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Abstract

X-ray and Vibrational Spectroscopy of Manganese Complexes Relevant to the
Oxygen Evolving Complex of Photosynthesis
by

Hendrik Visser

Doctor of Philosophy in Chemistry
University of California, Berkeley

Professor Kenneth Sauer, Chair

Manganese model complexes, relevant to the oxygen-evolving complex (OEC) in
photosynthesis, were studied with Mn K-edge X-ray absorption near-edge spectroscopy
(XANES), Mn K3 X-ray emission spectroscopy (XES), and vibrational spectroscopy. A
more detailed understanding was obtained of the influence of nuclearity, overall
structure, oxidation state, and ligand environment of the Mn atoms on the spectra from
these methods. This refined understanding is necessary for improving the interpretation
of spectra of the OEC.

Mn XANES and K XES were used to study a di-u-oxo and a mono-u-oxo di-
nuclear Mn compound in the (IILII), (IIL,IV), and (IV IV) oxidation states. XANES
spectra show energy shifts of 0.8 - 2.2 eV for 1-electron oxidation-state changes and 0.4 -

1.8 eV for ligand-environment changes. The shifts observed for Mn Kf XES spectra

were ~0.21 eV for oxidation state-changes and only ~0.04 eV for ligand-environment

o1-



changes. This indicates that Mn K3 XES is more sensitive to the oxidation state and less
sensitive to the ligand environment of the Mn atoms than XANES. These complimentary
methods provide information about the oxidation state and the ligand environment of Mn
atoms in model compounds and biological systems.

A versatile spectroelectrochemical apparatus was designed to aid the
interpretation of IR spectra of Mn compounds in different oxidation states. The design,
based on an attenuated total reflection device, permits the study of a wide spectral range:
16,700 (600 nm) — 2250 cm™' and 1900 - 250 cm™'. A data collection protocol was
introduced to deal with electrochemically non-reversible background signals. IR spectra
of an adamantane-like tetra-nuclear Mn compound in two different oxidation states were
obtained and analyzed by normal-mode analysis. Bridging Mn-O vibrational modes
were identified by isotopic exchange (*°O—'0) in the 750 - 650 cm™ and 520 - 460 cm™'
ranges for the Mn'', and Mn"Mn"; species. These vibrational modes are in the same
spectral range as modes that have been observed for the OEC. Using S, symmetry for the
Mn", species and C, symmetry for the Mn""Mn'""; species, stretching force constants of
2.45 mdyn/A, and 3.10 mdyn/A were extracted for the Mn"-O and Mn'-O bridging

bonds, respectively.
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Chapter 1

Introduction to the Oxygen-Evolving Complex of

Photosystem II



Chapter 1

1.1 Photosynthesis

One of the most important processes for life on earth is photosynthesis. The
conversion of light energy into chemical energy occurs in autotrophic bacteria and plants.
These organisms produce the general chemical energy supply for all other organisms
incapable of photosynthesis.1 The mechanism of photosynthesis involves a complex
interplay between many proteins and small molecules, and can be described (for green

plants, algae and cyanobacteria) with the general equation 1.1:

H,0 + CO,——0, +(CH,0) (eq. 1.1)

In green plants this process is separated into different sub-processes and
accomplished in chloroplasts. These organelles contain intricate membrane structures

called thylakoids, where two light reactions are executed by two membrane-bound
protein clusters, photosystem I (PS I) and photosystem II (PS II).2 Electrons are
extracted from the unlikely electron donor, H,O, by PS II and transfered to a quinone
pool (Figure 1.1), which is used to establish a H'-gradient (eq. 1.2).3 Water has the
relatively high reduction potential of 0.815 V; therefore, PS II has to absorb several
photons before water can be oxidized (see section 1.2 for a more detailed discussion).

2H,0 + Ahy —S1 O, +4e* + 4H+(H+ gradient) (eq. 12)
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3H*
A
ADP +P; | ATP
2NADP* + 2H*
4H+ 2NADPH
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Oy + 4H* Plastocyanin

3H+

Figure 1.1 A schematic representation of the thylakoid membrane showing all of the
components involved in the light reactions. Upon absorption of photons
PS Il extracts electrons (indicated by red) from water and transfers these to
a quinone pool (Q). The electrons are extracted from QH, by the
cytochrome bf complex and transfered by way of plastocyanin to PS I.
Upon absorption of photons PS I transfers these electrons to NADP",
forming the reducing agent NADPH. Both light reactions are involved in
electron transfer and in the generation of a H'-gradient. This H'-gradient
is used by ATP synthase to generate ATP, a molecule that is used as a free

energy source in many biochemical reactions.

Photosystem I receives the electrons from PS II by way of the quinone pool, the
cytochrome bf complex, and plastocyanin (Figure 1.1).%° Upon absorption of photons
by PS I these electrons are transfered to NADPH (nicotinamide adenine dinucleotide

hos hate)7, a reducing agent, via a series of ferredoxins (eq. 1.3).
phosp gag

2¢” + H* + NADP* + hv—"1— NADPH + (H" gradient) ~(eq.1.3)
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Figure 1.1 shows that Photosystems I and II, and cytochrome bf are involved not
only in the transfer of electrons from water to NADPH, but also in the generation of a H*-
gradient. This H'-gradient is used by ATP synthase to generate ATP (adenosine

triphosphate), which is a molecule that is used as a free energy source to drive

unfavorable reactions in cells (eq. 1.4) 89

ADP + B, + (H* gradient) —22224 s ATP (eq. 1.4)

The reducing agent NADPH and free energy source ATP are used in the dark

reactions of the Calvin cycle to fix carbon dioxide into carbohydrates (eq. 1.5).!'2 This

cycle generates the biomass which ultimately is the general chemical energy supply for
all other organisms incapable of photosynthesis.

