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CP-violation from Noncommutative Geometry* 

I. Hinchliffe and N. Kersting 
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Abstract 

If the geometry of space-time is noncommutative, i.e. [xp,xv] = iOpv, then noncommutative 
CP violating effects may be manifest at low energies. For a noncommutative scale A = o-l/Z ~ 
2 TeV, CP violation from noncommutative geometry is comparable to that from the Stan
dard Model (SM) alone: the noncommutative contributions to E and E1 jE in the K-system, 
and to sin 2/3 in the B-system, may actually dominate over the Standard Model contributions. 
Present data permit noncommutative geometry to be the only source of C P violation .. Fur
thermore the most recent findings for g - 2 of the muon are consistent with predictions from 
noncommutative geometry .. 
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1 Introduction 

In recent years there has been a growing interest in quantum field theory over noncommutative 
spaces [1], that is spaces where the space-time coordinates xJ.L, replaced by hermitian operators xJ.L, 

do not commute: 
(1) 

Here () is a real and antisymmetric object with the dimensions of length-squared and corresponds 
to the smallest patch of area in physical space one may 'observe', similar to the role n plays in 
[Xi, Pj] = in8ij, defining the corresponding smallest patch of phase space in quantum mechanics. In 
this paper we define the energy scale A = Je (where() is the average magnitude of an element of 

()Jlv) which is a more convenient parameterization in constructing an effective theory at low energies: 
Many researchers set Ooi = 0 to avoid problems with unitarity and causality, but since this is only 
an issue at energies above A [2], we do not use this constraint for the purposes of low-energy phe
nomenology. We may view OJlv as a "background B-field" which has attained a vacuum expectation 
value, hence appearing in the Lagrangian as a Lorentz tensor of constants [3]. Assuming that the 
components of ()J.Lv are constant over cosmological scales, in any given frame of reference there is 
a special "noncommutative direction" given by the vector ()i = Eiik()jk· Experiments sensitive to 
noncommutative geometry will therefore be measuring the components of 1, and jt is necessary to 
take into account the motion of the lab frame in this measurement. Since noncommutative effects 
are measured in powers of pll()JtvP'v, where p,p' are some momenta involved in the measurement, it 
is possible that odd powers of () will partially average to zero if the time scale of the measurement 
is long enough. Effects of first order in () vanish at a symmetric e+ e--collider, for example, if the 
measurement averages over the entire 47r solid angle of decay products. If the data is binned by 
angle then it is possible to restore the sensitivity to e. In addition to any other averaging process 
over short time scales, terrestrial experiments performed over several days will only be sensitive to 
the projection of 1 on the axis of the Earth's rotation. Of course binning the data hourly or at 
least by day /night, taking into account the time of year, can partially mitigate this effect. This 
axis, as well as the motion of the solar system, galaxy, etc., does not vary over time scales relevant 
to terrestrial experiments. 

The basic idea of noncommutative geometry is not new and has been known in the context 
of string theory for some time· [4]. We refer the reader to a few of the many excellent reviews of 
the mathematics of noncommutative space [5, 6, 7, 8, 9] for a more rigorous understanding of the 
present material. Noncommuting coordinates are expected onquite general grounds in any theory 
that seeks to incorporate gravity into a quantum field theory: the usual semi-classical argument is 
that a particle may only be localized to within a Planck length Ap without creating a black hole 
that swallows the particle, hence Li<j l:ixifl.Xj 2:: )..p

2; alternatively, one is led to think of space as 
a noncommutative algebra upon trying to quantize the Einstein theory [10, 11]. 

Much research has already gone into understanding noncommutative quantum field theory [12, 
13, 14, 15]; it is equivalent to working with ordinary (commutative) field theory and replacing the 
usual product by the * product defined as follows: · 

(! * g)(x) = ei9p.v8~8~ J(y)g(z) Jy=z=x 

With this definition (1) holds in function space equipped with a* product: 

[xJL, Xv ]* = iOJlv 

(2) 

(3) 

This * product intuitively replaces the point-by-point multiplication of two fields by a sort of 
'smeared' product (see Fig. 1). Indeed the concept of 'smearing' is borne out in more detailed 
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ljl(x) cp(x) ( IJI• $! (x) 

Figure 1: An illustration of the star product between two functions. The two scalar functions 'ljJ 
and¢ are strongly orthogonal('lj;(x)¢(x) = 0 Vx) yet the* product is nonzero. 

analysis of 1- and 2- point functions [16]: spacetime is only well defined down to distances of order 
VB so functions of spacetime must be appropriately averaged over a neighborhood of points. In 
each ( i, j) plane, we must replace 

(x; -X:)2+(xj -x1
. )

