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Abstract

We compute the one-loop partition function for quadratic tachyon background in
“open string theory. Both closed and open string representations are developed. Using -
these representations we study the one-loop divergences in the partition function in
the presence of the tachyon background. The divergences due to the open and closed
string tachyons are treated by analytic continuation in the tachyon mass squared. We
pay particular attention to the imaginary part of the analytically continued expres-

- sions. The last one gives the decay rate of the unstable vacuum. The dilaton tadpole is
also given some partial consideration. The partition function is further used to study
corrections to tachyon condensation processes describing brane descent relations. As-
suming the boundary string field theory prescription for construction of the string field
action via partition function holds at one loop level we study the one-loop corrections
to the tachyon potential and to the tensions of lower-dimensional branes.
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-1 Introduction

First attempts to find a stable nonperturbative vacuum in bosonic string theory were made
way back in the 70’s [1], [2], [3]. Part of the complexity of the problem comes from the fact
that tachyon condensation is an off-shell problem. With the advent of string field theory
new attempts were made [4], [5] that studied tachyon potential and provided more evidence
that a new stable vacuum indeed exists. Later an important insight into the problem was
provided by A. Sen [6] who among other things put forward a conjecture that the hight of
the tachyon potential in open bosonic string theory is equal to the tension of the space-
filling D25-brane. This point of view as well as string field theory methods -were further
developed in a series of papers [7], [8], [9], [10], [11] (and references therein). The tachyon
condensation is believed to yield a.complete decoupling of the open stringv,states. The D25-
“brane desintegration into the closed string vacuum may go through various metastable phases
. described by lower-dimensional branes [8]. These descent relations are in general easier to
study than the complete condensation.
_ In the papers cited above the cubic string ﬁeld theory was one of the _primary tools of
~ investigation. Recently it was realized that another version of open string theory nowadays
christened as Boundary String Field Theory (BSFT) can be very useful in studying the
question. The BSFT was put forward by E. Witten in [12] and further developed in the
papers of E. Witten [13], K. Li and E. Witten .[14], and S. Shatashvili [15], [16]. Using
BSFT methods the exact tree level tachyon potential was derived in [34], [35] and the Sen’s
conjecture regarding the hight of the potential was shown to be true. In particular BSFT
was shown to describe most elegantly brane descent relations. We would like to note that
~the BSFT in its spirit is very similar to the old sigma model approach (see [21], [22] for
a-review and (23] for a recent discussion). The picture of tachyon condensation in bosonic
BSFT (as well as the BSFT itself) was further developed in [36], [39], [37]; [40], [41], [38].
In this paper, we investigate one loop corrections to the effective action of the tachyon
field, probed by the mixed boundary conditions

0X

or _
first studied in [13] and later used in many subsequent papers There are several motivations
for studying this problem; for example, one would like to see whether the system stays
weakly coupled as the tachyon rolls down the potentlal and also one would like to test Sen’s
conjectures. Our aim in this paper is more modest; we W1sh to carry out a dlvergence free and
internally consistent one loop correction to the tachyon potentlal and the D-brane tension.
In our analysis we take the approach of BSFT. BSFT gives a, (background mdependent)
prescription of how to compute a space-time action in. the presence of an open string (off-
shell) background. The prescription was only developed at tree level string theory In
view of the lack of a general theoretical foundation of a quantum BSFT, we proceed with a
speculative procedure for computing the effective space-time action that extends the tree level
prescription in the most direct manner. The key ingredient in the computation is-a one-loop
partition function in the presence of tachyon background (see section 2 for a discussion). This
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amplitude can be considered as a closed string propagating at. trée level for:a (Buclidean) »
time T between initial and final states representing the boundary conditions (boundary
* states). ThlS is represented by a' cyllnder graph. We choose the boundary ‘conditions to

- be 1ndependent of the timeT in this picture. 'In section 3, the cylinder is mapped into an

annulis’ bya’ conformal tranformatron snd ‘the* resultrng boundary cénditions are ‘shown
to ‘dépend’on’ ‘T We' should poitit -out ‘that the’ 1mpos1t10n of the sinmiple (T mdependent)
boundary condrtrons in the ¢ylinder pictiire, as opposed to, say, in‘the annulus picture, is

" somewhat a.rbltrary, although in our opinion, a natural choide.” In séétion 4, we compute

" ‘annular region.