CO, +2NADPH + 3ATP + 2H,0—412%(CH,0) +2NADP* +3ADP + 3P, + H"
(eq. 1.5)

1.2 The oxygen-evolving complex
Photosystem II is a large (300 - 400 kDa) membrane-bound complex, which
contains multiple polypeptides.3 The major polypeptide components of PS II are given in

Figure 1.2. The process of oxidation of water and reduction of quinone B (Qy) starts with
the excitation of a light-harvesting pigment-protein antenna complex located peripherally
to PS II. The energy is transferred to P, which contains two chlorophyll-a molecules
that absorb at 680 nm. A charge separation occurs upon the excitation of Py, and an
electron is transferred from P, to pheophytin (Pheo), to quinone A (Q,) and to quinone

B (Qjp) consecutively. Upon reception of two electrons and two protons (from the stroma

4.



Chapter 1

side) the resulting hydroquinone (QzH,) leaves its binding site. The vacant quinone site
is filled with an oxidized Qg from the membrane-associated quinone pool (see also Figure
1.1). The oxidized Pg," is reduced by the nearby redox-active tyrosine residue (Y,). The
tyrosine residue itself is reduced by the oxygen-evolving complex (OEC), which
ultimately obtains the electrons from water.

Although great progress has been made in obtaining a high-resolution crystal

structure of PS 11, most of our knowledge about the OEC has been obtained from X-ray

14-17 18-21

absorption and EPR spectroscopy. These techniques have been used to

investigate both the structure of the OEC and the mechanism of water oxidation.”**” The

consensus is that the OEC contains four manganese atoms, consisting of two to three di-
#-0x0 Mn-Mn moieties (Mn-Mn distance = 2.7 10\) and one mono-x-o0xo Mn-Mn moiety
(Mn-Mn distance = 3.3 A). In addition, two co-factors, Ca’* and CI, are required for
water oxidation. Glutamate and aspartate provide most of the terminal ligands to the

OEC, while one or two histidines are also directly ligated to manganese atoms.> %%

Kok et al.* proposed that water is oxidized in five stages, called S-states (S, - S,),
with the index indicating the number of stored oxidizing equivalents. An electron is
extracted during each of the four light-induced transitions, S,—=S,, S,—S,, S,—S;, and
S;—[S,]—=S,. Dioxygen is released during the last transition, when the S, state returns to

the S, state via the hypothesized S, state, see also Figure 1.3. (For a good review of the

OEC see Ref. 31)
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Figure 1.2 Schematic of the major polypeptides that assemble PS Il, and the cofactors
of the electron transfer chain (adapted from Debus’ ). The 28 kDa and the
two chlorophyll-containing polypeptides, CP47 and CP43, are involved in
light harvesting and transfer of the energy to the reaction center Py, The
D1 and D2 polypeptides contain the cofactors which constitute the electron
transfer chain. The cofactors are: the oxygen-evolving complex (containing
Ca’*, Cl, and four manganese atoms), the tyrosine residue Y., the reaction
center Py, pheophytin (Pheo), and quinones A and B (Q, & Qg). The red
arrows indicate the direction of electron transfer between the cofactors. On
the lumen side there are three external polypeptides of 33, 24 and 17 kDa,
which stabilize the OEC.

To understand the mechanism of water oxidation in more detail, it is important to
know at each stage whether the extracted electrons are coming directly from bound water,

from the Mn atoms, or from any other parts of the OEC. Both EPR and Mn K-edge X-

-6-
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ray absorption near-edge structure (XANES)**** have been used extensively to
investigate the involvement of the Mn atoms in water oxidation. Based on the results of
these techniques there is consensus that Mn is oxidized during the S,—S, and S,—S,
transitions (Figure 1.3). However, there is still controversy concerning the involvement
of Mn oxidation in the S,—S; transition. Roelofs et al.*>concluded that there is no Mn
oxidation in the S,—S; transition, based on the absence of a significant shift in the
XANES spectra between S, and S;, and proposed that a ligand is oxidized. However,

Ono et al.*® and Tuzzolino et al.®’ concluded, based on observed shifts in their XANES

data, that Mn oxidation is involved in this transition.

Mn (1L, 111,1V.,)

-
or Mn (lll ,IV
4 3 f s, Mn4(III

S, Mny(lllL1Vy)
Mn4 III IV3)
or Mn4(IV4)

