomb (® # 0,Q = 0), Higgs (® = 0,Q # 0) and mixed (® # 0,Q # 0) branches. The
Higgs and mixed branch ‘roots’ (i.e. where they meet the Coulomb branch) are singular
submanifolds with massless hypermultiplets and enhanced gauge symmetry respecti;/ely.
The mixed branch roots have SO(r) x U (1)("=1/2 gauge symmetry with ns massless
flavors and n.—r even. Since they exist only for 0 < r < ny, the theories at the roots are all
IR free. Upon breaking SUSY to N = 1, these singular submanifolds get completely lifted
with the exception of isolated points where the corresponding Seiberg-Witten curves are
maximally degenerate — that is, where (n —r)/2 mutually local monopole hypermultiplets
{ex,é} charged under the U(1)’s become massless. In fact there is precisely one sucil
point at the r—branch roots where this occurs, and has r = 2ny — nc + 4. Thus Seiberg’s
dual 'gaugé_lgrpup SO(2ny — n. +4) [10] makes a natural appearance, althbugh this does
IiOt_ By_itéelf constitute a proof 61‘ derivation of N =1 duality. In fact the actual story, as

we describe below, is perhaps more complex.

50(2ns —ne+4) | UL |-+ [ U(1)n.—2-n,
ngxQ | 2ng—n.+4 0 |- 0
€1 1 1 0
€n.—2-n, 1 o |- 1

Table 3: Charges of light degrees of freedom at the special point.
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Choosing a basis where each light monopole multiplet e; at the special point has
charge 1 under one of the Coulomb factors U(1);, we may summarize the charges of the
light degrees of freedom as in Table 3. |
_ Following the conventions of [9], Athe. scalar @ at the special point with r = i, splits
iﬁto an adjoint field ¢ of the SO(r) group and (n. — r)/2 scalars {t} beionging to the
U(1) N = 2 multiplets. The following is the effective superpotential govérning the light
ciégrees of freedom at the special point after addition of a microscopic adjoint mass term:

ne—nyg+2 ne—ng+2

. 1
W = Vv2Qi¢uQidii +V2 D drerée+p|A D zpi + 5 Ted? | (41)
k=1 i=1

The z; are simply dimensionless numbers of order 1 while the Q's are the ny light hy-
pérmultiplets that appear at the root of the r-Higgs branch. These a»ré to be thought of
as analogues of the dual quarks present in Seiberg’s de_scriptioh of certain N = 1 gauge
theories. The quark mass perturbation shows up in the low-energy superpotential as a

correction,

AW = Zm;QiQ) — Simidrer. (42)

Here Si represents the i—th quark éhafge of the monopole multiplet e;. It appears in
the central extension of the supersyfnmetry algebra and consequently contributes td the
masses of the BPS monopoles [2]. Since the theory at the r-branch root is IR free, the
degrees of freedom appearing in (4.1) are indeed weakly interacting and all the vacua of
the resﬁlting theory should be accessible via a straightforward semiclassical analysis of the

equations of motion of the effective theory. The solutions of the F and D-term equations
€k = ék ~ \/;,LA, ) ‘ (4.3)

(V2iy — Z S,’;mi)e; =0, (4.4)

Cee=0, - (45)
mQiQi=0, | | (46)
V2QiQ1Tii+2pday =0, | (4.7)
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V26uQ}dj +mi; QL = 0. s (4.8)

are similar to the classical solutions of the micréscopic theory. By performing zippropriate

gauge rotations ¢ can be put in the form

(L") )

¢= (—¢2 ¢2> o N | . (49

. . 3 . ¢[ﬁ'c/2] )
\ | - (—@mnl )

For an odd 7. there is a null 71.-th column and null 7i.-th row above. The soiutions can be

again classified according to the number of the nontrivial pairs of “eigenvectors” Q! with

eigenvalues +m;/v/2. A solution with » nonzero eigenvalues has {¢;} = {m;} and

/ d 0 0 0 \
—idy, 0 0 0 -
0 dy O 0 0..
0 —idy 0 0 0..
O (4.10)
0 0O 0 d 0 O0..
0 0 0 —id- 0 0...
where 0<r< {?J . C - (4.11)

Theseé characterize the VEVSs of the squark flavors 1 =1,...,n f,;';fvhile the éqdark conden-
sates with 1 = ny 4+ 1,...,2ny are of the form (4.10) with dr — d, and —id, — zcir, and

with®
_l‘l’m’l‘

2

|d.| = |d.|; and Re(d,d,) = (4.12)

Although these solutions are superficially similar to the classical solutions of the mi-
croscopic theory, the physics is clearly very different.' The theory at the r—branch root is

IR free (ny > 7i.) and so the values of r can run only from r = 0 to r = [i¢/2].

8 The possible overall minus sign of di’s can be rotated away by a center element of SU(nf) C
USp(2ny).
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The solution with r pairs of nonvanishing elements of ¢ leaves SO(7. — 2r) gauge

symmetry unbroken with 7i; — 2r — 2 vacua. Therefore, summing over all such vacua there

are

[72c/2]
N2 = Z w(ﬁc - 27’) nfCr + nfCﬁc/Z » . (413)

r

ground states with all VEVS (transforming nontrivially under flavor) vanishing in the
m; — 0 hm1t

- Itisclear from (4. 13) that not all the vacua of the N = 1 theory arise from perturbmg
the theory at the special point. The latter seems to yield only the vacua with vamshmg
VEVs i.e. the USp(2n £)-symmetric ones. Therefore the APS effective theory appears to
miss the complete vacuum structure of the softly broken N =2 theory. We must therefore
understand better the nature of and the role played by the other group of vacua which
cannot be associated with the theory at the special point.

To understand the microscopic origén of the rema,ining N1 vacuum states we turn to
the hyperelliptic curves deécrigiﬁg the Coulomb .b_ranch of the eorreeponding N = 2 theory.
The special point is associated with a maximal degeneration of the curve and corresponds
to mutually local, charged'monopoies becoming light. However, the degeneration of the
Seiberg-Witten curve can also oecur in a way that describes mutually non-local particles
becoming simultaneously massless leading to-an inreracting N = 2 superconformal field
theory [17][18]

As we demonstrate in the next section, in the massless (m; = 0) theory there are ad-
dltlonal maximal smgulantles on the /' = 2 moduli space where the low- energy effective
theorles are critical (scale 1nvar1ant) We refer to these smgularltles as the “Chebyshev
pomts . The Chebyshev pomts spht up under a generlc mass perturbation and subse-
quently yie.ld:the first group of V. | vacua when an adjoint mass is added. The enumeration
ef vacua and their syrrlmetry breaking patferns can be best understood in the case where
the quark masses are equal and non-zero — m; = mg 7£ 0.

k The equal mass theory has smgulam’mes where the curve has the form
y? o< (@ —md)’s 0<r <[ng/2)

(4.14)
y? (z - m2) =), ng>r>[ng/2].