“the cylinder ‘dplitiide up to an overall' normalization: constant using'BSFT, and in section
5, wé perform an 1ndependent check on our result by computmg the same amphtude in'the

We should stress ‘that the'calculations descrrbed 50 far'were carrled out at a ﬁxed modulus,
“which is“the time'T ‘for the’ cylinder or the ratio of the’ twd radii for ‘the: annulus. © To
complete the calculation’ 6f the one loop partrtron functron, we Have toradd the contribution
of the ghost sector and integrate over the modulus with a surtable tmeasure. ‘In the case
of the usual boundary conditions* (Neumann or Dmchlet) conformal 1nvar1ance uniquely

" determinés both thé ghost contribution and the modylar measure.’ Since' in our problem the

‘boundary conditions violate ¢onformal invariance, we know no convmcrng way’ of uniquely.
‘ '_-ﬁxmg these contrlbutlons In the ‘absence of a guldmg principle; we have decided to: ‘keep the
“ghost contrrbutron the same as‘in the conformal casé} and use the: samiélconformal measure -

"¢ in thé ‘integration over-the’ modulus T in the cylirider picture (see’ eq. (14)): -Although

this'is-an ad’Hoc récipe, it has the virtue of bemg simple and having'the correct limit as
u—0 (Neumann boundary). ‘We should point out' that in principle there is ani’ ambiguity
‘even in the ‘calculation: of the tree: level open string’ amplrtude with non—conformal boundary
coriditions: [13]. The result of the calculation would’in general depend on.the Tegion of the
‘world sheet chosen: for- example,a calculation done’ using the “upper’ half plane -would give
* a different ‘result than the onie done using a ¢ircle. "This is &’ consequence ‘of . the lack of
invariance under the conformal tranformationi connecting the-two tegions. ‘Of course, this
does not mean that the ambiguity in the calculation of the amplitude corresponds to an
ambiguity in the resulting physics. Since the calculation of the tree amplitude in [13] rests
~on firm foundation, namely BRST: invariance [12], it is generally believed that amplitudes
"calculated in drfferent regions must be related by ﬁeld redeﬁnltrons Wthh do not change the
' underlymg physrcs However rn the case of the one loop amplltude there 1s no such well

' founded startlng pornt and our naive prescrlptlon may need to be modrﬁed m the future§

In sprte ‘of these reservatrons we beheve that’it is of some mterest to’ carry the ‘calculation

t0 the end to ﬁnd the correctlon to the tachyon potentral As we shall argue later the ﬁnal
‘Tesults appear to be reasonable and self cons1stent ‘

"An alternatrve way of lookmg at the cylmder amphtude rs to vrew it as the calculatron

" of the partltlon functlon of an open strmg wrth mlxed boundary condrtrons correspondmg

‘to (1) ThlS calculatron Wl’llCh is techmcally more mvolved then the calculatron of the

_ §After thJS work was. completed preprmts [49] [50] appeared that propose a dlﬂerent scheme for computmg
" loop correctrons in BSFT. _ - , ,



cylinder amplitude, is carried out'in section 8. The final answer is in a partially implicit
form difficult to compare with the earlier result in detail. However, the open string picture
has its advantages. For example, some of the divergences of the amplitude are easier to
handle, and the undetermined overall constant of the previous calculation is easily fixed.

‘We would like to ‘remark that the computation :of the boundary ‘state ‘and the one-
loop partition function in two channels is essentially independent of its further use ‘in the

.. construction of space-time effective action and we believe it to be of interest by itself.