Figure 1.3 The five S-states of the OEC during the oxidation of water™’, and possible
oxidation states of the manganese atoms during the catalytic cycle. The
state transitions from S, to S, are induced by excitation of P, and
accompanied by the release of an electron to Y,”. Dioxygen is released

when the S, state relaxes spontaneously to the S, state.
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Recently, Messinger et al.”’ performed a modified version of the experiment done
by Roelofs et al.,” using XANES*?* and an additional technique, Mn Kf X-ray

emission spectroscopy (Kf XES). % Like XANES, Kp XES is element-specific, but in

comparison to XANES it has the advantage that it is more sensitive to the oxidation state
and less sensitive to the ligand environment of the manganese atoms. On the basis of the

results from both these techniques, it was concluded that the S,—S; transition is not Mn
centered.”’  Nevertheless, some supporters of manganese oxidation in the S,—S;

transition argue that two opposing effects, the oxidation of Mn and a structural change,

cause the lack of a shift in XANES and K XES data. It is known that a structural
change occurs in the OEC during the S,—S, transition,'> which could offset the effects

due to manganese oxidation. To resolve this issue, the influence of oxidation-state and
structural changes on XANES and K XES spectra need to be studied with manganese
model compounds, where the ligand environment and oxidation state can be controlled.
These Mn compounds need to have similar structural motifs that are part of the
OEC. Figure 1.4 gives an overview of all the structural motifs, which either contain a
Mn—Mn distance of 2.7 A or 3.0 A, or have terminal ligands that could be part of the
OEC during its catalytic cycle. As mentioned earlier, the OEC contains two or three
moieties with a 2.7 - 2.9 A Mn—Mn distances depending on the S-state, which most likely
are di-u-oxo moieties. The oxygens of the di-y-0oxo moieties might be protonated early
in the catalytic cycle . The Mn cluster also includes at least one Mn—-Mn distance of
about 3.3 A, which could be an individual Mn-Mn and/or Mn—-Ca mono-,-0X0 moiety

or a mono-y;-0xo moiety. The majority of the terminal ligands for the Mn cluster are
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carboxylate ligands, which can provide bridging between two Mn atoms or can bind to

Mn in a monodentate or bidentate manner. It is also known that there are at least one or
two histidine 1igands.3’28’29 Consequently, Mn model complexes are desired with a

mixture of aromatic N ligands and carboxylate ligands to be relevant to the OEC. There

is also some evidence that the co-factor CI is directly ligated to one of the Mn atoms of

the OEC in the S; state 041 and possibly in other states. During the water oxidative cycle,

at least one water molecule is bound and oxidized, possibly as a terminal ligand.
Therefore, Mn compounds with terminal CI", H,O, HO", o> ligands are of interest.
Additionally, Figure 1.3 shows the oxidation states of the Mn atoms in the OEC during
the catalytic cycle; Mn", Mn", or Mn". Therefore, model compounds of the most
interest contain one or more of the structural moieties in Figure 1.4 and have oxidation
states that are Mn", Mn", Mn", or even Mn", which has been proposed to be present in
the S; and S, states.

A survey of the literature for Mn compounds relevant to the structure and function
of the OEC is presented in Tables 1.1 through 1.7. The references in Tables 1.1 through
1.7 indicate the articles where the synthesis and structural information are provided of the
Mn complexes. Compounds where the Mn atoms are connected only by alkoxide bridges
("OR) have been excluded from this collection, because they are less relevant to the OEC.
Table 1.1 shows a list of Mn mono-nuclear compounds which contain either O*,0H", or
(one or two) H,O. These mono-nuclear compounds can have 5-, 6-, or 7-coordinated Mn
atoms, while the majority of the multi-nuclear compounds are 6-coordinate. Table 1.2
and 1.3 show a collection of Mn mono-yx-oxo and di-u-oxo compounds, respectively.

The majority of these compounds have a mixture of O-Mn and N-Mn ligands. Only in

-9.
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two cases, are all the terminal ligands provided by oxygen. In addition, the ligating
nitrogens can be separated into two types: nitrogens that are part of an aromatic system,
and nitrogens that are non-aromatic. No amide residues have been identified yet as
ligands to the OEC. Therefore, it would be desirable to have more mono-y-oxo and di-y-
oxo compounds with either all oxygen ligands, or with a mixture of oxygen ligands and a
few aromatic nitrogen ligands.

Table 1.4 shows a set of Mn tri-nuclear compounds, which can be used to study
parts of possible intermediates during the catalytic cycle of the OEC. These tri-nuclear
motifs are also part of the structures of the Mn tetra-nuclear compounds in Tables 1.5,
1.6, and 1.7. The tetra-nuclear compounds are separated into several classes. The
‘adamantane-like’, the ‘dimer-of-dimers’ , and ‘linear’ Mn tetra-nuclear compounds are
presented in Table 1.5. The ‘cubane’ compounds are given in Table 1.6, and the
‘butterfly’ compounds are shown in Table 1.7. The ligation of the ‘linear’, the ‘cubane’
and the ‘butterfly’ compounds consist mostly of oxygens and aromatic nitrogens, which
is desirable because of their relevance to the OEC.

Many of the Mn compounds are relatively stable, and stay intact during
electrochemistry. Therefore, a variety of oxidation states can be studied using the same
compound. No compounds are available containing Mn and Ca, which are bridged by

mono-y-0xo or carboxylate bridges.