38




Since the underlying flavor gfoup of the equal-mass theory is U{ny), using the results of
[13] and [14] we know that the theories at such singular points are in the universality class
of SU(r) (or SU(ns—r)) gauge theories with n flavors. Depending on the values of r these
are IR-free gauge theories (Class 1 according to [13]) or non-trivial SCFTs when r = ny/2
(Class 3 theories). Except the cases with r = ny/2 they can be described by the effective
Lagrangeans at the r—branch roots of SU(n.), N = 2 theories, derived by Argyfés, Plesser
and Seiberg [15]. The vacuum structure of the r-branch theories was studied in detail in [8]
and it was shown that the theory at r-branch root yields ;Cr vacua with flavor symmetry
U(r) x U(ns — r). Taking discrete symmetry factors into account, the total number of

- vacua from the Chebyshev points is then
M = (ne—nyp —2)2™, (4.15)

which correctly reproduces the number of vacua with finite VEVs.

_ When the masses are sent to zero the r-branch roots merge, the criticality of the hy-
perelleptic curve changes and the ﬂav»or‘symmetry of the microscopic theory is enlarged to
US p(2n 7). We believe that this p_oin-t.(the Chébyshev point) describes an SCFT belonging
to a new universality class and which is strongi;)f—interacting due to the appeérancé of light,

mutually non-local degfeés_of freedom.

4.1. Remarks on suggested derivations of N = 1-duality

At thi.s point we would like to make a few remarks about the possible derivation
of N =1 Séiberg duality which was suggested by Argyres, Plesser and Shapere in [9]
This “derivation” was made possible by the idea that by moving along the N = 2 moduli
space and by smoothly changing p, we ;:an continuously interpolate between the Vsmall-/u
description of the special point SO(7.) theory to the large-p SO(n.) gauge theory with
N =1 éupersymmetry. However, we have seen abo.ve that .the N =1 theory obtained
by introducing an adjoint mass has v;cua emerging both from the special point and the
superconformal Chebyshev-point (to be studied below). The question then is, what role
(if any) do the Chebyshev vacua play in the derivation of N = 1 duality? To under-

stand this it is instructive to look at the behaviour of the condensate uy = (Tr®?) in
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the N = 1 limit at these two points, namely the Chebyshev point and the special point.
Upon integrating out the adjoint field ®, we have an N = 1 theory with dynamical scale

3n.—2n;—6

n.—2 A2n.—2nfs—4 . . . .
ne.2ns pre T AN, . As seen in the previous section, the low-energy theory is

the Intriligator-Seiberg magnetic theory with dual quarks and mesons, with a superpoten-
tial W = iqu~ #TrMJMJ. |
At the special point, which is USp(2n ) symmetric, neither M nor q acquire expecta-
tion values and hence W = 0. This automatically implies that us = 0 at the special point,
since it is the y derivative of the expectation value of the superpotential. On the other
hand, at the Chebyshev point, where det M 3 0, we can integrate out all the magnetic
quarks to obtain a pure Yang-Mills theory at low energy with a gaugino condensate-induced
superpotential for the mesons (3.63). As was discussed in detail in the previous section,
by minimizing the superpotential we find (M) ~ pAn=2. This implies that W ~ pA%,_,,
and consequently uz ~ A% _, at the Chebyshev point. The “distance” between the épecial
and the Chebyshev points at fixed Ay.=2 remains the same in the large y limit. However,
in the true N = 1 limit wherein A,_ 25, is kept fixed, the locations of the two singularities
appear to merge (since Ay=2 — 0). It must be pointed out that the vanishing of us alone
does not imply merging of the two points. One should look at the expectation values of
all the other gauge invariant order parameters.
This suggests that in order to understand the physics of N =1 SO(n.) gauge theory
with 2ns > n. — 2 flavors, one must understand the physics of both sets of vacua. Con-
" sequently, from the viewpoint of the corresponding N = 2 theory it appears that we must
investigate the descriptions of both the special point and the Chebyshev point in order to
understand the origin of Seiberg duality in the NV = 1 limit. We therefore see that the
derivation of Seiberg duality as presented in [9] was incomplete in this aspect.
{v)-.(“Q_uarjk mass perturbation of hyperelleptic curves

We will now investigate the low-energy physics on the Coulomb branch of the N = 2
gauge theory (4 = 0) which is described as usual by the moduli space of certain hyperel-

liptic curves. The complex structure 7 of the curves controls the physics of the Coulomb
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branch in that it is identified with the effective gauge—coupling of the low energy theory.
Singularities on the Coulomb branch due to the appearance of new massless states in the
low-energy theory are signalled by the degeneration of thé hypereiliptic curves — where
certain specific cycles of the Riemann surface associated with the curve pinch off. Some of
these singularities are rather special. These are the Coulomb branch singularities which, af-
ter N = 2-breaking perturbations (u # 0) become vacua of the resulting theory with NV =1
supersymmetry; Therefore, by inspecting the hyperelliptic curves of the N =2 SO(ne)
gauge theory with n ¢ hypermultiplets we can identify which points on the Coulomb branch
correspond to N = 1 vacua and how many such points there are. Furthermore we will also
be able to identify the two groups of vacua and unravel the physics of the first group of
vacua whose origin cannot be explained by the effective picture of the previous section d
la Argyres-Plesser-Shapere [9].

Our first task will be to identify the points on the Coulomb branch of the N = 2 theory
which give rise to the first group Ay of N = 1 vacua and, as is evident from the discussion
in the previous section, these are distinct from the so-called special .point of APS. Since
they survive the breaking to N = 1, they must be points of maximal degeneracy i.e. where
[%2] pairs of branch points coincide. It is well-known that such singularities may be of
two distinct types: a) Where the light degrees of freedom are mutually local,.as in the
case of the special point at the r—branch roots; b) where mutually non-local particles are
simultaneously massless. Theories of the second type with N = 2 supersymmetry were
argued to be superconformal in [18]. We will argue below that the first group of N = 1
vacua emerge upon perturbing such superconformal theories.

The curve for the SO(n.) N = 2 theory is [3],

[nc/2] : ng
Yy =z H (z — ¢2)% — 4AP(nem2mny) g 2te H(w —m}), (5.1)
a=1 =1

where ¢ = 1 if n, is even and € = 0 if n. is odd. Since we are mainly interested in the
limit where the bare masses m; of the quark hypermultipléts are van'iShihgly small, we first

consider the curves with m; = 0,

ne/2 o , ) :
y2 =z H (z —¢2)? — 4A2("C”2_"f)x"f+3z ne =20, (5.2)
a=1 ’ ’ S
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(ne—1)/2 | L v
=g H (z — §2)? —apHmem2mmp)gnsd2 904 ). (5.3)

a=1

We will subsequently treat the effects of the non-zero masses as a perturbation and then
enumerate the N = 1 vacua and their properties. -

As before we will treat the equal mass case m; = mgy # 0 and the case of generic

unequal masses separately. For either of these two situations, the actual form of the curves

depends on whether ny and ‘nc are even/odd and hence we must consider four independent

possibilities.