Finally, we would like to discuss brleﬂy the divergences encountered in the integration
over the ‘modulus. These d1vergences are caused by the tachyons present in both the open
and closed string channels, and by the dllaton in the closed string channel. We think of the
dlvergences due to the tachyons as bemg similar to the superficial dwergences encountered
~in'the integral representatlon of the tree level strmg amplitudes. These latter dlvergences
are easily circumvenited by appropriate analytic continuations. in external momenta The
same idea of analytic continuation can be used for the tachyonic divergences [27] with a
resultmg complex tachyon potential. This is, of course, due to the 1nstab111ty of the vacuum
" in the presence of the tachyon. An alternatlve approach which we will not use, is to cancel
* the tachyon d1vergence by a tree level counter term (Fischler- Susskind mechanism [31]).
The divergence due to the dllaton however, has to be canceled by the Flschler—Susskmd
mechanism when it is present. However, in this paper we will restrict ourselves to the
situation when there is no’dilatonic dlvergence and no need for tree level counter terms.
. This happens in the process describing the descent relation of D25 brane to a D25-p brane
with p > 2. v . )

. The paper is organized as follows. In section 2 we give a general discussion of BSFT
and the loop corrections in it. Section 3.contains a further discussion of the boundary
conditions at.one loop corresponding to the quadratic tachyon perturbation. In section 4
we compute the corresponding boundary state and find the expression for partition function
in the closed string channel. In section 5 we give an alternative computation via Green’s
function on the annulus and discuss renormalization conditions. In section 6 we remind
the reader about the situation with one-loop divergences in the conformal case and about
the analytic continuation treatment of the tachyonic dlvergences The dlvergences in the
closed string channel in the presence of the tachyon background are considered in section 7.
In section 8 we develop the open string channel description of the partition function. We
‘approximately compute the modified Casimir energy for the boundary conditions describing
the open string channel. The open string tachyonic divergence comes from the contributions
of the ground state (whose energy is given by the Casimir energy) and the first excited state. .
We derive a general integral representation for the Casimir energy as well as an approximate
expression valid for small coupling constant. These results are used then to study the general
form of the tachyon divergence. In section 9 we discuss. the dilaton divergence and compute

- the one-loop correction to the tachyon potential. In section .10 we derive the tensions of the
lower-dimensional branes by finding the asymptotic value of the action in the limit a, u — 00.
We conclude with a discussion and a list of unsolved questions in section 11.



2 Bosomc boundary strlng ﬁeld theory R
The startlng pomt of the orlgmal paper [12] in whlch BSFT .were: 1ntroduced was a Batahn—
Vilkovisky, (BV)) formalism on the space -of sigma- -model boundary perturbatlons Consider
:-a world sheet; action:defined on & un1t disc on:the- complex plane with standard- ‘metric that

.,-+;has the form U AR e ;:,; .,1 N
- e e §= so+/ R A )

- sn VY,

iﬂ'that is .S' 1s equal a sum of the standard free actlon .S’O 1n the bulk correspondlng to a ﬁxed
- iclosed strlng background and a boundary perturbatlon spec1ﬁed by some . local operator of
- gh'ost n umber zero V. constructed from the, ﬁelds X and ghosts b c. The’; space of such oper—
‘f',"ators is conS1dered to be’ a phase space of the BSFT Note that the lack of premse deﬁnltlon
" of’ the '"'drmss1b1e class of operators V (or equlvalently a space of boundary condit:' > ) 1s st111

ideﬁned as ol

g

" w(60,,605) = / gy / d¢2<aol(¢1.)5oz(¢2)> e

v inwherer (%) stands for a correlator ifi the présenté of the backgrouhd V{(0), i & theipomt in
phase space at which we evaluate w. Lot
< The: strlng field -action S is'defined as'a Hamlltoman for the vector field spec1ﬁed on the

phase spacetby- the'BRST- opérator “Q that is assliimed to be determined by the: standard

« Jhulkpdit S "Let BV expand the boundary perturbatlon O in terms of some ba31s (’)