- 10 -
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Figure 1.4 Structural motifs which are relevant to the OEC of PS Il, and serve as

templates for Mn model compounds.
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Table 1.1 Mn mono-nuclear compounds with non-bridging 0>, OH", or (one or two)
OH, ligated to Mn. Four types of terminal ligands are distinguished.:
O = oxygen from carboxylate group, N* = aromatic nitrogen, N* = non-
aromatic nitrogen, and X = either a terminal oxygen or halide.
structural . Mn ox. ligand character
. specifics ref.
unit state(s) o | N* | NN X
Mn=0 6-coordinate Iv) 4 2 42
2 3 43
Mn=0O 5-coordinate V)
4 1 44
HO-Mn=0 6-coordinate Iv) 4 2 42
Mn—-OH 6-coordinate (II1) 3 3 45
I 2 2 1 46
5-coordinate 4 1 47-49
(I10)
Mn-OH, 4 1 50
6-coordinate (II1) 2 3 1 51
7-coordinate (II1) 2 4 1 52
Cl-Mn-OH, 7-coordinate n 1 2 4 53
/ = 180° 6-coordinate (III) 2 4 54
7-coordinate 1 2 4 55
D)
6-coordinate 4 2 52,56
6 57
1 2 3 58
£ =~ 180°
6-coordinate (II1) 4 2 |48,59,60
4 2 61
2 4 62
2 2 2 63
Mn-[OH,],
6-coordinate I 2 4 64
£ =90°
6 65

-12 -
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Tabel 1.2 Mn di-nuclear compounds with the mono-u-oxo moiety. The number of
ligands is per Mn atom. Two types of bridges are distinguished:
O" = bridging oxygen and OF = carboxylate bridge. Three types of
terminal ligand are distinguished: N* = aromatic nitrogen, N" = non-
aromatic nitrogen, and X = either a terminal oxygen or halide (in

parentheses). OAc is CH;CO, .

) ) Mn ox. |bridging terminal
structural unit specifics state(s)| 0 | O |N* | NY| X ref.
AILan | 1 5 66
av,vl 1 411 67,68
linear (IILII1),
Mn—O-Mn AILIV),| 1 2121 69
IV.1V)
. 1 312 70
non-linear (IILIIT) 1 3 1 1
0 1 | 1]3]1 72
n‘OAc’ Mn - (I1L,I1ID) 12 2 =
1 [ 2]2]1 74
(IL,IID) T2 3 >
1 213 76,77
- araonpyr (2121 74,78-80
— O~ 12 3 81-85
~[OAc]; 1221 74
ILIV) 1|2 3 81,8284
2 H,0 dILanpp 1 212 1 | 8687
2Cl armanyp r | 212 1(CI 87
1 H,O0 & 1 OR AILIanpf 1 | 212 1 | 8889
—0—
Mn\Y/ Mn Y = phenyl boronate |(IV.IV)| 1 | 2 3 90
2
- ILI) | 1 2121 91
Mn—(OH)-Mn 2 OAc. bridges am 11 |2 3 82,83
5-coordinate LI | 1 4 47
. 1 |2]2 1 92
2
 OH— O,CR terminal groups am 112 11 9
Mn_[ 0 é]_Mn 3 OAc terminal groups 11211 2 93
2072 2 terminal H,O &
"O,CR terminal groups (LI 12 2 o4

- 13-
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Table 1.3

Mn di-nuclear compounds with the di-u-oxo moiety. The number of
ligands is per Mn atom. Two types of bridges are distinguished:
O" = bridging oxygen and OF = carboxylate bridge. Three types of
terminal ligand are distinguished: N* = aromatic nitrogen, N" = non-

aromatic nitrogen, and X = either a terminal oxygen or halide (in

parentheses). OAc is CH;CO, .

tructural unit - Mn ox. |bridging terminal ¢
structural uni specifics state(s) [ 0% | 0° [ N* | NV | X ref.
5-coordinate (LI | 2 3 95
2 2 2 96-98
II
(LI 2 3 1 97
2 4 99-101
o 2 2 2 98,102-106
Other oxidation v | 2 3 1 107,108
states (IILI11), 3 3 1 109
(ILIV), or 2 4 110-115
(IV,IV) can be
electrochemically 2 4 116,99
Mn-O,-Mn prepared 2 2 | 2 98,117,118
2 4 110,114,119
(IV.IV) 2 3 1 120
2 2 2 121-124
2 2 2 125,126
2 terminal OH Iv,Iv) | 2 3 1 84
. 2 3 1(C) 127
2 terminal C1 (IV.,IV) > > 1 3
. 2 3 [1(F) 127
2 terminal F IV.IV) > > T [1F) 3
2 1 3 127,129
(IILIV) 2 011211 79,128,130,131
N 2|1 3 129
[O], (IV.IV) 2 |1 2 1 78,79,132,133
Mn/ \Mn -
\OA/ 2 terminal H,O av,Iv) | 2 1 2 1 134,135
¢ 2 terminal C1 {ILIV) | 2 1 2 1(Cl) 136
' ' 2 |1 1411 137
‘dlfferent terminal (L IV) 2 2
ligands for each Mn 2 0111 |13 3 137
5-coordinate (I1,IT) 2 3 95
Mn—~(OH),-Mn 4-coordinate (LI | 2 2 138
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Table 14 Mn tri-nuclear compounds. The number of ligands is per Mn atom. Two
types of bridges are distinguished: O° = bridging oxygen and
O°€ = carboxylate bridge. Three types of terminal ligand are
distinguished: N* = aromatic nitrogen, N" = non-aromatic nitrogen, and

X = either a terminal oxygen or halide (in parentheses). OAc is CH;CO, .