2 

¢(xi,Xj)--+ I dx~dxj¢(x')e- 8ii (7r0ij)-1 (4) 

Examples of theories which have received attention include scalar field theory [13, 17, 18], NC
QED (the noncommutative analog of QED) [19], as well as noncommutative Yang-Mills [20, 21]; 
perturbation theory in() is applicable and the theories are renormalizable [22, 23]. For gauge theo
ries, the most naive possibility of a gauge transformation only permits U(N) gauge groups with a 
severely limited choice of particle representations [19]; NCQED for example would only permit par
ticles with charges +1, 0, -1, while color SU(3) would be forbidden altogether in a noncommutative 
framework. With a more suitable treatment of the gauge transformations however [24], such lim
itations are removedt. A noncommutative modification of the Standard Model(SM) is possible as 
a working field theory, at least up to 0(0). Replacing the ordinary product with the * product 
in the Lagrangian, the appropriate Feynman rules for this noncommutative SM (ncSM) follow 
straightforwardly and are reproduced in the Appendix. 

Whatever the physics at the Planck scale is like, we expect there to be some residual effect 
at low energies beyond that of classical gravity. If we parameterize this effect as in (1), then low 
energy physics will receive corrections in powers of the small parameter 0. Several papers have 
addressed how these corrections may modify observations at an accelerator [25], precision tests of 
QED in hydrogen [26], and various dipole moments [27]; in general, if A :::; 1 TeV, there will be 
some observable effects in these systems at the next generation of colliders. This paper aims to 
investigate the C P violating potential of noncommutative geometry in low energy phenomenology. 

2 Computing in the Noncommutative Standard Model(ncSM) 

The method of computing noncommutative field theory amplitudes is effected by replacing the 
ordinary function product with the* product in the Lagrangian. The theory is otherwise iden"tical 
to the commuting one (i.e. the Feynman path integral formulation provides the usual setting for 
doing QFT): for example a Yukawa theory with a scalar ¢, Dirac fermion '1/J, has the action 

S =I d4
x (1fif/J'lj; + (f)¢)

2 + >..1f*'l/J*¢) 
----~--------------------~---

(5) 

tthe most naive gauge transformation is ocp(x) = a(x)a*Tac/J(x), the O(B) piece of which causes the aforementioned 
difficulties. Since we only work to O(B) in this paper, we could for example use instead ocp(x) = a(xt * ~r,b(x) + 
r,b(x )Ta * a(x t which is 0(1 + 82

) 
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(Here we have used the fact that J dx~ * ~ = J dx~~' which follows straightforwardly from (2) ) 
Gauge interactions likewise generalize from the standard form; the action for NCQED fot example 
is 

(6) 

where 
(7) 

Note the extra term in the field strength which is absent in ordinary QED; this nonlinearity gives 
NCQED a NonAbelian-like structure. There will be, for example, 3- and 4-point photon self
couplings at tree level (see Appendix). 

In momentum space the* product becomes a momentum-dependent phase factor which means 
that the theory effectively contains an infinite number of derivative interactions suppressed by 
powers of B. This directly exhibits the nonlocal character of noncommutative geometry. From (5) 
and (6) we can derive the action for the noncommutative version of the Standard Model (ncSM). 
We present its content as the list of Feynman rules in the Appendix. 

A central feature of computations in the SM is the presence of divergences and the need to absorb 
them into counterterms. The ncSM is similar in this respect, yet it is necessary to renormalize 
carefully: if one simply uses dimensional regularization and sums virtual energies to infinity, bizarre 
infrared singularities appear in the theory which are difficult to handle [13]. To illustrate, consider 
the loop integral 

I 
eikiL(}!LvPv 

ddk (k2- m2)2 (8) 

which is finite for IB ·PI # 0 but is logarithmically divergent if IBI = 0. Explicitly, we Wick-rotate 
(8), introduce the Schwinger parameters [28], integrate over momenta, and obtain 

IdS sl-f e-t(O·p)2s-I-m2S (9) 

If we take IBI = 0 now, dimensional regularization gives the usual r[1- ~] which we would absorb 
into a counterterm of the theory. However for small finite values of IB ·PI we get an approximation 
of the integral (9) in four dimensions: 

(10) 

There is a ln(IBI) divergence !iS IBI -+ 0 which is expected since in this limit the theory tends to the 
commutative one and reproduces the r[1- ~] divergence mentioned above. This is formally correct, 
however the theory in this limit is awkward to work with since some amplitudes will diverge as 
IBI -+ 0 and must somehow conspire to produce final results such as scattering amplitudes which 
are finite. For the computational purposes of this paper, in which e.g. mw 2 1BI is a small number 
« 1, it is more convenient to regularize with a Pauli-Vilars regulator whose cutoff M satisfies 
M"' O(A). Then (9) becomes 

IdS sl-f e-(M-2+t(O·p)2)s-I-m2S 

Now taking the limit IBI -+ 0 also raises the Pauli-Vilars scale M and 
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The divergent log piece"' ln(M2 ) can be subtracted in a counterterm while the second, finite piece 
"' jO · pj 2 ln(M2) gives a small correction to the commutative theory of O(x ln(x)) where x = jO · pj2

. 