ML AR R
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where X_”‘a_.re couphng constants (coordlnates on the phase space) We can wrlte then the

TR AL NSRS & S RN T

/ b, / d¢2 (XN (2N o<¢2>}>
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ion: S is & strlng ﬁeld tree—level actlon A matural’ way to extend ‘Wittefi’s formu—
* lation to: the full: quantum theory would fbe to 'consu;ler a quantum master equatlon
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To spec1fy the operator A, one needs to supply the phase space with a measure p [17] Then
A, is an operator that actlng on a function A gives the dlvergence :

dinA = ;8&. (pA')

where A is a vector field corresponding to A. The loop expansion then would correspond to
the expansion of S in powers of i. The density p is essentlally an independent ingredient in
the formalism (see [18] for a thorough discussion). Lacklng a rigorous definition of the phase
space itself the idea of finding some natural measure on 1t does not look very promlsmg at
the moment. Thus we will have to proceed in some other way to define the loop corrections.
From now on we will talk only about the situation when matter and ghosts are decoupled
and. O = cV. In paper [13] (see also [15]) it. was shown on general grounds that a solution
to (3) (for the case when matter and ghosts are decoupled) must be of the form

o, S S
-)Z .. '
where Z is the disc partition function corresponding to (2) and V' is some vector field on
the space of open string fields V. The -equation of motions following from this action are
always linear. A :
It was shown later by . Shatashvﬂl [16] that a more. careful treatment of total derlva,tlves
'1n correlation functions leads to a natural modification of (4) allowmg nonhnearltles in:the
equations of motion and proposed the following relation :
s=a+sly7 (5)
8)\’ : ,

S=(1+V'

~ where B is the beta functlon correspondlng to couphng constant )\’ ‘This relatidn was
shown to be true in the first order in conformal perturbation theory [16]. Note that in
order to account. for the nonlinear contrlbutlons in g (contrlbutlons of contact terms) in
the framework of the original BV formalism one has to modify the BRST operator Q that
now has to be dependent on At As long as the beta functlon is hnear (and one can always
choose locally such set of coordinates A* when this is true) the equatlons (4) and (5) seem to
be equlvalent However ‘that, descrlbes only one coordinate patch in the whole phase space
manifold. In partlcular the set of, coordinates in Wthh the beta functlon is hnear is smgular
when perturbatlons v approach the mass shell. But as long as we stay far off shell that is a
_situation of primary interest in the case Wlth tachyon condensatlon this coordmate system
 works well. (See [35], [38] for a discussion of the on shell behavmr of BSFT.)
‘We will take formula (5) as a starting point for constructlng the BSFT action. Written in
. that form the BSFT action can be easily linked with the sigma model approach (see [21] for
a general review and [23] for a recent discussion on the relation of the sigma model approach
and’ BSFT) Indeed it was noticed a long time ago. [20] that belng a generating functional for
scattering amplitudes the renormalized sigma model partition function is a natural candidate
. for string theory effective action. And this identification works quite well in the vicinity of the

5



- -tnass shell of massless particles.-However if one wants to include tachyons in‘the sigma model -
approach (that is natural:-because perturbations corresponding to tachyons-are relevant and
do not change the renormalizability unlike the massive string fields) than the identification -
S = Z™" does not work. It does not give the correct equations of motion because -

o=/ AV(@))

does ‘fiot vanish i in general at the conformal pomt A=0 1f Vv has conformal d1mens1on 1 that
s for example the case for the constant tachyon mode The second term in the expressmn
(5) corrects that problem Thus 1f we substltute ﬁ(/\) '—)\ + 0()\2) we will get

- (Bown)r

that evrdently vamshes at the orlglnal fixed pomt A= O ThlS means that in a coordmate.
_patch in which the beta function is linear (5), gives the correct equations of motion. It is
“believed that in general there exists a nonsingular metric Gi; defined on the whole manifold
of string fields such that — e et
N Gij(A)‘ R T
In the sigma model approach a generatmg functronal for scattering amphtudes that in-* -
_.cludés all string loop corrections is g1ven by the total renormahzed srgma model part1t10n
~function. For the opeh string theory 1t has the form : :