. . Mn ox. bridging| terminal
structural unit specifics state(s) Mn 0" 10° IN* INY | X ref.
M 6-0,cR | (LIL) [al [ 14| 139-144
bridges ay) fan | 1|41 142,145
0]
PN & 1 H,0 on milir|4 1
ILIIL,) 141,142
v M Mn" IR E
Mn* = III [Mn?] 2 211 1
133
Mn® =1V |[Mn®| 3 2 |1
OH on Mn*
Mn” Mn*| 2 2111
O/ \O DR e = ST 132,133
| 4 O\ | - or CI Mn*| 2 21| ]
MaB  MnB | T Olidi}\ Tavy FICIY 146
\O/ Mn®| 3 211
Mn?*| 2 4
1 HZOBper av.) 47
Mn Mn®| 3 2 1
Mn
25N
O r O P can be
0’8‘0 | replaced by (Ivy) all | 2 3 1 148
1 \ \Y%
Mn Mn AsorV
No”
4 OAc m|p2|4
Mn(OH)Mn(OH)Mn . ITT,I1,IIT) 149
(OH)Mn(OH) bridges ( mlil213

-15 -
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Table 1.5

Mn tetra-nuclear compounds, which contain the ‘adamantane-like’,
‘dimer-of-dimer’, or ‘linear’ motif. The number of ligands is per Mn
atom. Two types of bridges are distinguished: O° = bridging oxygen and
O°€ = carboxylate bridge. Three types of terminal ligand are

distinguished: N* = aromatic nitrogen, N" = non-aromatic nitrogen, and

X = either a terminal oxygen or halide. OAc is CH;CO, .

bridging | terminal
structural unit specifics Mn ox. Mn . ref.
state(s) 0° | O° IN*INY| X
{ILIV,) | all | 3 2|1 150
- av.) all | 3 2|1 150
M
IO/ \Ié)\o Y olan | 3 3 151,152
\
Mn‘O1l—Mn 1 u-oxo bridge is 3
1 152
0-Mn—g protonated
avy Jlal | 3
2 pu-oxo bridges 153
are protonated
N|In:8:M|n
i : LIV
R-O O- | dimerslinkedby | (IILIVY - 2|1 154
| o | two "OR bridges | (1v I1I)
MnZ __—Mn
@)
M QAC\M dimers linked by
n— . _—vn i 1
| 0] | two "OR bridges (ITL 1)
R-0 o O-R | Hghared possibly all | 2 1 1| 2] 155
| o_ | by brideine O (ILIT)
Mn= "~ Mn y bridging
OAc atoms
A
5 N N 5 Mn"| 4 2
Mn"-O,~Mn"-0,-Mn"-0O,—~Mn av,) 156
Mn" 4
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Table 1.6 Mn tetra-nuclear compounds with the ‘cubane’ motif. The number of
ligands is per Mn atom. Three types of bridges are distinguished:
O® = bridging oxygen, O° = carboxylate bridge, and X® = bridging that
are not oxygen ligands. Three types of terminal ligand are distinguished:
N* = aromatic nitrogen, N" = non-aromatic nitrogen, and X = either a

terminal oxygen or halide (in parentheses).

bridging terminal
structural unit specifics Mn ox. Mn ref.
state(s) O |lo°| x® IN*INV| X
—0. (1L,,IV,)| all |3 3 | 157
Mn J/Mn R
| /TMH 6 ('O,PR) bridges
X 157,
O\Mn/o (III,IV3) all |3 3 158
o 5 or |2 | 1 |1(C) 2 |50
1 CI bridging (X*)|(I1L;,IV) P 3 161
T B orj2 | 1 |1(Chj1 1(Cl) i
_O. 1Cl bfldgmg X®) (1L, IV) 162
Mn‘Cl‘I/Nin 3 CI terminal v |3 3 164
/|Mn\ L (2 | 1 [1(Ch 2(Cl)
OL 0" |1 CI bridging (x¥) 162
Mn ridging Xy vyl [2 |1 Jienfi 1cn| o=
- ) 5 CI" terminal 165
3 (O,CR) bridges v |3 3
I B Im |2 | 1 |1(Ch 2(Ch
1Cl bfldgmg (X®) (L, IV) 159
6 CI” terminal v I3 3
nrj3 |1 2
X =H,0 (111,) 166
V|3 |3
orj|2 | 1 |1(Br) 2
_o. X = Br (1L, IV) I
Mn J/Mn IV |3 3
| 3
/|Mn‘ orj2 |1 [1N) 2
01 -0 | X=N; or OCN" |(IIL, IV) 167
Mn IVv]3 |3
3 ("O,CR) bridge | X = OMe™ or OH m| 3|1 2 | 168
_ 169,
X =MeCO, (II1,,1V) 170
_ - IvV|3]3 169,
X =PhCO, 171
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Table 1.7

Mn tetra-nuclear compounds with the ‘butterfly’ motif. The number of
ligands is per Mn. Two types of bridges are distinguished: O° = bridging
oxygen and O° = carboxylate bridge. Three types of terminal ligand are

distinguished: N* = aromatic nitrogen, N' = non-aromatic nitrogen, and

X = either a terminal oxygen or halide (in parentheses).