'5.1. Unequal mass perturbation at Chebyshev points

i) ny even, n. even

. The singular points which yield the first-group of vacua can be located (when m; = 0)
by following the methods of {19] and [20]. This is achieved by first choosing /2 + 1 of
¢a’s to be vanishing so that the curve (5.2) has the form

_ (ne—ny=2)/2
y? =g H (z— ¢2)? — 4AHne2np) | (5.4)
a=1

The remaining ¢,’s can be obtained by using the properties of Chebyshev polynomials.
The Chebyshev polynomial Tn(z) of order N is defined as |

. - . N .
Tn(x) = cos(N arccos z) = 2V~ ] (z — we), (5.5)
k=1
with wg = cosw(k — 3)/N, k=1,2,...N. Note that for N odd, there exists a value of &,
k= (N +1)/2, such that wg = 0. Note also that WN—k+1 = —Wk, SO that for even N

Z

(z — 4w); (5.6)

l\Dlv—A

In(Vz/2) =

]
I

While for odd N
(N-1)/2

Tn(vz/2) = f H (z —4wp), (5.7)
These properties will be useful in what follows.
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Now we identify the first term in the brackets in Eq. (5.4) with 2T, _n, _2(y/z/2)

2
a?

cosm{a — 3)/N, a = 1,2,...N/2, and N = n,—ny — 2. At this point, which we will

and set A = 1 for notational convenience. Then we must have ¢Z = 4w;, with w, =

henceforth refer to as the “Chebyshev point”; the curve becomes
2 _ 4 .ns+3 2 1] — gomgt3 2 | VT -
y? =4z [Ty, 2(V7/2) — 1] = —42 sin” |(n. —nyg — 2)arccos 5 |- (5.8)

This curve has a zero at- the origin of order ny 44, and N/2 —1 = (n; — nf.b—r 2)/2 -1
double zeroes at = = 4 cos? kn/N,k=1,2,...(N/2 - l)vand a single zero at z = 4. Thus
we have located a point of maximal degeneracy.

Upon a generic mass perturbation, i.e. introduction of N = 2—pres.erving quark masses
m; < An=2, the point of maximal degeneracy will not only shift somewhat but will also
split into a group of singularities. Our goal is to find the nature and number of points in
this singular group.

We will first consider the special case where ny = n. — 4. The rﬁo_re geheral problem
can be reduced to this example, as we will argue subsequently. At the Chebyshev point,
the curve for this theory is

y2 — xnf+3[(x _ ¢2)2 _4A4] = mnf+3[-x _ ¢2 +2A2][:1: _  ¢2 _ 2A2] (59)

and ¢? = 1+2A2 (this multiplicity corresponds to the discrete Z,_ _, ;—2 symmetry factor
with n; —ng — 2 = 2). The zero at the origin is of order ny + 4, and there is a single zero
at 4A? (or —4A?). Let us consider the point ¢ = 2AZ.

Denoting the positions of the new singular points in the N = 2 moduli space as

¢Z = (¢%, ng e ).(ﬁic/Q—l 7'2.A2 + 5¢2)7 . . (510)
the perturbed curve
| | nef2-1 - ng
Y=z ] @—¢2)==20"-5¢") —ar'2® [[(z = m}), (5.11)
a=1 =1 -
must be identical to ) - .
- . ne/2
y? = H (z - a.)?(z — B). (5.12)
. T a=1 '
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Here, the unperturbed zero of order ns + 4 has been assumed to split into ns/2+ 2 double
zeros at ¢ = a, some of which could be degenerate. The important point to note is that
the a, are necessarily “small” and proportional to positive powers of the m; so that they
vanish in the zero mass limit. On the other hand 3 is the perturbed value of the single
zero at 4A%.

The explicit factor of z in Eq. (5.11) means that one of the a,’s is zero. However,
this in turn implies that (5.11) has actually at least a double zero at the origin. Since the

second term of (5.11) has a cubic zero there, it means that one of the ¢,’s is zero:

?1;:/2—1 =0 l (5.13)

and consequently, (5.12) has at least a cubic zero, so that in fact two of the a,’s are
zero. To obtain the location of the critical points we must then solve the following identity
(v’ = 2*F(z)):

ne/2—2 Ne—4

CFz)= [ (=92 =207~ 54%)7 —4A* ] (z —m))
a=1 : . =1 i
s (5.14)
=z H (z — aq)(z — B)
a=1 .
Using F(0) = 0 one can argue that
¢ ~mi; 6 ~mA, (5.15)

H

while comparison of the coeflicient of z on both sides reveals that all ag éxcepi: one are of
order m: | .

0,02, 0y ja_3 ~ m? Qp,j2-3 ~ MA. (5.16)
Similarly one may also show that

o ’ 5¢2 ~ 2anc/2_2 . . o - (5.17)

In the z-plane, we must then have for |z| ~ m? (recall y* = 2 F(z)),

ne/2-2 ne—4 ne/2-3 )
F)= J[ @-¢*-J[G-mH=cz J] @-a) = (5.18)
a=1 =1 =1 -
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where ¢ ~ 4A%a2 ', . Moving terms around, we get
ne/2-2 ’

ne/2—2 ' ne/2—3 ne/2—2 ne/2—3

[I @-¢)+vea [[ ¢c-a)]- H (@=¢0) = vez J[ (@~ e)
a=1 v . b=1 ) . _b=1 o E
n.—4
= H (:L‘ - m?))
R —" . ‘
(5.19)
which, under the variable change z i 2? leads to ’
ne/2-2 nc/2 -3 ne/2—2 nc)2 3
- H (2 = ¢2) + ez H (2* —ab) . H (22 —¢2) — ez H (2% — ap)
’ a=1
ne—4
= H z+m; (z—m,)
(5:20)

Now note that the operation z — —z exchanges the two terms on the left hand side as well
as the factors on the right hand side. We also note that the masses m; are all generic and
distinct. We may therefofe eqﬁate each factor onv the left to a f)foduct of n, — 4 distinct
(z£m;) factors so that the resulting equations get exchanged under = —> —z. For instance,

one possible set of solutions may be obtained by solving

ne/2—2 n./2—-3 : no—4 ' S .
H (2* ¢>2 )+ ez H (22 — o) = H (mi + 2). | (5.21)
b=1 . =1

Dividing the expression on the right hand side into even and odd powers of z, we note that
the sufnr bof fhe even terms is a polynomial in 22 of order n./2 — 2 With coéﬁ"lcients which
are functions of m?. The even terms must therefore be identified with H"°/ 272 (22 qbi)
Consequently, the set {¢2} is determined uniquely (up to Weyl group transformations) in
terms of quark masses. Similarly, identifying the odd terms from H?;l_zl(mi“-% z), with
Vez H"°/ 2732 - ab) uniquely determines /c and the set {ap}. The location of the
smgularltles on the Coulomb branch is determined umquely by the set {¢2} and /c, the
latter being directly proportional to §¢?.

