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Abstract 

We propose determining IVubl from inclusive semileptonic B decay using com
bined cuts on the leptonic and hadronic invariant ma.Sses to eliminate the 
b --+ c background. Compared to a pure dilepton invariant mass cut, the 
uncer:tainty from unknown order A~co/m~ terms in the OPE is significantly 
reduced and the fraction of b --+ u events is roughly doubled. Compared to 
a pure hadronic invariant mass cut, the uncertainty from the unknown light
cone distribution function of the b quark is significantly reduced. We find that 
IVubl can be determined with theoretical uncertainty at the 5-10% level. 
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I. INTRODUCTION 

The magnitude of the Cabibbo-Kobayashi-Maskawa matrix element Vub is an important 
ingredient in overcohstraining the unitarity triangle by measuring its sides and angles. In
clusive semileptonic b --+ u decay provides the theoretically cleanest method of measuring 
I Vub I at present, since it can be calculated model independently using an operator product 

_expansion (OPE) as a double expansion in powers of Aqco/mb and as(mb) [1]. However, 
the phase space cuts which are required to eliminate the overwhelming background from 
b --+ c decay typically cause the standard OPE to fail. This is the case both for the cut on 
the charged lepton energy, Ee > (m1- m'Jy)/2mB [2], as well as for the cut on the hadronic 
invariant mass, mx < mv [3-5]. In both of these cases, the standard OPE becomes, in the 
restricted region, an expansion in powers of AqcDmb/m~, which is of order unity. 

Recently we showed that a cut on the dilepton invariant mass can be used to reject the 
background from b --+ c decay [6, 7], while still allowing an expansion in local operators. 
Imposing a cut q2 > ( mB- mv ) 2 (where q is the four-momentum of the virtual W) removes 
the b --+ c background while leaving the OPE valid. This approach has the advantage of 
being model independent, but is only sensitive to rv 20% ofthe rat~, as opposed to"' 80% for 
a mx < mv hadronic invariant mass cut. Besides the sensitivity tomb, the main uncertainty 
in the analysis using a pure mx cut comes from uncalculable corrections, formally of order 
Aqco/mb, to the b quark light-cone distribution function, 1 while in the case of the pure q2 

cut from the order (Aqco/mb)3 corrections in the OPE, the importance of which was recently 
stressed [8]. In addition, because of finite detector resolution, the actual experimental cut 
on q2 may be larger than the optimal value of (mB -mv)2

, and the theoretical error in \Vubl 
grows rapidly as q2 is raised. · . 

In this paper we propose to improve on both methods by combining cuts on the leptonic 
and hadronic invariant mass. Varying the q2 cut in the presence of a cut on mx allows one 
to interpolate continuously between the limits of a pure q2 cut and a pure mx cut. We 
examine how a combined cut on mx and q2 can minimize the overall uncertainty. This also 
allows a precision determination of IVubl to be obtained with cuts which are away from the 
threshold for B.--+ Xcfl.De, an important criterion for realistic detector resolution. 

In Sec. II we discuss the regions of phase space and explain which ones are accessible 
within the standard OPE. In Sec. III we present the decay rate with a combined cut on the 
leptonic and hadronic invariant mass to order A~00 /m; in the OPE and to order a;f3o in the 
perturbative expansion, including" a detailed investigation of the theoretical uncertainties. 
Our results are summarized in Sec. IV. 

II. KINEMATICS 

The Dalitz plot for b --+ u semileptonic decay in the q2 
- mi- plane is shown in Fig. 1. 

While the region of phase space contained by the q2 > (mB- mv) 2 cut corresponds to a 

1This assumes that the light-cone distribution function of the b quark is determined from the 
B--+ Xs'Y photon spectrum; otherwise the model dependence is formally 0(1). 
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FIG. 1. The Dalitz plot for b -7 u semileptonic decay, indicating the regions corresponding to 
b -7 c decay (shaded), the lepton invariant ~ass cut q2 > (mE- mn) 2 (vertically striped), and the 
hadron invariant mass cut mx < mn (horizontally striped). 

subset of the region mx < mn, the theoretical prediction for the former region is better 
behaved [6]. This may seem counterintuitive, since uncertainties for inclusive observables 
usually decrease the more inclusive the quantity is. The present situation occurs because the 
OPE breaks down when the kinematics is restricted to large energy and low invariant mass 
final states, for which m'3r_/ Ex rv AqcD' As it is explained below, this kinematics dominates 
the lower left corner of the Dalitz plot in Fig. 1, and that is why the OPE is better behaved 
in the restricted region determined by the q2 cut. 