Renormalizing in this manner guarantees sensible amplitudes as well as physical results. 

3 CP Violation in the ncSM 

In the SM, there are only two sources of C P violation: the irremovable phases in the CKM matrix 
and the BFF term in the strong interaction Lagrangian(the coefficient e has to be miniscule to 
avoid contradicting experiment [29]). 

In the ncSM, there is an additional source of CP violation: the parameter 0 itself is the 
CP violating object, which is apparent from the NCQED action (6) considering the transformation 
of AJL and all under C and P and assuming CPT invariance [30]. Physically speaking, an area 
of 0(0) represents a "black box" in which some or all spacetime coordinates become ambiguous, 
which in turn leads to an ambiguity between particle and antiparticle. More detailed work reveals 
that 0 is in fact proportional to the size of an effective particle dipole moment [31]. Therefore 
noncommutative geometry can actually explain the origin of CP violation. At the field theory 
level, it is the momentum-dependent phase factor appearing in the noncommutative theory which 
gives CP violation. For example, the ncSM W-quark-quark SU(2) vertex in the flavor basis is 

(13) 

Once we perform rotations on the quark fields to diagonalize the Yukawa interactions, i.e. U£ --+ 
UuL and dL--+ V dL, the above becomes 

(14) 

Even if utv is purely real, there will be some nonzero phases eip·O·p' in the Lagrangian whose 
magnitudes increase as the momentum flow in the process increases. 

Experimentally, the signal for noncommutative geometry here is a momentum-dependent CKM 
matrix (ncCKM) which we define as follows: 

A+ ixus 

1 - A2 /2 + iXcs 

-AA2 + iXts 

(15) 

where Xab = PaJLOJLvP~v for quarks a, b. This matrix is an approximation of the exact ncSM in the 
perturbative limit where we expand eip·O·p' ~ 1 + ip · () · p'. In the limit () --+ 0, the Xab all go to 

. zero and V becomes the CKM matrix V in the Wolfenstein parameterization [32] in terms of the 
small number A~ 0.22. Note that V is not guaranteed to be unitary, since, in contrast to the SM 
CKM matrix, V is not a collection of derived constants: a given matrix element will attain different 
values depending on the process it is describing. As an example, suppose we measure a non-zero 
r-polarization asymmetry in t --+ br+v [33]; this puts a constraint on the value of ~(Vtb) at the 

energy scale f..l ~ mt+. We can get another constraint on ~(Vtb) through a B 0 -If oscillation 
experiment, but we must take into consideration that this is a measurement at the energy scale 
J.l ~ mb. In the former process we would find (for rt = 0) ~(Vtb) ~ O(mt2 jfJj) whereas in the latter 
it would be O(mtmb jOj), so these phases differ by a factor of mt/mb ~ 30. Therefore we expect the 

~Actually, there is a lot of uncertainty in this measurement, including the values of the M N S matrix, so measuring 
the phase in practice is not straightforward. 
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Figure 2: The box graph for K 0-K0 mixing in the Standard Model with exchange of virtual W
bosons and up-type quarks f~om the i, j generations. 

phenomenology of V to be rather different from that of the SM. In addition to CP violation from 
the weak interaction (in V), there will also be CP violation from the strong and electromagnetic 
interactions (since there are phases entering any vertex with three (or more) fields (see Appendix)). 
We now turn to the phenomenological implications of these. 

3.1 CP Violating Observables 

3.1.1 EK 

The CP violating observable of choice in the K 0-meson system is EK which is directly proportional 
to the imaginary part <s(M12) of the box graph (see Fig. 2): 

The mass splitting llm between the long- and short-lived K 0 eigenstates 
is b..m ;:::j 3.5 · 10-15 GeV [34]. We can rewrite 

O<(M ) _ Gp
2
mw

2 
!K

2 
f!KmK O<(l ) :s 12 -

12
7f2 :s oop 

in terms of the decay constants f K, B K, and the loop factor. In the SM, the loop factor is 

(16) 

(17) 

(18) 

where Aq = Vqdvq: and f(x) is a loop function (see Appendix). In the SM, both charm and top 
quarks contribute roughly equally to the imaginary part of the loop, and the measured value for 
EK puts a constraint on the parameters p, rJ of the CKM matrix. However, in the ncSM we must 
replace the entire loop since the momentum-dependent phases in V change how the loop integral 
behaves. The top-quark will dominate the graph because of the large loop momentum it carries. 
We record the evaluation of the loop integral in the Appendix. 