All other possible solutions are found by choosing different signs in front of z in

Eq. (5.21). (As long as all masses are different, the reduction from Eq. (5.20) to Eq. (5.21)
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is consistent). Since there are 2"<~* = 2"/ possible aistinct sign choices we find 2™/
solutions. The copies generated by the action of the Z, ,,_2 discrete symmetry factor
yield a total of N7 = (n.—ny—2)2" points of maximal degeneracy each of which becomes
an N = 1 supersymmetric vacuum upon introducing an adjoint mass. B
Finally, let us now see how the general ns even, n. even cases reduce to the problem

studied above. This can be easily deduced from the form of the hyperelleptic curve near

the Chebyshev point of the m; = 0 theory. Writing the curve as

ny /241 (nc—myp—2)/2 . ' ng
y? =z H (z — ¢2)? H (z — ¢3)2— 4x3A2(éc—nf—2) H(:v —m?),
nc/2 (5.22)

=] @ - aa)(z — 407 — B),

we note that near the Chebyshev point (the maximally degenefa_te point) ns/2 4+ 1 ¢,’s
must be “small” (i.e. vanishing in the zero mass limit) while the rest, being (perturbed)
roots of the Chebyshev polynomial of the m; = 0 theory must all be finite and pfoportional
to the N = 2 dynamical scale. The fact that the m; = 0 curve in Eq. (5.8) has a zero at the
origin of order n 7 + 4, automatically implies that only n £/2 + 2 of the «, are vanishingly
small, the rest being determined essentially by the N = 2 dynamical scale. We further
know from arguments following Eqs. (5.11) and (5.12) (which apply in the general case -
as well), that one of the ¢,’s and two of the o, are identically zero. Putting all these

requirements together, for |z| € An=2, the curve for the theory has the form

nf/2 ng
7 maneemni202 5 | ] (@ - )7 - [Le - )
a=1 : i=1
’ , v 5.23
: (ny/2-1) ‘ ( )
= 4\ ey =2)/2 g4 H (z —ag)?.
a=1 '

Note that this is the form of the curve in Eq. (5.18) and consequeﬁtly the arguments
determining the number of solutions to this identity are identical. The only difference is in
the number of copies resulting from the discrete symmetry factor (nc —ng—2). Therefore
the total number of N = 1 vacua from the Chebyshev points is N} = 2™/ (n, — ny — 2).

il) ny even, n. odd

46




The Chebyshev point is once again characterized by ns/2 + 1 vanishing ¢,’s: Setting
A = 1 for notational convenience, the curve becomes ' -
(nc —ny -3)/2

: J] @ — 42" —4|. (5.24)

a=1,

y? = gt
Identifying the first term in the brackets with (2Tnc_ln ;—2(//2))* the curve for the mass-

less theory at the Chebyshev point 1s
2 _ g.ms+2 : 2 191 — _gampt2 o2 o R
y? =4z [T, _p, —2(V7/2)? — 1] = 42 sin® [(nc — ny — 2) arccos 5 |- (5.25)

Now the order of the zero at the origin is ny + 2; there is a single zero at z = 4 and
(N —1)/2 = (n. — ny — 3)/2 double zeroes at z = 4cos*(kw/N); k =1,2,...,(N —1)/2.
As before, it is smcﬁci‘ent to restrict our analysis to a special case with ny = n. — 3, the
more general analysis being similar. Forny = n. — 3 the curve at the superconformal point
is

y? = 2™ 2 (g — 4A?). (5.26)

All ¢,’s are zero, and this is consistent with the fact that the discrete symmetry factor is

n¢ —nf —2 = 1. Upon perturbation then, all the ¢,’s get small non-zero VEVs,

Qsi : (¢%’¢%7.“'? ()b%nc—-l)/Z)) i : . (5.27)
(¢? all small) and the curve
(nc—l)/2 l ny - ' .
=z [] (e—¢2)-40%2[[(z —m2), (5.28)
a=1 . =1
must be identical to
: _ (nc_l)/z ; :
= [ (- (@-4a2+p). . (5.29)

a=1

This identity requires one of the ¢, and one of the o, to vanish identically:

Pne—1)2 =05 Qn.—1)72.=0, (5.30)
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leading to the condition,

(nc—3)/2 ne—3 (n.—3)/2
e [[ (@-¢")7—4A° Hl (z — H (z — ag)?(z — 4A? +8).  (531)
a=1 1=

This is solved by assuming

b "7¢%nc—5)/2 ~m?, ¢?nc—3)/2 ~mh,  ag~m? (5.32)

In fact, near z ~ m?, the curve can be rewritten in the following form after the variable

‘change, = = 2%,

(ne—3)/2 (nc.—5)/2 (n.—3)/2: V
H (2% — a,) + ez H (22 — M) - H (22 = aq)
a=1 a=1 a=1 .
(ne—5)/2 ne—3 (5:33)
I -] =] m:i+2)0mi-2).
a=1 ‘ i=1 :

Here /c = ¢%nc_3) /2 /2A. The rest of the arguments are identical to the previous case

and we thus find 273 = 2"/ solutions. We must of course include the discrete symmetry

factor as well so that we find N} = (n. — ny — 2)2™ vacua. Similar arguments apply for

the general case with ny even and n. odd. |

iil) ny odd, n. even _
The Chebyshev pomt is characterlzed by (ny + 3)/2 vanlshmg ¢q’s and the curve

(taklng A= 1):
(nc—mg—3)/2

=2 [ (e-¢2)?-4]. (5.34)

a=1
_The first term in parentheses can be identified with (2T, ~n, —3(1/Z/2))? so that the curve

can be rewritten as
2 _ 4onp+3 2 11 angt3 o2 vz
y* =4z [Tn.—n; —2(V2/2)* — 1] = -4z sin® | (ne — ny — 2) arccos 5| (5.35)

with a zero at the origin of order ny + 3. Focussing attention on \ the spec1al case with

nf=nc— 3 the curve takes the form

yz — :Cnf+3(:1: . 4A2) (536)
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All ¢,’s are zero, again consistent with the discrete symmetry factor being n. —ng—2 =1.

Upon perturbation the small VEVs ¢2 = (¢2,¢2,. .., ¢2 /2) modify the curve to

n./2

. ng .
v =z [[ (e —¢2)" — 40 [ (e - mi), | (5.37)
a=1 =1 .

which must be identical to

ne/2

=[] (& - aa)?(z —4A% + ﬁ) | (5.38)

a=1

Now, we must require two a,’s and one ¢, to vanish identically,

¢nc/2 = 0; Up /2 = CQn.j2-1 = 07 ‘ (539)

and we find an identity of the form

nef2—1 : ne—3 ~ ne/2-2 o
H (z — ¢2)? — 4A2 H z—m2) =z H (z —ag)?(z — 4./\2 +5), (5.40)
a=1

which can be solved co’nsistently. by assuming
Blree s @i g~ M L i~ mA, ag~mtl (5.41)

As in the earlier éases, for small z ~ m?, the identity (after the customary variable change)

assumes the form:

ne/2—2 ne/2—2 ' ne/2—2 ne/2—2

P I @ -esve JT - -2 1T e =ve JT -6
= ﬁ(z+m5)(z—mz’),

(5.42)
where /c z'¢ic/2_l/2A. This has 2™/ .distinct solutions with Ne—nyf—2 rcopies. Extending
the above arguments to the general case, we find that the Chebyshev (superconformal)
point yields M7 = (n. — ny — 2)2™ vacua upon mass perturbation.. -

iv) ny odd, n. odd
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We now turn to the ﬁnal possibility wherein both n ¢ and n. are odd. The Chebyshev
solution is obtained by taking (nf + 1)/2 of the ¢,’s to be zero:

(ne—ny—2)/2

y? =g t? H (z —¢2)? — 4] . (5.43)

a=1
The first term in parentheses can be identified with the square of the Chebyshev polynomial
Tn.—n;—2(1/2/2) and the curve becomes:

y? = 4z™ 2T, _n,—2(v/7/2)? — 1] = —42™ T2 sin’ [(nc — ny — 2) arccos \/75] . (5.44)

Now the order of the zero at the origin is ng + 3. For the special case with ny = n, — 4,

the curve is of the form-

W = 212 (2 — §2)% — 4AY). (5.45)

All except one of the ¢,’s are zero and the non-zero ¢, can have two possible val-

ues +2A? which is consistent with the Z; discrete symmetry. Upon perturbation,

= (4%, 43,.. ,(ﬁ%nc_i)ﬁ), where all the VEVs are small except'qﬁ?n“c_l)/2 ~ A?, the
curV¢ takes the form '
(nc_l)/2 . »
yi =1z H (w—¢2 4A42H:c—m) ' (5.46)
o e=1 :
which must be identical to
(ne—1)/2 _ . v -
y? = H (z — aa) (z - 40% ¢ ,B) o (5.47)

Since the curve (5.46) has a zero at the origin, we conclude that one of the a,’s is zero

which in turn implies that one of the ¢q’s must be zero also,
be-np2=0. - - | (5.48)

E‘herefore, we find

(nc—3)/2 ne—4 (n.—3)/2

H (z — ¢2)? — 4A* H (z — = H (z — ay)?(z —4A% + ﬂ) (5.49)

a=1

o0




A consistent solution can be found by assuming

%, ceey ¢%nc—5)/2 ~ mz, (}S%nc._vg)/g =0 ¢?n_c—1)/2 = 2A2 + 5¢2 (550)

Further we also need to aséume that
A1y -3 ¥(n.—5)/2) ~ m2,> a(nc_g)/z ~ mA. . (5.51)

For small x ~ m?, this allows us to rewrite the above identity in a simplified form after a

variable change z = 2?:

(ne—5)/2 . (ne—5)/2 (ne~5)/2

ve II @ -anrs JI -] - |ve I -
(ne=5)/2 - , | (5.52)
—z H (22_¢2) — H(z—i—m,)(z—mz)

This equation has precisely 2"/ solutions with n. — ny — 2 copies required by the discrete
symmetry of the theory. Generalizing these arguments appropriately we conclude that
for general n. odd and ny odd the total number of N = 1 vacua generated by mass
perturbation of the Chebyshev point is M} = (n. — ny — 2)27/.

5.2. Equal mass perturbation at Chebyshev points

)

We now turn to the case where the quark masses afe all equal and non-zero, m; =
mo # 0. Recall that this theory was analyzed earlier in the large-y limit. It has a U(ny)
flavor syminetry which is spontaneously broken to U(r) x U(ns —r). Let us now see how
this comes about in the small-y regime from the viewpoint of the associated Seiberg-Witten
curves. |

We study the case where bdth ng and n. are even and ng =ne f4. Th.e generalizatiqn
of the relevant arguments to differept nur.nbers. of flavors and colors is quite straightforwérd.

.When the quark masses are all equal m; = mg # 0, Eq. (5.20) takes the form

ne/2—2 ne/2—3 [ne/2—2 | nc/2—3
H (=) +vez [[ GP—an)| | ] P=¢2)—vez J[ (2*—aw)

b=1 - a=1 , b=1

=(2% - mo)(n°_4_)-

(5.53)
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A direct application of the arguments of the previous section reveals that there are only
(ne — 4)(n. — 3)/2 distinct solutions. However, this is not equal to the number of vacua
remaining after SUSY-breaking. The vacuum number and the physics of these points
is revealed by the form of the curve at these points. Recall that solutions to the above
equation may be found by equating one of the factors on the left hand side to the product of
any n.—4 terms on the right hand side so that the two resulting equations are interchanged

under z = —z:

ne/2—2 n./2-3
[I @-)+vee [ P—a)=(+m)" D ~mo).  (554)
a=1 ' b=1 :

Thus solutions may be classified by the integer r (00 < r < n,—4). When 2r < n. —4,

‘ é factor of (22 — m2)” appears and this leads to a solution of Eq. (5.54) where r of the

- ¢a’s and r of the a,’s are equal to m2. The remaining ¢, and a, at this point can be
determined uniquely.

Therefore at this particular singﬁlarity the Seiberg-Witten curve itself has an overall
factor of (22 — m2)?" = (z — m3)?". When 2r > n. — 4, the curve in the vicinity of
the singular point is y2 o (z — m2)2(" —_4‘”). Such degeneracies have been analyzed and
classified in detail in [13] and [14]. In particular in theories with mg # 0 and ‘U(ny) flavor
symmetry, singularities of the above type were shown to be critical poipts representing
N = 2 SCFTs. For 2r # (n. —4) these SCFTs are in the same universality class as the
Class 1 theories of Eguchi et al [13]. Specifically, when r < (n. — 4)/2 the theories at
the ‘critical points are in the universality class of SU(r) gauge théories with ny flavors,
and ‘that of SU(n, — 4 — r) gauge theories with n; flavors when r > (n, —4)/2. These
so-called Class 1 theories are trivial (IR free) theoriés. The r = (n, - 4)/ 2 theory flows to
a non-trivial fixed point with SU((n. — 4)/2) gauge symmetry and ny hypermultiplets.
... ' The emergence of such IR-free and non-trivial superconformal SU(r) gauge theories
was also noticed in N = 2 USp(2n.) theories in [8]. The physics of the IR-free theories
is:contained in the Argyres-Plesser-Seiberg [1‘5] effective Lagrangeans which describe the
degrees of freedom appearing at the r-branch roots (non-baryonic roots) in the moduli

space of SU(n.:), N = 2 theories. The SU(r) gauge theories which can be understood

semiclassically survive in the small mass regime as well, due to the non-renormalization
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theorems which protect the Higgs branches emanating from the r-branch roots. Upon
perturbation to N = 1, each r-branch root yields ,,, C\ vacua with global symmetry U(r) x
U(ng—r) - this result was also established in [8]. The flavor symmetry breaking patterns
are identical to those observed semiclassically. Therefore, including the discrete symmetry

factors , the total number of N = 1 vacua from the Chebyshev point in the equal mass

theory
' ny/2 ny
M=(nc—n;=2)| > nCrt Y n,Cr| =(nc—np—2)2%  (555)
r=0 r=ngsf2+1 )

The above afguments and statements can be directly carried over to all the other cases,
except that when ny is odd no nontrivial theories of Class 2 or Class 3 are encountered ~
only the IR free theories of Class 1 are found at the critical points.