tructural unit 6 Mn ox. |bridging terminal ¢
structural uni specifics state(s) nloe ool Nt INY] x | Tef
MnA 4 "O,R bridges
| between Mn" A Mn*| 1 | 2[2
B Mn=11
and Mn” atoms B 172
0 . Mn® = III
PN Mn" atoms Mt 2 12| 2
MnB MnB : n
N 5-coordinate
O 4 "OR bridge M2 1 2| 3
| between Mn* | (IIL,) " 173,174
Mn? and Mn® atoms Mn”| 2 2
Mn® atoms Mn?=1I|Mn*| 1 | 3 175,176
5-coordinate |Mn®=II|Mn®| 2 | 3 ’
All Mn atoms | Mn*=1I|Mn*| 1 | 3 1 177
5-coordinate |Mn®=II|Mn®| 2 | 3
A A A
/l\l/lll\ one Cl per Mn (IIL,) MnB 113 1{(S)) .
0,CR | [RCO,], atoms Mn”| 2 | 3
| O | Mn*| 1 |3 2
MnB/ \MnB Mn®| 2 | 3 1
| \O/ | ~ (IIL,) Mn*| 1 | 3 2 169
[0,CR,| RCO, ) Imn®[ 2 [ 3 I
AN A
Mi M| 13 o
Mn°| 2 | 3 1
Mn*| 1 3 2
B .
ISIngorz(liti(;thelts () |Mn’} 2 | 3 169
Mn®| 2 | 3
v [ 13 [ 2
i - (IT,IIL, IIT) Mt 2 2 175
VAT Mo 1] 3|2 175,180
0,CR | RCO], Mt | 2 2 182
|B/ AN | B 1 Mn*| 1 | 3 1 |169,181)
Mn —\02C5—Mn - L) il 2 T2 183,184
| O | Mn*| 1 3 2 169,181
Mn one HOper | Mn*| 1 |3 2 178,181
Mn” atoms < IMnBl 2 | 4 185
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Even though a great many Mn compounds, relevant to the OEC, have been

published, only a few of these of compounds have been studied by XANES?186-196 ;.

Mn K XES J69T199 1y fact, some of the compounds involved are manganese salts, such

as Mn"Cl,, or oxides, such as Mn,0O;, which are less relevant to the OEC . 8:190:193.194.198
The focus of these studies is on either the influence of an oxidation-state
changelgl’192’196’197 or a structural changel%'lgg’195 on the Mn K-edge XANES or Mn Kf
XES spectra. However, no extensive comparion has been made between the two
influences. Therefore, in Chapter 2, two manganese compounds in solution are studied to
investigate the influence of oxidation state versus ligand environment on Mn K-edge
XANES and Mn Kf§ XES data. One compound contains a mono-¢#-oxo moiety and the
other contains a di-x-oxo moiety. The terminal ligands of the mono-y-0xo compound are

a mixture of oxygen ligands and non-aromatic and aromatic nitrogen ligands % For the

di-p-oxo compound all the terminal ligands are aromatic nitrogen ligands.110 The effects

on XANES and KB XES data of these different bridging and terminal ligands are
compared to the influence of the different oxidation states: Mn"'Mn"', Mn"'Mn"", and

Mn"Mn",

Recently, efforts have been made to add vibrational spectroscopy as an
investigative tool to study the structure and mechanism of the OEC. This can be done by

studying the changes during the catalytic cycle in the 1800 - 1200 cm™' range, which

contains vibrations of the protein-residues ligated to the OEC 200205 Apother approach is

to study the Mn-ligand vibrations directly, specifically the Mn—O vibrations, which occur

-19 -
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in the 200 - 1000 cm™ range.zoo’m6’207 As for the X-ray and EPR spectroscopies,

vibrational spectra of manganese model compounds are indispensable for the
interpretation of the IR and Raman spectra of the OEC. Only a few Mn compounds have

been analyzed by vibrational spectroscopy and normal mode analysis. This list consists
of: Mn-porphyrins,** MnO,™ **®® Mn""0,X with X = F or CI",***?!° Mn"'X, with X =F,
Cl, Br or I,''?'? and one mono--0xo compound.76 Only the last compound is relevant

to the OEC. Consequently, more vibrational information of Mn model complexes, with
different structures and oxidation states, is needed to aid the interpretation of the
vibrational spectra of the OEC

Chapter 3 introduces a versatile spectroelectrochemical apparatus to study the
changes in IR spectra of organic and inorganic compounds upon oxidation or reduction.
In addition, an IR data collection protocol is introduced to deal with electrochemically
non-reversible background signals. This apparatus and protocol enables us to study
manganese compounds in different oxidation states relevant to the OEC. These studies
will provide more insight into the vibrational behavior of the OEC during its catalytic
cycle.

In Chapter 4, this apparatus and protocol are used to obtain IR difference spectra
of an adamantane-like compound in the two oxidation states (Mn"'Mn'"'; and Mn'",). The

adamantane-like compound has six mono-x-oxo bridges and a combination of non-

0

aromatic and aromatic nitrogen containing terminal ligands.15 Isotopic exchange,

'*0—"%0, is used to distinguish Mn—O bridging modes from the terminal ligand modes.

A normal-mode analysis is used to extract Mn—O stretching force constants which can be

used for the analysis of vibrational spectra of the OEC. This is the first time that such an

-20 -
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IR and normal-mode analysis has been performed on a manganese compound in two
oxidation states relevant to the OEC.