If the kaons used in the measurement emerge from a beam with an average velocity (3 = % in the 
lab frame, we must average over the motion of the internal constituents of the kaon, since the entire 
noncommutative effect is proportional top·()· p', where p,p' are the momenta of the constituents. 
We assume that these momenta have random orientation in the rest frame of the kaon, subject 
to p + p' = (mK, 0, 0, 0). The average over these internal momenta produces a result which is 
proportional to the velocity of the kaon in the lab frame: (p · () · p') ;:::j 101 !3r m'k. Therefore it is 
important that the !3r of the beam not be so small as to wash out the signal. Recent determinations 
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Figure 3: Variation of E with ~ 
noncommutative geometry. 

mw /A. Here TJ = 0 so all CP violation is from 

of EK use a reasonable !3! [35], so we do not concern ourselves further with this caveat. Experiments 
at an e+ e- collider (e.g. [36, 37]) where the center of mass is stationary in the lab frame should, 
however, see no signal for EK since (f} !) = 0. As we mentioned in the Introduction, the data 
is sensitive to the time of day. If there is a component of 1 along the axis of the Earth, then 
given enough statistics there should be a "day /night effect" for EK which, as far as we know, no 
experiment has looked for. 

In the case TJ = 0 (so the phase from Vis due entirely to noncommutative geometry), we obtain 

F(t:) = ....!!'l!L.A3p (291!" t:2 + 134s~ _ 2og~) 
<, - 18mw 2 <, 1+~ 4+~ 

!:=~ 
<,- A 

(19) 

Using Gp = 1.166 · 10-5 GeV-2
, mw = 80.4 GeV, fK = 0.16 GeV,mK = 0.498 GeV,BK = 

0. 70 ± 0.2, p = 0.3 ± 0.2, and the latest measurement of EK ~ (2.280 ± 0.013) · w-3 [34], this implies 
~ ~ (4 ± 2) · w-2 (see Fig. 3); in this scenario spacetime becomes effectively noncommutative at 
energies above~ 2 TeV. 

3.1.2 E1/E 
Direct C P violation is measurable in the neutral kaon system as a difference between the rates at 
which KL,s decay into I = 0, 2 states of pions: 

, (2 IT I KL)(O IT I Ks)- (2 IT I Ks)(O IT I KL) 
E = ~~~--~~--~~--~~~--~~--~~ 

- v'2(0 IT I Ks) 2 
(20) 

Then the ratio of direct to indirect C P violation is 

E
1 

1 ( (2 IT I KL) (2 IT I Ks)) 
~ = v'2 (0 IT I KL) - (0 IT I Ks) 

(21) 

The theoretical computation of this ratio is a challenge in the SM not only because the perturbative 
description of the strong interaction is not reliable at low energies but also because it is proportional 
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to a difference between two nearly equal types of contributions, enhancing the theoretical error [38]. 
The most naive way to estimate ~ employs the so-called vacuum-saturation-approximation (VSA) 
which is based on the factorization of four-quark operators into products ofcurrents and the use 
of the vacuum as an intermediate state {for more details see [39]). The estimate is 

::_ ~ {0.8 ± 0.5) -10-3 (~(At)) 
E 10-4 

{22) 

where in the SM At represents the CP violating phases from the CKM matrix, At = A2 A5rt ~ 
1.3 · w-4• The experiments measure ~ = (1.92 ± 0.46) · w-3 which does not closely match the 
VSA number, but it is possible to use more elaborate models that agree closely with the measured 
value [38]. 

In the ncSM it is no less difficult to compute ~; in particular, the extra phases from 
noncommutative geometry will become involved in the complicated nonperturbative quark-gluon 
dynamics. The best estimate we can make here is (see Appendix C) 

~(At) ~ 2 mK e ln( mw ) 
mw emK 

(23) 

For e ~ 0.04, we get roughly the same VSA value as in the SM. 