More precisely, there are three distinct regions of phase space, in which the behavior of 
the OPE is qualitatively different. Over most of the Dalitz plot, the kinematics typically 
satisfies 

mx » Aqco, mi/Ex » Aqco, (1) 

. and the inclusive rate may be expanded in powers of Aqco/mb via the OPE. The leading 
order term is the b quark decay result, and the higher order terms are parametrized by matrix 
elements of local operators. This is the simplest region theoretically, since reliable predictions 
can be made knowing only the first few matrix elements, which may be determined from 
other processes. The situation is more complicated in the "shape function" region, which is 
dominated by low invariant mass and high energy final states 

mx » AqcD, mi/Ex "'O(Aqco). (2) 

In this region, a class of contributions proportional to powers of AqcoEx jm3r_ must be 
resummed to all orders. The OPE is replaced by a twist expansion, in .which the leading 
term depends on the light-cone distribution function of the b quark in the B meson. Since this 
is a nonperturbative function, the leading order prediction is model dependent, unless the 
distribution function is measured from another process. Even if this light cone distribution 
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function is extracted from the photon energy spectrum in B -t Xs! [9,10], the unknown 
higher order corrections are only suppressed by Aqcnlmb. Finally, in the resonance regime, 

mx"' O(Aqcn), (3) 

the final state is dominated by a few exclusive resonances and the inclusive description 
breaks down. In this case neither the local OPE nor the twist expansion is applicable. 

Which of these situations applies to the kinematic regions mx < mv and q2 > ( mB -
mv)2 depends on the relative sizes of mb, me and AqcD· It seems most reasonable to treat 

(4) 

since neither side is much larger than the other. Cutting only on the hadronic invariant 
mass (or on Ee), the hadronic energy can extend all the way to order mB, 

mx rv mv, (5) 

and so mi I Ex is typically of order AqcD· By contrast, the cut on q2 implies 

m1-q2 +mi 
Ex= "'mv, 

2mB 
mx rv mv, (6) 

and so typically mi I Ex ,....., mv. Viewing mv » Aqcn, both regions are parametrically 
far from the resonance regime (3). However, the mx < mv (or Ee > (m1- m'jy)l2mB) 
region is in the shape function regime [see, Eq. (2)], and thus sensitive to the light-cone 
distribution function. In contrast, the region q2 > ( mB - mv )2 is parametrically far from 
both the resonance and shape function regimes. 

Thus, the cut on q2 eliminates the region yv_P,ere the structure function is important, 
making the calculation of the partially integrated rate possible in an expansion of local 
operators. However, from Eq. (6), imposing a cut q2 < q~ut = (mB- mx) 2 results in the 
effective expansion parameter for the OPE being 

AqcnEx Aqcn mbAQcD 
~~2~-rv ---- rv 2 2 ' 

mx mx mb - qcut 
(7) 

and so the convergence of the OPE gets worse as q~ut is raised. For q~ut = ( mB - mv )2 
':::::'. 

(mb- mc)2, the OPE is an expansion in Aqcnlmc [11]. For a very high cut on q2 (say, above 
,....., 18 GeV 2

), the phase space is restricted to the resonance region, causing a breakdown of 
the OPE. 

For the pure q2 cut, the largest uncertainties originate from the b quark mass and the 
unknown contributions of dimension-six operators, suppressed by [mbAQcnl(m~- q~ut)p. In 
this paper we propose that the uncertainties can be reduced considerably by lowering the 
cut on q2 below ( mB - mv?, and using a simultaneous cut on mx to reject b -t c events. 
It is obvious that lowering q~ut all the way to zero would result in the rate with just the cut 
on mx, which depends strongly on the light-cone distribution function. Thus lowering q~ut 
in the presence of a fixed cut oil mx increases the uncertainty from the structure function, 
while decreasing the uncertainty from the matrix elements of the dimension-six operators. 
The optimal combination of the two cuts is somewhere in between the pure q2 and pure 
mx cuts. In the rest of this paper we calculate the the partially integrated rate and its 
uncertainty in the presence of cuts on q2 and mx. 