What happens if we now send the masses to zero? Clearly, all the r—branch réots
merge together in this limit and the curve has the form y* ~ z” for n.-even and y* ~ 2"~}
with a USp(2n¢) global symmetry. The criticality of the curves and the USp(2ny) global
symmetry suggests that these theories belong to a new universality class of nontrivial
conformal field theories. We conjecture that these are strongly-interacting theories with
mutually non-local degrees of freedom. Such interacting SCFT’s were also encountered in
the a,nalysi.s of the N = 2, USp(2n.) gauge theories in [8]. In that context, the monodromies

of the singularities were also explicitly checked to show the appearance of mutually nonlocal

light degrees of freedom.

5.3. Mass perturbation at the APS special point

The analysis of [9] showed that along the roots of the r-branch there exists a special
point with r = 2, = 2ny — n.+4 where the hyperelliptic curve degeneratés maximally, and
leads to an N = 1 vacuum on introducing an adjoint mass term. As we saw earlier this
singularity appears as a consequence of mutually local monopoles becoming simultaneously
light. We have also seen, using the effective Lagrangean at this point, that in the presence
of quark masses this special point gives rise to N, ground states belonging to the so-

called second group of vacua with approximate USp(2n¢) symmetry. Let us now see how
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this group of vacua shows up in the language of the hyperelliptic curves after a mass
perturbation.
Since the special point is at the root of an r-branch with r = 72, and a gauge symmetry

enhanced to SO(ch), we must set 7 = ny — %= + 2 ¢,’s to zero when n, is even and

r=ng— tes 3 $a’s to zero when n. is odd.

For even n. the curve at this point becomes -

Ne—ng—2 . : .
y2 — .’Ezn‘f—nc+5 H (.fU . ¢Z)2 . 4A2(nc——2—nf)xnc—nf——2 . (556)
a=1 : . '
As argued in [9] the remaining ¢,’s are given.by #?2 = (w,w?,...,w" ™ "2)A? where

w = exp g . With this choice of the Coulomb branch VEVs, the expression in the

—ny

brackets in Eq. (5.56) becomes a perfect square,
y2 — z2nf—nc+5 (xnc—‘nf—2 _ A2(nc—nf—2))2 , (557)

1mplymg maximal degeneracy of the Riemann surface. Similarly, for odd nc, we set r =

n

ny — 3 $4’s to zero, and the curve becomes
) ne—ng—2
y2 — p2ns—nctd H (ZC _ ¢2)2 _ 4A2(nc~2—nf)mnc—nf -2 (558)

By choosing the remaining é4’s as above, the curve takes the form
y‘é — w2n'f —n.+4 (.T.nc_nf -2 _'Aé(nc—nf—2))2 ) ' (559)

Note that in both cases the order of the zero at v = 0 is odd, implying that the mass
splitting of this point gives just one class of vacua, as in the USp(2n.) case [8]. Therefore
upon mass perturbation, all large zeros remain doubled, near the roots of g™~ ™s~2 —
- A2(ne—ns=2) — 0 with linear shifts which are uniquely determined. |

In order to find the number of vacua, it suffices to study the small branch points, i.e.
the perturbation of the roots at z = 0 by the quark masses. Consequently we may ignore

.z—dependence of the factors (z — $2)? where the unperturbed ¢,’s are large (comparable

to the nonperturbative scale): Now the small ¢’s must be such that

flef2 ng
— At(nc—2-np) , H (z — ¢2 A2(nc_2 ny) 3 H z—m .), n. = even, (5.60)
a=1 - =1
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or .
(fe—1)/2 ng
y? = AHrem27n) H (z — ¢2)? — 4N nem27ny) 52 H(:E ~m?), n,=odd, (5.61)
a=1 =1
is maxirﬁally singular.- These are precisely the curves of the IR free SO(#i.) theories with
ns hypermultiplets having generic nonzero masses. Potential N' = 1 vacua can now be

identified by choosing r of the ¢2’s to match r of the:distinct quark masses m?. This can

of course be achieved in ,,C, ways. Then, for |z| « m?, (i =1,...7) the curve has the
form |
(Rc/2—1) r s _ _
= a0 T (o - 602 [[om) - 4270275053 (), e = even
a=1 =1 . ) =1
(5.62)

when there are an even number of colors. Up to overall multiplicative constants this is the
curve for a pure N = 2 gauge theory with SO(%. — 2r) gauge symmetry. This theory will |
obviously yield w(n, — 2r) vacua upon deforming to N = 1. Analogous arguments apply
for the n. odd case and therefore we have shown that the special point of APS does.indeed

give rise to
(7c/2]
NZ = Z ’LU('ﬁC —~"'27’) nfCr + niCﬁc/Q (563)

N =1 ground states.

In all the cases analyzed above the location of the Chebyshev vacua (e.g. number of
vanishing ¢,’s) is simply not compafible with that of the special point. For instance, for
ng even, ng even, the coincidence of the two points would imply ny — 2= +2'= 2L + 1,
which is-an impossible relation (since we limit to AF cases ny <‘n. — 2.) This means that
the Chebyshev points and the special points-are distinct and well-separated in the N = 2

moduli space.

5.4. Summary

In all cases we find that each of the n, —ny — 2 Chebyshev points on quantum moduli
space gives rise, upon generic m; perturbation, to 2"/ singularities of the desired type, so

that the total number of N = 1 vacua of the first group is
Ny = (ne—nj—2)2". -  (5.64)
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The situation is rather similar to the case of USp(2n.) theories. Around the special point
(baryonic like root), there are N singularities (V = 1 vacua). AM; + N coincides with the

total number of the vacua found from the semiclassical analysis and and at large .

6. Semiclassical monopole multiplets and singularities of QMS

In their seminal papers on the exact solution of N = 2 supersymmetric gauge theories,
Seiberg and Witten assumed that the monopoles which become massless at a singularity of
the quantum moduli space are smoothly related to the massive semiclassical monopole of 't
Hooft and Polyakov present at large u = (Tr®?). Such a connection has been confirmed in
SU (2) theory with nonvanishing flavors, through the study of the flavor multiplet structure
and fractional quark numbers of these monopoles [21],[22].

The situation is however much less obvious in a more general class of N = 2 gauge
theories studied in [8] and here. In generic SU(n.) and U Sp(2n.) theories, it was found that
at the Singularities of QMS which survive the N = 1 perturbation yTr®?|r the massless
states are either dual quarks and flavor singlet monopoles or nonlocal set of dyoné.» At
generic 7- vacua (in the notation of [8]) the flavor symmetry is broken by condensation of
the dual quarks. Flavor multiplets of massless monopoles relate smoothly to semiclassical
't Hooft - Polyakov monopoles only in a restricted set of .Vacua (namely r = 1, in the
notation of [8]). It was argued in [8] that the dual quarks appearing in the generic r-
vacua of SU(n.) are the “baryonic components” of the semiclassical monopoles in the r-
antisymmetric representation of the flavor SU(n¢) group.