3.1.3 sin2/3 and the unitarity triangle 

The only CP violating observation from the B-system to date, the asymmetry in the decay products 
of B 0 -t Jj'lj;K8 ° [40, 41, 42, 43], is a measurement in the SM of a combination of CKM elements 
called sin2{3: 

sin2{3 = ~ (- [l'tbllt~J [Vc~l'c!] [li;;'dVc:]) 
lltb l'td Vcs Vcb Vcd li;;s 

(24) 

where the first bracketed factor is from Bd0 
- ~ mixing, the second from the observed decay 

asymmetry, and the third from K 0 
- K

0 
mixing. In the Wolfenstein parameterization, 

. 2rt(1-p) 
szn2{3 ~ 2 ( )2 'T/ + 1- p 

(25) 

which, for (p, rt) ~ (0.2, 0.3), corresponding to a point in the center of the allowed region of the 
p- 'T/ plane [44] implies sin2f3 ~ 0.7. The most recent experimental world average for this quantity 
is~ 0.49 ± 0.23 [45], which may suggest that the SM does not adequately account for the observed 
C P violation. 

In the ncSM the corresponding quantity is (24) with each matrix element Vij replaced by Vij 

extracted from the relevant process: 

(26) 

Of course experiments don't measure the precise value of a given Vij but rather some combination 
of them integrated over internal mom~nta. If we again consider the scenario where 'T/ = 0 then the 
imaginary parts of these quantities increase roughly proportionally to the momentum involved and 
we expect the first bracketed term in (26) to dominate since the size of the momenta involved in 
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0.2 
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0.08 0.1 ~ 

Figure 4: Variation of sin2(3 withe= mw I A (TJ = 0). Consistency with K-system measurements 
implies~·::::::: 0.04 ± 0.02, so the ncSM predicts a small sin2(3::::::: 0.11 ± 0.08 

Bd0
- Bd 

0 
mixing exceeds that of B 0-decay or K 0 - ~ mixing, i.e. mbmtO » m~e, mKmtO. We 

therefore set the second and third brackets to unity, obtaining 

. 2(3 ~ 0.: ( >.3(1-p)+if(€)) ~ 2/(€) 
szn ~ :s >.3(1-p)-if(€) ~ ~ 

(27) 
see(19) 

The motion of the quarks inside the B-meson would be a serious impediment to measuring e (see 
previous discussion for kaons) were it not for the asymmetry of the e+e- collider which gives the 

Bd0
- ~center-of-mass a boost of f3'Y::::::: 0.6 in the lab frame, providing the dominant contribution 

to the quarks' motion. In Figure 4 we plot sin2(3 in the ncSM for a range of~= mw I A. If we use 
the measurement of EK to fix ~, then the ncSM predicts sin2(3 ::::::: 0.11 ± 0.08 which is consistent 
with experiment. 

The other two C P violating observables commonly defined in B-physics are a and "(: 

( 
V*dVcb) "( = arg __ c __ * 
vtd~b 

(28) 

where ~/; vtd is extracted from Bd0
- Bd 

0 
mixing and Vud v:b, Y;;'d Vcb from B 0-decays to 1r1r and K D, 

respectively. In the SM a+ (3 + "( = 1r because the CKM matrix V is unitary. The ncSM matrix 
V is not unitary (see Section 3), so we expect a+ (3 + 'Y i= 1r as these "angles" are defined (by V 
replacing V in (28) above). For 'TJ = 0 the parameters a, (3, 'Y in the ncSM assume the following 
form: 

a= tan- 1 ( ~:[ e + ~J(O) 
(3 = tan- 1 (.x3d-p)f(~)) 

'Y = tan-1 (~ mJ ~2) 
>. P mw 

(29) 

In Figure 5 we plot the sum a+ (3 + 'Y· The angles clearly do not add up to 1r in the same range 
of~ which is required by the Ewconstraint. 

3.1.4 Electric Dipole Moments 

Nonzero values of the electric dipole moments ( edms) of the elementary fermions necessarily violate 
T, and hence CP (assuming the CPT theorem). This follows from the observation that a dipole 
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Figure 5: Sum of the Angles a, {3, 'Y in the ncSM illustrating that the unitarity triangle does not 
close: 

moment D is a directional quantity, so for an elementary particle it must transform like the spin 
J, the only available directional quantum number. The interation with an external electric field E 
is J. E which is therefore CP-odd. The presence of an edm for a particle '1/J implies an interaction 
with the electromagnetic field strength FJ.Lv in the Lagrangian of the form 

In the SM this operator is absent at tree level and even at one loop due to a cancellation of the 
CKM phases. For the electron, moreover, the edm (de) vanishes at two loops and the three-loop 
prediction is miniscule, of order 10-50e em [46]. For the neutron edm (dn), gluon interactions can 
give rise to a two-loop contribution which is O(lo-33 )e em. Upper limits from experiments exist: 
de :S: 4.3 · 10-27 e em [47], dn :S: 6.3 · 10-26e em [48]. 