4 



III. COMBINED CUTS 

The integrated rate with a lower cut q;ut on q2 and an upper cut mcut on mx may be 
written as 

(8) 

where where q = qjmb, s = ( v - q)2 is the rescaled partonic invariant mass, v is the four
velocity of the decaying B meson, and 

for fficut >.mB- ffib .Jqi, 

80 == 0 (9) 

m~ut + (mB - 1) ( mb l/- 1) otherwise. 
ffiBffib ffib ffiB 

The hadronic invariant mass mx is related to q2 and s by 

(10) 

G( q;ut' mcut) is the ratio of the semileptonic b --t u width with cuts on q2 and mx to the 
full width at tree level with mb = 4. 7 Ge V. The fraction of semileptonic b --t u events 
included in the cut rate is~ 1.21 G(q;ut;mcut)· Note that the mg prefactor, a large source 
of uncertainty, is included in G( q;ut' mcut). The theoretical uncertainty in the extraction of 
IVub I is therefore half the uncertainty in the prediction for G( q;ut' mcut)· 

A. Standard OPE 

For q2 > ( mB -mcut)2, the effects of the structure function are parametrically suppressed, 
and correspond to including a class of subleading higher order terms in the OPE. In this 
region the standard OPE is appropriate, and the double differential decay rate is given by 

~0 d:2~.5 = J(.S) [ (1 + 2~~) 2 (1- q
2
)
2 

(1 + 2q
2
) + ~2~ (3- 45q

4 + 30q
6
)] 

+ as(mb) X(q2, s) + (as(mb))
2 

f3o Y(q2, s) + ... ·, (11 ) 
7r 7r . 

where (30 = 11 - 2nf /3 and 

r _ G} 1Vubl2 mg 
0 

- 192 7r3 
(12) 

is the tree level b --t ufv decay rate. The matrix element .\2 is known from the B* - B 
mass splitting, .\2 = 0.12GeV2 (the uncertainty in this relation is included in the 0(1/mt) 
terms) . .\1 is much less well known but, as is clear from (11), the rate is very insensitive to it. 
The ellipses in Eq. (11) denote order a; terms not enhanced by (30 , order (Aqco/mb) 2 terms 
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m~u1 (GeV) 
FIG. 2. The thin dashed lines show the location of the perturbative singularity of 

drc(mcut)/dq2
, given by Eq. (13), for mb = 4.6, 4.7 and 4.8 GeV. The thick dashed lines cor

respond to mcut = 1.5, 1.7 and 1.86 GeV. The intersection of the thick and thin dashed lines give 
·qualitatively, for a given valu~ of mcut• the value of q;ut below which the effects of the distribution 
function become large. 

proportional to derivatives of 6(3), and higher order terms in both series. The function 
X(q 2

, s) can be obtained from the triple differential rate given in [12], and the function 
Y(q2 ,s) was calculated numerically in [13]. 

The perturbative contributions to the differential rate in Eq. (11) are finite for s > 0, 
where only bremsstrahlung diagrams contribute, but singular as s ~ 0. For a fixed value of 
mx, setting s = 0 in Eq. (10) determines how far q2 can be lowered without encountering 
the singularity. Since the singularity is smoothed out by the b quark light-cone distribution 
function, such low values of q2 correspond to the shape function region. Throughout this 
paper we will therefore stay away from this region by only considering values of q;ut and 
mcut satisfying 

(13) 

This is illustrated in Fig. 2. Note that if mcut is lowered, q;ut must be increased to keep the 
uncertainty at a roughly constant level. If the difference between the left- and right-hand 
sides of Eq. (13) is at least few times AqcD mb then we are far from the shape function 
region, and the OPE is well behaved. In this case the tree level result is not sensitive to the 
cut on mx, and the q2 spectrum including a hadronic invariant mass cut is given by 

1 drc(mcut) 

ro dq2 ( 1 + ~) 2 (1 - q2
)

2 (1 + 2q2
) + ~ (3- 45q4 + 30q6

) 
2mt mt 

as(mb) - A 2 (as(mb)) 2 - A 2 + 7f X(q,mcut)+ 7f f3oY(q,mcut)+ ... , (14) 

where the functions X ( q2
, mcut) and Y( q2

, mcut) are given in the Appendix. 
The differential decay rate in Eq. (14) is given in terms of the pole mass, mfole. It is 

well-known that use of the pole mass introduces spurious poor behavior of the perturbation 
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FIG. 3. (a) The O(E) and O(E~LM) contributions to G(q;ut' mcut) (normalized to the tree level 
result) for hadronic invariant mass cut mcut = 1.86 GeV (solid lines), 1.7 GeV (short dashed lines) 
and 1.5 Ge V (long dashed lines). (b) Scale variation of the perturbative corrections: The differ
ence between the perturbative corrections to G ( q;ut' mcut), normalized to the tree level result, for 
J.l = 4.7 GeV and J.l = 1.6 GeV. 