Finally, in Chapter 5 a future outlook is presented on the different techniques used
to study manganese model compounds which are relevant to the understanding of the

mechanism of the water-oxidation cycle.
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2.1 Introduction

In green plants and cyanobacteria, light-induced water oxidation is performed by
a membrane-bound protein cluster, photosystem II (PS II). This protein cluster contains
an active site, the oxygen-evolving complex (OEC), where water binds and is oxidized
during four consecutive photon-induced electron extractions. In the absence of high-
resolution crystallographic information, most of the structural information about the OEC
comes from X-ray absorption spectroscopy (XAS) and EPR studies on PS 11" and on

10-15

model complexes. These techniques have been used to investigate both the structure

16-21

of the OEC and the mechanism of water oxidation. The consensus is that the OEC

contains four manganese atoms, consisting of two to three di-y-oxo Mn-Mn moieties and
one mono-y-0xo Mn-Mn moiety. Kok et al 2 proposed that water is oxidized in five

stages, called S-states (S, - S,), with the index indicating the number of stored oxidizing
equivalents. An electron is extracted during each of the first four light-induced
transitions, S,—S,, S,—S,, S,—S; and S;—[S,]—S,. Dioxygen is released during the last
transition, when the S, state returns to the S, state via the hypothesized S, state.

To understand the mechanism of water oxidation in more detail, it is important to
know at each stage whether the extracted electrons are coming directly from bound water,
from the Mn atoms, or from any other parts of the OEC. Both EPR and Mn K-edge X-
ray absorption near-edge structure (XANES) have been used extensively to investigate
the involvement of the Mn atoms in water oxidation. Based on the results of these
techniques there is consensus that Mn is oxidized during the S,—S, and S,—S,

transitions. However, there is still controversy concerning the involvement of Mn
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oxidation in the S,—S; transition. Roelofs et al.>> concluded that there is no Mn
oxidation in the S,—S; transition, based on the absence of a significant shift in the
XANES spectra between S, and S;, and proposed that a ligand is oxidized. However,
Ono et al.** and Tuzzolino et al.? concluded, based on observed shifts in their XANES

data, that Mn oxidation is involved in this transition.

Recently, Messinger et al 2! performed a modified version of the experiment done
by Roelofs et al.? using XANES and an additional technique, Mn Kf§ X-ray emission

spectroscopy (Kp XES).2**  Like XANES, KB XES is element-specific, but in

comparison to XANES it has the advantage that it is more sensitive to the oxidation state
and less sensitive to the ligand environment of the manganese atoms.

XANES results from the excitation of a 1s electron (K-shell) to a higher, bound
orbital (Figure 2.1). The higher the oxidation state of the metal, the more positive the

overall charge of the atom, and the more energy is required to excite an electron out of an
orbital ** The first formally allowed electric-dipole transition is the 1s—4p transition.

Due to the size of the 4p orbital, it overlaps with p-orbitals of the ligands, either through
o or w bonding. Consequently, this transition is sensitive to the oxidation state and the
ligand environment of the metal. For certain symmetries around the metal, the formally

electric-dipole forbidden 1s—3d transition can be observed, occurring at a lower energy
than the main edge transitions.”’ This transition is due to mixing of metal 3d and 4p

orbitals and gives information about the ligand as well as about the oxidation state and

30,31

symmetry of the metal complex. To increase the sensitivity of XANES, absorption is

detected as an excitation spectrum by measuring the Ko fluorescence of the Mn atoms.
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Figure 2.1 A schematic for the excitation and emission processes involved in XANES
and Kp XES spectroscopy. XANES spectra reflect the transition energy of
Is electrons excited to higher bound states, which depends on the overall
charge and ligand environment of the metal 2% To enhance sensitivity, the
absorption spectra are collected as excitation spectra using Mn Ka
fluorescence detection. KP XES arise from the emission of a 3p electron to
Is hole, which is formed following X-ray absorption. In a simplified model,
two final spin states exist with either a constructive (K, ;) or destructive
(KB') spin exchange interaction between the unpaired 3p and 3d electrons.
The magnitude of the interaction depends on the number of unpaired 3d
electrons, which is related to the oxidation state of the metal. For a more
accurate model, the ligand-field multiplet formalism needs to be applied,
taking into account spin-spin and spin-orbit interactions, ligand-field

splitting, and Jahn-Teller distortions.*’
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In contrast to XANES, Kf XES detects the X-ray emission from the relaxation of
a 3p electron to a Is hole, which is created by excitation of a 1s electron into the
continuum (Figure 2.1). In a simplified model, two final states exist due to a constructive

(KB, 3) or destructive (KP') spin-exchange interaction between the unpaired electrons in

3334

the 3p and 3d orbitals. The magnitude of the exchange interaction depends on the

number of unpaired electrons in the 3d orbital. Increasing the oxidation state of the metal
decreases the number of unpaired 3d electrons, in the high spin case; concomitantly, the

spin exchange interaction decreases. Accordingly, the Kf3, ; transition shifts to a higher
and the K' transition shifts to a lower energy.27’35'37 Compared to the 4p orbitals, the 3p
orbitals have less overlap with the ligand orbitals, because they are smaller and more
buried within the electronic shells. Therefore, K XES is less sensitive to the ligand

environment compared to XANES. The K@, ; transition is better resolved than the Kf3'
transition due to a difference in relaxation processes.38 Hence, the Kf, ; transition is used

here as a indicator of the oxidation state of the metal.