Since the SM predictions of edms are almost zero, we might expect that new sources of 
CP violating physics from noncommutative geometry would be observable. The noncommuta
tive geometry provides in addition a simple explanation for this type of C P violation: the direc
tional sense of D derives from the different amounts of noncommutivity in different directions (i.e. 
Di ex: Eijk(J]k) and the size of the edm, classically proportional to the spatial extent of a charge dis
tribution, is likewise in noncommutative geometry proportional to 1e1, the inherent "uncertainty" 
of space. However, the effects of noncommutative geometry are proportional to the typical mo
mentum involved, which for an electron edm observation is very small. Even if the electrons under 
observation had energies ""' MeV, the expected dipole moment would be 

(30) 

which gives only a very weak upper bound: ~ < 104. Since the phenomenologically interesting 
values of~ from the K- and B-meson sectors are well below this bound, we conclude that the edms 
do not lead to any useful constraints on noncommutative geometry. 

4 Constraints from g- 2 of the Muon 

We saw above that the electron edm, despite being constrained by very precisely measured bounds, 
does not meaningfully constrain the amount of noncommutivity in low enegy physics since the 
typical momentum with which the electron moves in an edm experiment is too small compared 
with even the smallest noncommutivity scale permitted by K-physics (A~ 2 TeV): p~(} « 10-13 . 
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The situation might improve if we were considering the muon edm in an experiment using relativistic 
muons, however the experimental bound here is weaker: dJ.t < 1.05 · w-18e em (49]. 

The recent measurement of the anomalous magnetic moment of the muon (50], aJ.t, although not 
a C P violating observable, does however provide an interesting constraint on the ncSM. Experi
ments dedicated to aJ.t have undergone continual refinement (for history and experimental details, 
see (49], [51]) to the point where aJ.t is now very precisely known: 

a~xpt = 11659202(14) . w-10 (31) 

The experimental technique employs muons trapped in a storage ring. A uniform magnetic field B 
is applied perpendicular to the orbit of the muons; hence the muon spin will precess. The signal is 
a discrepancy between the observed precession and cyclotron frequencies. 

Precession of the muon spin is determined indirectly from the decay J.L ---+ e lie vw Electrons 
emerge from the decay vertex with a characteristic angular distribution which in the SM has the 
following form in the rest frame of the muon: 

dP(y, ¢) = n(y)(l + A(y)cos(¢))dyd(cos(¢)) (32) 

where ¢is the angle between the momentum of the electron and the spin of the muon, y = 2pefmJ.t 
measures the fraction of the maximum available energy which the electron carries, and n(y), A(y) 
are particular functions which peak at y = 1. The detectors (positioned along the perimeter of 
the ring) accept the passage of only the highest energy electrons in order to maximize the angular 
asymmetry in (32). In this way, the electron count rate is modulated at the frequency a11 eB j(2n:mc). 

Although a11 does receive a sizable contribution from noncommutative geometry, it is a con
stant contribution [27], i.e. the interaction with the external magnetic field b..E ""' B/}jkEijk is 
independent of the muon spin, and therefore the experiment described above is not sensitive to this 
perturbation of aw The effect of noncommutative geometry on this measurement does however 
enter in the manner in which the muon spin is measured in its decay. Specifically, the electron decay 
distribution (32) has a slightly different angular dependence due to the departure of the ncSM from 
the standard V-A theory of the weak interactions (see Figure 6). The electron distribution dP' in 
the ncSM differs from the SM (see Appendix for calculation): 

dP'(y, ¢) ;::;; n(y) ( 1 + A(y)(Pe ·? 11 ) + f(y)(Pe ·? J.t)({f ·?e)+···) dyd0, 

---+ n(1) {1 + A(1)cos(¢) + f~l)cos2 (¢) IBI + · · ·) dydO 

where ll.ill_l ~ Q .l!..i!:_t: 
A(l) ~ 16rr2 mw <, 

(33) 

The effect of noncommutative geometry is greater than one would naively expect as, for reasons of 

efficiency, the muons are stored at highly relativistic energies: PM;::;; 3 GeV. Hence the ratio J ~g) J ;::;; 

w-6~. However, the frequency is measured over many cycles and a more conservative estimate of 
the effective size of the noncommutative term is closer to (10-7 to w-8 )~ The angular distribution 
is therefore not a pure cos(¢) and we expect the measurement of the precession frequency to differ 
from the SM prediction at the level of 1 part in 108 . 