series. Although this cancels in relations between physical observables, it is simplest to avoid 
it from the start by using a better mass definition. There are a number of possibilities; here 
we choose the 1S mass, which is defined as one half of the T(1S) mass in perturbation 
theory. To the order we are working, it is related to the pole mass by 

(15) 

where powers of E 1 count the order in the upsilon expansion [14], CF = 4/3, and E~LM 
denotes the "BLM-enhanced" (by a factor of (30 ) O(c2

) term. Terms of order a~ in Eq. (14) 
should be counted as order En, and terms of the same order in E in the two series should 
be combined. The mismatch in orders of CY5 between (14) and (15) is required for the bad 
behavior of the two series to cancel [14]. 

The uncertainties in the OPE prediction for G(q~ut' mcut) from Eq. (14) come from three 
separate sources: perturbative uncertainties from the unknown full two-loop result, uncer
tainties in b quark mass and uncertainties due to unknown matrix elements of lqcal operators 
at 0(1/m~) in the OPE. In the following subsections we will estimate each of these uncer
tainties separately as the fractional errors on G( q~ut' mcut)· The fractional uncertainty in 
IVub I then is one half of the resulting value. 

1. Perturbative uncertainties 

The relative sizes of the O(c) and O(c~LM) corrections to G(q~utlmcut) are plotted in 
Fig. 3(a), for f.L = 4.7GeV. We note that for a given value of mcut, the perturbation series 
is poorly behaved for q~ut both larger and smaller than some optimal range. For large q~ut' 
this behaviour arises because the invariant mass of the final hadronic state is constrained to 
be small, and so perturbation theory breaks down. For lower values of q~ut' the perturbative 
singularity discussed in the previous section is being approached, and there are large Sudakov 
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logarithms which blow up. These Sudakov logarithms may in principle be resummed, but 
since our point in this paper is to avoid the shape function region entirely, we will stay in 
the intermediate region where ordinary perturbation theory is well behaved. 

We may estimate the error in the perturbation series in two ways: (a) as the same size 
as the last term computed, the order t:hM term, or (b) as the change in the perturbation 
series by varying f.l over some reasonable range. These are illustrated in Fig. 3 (a) and 
(b), respectively. In Fig. 3(b) we vary the r·enormalization scale between f.l = 4.7GeV and 
J.l = mb/3 "' 1.6 GeV, and plot the change in the perturbative result (including both 0( t:) 
and O(e::hM) terms). For a given set of q;ut and mcut, we take the perturbative error to be 
the larger of (a) and (b). 

Note that since both the O(e::) and O(e::~LM) terms change sign in the region of interest, 
this approach may underestimate the error in the perturbative series, particularly near the 
values of the cuts where the 0( t:2 (30 ) term or the scale variation vanishes. To put the estimate 
of the perturbative uncertainty on firmer grounds, a complete two-loop calculation of the 
double differential rate, df / dq2dmx, is most desirable. This is one ofthe "simpler" two-loop 
calculations, since the phase space of the leptons can be factorized. 

As an alternate approach, Refs. [11,15] use the renormalization group to sum leading 

and subleading logarithms of mb/(mb-~) (for a pure q2 cut). However, since this log is 
not large in the regions we are considering, it is not clear that this improves the result. For 
example, resumming leading logs of mc/mb for B -t D* semileptonic decay at zero recoil in 
HQET is known to provide a poor approximation to the full two-loop result, and including 
the power suppressed (mc/mb) a~ lnn(mc/mb) terms makes the agreement even worse [16]. 

-
2. Uncertainties in the b quark mass 

The partially integrated rate depends sensitively on the value of the b quark mass due 
both to the m~ factor in G(q;ut' mcut) and the cut on q2

, as stressed in [11]. Currently, 
the smallest error of the 15 mass is quoted from sum rules [17-19]. Ref. [19] obtains the 
value mi8 = 4.69 ± 0.03 GeV by fitting an optimized linear combination of moments of the 
e+e- -t bb spectrum, which may underestimate the theoretical error [18]; the authors of 
[18] cite a siJ!lilar central value with a more conservative error of ±0.08 GeV. In Fig. 4 we · 
show the effects of a ±80 MeV and a ±30 MeV uncertainty in mi8 on G( q;ut' mcut), using the 
central value m~s = 4. 7 Ge V. The latter error may be achievable using moments of various 
B decay distributions [20]. 