.. Both in SU(n.) and USp(2n.) gauge theories, an agreement was found between the
number of N = 1 vacua in the first group and the total multiplicity of serni-classical
monopole states, both of which turn out to be of order 2?/ times a disci‘ete.symm‘etfy
factor which depends on the gauge group. '

vWe 'h;ave already seen that the first group of vacua of the SO(n,) theory with equa,l
(jug,rk fnas'ses is in the same universality class as the r- vacua discussed above. Therefore,
it would be interesting to understand the relationship between the light degrees of freedom

(dual quarks) and the semiclassical monopole flavor multiplets of the SO(n.) gauge theory.
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However in the gen.eric: SO(n.) theories studied in this paper, a puzzle emerges. There
appears to be an order-of-magnitude discrepancy between the multiplicity of the semi-
classical monopole states in the massless theory (which turns out to be ~ 227 as shown
below) and the number of the singularities corresponding to the N = 1 vacua (which is
~ 2™1). Since the number of the latter is well-defined only for generic, nonvanishing bare
quark masses, we are not facing any parddok here. It is nonetheless interesting to attémpt
to understand the origin of the difference between the situation in the SO(n.) theory on.
the one hand and SU(n.) or USp(2n.) theories on the other.

The flavor contents of the semiclassical monopole states in the latter theories have
been studied in an Appendix of [8]. For SO(n.) gauge group, we first -observé- that in
the massless theory (i.e. with vanishing bare quark masses) each Dirac fermion has two
zero modes in ‘the background of the 't Hooft - Polyakov monopole, in contrast to the

SU(n.) and USp(2n.) theories. The doubling of the zero modes for each Dirac fermion

follows from the symmetry of the classical equations.® Namely, the Dirac equations for 2n _

fermions ¥y, ..., %n,, P1- s Pn ; are invariant under USp(2ny) transformations generated
A ' .
by (ﬁk - BT)a’ where Bt = B; AT = A. Suppose that one zero mode-for the Dirac

‘pair (¥1,%r) = (in(r),n(r)) is found. Now, USp(2n;) transformations generated by Ayi,
A}, ywhich act as an SU(2) C USp(2ny), contain elements

eom.2/? — cos 2 41712 sin —, (6.1)
-2 ’ 2 RS
which act on the (y1,1) subspace. By choosing @ = =, the above elements become

proportional to

éh’owing that if (¢1,J1) = (in(r),n(r)) is a solution, so is _(1,/)1,1/;1) = (—in(r),n(r)). Of

course, the transformations generated by U(nys) C USp(2ny) give rise to the zero modes for

(o) o (Be) e

other flavors, in the standard way. In all, there are 2ny zero modes. The doubling of the
Zero rpo_des in the massless theory can be also established by the study of Callias’ index

theorem for SO(n.) theories, which we summarize in Appendix A. Quantization of the

¥ One of the authors (K.K.) thanks D. Kaplan for discussions on this point.
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fermions introduces then 2n pairs of creation and annihilation operators in the zero mode
sector. One thus expects to find 22%/ monopole states semiclassically. We now turn to the
nontrivial task of expvlicitly constructing these monopole states in terms of the creation
operators. v

Call the 2ns zero mode opérators b:,, where i - 1,2,... ,nf, a = 1,2. Let us define

2n operators by
=t  d=b, (i=1,2,...,np), (6.3)

2

where €2! = 1. (Of course, only 2nf operatdrs améng ¢!, and their adjoints are indepen-

dent.) The standard quantization conditions
{6, (0)'} =8900p, (7 =1,2,.0mp) (6.4)

then translate into

A,y =Je, (i=1,2,...,2n), (6.5)

which is indeed invariant under USp(2ny). In terms of ¢!, cif the USp(2ny) charges are -

1

v c
n B A .
(M .. et (A* —BT) ) (6.6)
» 2ng .
B A . ‘ ) b T .
where A+ _pT)s the standard USp(2ny) generators with B = B; A' = A. Equiv-

alently, in terms of the original independent operators they are:

TR
e (B AN ™
(b}T .. blfT b% ...b2f)<A* _BT) b:il

be""/
[ ¥

(6.7)

s ] e
+ (ol et ...—blf)<A* —BT> ._21”

o
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It is convenient to introduce also “SU(2)” generators, even though they are not symmetry
operators of the full quantum theory:

ng ’ 212; :

=) b= Zc}"c; Z I *”’*’ = J,Jc;cjﬂ, (6.8)
i=1
2nf . ny o 1 . ‘
thbl — Zc;lc} = C;Lf—HC; = —5«]1]0;6'{, (69)
.‘l=1 =1
1 Vigi o atiri 1 "y y 1 i g
= 5 z;(lh b] - bz bz) : Z ZZ;(CI €1 — Cy 62) 2.],'.,'.61:02., (6.10)
1= -

for the purpose of constructing the semiclassical spectrum of monopoles. Note that all of
7t are singlets of USp(2ny). Vice versa, the generators of USp(2ny) in (6.7), are obviously
all SU(2) singlets, showing that USp(2nys) and SU (2) commute with each other.

One can construct the Fock space of states by tfeating any set of 2ny independent
operators as annihilation operators and defining the vacuum with respect to them. In order
to see the multiplet structure of USp(2n ) (which isvthé true symmetry of the system) it

is convenient to introduce a “vacuum” state |0) defined by
ct0) =0, i=1,2,...2n;. ' (6.11)

Various USp(2ny) tensors can then be constructed as follows:
1) USp(2ny) singlets, : L v
' [0), 7410), 72[0), ..., 77 |0) : ” (6.12)

they form a “spin” = multlplet Wlth multxphc1ty nf + 1. Note that 7 nf+1|0) = (;
ii) 2ny of USp(2ny),

ef'[0), meef'l0), riel0), ..., el o) : (6.13)

which form the “spin” Efz;l SU(2) multiplet, with multiplicity on,C2 X ny;
iii) Second rank antisymmetric irreps of USp(2ny), constructed from ci*cl’|0), by sub-

tracting the singlet,
[c}" L (Z Je c}"‘c}‘f” [0y, (6.14)
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and those obtained by acting on these states with 74 up to n § — 2 times. The multi-
plicity is
(anCZ —znfC())< (nf - 1); ) ‘ (615)

iv) General rank 7 antisymmetric irrep of US p(2h £), constructed from

ti1 ji2 fir
e e

0) | (6.16)

by subtracting all"possible contractions with J;; . Other rank r antisymmetric irreps
" can be obtained by acting on these with 74 up to ny —r times. For mstance forr =4

_' the resultmg mult1p11c1ty of an 1rrep of USp(2ny) is
“2n;C4 = (20, C2 ~ 20, Co) — 2n‘;CO =on,Cy—2n,Ca. (6.17)
In general, for general r, the multiplicity is |
(2n, ' 2nf —2)-(nf—r+1), | (618)

where the second factor is due to the “SU (2) spin”.

v) Finally, the ns-antisymmetric tensor,

c}”cl”z . cl”nf |0) — contractions o - (6.19)
* with multiplicity,
» V ' 2ny Cnf - anCnf—.Z- _' (620)

Clearly, the maximum rank of the antisymmetric USp(2ny) tensor constructed this way is

ny, so the total multiplicity of the states is

ng : . . . .
Z(ancr - anCT—z)(nf -7+ 1) + 2nfCI ‘nf+ anco : (nf + 1)
r=2 .
oy 1 L nf—2 . : ' .