Currently, the discrepancy between the measured value of aJ.t and the SM prediction is 

a~xpt - a~M = 43(16) · 10-10 (34) 

which imposes the constraint ~ ~ 5 · 10-2 . This bound accomodates the values of~ inferred from 
CP violating observables in section 3.1. We expect the value of~ determined from a g-2 experiment 
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(a) (b) 

Figure 6: Contributions to muon decay (a) SM tree level (b) ncSM graph which upsets the electron's 
angular distribution 

to be smaller than that from a K or B-physics experiment since the circulation of the muons at 
their cyclotron frequency introduces an additional averaging of the components of 0. For a storage 
ring located at an Earth !attitude of 7/J degrees, there will be a sin( 7/J) suppression factor. 

5 Conclusions 

The Standard Model(SM) is a highly successful effective theory for energies below the weak scale 
"' 100 Ge V, but it must eventually give way to a description of nature that includes gravity. 
Noncommutative geometry is one candidate for such a description, exhibiting some features of 
gravity such as nonlocality and space-time uncertainty. 

In this paper we have considered the potential effects at low eneriges of a noncommutative 
geometry which sets in at some high scale A. Remarkably, for A in the TeV- range, noncommutative 
contributions to CP violating observables such as EK, E1/E, and sin2{3 are competitive with the SM 
contributions. If A"' 2 TeV, the predictions of these observables from noncommutative geometry 
is consistent with data. Moreover the recent 2.6 a deviation between the SM prediction of (g- 2) 
of the muon and data is explained in the noncommutative scenario for this same value of A. These 
perturbative results in terms of the small parameter ~ = mw /A are encouraging, but more work 
is needed in the treatment of the full, nonperturbative theory. Nonetheless, noncommutativity of 
the space-time coordinates offers a more physical interpretation of CP violation whiCh, if correct, 
suggests interesting physics at TeV energies. 
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A Feynman Rules In the NCSM 

p- i (II +m) 
p 2

- m?r ie 

q_ 

fl'VVVVVVV v 
-igflV 

q2+ i£ 

P- -ioab 
a---------·······b 

p2+i£ 

1
v,b 

I 

-P 

"'"~\ 
p,c 

-g(fabccos{p-9-r) + dabc sin(p-9-r)) 
• (g (p-r) + g (r-q) + g (q-pl ) 

flP v pv fl Vfl 1> 

P
h-------\ 

i g 1/,~ y~exp(i/2 P ·fl·q) 

~~b 
a--1!.~---------. 

·-. r ,_\ 
c ·c 

-g pllifabccos(p-9-r) + dabc sin(p-9-r )) 

p,c 

cr,d 

-!!J-/! cos( p-9-s - q-9-r )Labcd + sin( p-8-s - q-8-r )Jiibcd) Tf!Vpcr 

+(cos(p-8-r -q-8-s )Lbacd + sin(p-9-r -q-9-s)kf,acd)Tvf!pcr 

+(cos(p-8-s +q-8-r )Lacbd + sin(p-9-s +q-9-r)Afzcbd)T11pv1 

Figure 7: Feynman rules for fermions (solid lines), gauge particles (wavy lines), and ghosts (dotted 
lines). Notation: p, q, r, s Momenta J.L, v, p, a Lorentz indices a, b, c, d gauge indices 
Tb~ gauge generator !abc structure constants for SU(N): [Ta, nJ = fabcTc dabc structure 
constants for SU(N): {Ta, Tb} = dabcTc + -f.toab Labcd := dabedcde + dadedcbe- fabefcde- fadefcbe 

Mabcd = dabefcde - dadefcbe + fabedcde - fadedbce TJ.l.vpu = 9Jl.v9pu + 9Jl.u9vp - 2gJ1.p9vu For 
QED/Weak vertices, index 0 corresponds to a photon: do i 1- = 8i1·, do o i = 0, and do o o = 1, fo a b 

) , ', , , ' , 
= 0. 
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B Kaon System 

The loop function in {18) is given by 

Numerically, 

J(x) = x {1 _ llx + x2 _ 3x
2
ln x ) 

(
X -) ~-x)

2

( _: 

4 

!n(:);l--~y+~) ln(x)(1-2x+x
4

2 
)) 

f 'y - xy 4(1-x)(l-y) + (y-x)(1-y)2 + (x-y)(1-x)2 

f{(mt/mw) 2 ) ~ 2.5 
f((mc/mw )2) ~ 2. w-4 

f((mc/mw )2 , (mt/mw )2 ) ~ 2. w-3 

(35) 

(36) 

In the noncommutative case with ry = 0, the imaginary part of the loop integral for the box graph 
becomes 

J d4k u(pi)f'!-L(l- /'s)(J/1- ~ + mt)'Yv{1- 'Ys)d(PI - k) 
xu(p2)'Y/.t(1- 'Ys)(~- J/2 + mt)'Yv(1- 'Ys)d(k- P2) 
X CVtdV*"ts) 2 

((P2+k)2-mn((PI-k)LmF}(kLmw2)2 

which in the high loop momentum limit (k » p1,p2) is-approximately 

(37) 

(38) 

where we have introduced the cutoff M rv A explicitly since we don't know the theory at higher 
energies (taking this limit to infinity doesn't change the answer appreciably.) The imaginary part 
of the integral (38) is approximately 

0 >..3p mK (297f 2 134e 2oe ) 
:s(nc loop)~ mtv 18mw -2-~ + 1 + e - 4 + ~2 (39) 

where~~ mAw. 