3. O(A~00jm~) uncertainties 

As discussed in Section II, the convergence of the OPE gets worse as q;ut is raised. Since 
the contribution from .X 1 in the OPE is small for all values of q;ut (see (14)) and .X2 is 
known, the largest uncertainty from unknown nonperturbative terms in the OPE arises at 
O(A~00 /m~) [21]. The effects of these terms were estimated in [6] by varying the values 
of the corresponding matrix elements over the range expected by dimensional analysis, and 
determining the corresponding uncertainty in IKbl as a function of q;ut· Since the b quark 
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FIG. 4. The fractional effect of a ±80 MeV and ±30 MeV uncertainty in mt5 on G(q;ut• mcut) 

for mcut = 1.86 GeV (solid line), 1.7 GeV (short dashed line) and 1.5 GeV (long dashed line). 

decay result at tree level is insensitive to the cut on mx, as long as mcut is not too low, 
these results may be immediately taken over to the present analysis. However, the cut on 
mx allows q~ut to be lowered below ( mB - mn ) 2

, resulting in a significant reduction of the 
uncertainty, since by (7) it scales as [mbAqco/(m~- q~ut)]3 . 

In addition to these corrections, Voloshin [8] has recently stressed the importance of the 
contribution from weak annihilation (WA) (this uncertainty was included but underesti
mated in [6]). WA arises at O(A~co/m~) in the OPE, but is enhanced by a factor of rv 167r2 

because there are only two particles irt the final state compared with b-+ ufve. Because WA 
contributes only at the endpoint of the q2 spectrum, it is independent of q~ut and mcut: 

(16) 

where 

The matrix element in (16) vanishes for both charged and neutral B's under the factorization 
hypothesis (in which case it corresponds to pure annihilation, which vanishes by helicity for 
massless leptons), and so the size of the WA effect depends on the size of factorization 
violation. Following the discussion in [8] we define the bag constants Bi by 

_1_(BIOu IB) - J1mB B 
2 V-A 8 1, mB . 

(18)" 

Under factorization, B1 = B2 = 1 for B±, and B1 = B2 = 0 for Bd; while Ref. [8] suggests a 
10% violation of factorization, IB1 - B2i '""0.1, as being a reasonable estimate. This gives 
a constant shift to G( q~ut• mcut) of 

r 2 ) 2( ) f1 ( fB )
2 

( B2 - B1) oG( qcut• fficut = 167f B2 - B1 - 2 rv 0.03 G . 
· mb 0.2 eV 0.1 

(19) 
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FIG. 5. Estimate of the uncertainties due to dimension-six terms in the OPE as a function of 
q;ut from weak annihilation (WA) (solid line) and other operators (dashed line). 

While this corresponds to only a "" 3% correction to the total b --+ uf.i/e rate, the importance 
of this correction grows as the cuts reduce the number of events. 2 

The estimated uncertainty from these two classes of A~cD/mt corrections to G(q;ut' mcut) 
are plotted in Fig. 5, for B 2 - B 1 = 0.1. Since the uncertainty from WA is roughly a factor 
of two larger than from the other terms, we use the estimate from WA to determine the 
theoretical error on G( q;ut' mcut) from 1/m~ effects .. 

The effects of WA are particularly difficult to estimate because they arise from a small 
matrix element (factorization violation) multiplying a large coefficient (161r 2

), and so further 
experimental input is required to have confidence in this error estimate.· Such spectator 
effects could be computed using lattice QCD, or could be constrained experimentally from 
the difference of IVub I extracted from neutral and charged B decay, or from an experimental 
measurement of the difference of the semileptonic widths of the D0 and Ds [8]. 

B. Incorporating the Distribution Function 

As q2 is lowered below ( ms -:- ffitut)
2 the effects of the distribution function become 

progr.essively more important, and their size becomes a detailed question depending on 
. the difference between the left- and right-hand sides of Eq. (13). The region where the 
distribution function becomes significant is correlated with the region where the Sudakov 
logs from the singularity (13) get large. In the simple model discussed in this section, the 
impact of the distribution function on the partially integrated rate is indeed roughly constant 
along the thin dashed lines in Fig. 2, independent of the value of mcut· 