A more accurate view on Kf XES requires the ligand-field multiplet formalism.
For example, in the atomic picture, a Mn" atom has five 3d electrons (°S term state) and
one unpaired 3p electron (°S) after KP emission. A variety of spin multiplet states exists
when the spin-spin exchange interaction is included; two of the main states are the 'P
(part of KB, ;) and the °P (part of KB') symmetry. Using this formalism enables inclusion
of other symmetry-dependent perturbations such as spin-orbit coupling, ligand-field
splitting, Jahn-Teller distortion and, in case of multi-nuclear compounds, spin-spin
interaction between different metal atoms. Each of these perturbations will split the spin

states into a multiplet of states, causing an asymmetric broadening of the observed
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emission peaks. This indicates that there is some dependence of the ligand environment
on Kf XES spectra.

On the basis of the results from both these techniques, it was concluded that no
manganese oxidation accompanies the S,—S, transition.”! Nevertheless, some supporters
of manganese oxidation in the S,—S; transition argue that two opposing effects cause the
lack of a shift in XANES and Kf3 XES data. A structural change occurs in the OEC

during the S,—S; transition ;> which could offset the effects due to manganese oxidation.

To resolve this issue, the influence of oxidation-state and structural changes on XANES

and Kf XES spectra needs to be established. To address this question, two manganese

compounds in solution are studied here to investigate the influence of oxidation state

versus ligand environment on XANES and Kf3 XES data.

/\N N
N...,

II/I////
N

Mnlll\\\\\\\ "””/////Mnlv\\““‘

N N

B,

L' = 1,10-phenanthroline = /‘N—
N N N

Figure 2.2 The di-u-oxo manganese compound [L', Mn"'O,Mn""L',]’*, with L" as 1,10-

phenanthroline 103940
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The two compounds studied are the di-p-oxo bridged compound
[L',Mn™O,Mn'L',](CIO,),, where L' is 1,10-phenanthroline'® (Figure 2.2) and the mono-

u-oxo bridged compound [LMn"'OMn"L](ClO,),, where L~ is the mono-anionic N,N-
bis(2-pyridylmethyl)-N'-salicylidene-1,2-diaminoethane ligand41 (Figure 2.3). The di-u-
oxo compound has a diamond-core Mn"-O,-Mn" unit with a Mn—Mn distance of 2.75 A.
One reversible wave is observed in the cyclic voltammetry at E"> = +1.26 V vs. SCE of a
[(LY,Mn"O,Mn"(L"),]** acetonitrile solution for the (MannIV < Mn"Mn" + e*)

10,3940

couple. The mono-y-oxo compound contains a linear Mn"'-O—-Mn"" unit with a

Mn—Mn distance of 3.52 A. Cyclic voltammetry of a solution of [LMn™OMn™L]* in
acetonitrile shows two reversible waves at E,"> = +0.54 V vs. SCE and at E,"* = +0.99 V

vs. SCE. for the (MnIHMnIII ~ Mn""Mn" + ei) and (MnIHMnIV ~ Mn""Mn" +e*)

4245

couples, respectively.

N/
Figure 2.3  The linear mono-u-oxo compound, [LMn™OMn™LJ**, with L~ as the anionic

N,N-bis(2-pyridylmethyl)-N'-salicylidene-1,2-diaminoethane ligand 142
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Samples of the different oxidation states of both compounds are made by
preparative bulk electrolysis. To determine the extent of the influence of oxidation state
and ligand environment on the Mn K-edge XANES and K XES spectra, pure oxidation-
state compound spectra are required. However, the electrochemical preparation of the
different oxidation states for each compound is not 100% complete. Therefore, UV/vis
and EPR spectroscopies are used to determine the manganese species present in the
electrochemical solutions. This information is used to deconvolute the measured spectra
into pure oxidation state spectra. EXAFS spectroscopy is used as an additional tool to
verify the integrity of the electrochemically prepared compounds. By comparing the
different oxidation states for each compound, the effect of manganese oxidation on
XANES and Kp XES data is studied. The influence of ligands is investigated by
comparing the spectra of the two compounds in equivalent manganese oxidation states.
This is the first such study of structurally homologous Mn compounds in different

oxidation states using XAS and Kf§ XES methodology.

2.2 Experimental

Preparation of di-u-oxo compound samples: Synthesis of the di-x-oxo

compound, [L',Mn"O,Mn"VL',](CIO,), with L' as 1,10-phenanthroline, is adapted from
the published procedure by Cooper et al.'> The IR spectrum of the recrystallized solid
compound was recorded to determine the purity, and it matches the published data.'

Electrochemistry of [L',Mn"O,Mn"L',]** in acetonitrile shows one anodic wave at

+1.26 V vs. SCE, corresponding to the (MannIV < Mn"“"Mn" + e*) couple. The
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[L',Mn"O,Mn"VL',]* cation is prepared from a 1.7 x 10°* M Mn""Mn" di-u-oxo
compound solution at +1.4 V vs. SCE under an argon atmosphere at room temperature.
Figure 2.4 shows a scheme of the two compound fractions as a function of time during
electrochemistry. Samples are extracted at different times during the electrolysis
experiment for XAS, KB XES, UV/vis and quantitative EPR. In the nomenclature of the
electrochemical samples, the first letter denotes the kind of compound, 'di' refers to the
di-p-oxo compound, and 'mono' refers to the mono-u-oxo compound. The Roman
numerals between brackets indicate the desired oxidation state of the compound.
Different extraction time-points are indicated by subscripts. The samples from the di-p-
oxo compound, [L',Mn"O,Mn""L',] (ClO,),, are designated di(IIL,IV), di(IV,IV),, and
di(IV,IV);.

UV/vis spectroscopy could n