C E1/E 
Direct CP violation in the SM implies that two or more diagrams contribute to the kaon de
cay with disparate weak and strong phases. In noncommutative geometry, the vertex phases 
mimic a weak phase (i.e. we use the ncCKM matrix). To give an estimate for the effects of 
noncommutative geometry on E

1 
/ E, we consider a typical electroweak penguin loop integral. In the 

limit of high loop momentum, the penguin is characterized by the dimensionless number~ 

p. ~ {M d4k i mK sin(q·O·k) 
l Jm (27r)4 k5 

(40) 

where m is the mass of the heaviest particle in the loop and q is the typical momentum of the 
process rv mt in a hadron machine. Switching to Euclidean space and performing the integral, 

~ ~ lmf<Oql [Ci(IOqAI) - Ci(IOqmi)J + sin(IOqml) - sin(IOqAI) 
m A 

( 41) 
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where we take M "'A. We use the cosine integral function which for small values of its argument 
lS 

x2 x4 
Ci(x) ~ const. + ln(x)- 4 + 

4
,
4 

+ · · · 

Taking the average mass m "'mK for simplicity, we obtain in the limit of small~= Bm?v 

as quoted in (23). 

D g - 2 of the muon 

The squared matrix element for muon decay is (see, for example, [52]) 

where 
T1 = tr ( Aeba(1 + /s) + Ba]At[/[3(1 +Is)+ 0{3]) 
T2 = tr ( A2[1'a(1 + !s) + ea]A~-t[l'f3(1 + !s) + {}!3J) 
Ai = ~i 
Ae = ~(Pe + me)(1 -/sPe) 
AJ-t = ~(P~-t + mJ-t)(1 -!sP~-t) 

(42) . 

(43) 

(44) 

(45) 

We neglect the neutrino masses m1,2 and eventually the electron mass me as well. The vector object 
Ba comes from the 1-loop graph (Figure 6b) and is formally a function of the neutrino momenta 
Ql,2· We obtain 

1 -~ a JM 4 k2 sin(q·B·k) 
(} ~ 161r2 d k (k2 - m~)(k2 - mtv)P (46) 

where we use the explicit cutoff M ,...., A. For high loop momenta, ( 46) becomes 

l ei~___.!::__ {M dk sin(q. (}. k) ~ q IBAI ___.!::__ ~ ( P~-t ~) ___.!::__ ~ 10-8 (47) 
167T2 lmw k 167T2 mw 167T2 

We reduce T1,2 to the form 

T1 = (Pe- mese)Pql 17 Xpfm{3 + Tl,O 
T2 = (pi-t - mJ-tsJ-t)¢Q21 X¢Iaf3 + T2,0 
Xpua{3 :=gpa9u{3 + 9p{39ua- 9pu9a{3- iEprm{3 

( 48) 

The product of these two traces, neglecting the 0(8) pieces, gives the usual angular distribution of 
electrons, as in (32). The O(B) pieces are 

T1,0 = pJs~q{OaX1ory{3 + pJs~q{0{3X~oary 
T. _ fp "(O'f/{3 + (}f3 I"(OU'f/ + ( f3 (}a + a(}f3) 2,0 - P~-t'YsJ-toq2., X Pl-t"f8 J-toq2 11 X mi-t q2 q2 (49) 

X~oa11 = 9oa9,., + 9ory9'Ya - 9'Yo9ary + iE,oary 

After computing IMI2, it is necessary to integrate over the neutrino momenta Ql,2· Among the 
many terms that contribute to the final result, there will be some of the form (Pe · ? J-t) (e · ? e). 
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For electrons close to the maximum possible energy (y "" 1), the spin of the electron $ e is highly 
correlated with the spin of the muon $ Jl (for y = 1 the electron is emitted opposite to the left
handed neutrinos, hence $ e = -$ Jl). Terms of this type are essentially proportional to 
(fie·$ Jl)(U · $ Jl) which, as the muon spin precesses, gives a cos2 (¢) effect. Of course other terms 
in the product T1 T2 will contribute different angular effects, leading to deviations from the SM 
cos(¢) prediction at 0(0). 
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