2 Note that by the same token, this implies a "" 15% uncertainty in IVubl extracted from the 
charged lepton energy endpoint region [9,22,23], Ee > (m1- m};)/2ms, even when the light-cone 
distribution function of the b quark is determined from B -t Xs'Y· 
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The b quark light-cone distribution function can be measured from the shape of the 
photon spectrum in B --+ Xsl, but in the near future such a measurement will have sizable 
experimental uncertainties. There are also unknown 0(1/mb) corrections in relating this 
function to the one relevant for semileptonic B decay (see [24] for a discussion of these 
terms in the twist expansion). In this paper we restrict ourselves to cuts for which the 
effect of the distribution function is small, so that its measurement error and the unknown 
0(1/mb) corrections have a small effect in the determination of IVubl· 

We still need to estimate the effect of the distribution function to determine how low q~ut 
may be decreased. Since we restrict ourselves to regions where the effect of the structure 
function is small, it is sufficient to take them into account at tree level. To leading twist, 
this is obtained by smearing the b quark decay rate with the distribution function f( k+), 
which amounts to the replacement in Eq. (11), 

{ 
( 

1 A2 

6(8)--+ f dk+ 6 s + :bq k+ )!(k+), for q2 < (1- mcut) 2 

c5 (S), otherwise. 

(20) 

(We do not include the distribution function in the region q2 > (1-mcut) 2 , since in this region 
its effects are contained in the O(A~co/mD terms, which we have already considered.) This 
corresponds to multiplying the leading order result Eq. (14) in the region q2 < (1 - mcut) 2 

by a factor 

(21) 

where s0 is defined in Eq. (9) and A= mB- rrib.3 The best way to determine f(k+) is from 
the B--+ Xs! photon spectrum, which gives at tree level 

A( A2 . ) 1 1A dk df'Y I 
q ' fficut = 2f }Y" m + dE 'Y \. -so~ 'Y E _mb+k+ 

1-q -y--2-

(22) 

where I< rv 1.33 takes into account contributions from operators other than 0 7 to the 
photon spectrum [23], and f'Y is the contribution of the tree level matrix-element of 0 7 to the 
B--+ Xs! decay rate. Thus the experimental data on the B--+ Xs/ photon energy spectrum 
will make the estimate of this source of error small and largely model independent. (Note 
that the result is modified by large Sudakov logs, which in principle should be resummed, 
but in the region we are interested these effects are subleading and may be neglected.) Since 
the dependence of our results on f(k+) is weak, even a crude measurement will facilitate 
a model independent determination of IVub I from the combined q2 and mx cuts with small 
errors. 

In the absence of precise data, we _will use the simple model presented in [12] to estimate 
the effects of the structure function, 

3Since there are order Aqco/mb corrections to the distribution function, we do not need to 
distinguish between A and the HQET parameter A. 
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FIG. 6. The effect of the model structure function (23) on G(q;ut, mcut) as a function of q;ut 
for mcut = 1.86 GeV (solid line), 1.7 GeV (short dashed line) and 1.5 GeV (long dashed line). 

(23) 

This model is chosen such that its first few moments satisfy the known constraints: the 
zeroth moment (with respect to x) is unity, the first moment vanishes, and the second 
moment is >..!/3m~. 

In Fig. 6 we plot in this model the effect of the structure function on G(q~ut' mcut) as a 
function of q~ut,.for three different values of mcut· The curves correspond to the parameters 
A =0.57GeV and >.. 1 = -0.2GeV2

• 

IV. COMBINED RESULTS 

Having considered each uncertainty separately, we now combine them and give the final 
result for various values of cuts (q~uti mcut)· In Fig. 7 we plot G(q~ut' mcut) as a function 
of q~ut for fficut = 1.5 Ge V, 1. 7 Ge V and 1.86 Ge V. In this figure we choose the values 
m~5 = 4.7GeV, )..1 = -0.2GeV2 and o:8 (mb) = 0.22. The combined cut on q2 and mx 
allows a determination of IVubl from about twice the fraction of events than in the case of 
the cut on q2 alone. The turnaround of the curve for mcut = 1.5 Ge V signals the breakdown 
of the perturbation expansion due to the singularity at s = 0, and is not physical. 

In Table I we use three representative sets of cuts in q2 and mx to estimate the 
overall theoretical uncertainty with which IVubl can be determined. As throughout this 
paper, we choose for the cut on the hadronic invariant mass the three values mcut = 
( 1.5 Ge V, 1. 7 Ge V, 1.86 Ge V). We choose values of q~ut which keep the effects of the distri-

. bution function f(k+) small (in the simple model discussed in the previous section). Because 
we anticipate the distribution function will be extracted from the B -+ Xs! spectrum to 
the accuracy required, we do not include an uncertainty on f(k+) in our overall theoretical 
uncertainty. 