= Z_an Cr(nf -r+ 1) - Z 2ny Cr(nf - T — 1) ‘ (621)
r=0 ' T =0 ; . . .

_ ng—2 . 2ng

=2 Z 2nfC +2 Zn;Cnf 1+2n, ny — Z2nfC _22nf

=0
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as expected. | . . S

Semiclassically, these monopole are all massive, and only the degeneracy within the
same USp(2n ) multiplet is expected to survive the full quantum effects. When bare quark
masses are added to the theory, each USp(2nf) multiplet above decomposes into a sum of
SU(ny) multiplets.

* The number of the singularities corresponding to N = 1 vacua we found (~ 27/) is
much smaller than that of the multiplicity of the semiclassical monopole states, of the order
of 22"f, in -Vcontrast to the situation in SU(n.) and USp(2n.) theories. This fact can be
“understdod"’ from the details of our analysis in section (51) on the mz;ss per\tu‘rbation‘
Indeed, one component of the adjoint VEVS ¢, was found>to vanish in all caseé for
the nonvanishing quark masses, see (5.13), (5.30), (5.39) and (5.48). According to the
Callias index theorem (Appendix A) it means that there is only one zero mode for each
Dirac fermion in such a background. The surviving zero mode is perfectly normalizable
due to the exponential damping factor at the spatial infinity, while the other would-be
zero mode becomes non-normalizable for the case of a finite mass. (The massless limit
is tricky as there is no exponential damping factor with ¢ = 0 and the .would-be Z€ro
mode is marginally non-normalizable.) Under these circumstances, one can construct only
monopole states in the representations of U(ny) C USp(2ny) group, not of the full group
USp(2ny), as can be seen from (6.7)— A;; being symmetric, one needs two independent zero
modes b, (@ = 1,2) to get nonvanishing Noether charges of USp(2ns)/U(ny) in the zero
mode sector). This precisely corresponds to what the authors of [13] found, narhely that in
the massive SO(n.) theory the SCFT’s of the first group are in the same universality class
as those found in the SU(n.) gauge theory. Different r vacua are described by an effective
SU(r) x U)IF1=7+1 theory with ns dual quarks in the fundamental representation of
SU(r). (See Table 2.) The sum of these N =1 vacua thén gives ((5.55)) the total number
of singularities (n. — ny — 2)2"/.

The above discussion demonstrates that the counting of monopole multiplicity. is a
subtle issue in the massless quark limit, and clarifies to some extent the differences be-
tween the SO(n.) and SU(n.)/USp(2n.) theories with regard to the flavor structure of .

semiclassical monopole states. Unfortunately it does not shed much light on the dynamical -
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details of these vacua. The physics of these “deformed SCFT” vacua, the precise mech-
anism of symmetry breaking and conﬁnement and the role of the magnetic monopoles

therein remain to be further elucidated.
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Appendix A. Callias Index Theorem for 50(n.) Theories

Start from the index theorem, for the Dirac zero modes [23]

L W ) B(a)
N=)n)_ ——Bz—sgn[(w - ¢) — ml, (A.1)

where £ and B(%) are the rank and simple roots of the gauge group considered, w are
weight vectors of a given representation to which the fermion belongs, and n, is the integer
monopole magnetic charge associated to the a-th U(1) factor of the Cartan subgroup. For
SO(20), the simple roots are €; — e;+1 (i = 1,2,...,€ — 1) and e;_; + ey, where e;’s are
orthonormal vectors in an ¢ dimensional Euclidian space, and one finds

R 4

=1 [ {sgn(1 — m) — sgn(~g1 —m) — sgn(gs — m) +sgn(~d — m))
“+na{sga(gs — m) — sga(~, — m) — sgn(ds — m) + sgn(~4s —m)}
+ne—1{sgn(de-1 —m) — sgn(—¢e—1 — m) — sgn(¢e — m) + sgn(—¢¢ — m)}
e {sgn(de—1 — m) — sgn(~de-1 — m) + sgn(ge — m) — sgn(—¢e —m)}].

sgn [(w- ¢) m]

(A.2)

The reason for the dependence on signs of (¢ —m) is becaﬁse the would-be zero mode
behaves as e~ (F9~™)7 at the spatial infinity and the zero mode exists only if it is normal-
izable. For example, for SO(4), £ = 2, the index is given by the formula

:l n1 {sgn(¢1 —m) —sgn(—¢1 — m) — sgn(¢a — m) + sgn(—¢2 —m)}

N
3 | (A.3)
+n2 {sgn(¢1 — m) — sgn(—¢1 — m) + sgn(é2 — m) — sgn(~¢; —m)}], ‘
SO :
Pp1>pa>m>0 — N =2ny; (A.4)
Pr>m>¢2 >0 — N = nj+ ng; : (A.5)
m>¢r>¢>0 — N=0O. (A.6)

For general SO(2¢), the number of the zero modes depends on the field configuration as:
$p1>¢2>...>¢>m>0 — N =2ny (A.7)

P1>¢P2>...>p1>m> P >0 — N =mny_;+ny (A.8)
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b1 >P2> ... >ra>m>Pi_1 >0 — N =np_s; (A9

)

(A.10)

Ppr1>m>da>...>dp >0 —?,N:nl; (A.11)
m>dr>¢a>...>¢>0 — N=0. (A.12)

For SO(2¢ + 1), the simple roots are e; —e;4; (¢ =1,2,...,£ — 1) and e;: the index

_formula is

N ==[n; {sgn(¢1 — m) — sgn(—¢1 —m) = sgn(¢2 — m) + sgn(—¢2 — m)

N | =

+o (A.13)
+re_1{sgn(de-1 — m) — sgn(—¢e—1 — m) — sgn(¢e — m) + sgn(—¢e — m)}

+2n¢ {sgn(¢e — m) — sgn(—¢e — m)}].

In this case the zero mode multiplicity depends on the configuration and on the monopole

charges as: ,
Pr1>¢d2>...>d>m>0 — N =2ny (A.14)
pr1>¢2>...>P1>m>¢ >0 — N=ngy; (A.15)
1> > ... >Ppa>m>P1>0 = N=npy; (A.16)
_ (A.17)
pr>m>¢a>...>d >0 — N =ny; (A.18)
m>¢ >¢>...>d>0 — N=0. , (A.19)

_,_.;_. We note that both in SO(2¢) and SO(2¢ + 1) theories, the doubling of the zero modes of a

given Dirac fermion requires that all the ¢’s to be larger than the mass m. Therefore the
massless limit and the monopole spectrum discussed in Section 6 is valid when all ¢ are
non-vanishing, but when one of the ¢ vanishes the would-be zero mode loses the exponential
damping factor at the spatial infinity and the number of zero modes is ill-defined. It is not
clear what the spectrum of semi-classical monopole is when one (or more) of ¢ vanishes

" for the massless quark case.
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