For comparison, we include in Table I the results for a pure q2 cut (corresponding to 

mcut = ms-~), for q2 = (ms-mn) 2 = 11.6GeV2 and q2 = (ms-mn•) 2 = 10.7GeV2
. 
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FIG. 7. G(q~ut' mcut), which determines the partially integrated rate according to Eq. (8), as a 
function of the dilepton invariant mass cut q~ut' for hadronic invariant mass cut mcut = 1.86 GeV 
(solid line), L7 GeV (short dashed line) and 1.5 GeV (long dashed line). 

We include the second point because B --+ DliJe is suppressed near zero recoil, and so may 
be reliably subtracted from the background [7]. These results are consistent with [15], with 
comparable errors from perturbation theory and mb variation. 

A source of uncertainty not explicitly considered in this paper arises from possible quark
hadron duality violation. The size of this is difficult to estimate theoretically, but based 
on the agreement the values of IYcbl extracted from inclusive and exclusive B decays, we 
expect it to be smaller than the uncertainties we have considered. Cuts on the phase space 
may amplify duality violation, but since this technique may be sensitive to almost half 
of the events, we expect these effects to remain small. In any event, this can be tested 
experimentally by comparing the extraction of IVub I with different values of the cuts. 

Ultimately, experimental considerations will determine the optimal values of ( q~ut' mcut)· 

An actual analysis will probably be sensitive to the region q2 > q'/;ut and mx < mcut with 
non-uniform weight. The theoretical errors in such a case will be comparable to our results, 
as long as the weight function does not vary too rapidly. The formulae presented in the 
Appendix are sufficient to determine the perturbative relationship of IVubl and such a mea
surement. In addition, as explained in [7], due to heavy quark symmetry, the B --+ XcliJ 
background near mx = mv may be easier to understand as a function of q2 and mx than 
as a function of mx only. For example, the D** and higher mass states cannot contribute 
for q2 > 8.5 Ge V2

, and so the main background is B --+ D* liJ near zero recoil, which will be 
~ precisely measured to determine I Vcb 1. 

V. CONCLUSIONS 

In this paper we proposed a precision determination of the magnitude of the CKM 
matrix element Vub from charmless inclusive semileptonic B decays using combined cuts on 
the dilepton invariant mass, q2

, and the hadronic invariant mass, mx. This leads to the 
following general strategy for determining I Vub I: 
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Cuts on (q2 , ml) 

Combined cuts 
6 GeV2

, 1.86 GeV 
8 GeV2

, 1.7 GeV 
11 GeV2

, 1.5 GeV 

Pure q2 cuts 
(mB- mn)2,mn 

(mB- mn• )2
, mn• 

0.38 
0.27 
0.15 

0.14 
0.17 

~structG 

-4% 
-6% 
-7% 

4% 
6% 
13% 

15% 
13% 

b.mbG 
±80 30MeV 

13%/5% 
15%/6% 
18%/7% 

19%/7% 
17%/7% 

6% 
8% 
16% 

18% 
14% 

b.G 

15%/9% 
18%/12% 
27%/22% 

30%/24% 
26%/20% 

TABLE I. G(q;ut' mcut), as defined in Eq. (8), for several different choices of (q;ut' mcut), along 
with the uncertainties. The fraction of B -t XuliJ events included by the cuts is 1.21 G(q;ut' mcut)· 
The two last lines corresponding to pure q2 cuts are included for comparison. ~structG gives the 
fractional effect of the structure function f(k+) in the simple model (23); we do not include an 
uncertainty on this in our error estimate. The overall uncertainty b.G is obtained by combining the 
other uncertainties in quadrature. The two values correspond to ~ml5 = ±80MeV and ±30MeV. 
The uncertainty in IVubl is half of ~G. 

• make the cut on mx as large as possible, keeping the background from B to charm 
under control 

• for a given cut on mx, reduce the q2 cut as low as possible, keeping the contribution 
from the b quark structure function, as well as the perturbative uncertainties, small 
(see Figs. 3 and 6). 

We have calculated G( q~ut, mcut), the partially integrated rate in the presence of cuts on q2 

and mx (normalized as in Eq. (8)). Our results are summarized for three representative 
values of the cuts in Table I. The total uncertainty ~G is twice the uncertainty in I Vub 1-

The uncertainty from weak annihilation (Fig. 5) may be reduced by comparing results in 
B± and B0 decay, or by comparing the semileptonic widths of theD0 and Ds [8], while the 
remaining uncertainties could be reduced by an improved determination of the b quark mass 
and a complete two loop calculation of the doubly differential rate df / dq2 dmx. 

This method is sensitive to up to ,...., 45% of the B -+ Xufv decays, about twice the 
fraction of events than in the case of the cut on q2 alone. We found that a determination of 
IVubl with a theoretical error at the 5-10% level is possible. The combined (q~ut' mcut) cut 
also allows this precision to be obtained with cuts which are away from the threshold for 
B -+ XcfDe, an important criterion for realistic detector resolution. Such a measurement of 
I Vub I would largely reduce the standard model range of sin 2/3, and thus allow more sensitive 
searches for new physics. 
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The functions X(q2,mcut) and Y(q2,mcut) in Eq. (14) can be determined from X(q2,s) 
and Y(Q2, s) defined in Eq. (11) via 

X(q2,mcut) = foso dsX(q2,s), Y(q2
,mcut) ~ foso dsY(Q2,s), (AI) 

where s0 is given in (9). 
When mcut > mB - mb vqx, the mcut limit does not restrict the ds integration, and the 

result is just the value of the single differential q2 spectrum. The order a 8 correction to 
dr jdq2 was computed in Ref. [25], 

Xo( £_?) == -~ { 2(1 - q2)2(1 + 2q2) [ 1r
2 + 2L2( q2) - 2L2(l - q2) J + 4q2(1 - q2 - 2q4

) ln q2 

+ 2(1 - q2?(5 + 4q2) ln(l - q2) - (1 - q2)(5 + 9q2 - 6q4
)}, (A2) 

where L2 (z) = - f~ dt ln(l - t)jt is the dilogarithm. The order a;f30 correction to df jdq2 

was computed in Ref. [13] numerically. We find that the following simple function 

Yo(q2
) ~ 0.472 (1- q2)- 32.5 (1- e)2 + 42.3 (1- q2?- 16.0 (1- q2)4

' (A3) 

gives a very good approximation. It deviates from the exact result by less than 0.01 for any 
value of q2 (while f~ Yo( q2) dq2 ~ -3.22). 

In the second case in Eq. (9), m~ut < (mB- mb q2) (mB- mb), mcut is too small, and the 
perturbative ca_lculation is not reliable. As we have discussed, we avoid this region in this 
paper. 

The situation in which neither of the first two cases in Eq. (9) applies is the most 
interesting for us. We obtain 

X (q', m,",) ~ Xo( <j2 ) - ~ (1 - <j2 )
2(1 + 2<j2 ) { ~

2 

- ~In( 4s0 ) + 2(ln 2 )2 
- (In s0 )

2 
( A4) 

4s6 ( T - R + so) +2ln Tln T + 3 + 2ln . 
4

T2 ln(T- R + s0 ) 

-2L2(T) + 4L2(T +~+so)·- 4L2(T + :r +so)} 

-~ {R(5 + 7q2
- 8q4 +so)+ so (1 + 2e) (4T + s0 ) ln T ~~so 

-4q2(1 + q2)(1- 2e) In T-Ji so + 4(1 + q2 - 4q4
) ln(T- R +so)}, 
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where R = Jq_4 + (1- s0 )2- 2q2 (1 + s0 ), T = 1- q2
, and s0 is given in Eq. (9). For the 

coeffici~nt of the order a;f30 correction we find 

(A5) 

where 

Z2(s, e)= (2
2 

-llns) Z1(s, e)-
3
2
s { Ve2 - s [5e(3- 4e)- 4s + 26es- 8s2] (A6) 

+ s [9 - 9e - 8e2 + Se
3 

+ s + 6es - 2s2 - 3( 1 - e) J ln ( e + ...;ez-=-sV 
s 1- 2e + s s 

(2e- s)v/e2 - s [ J (2e- s)2 
+ 

1 2 
12 + 40e2 + 5s(5 + 2s) - 4e(ll +lOs) ln __:___ _ __;_ 

- e+s s 

+ (3- 4e + 2s)(8e2 - 4es + s2) [£2 (Je
2

- s + e- s) _ £2 (Je2=S"- e + s)]} 
Je 2 -s-e J~-s+e 

and 

16 
Z1(s, e)= 

3
s Ve2

- s [28e2 + 2s(5 + 4s)- 3e(7 +lOs)] 

8 e - vlr-:e2:---s 
--

3 
(3- 4e + 2s)(8e2

- 4es + s2) ln _ 
1 

. 
s e + v e2 - s 

(A7) 
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