. —1+b

g
Zzb'

where the sum is over world sheets wrth b—boundarles Moreover the beta functions of
" massless fields are known to receive loop correctlons commg from modular infinities (se [22]
for a rev1ew) We see then that from the's 31gma model pomt of v1ew formula (5) has a natural
generahzatlon that 1ncludes loop correctlons e

“Tt should be noted'that an off shell extensron of the sxgma model approach to strrng theory
- 1nvolves a ‘great déal of arbitrariness havmg to do w1th gauge ﬁxrng and field redefinitions.
When domg loop correctlons the World shiet’ metrlcs nd the’ s1gma ‘modél backgrounds need
“"t6 bé ‘choser cons1stently at, each order of perturbatron 'theory ‘Sirice in the’ problem at
' hand the Bk ‘part’ of’ the s1gma tnodel actron is ﬁxed (that corresponds to a fixed closed
’ strrng background) it seéms to be’ natural to mtegrate over the moduh usmg a closed string
~ picture of the amphtude at each. order In thls p1cture we con51der a’ b ~1-loop open string
vacuum amphtude as a b—pomt tree level scattermg of closed strmg 'states’ |V) specrﬁed by.
the open strmg background ‘furictiohal V. In ‘the case “when the perturbatlon Vis conformal :
thls correspondence 1s Well estabhshed ‘and tHe' correspondmg closed strmg state |V) is called
a boundary state [24] The normahzatlon of |V) IS ﬁxed by the equahty of open and closed

......

LU

‘ T&. _HopenT <vl _Hcl W/TIV) . (6)
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_ In the left hand side of this equation we have.an open string partition function. on a strip of
length T with periodic boundary conditions in the time direction and the perturbed open
string Hamiltonian H{"*". In the right hand side we have a closed string amplitude evaluated
on a cylinder of length #/T using the free closed string Hamiltonian Hg". The overlap of
|V) with the closed string Fock space vacuum |0) is called a boundary entropy [33] and is
proportional to the disc partition function

OV~ ZueV). @

" “In‘this paper we construct a boundary state ‘satistying (6), (7) for the case of quadra,tlc_
‘tachyon perturbation on the boundary:’ Lacklng a general quantum BSFT theory we explore
‘an ad-hoc prescription for a one loop corrected BSFT effectrve space-time action that uses
formula’ (5) ‘and the one loop partition function. Note that this constructlon is guaranteed
to give the correct one loop corrections to the on-shell amplitudes. Howevér apriory it is
not clear whether this prescription has all of the desired properties for the truly off-shell
" quantities. We believe that whatever the correct one loop prescription may be thany of the
features present in our speculative construction, such as the i imaginary part of the tachyon
potential and loop corrections to the brane tensions, should remain. In the next section we
" will discuss in more detail the 1-loop boundary conditions corresponding to the quadratic
tachyon background.

3 Boundary condition

As it was discussed in {35] a boundary perturbation corresponding to quadratic tachyon
. profile is particularly useful for describing descent relation between unstable D-branes. The
quadratic profile has a unique property of preserving its shape along the RG flow, i.e. the
corresponding modes (couphng constants) can be consmtently decoupled from all other string
. modes. L Co : : :

In the conventlons of Wltten s paper [13] the partlcula,r ba,ckground ‘We are. 1nterested in
is specrﬁed (at tree level) by the following action on a unit disc : :

/d¢/rdra Xd"X—I—u/ d¢X2(¢))+a L ®

) Wthh is wrltten for a smgle strmg coordlnate ﬁeld X Here T, ¢ are polar coordmates U and
a, are (nonnegatlve) constants. : .
Due to the lack of conformal invariance it 1s not nnmedlately obv1ous what boundary
* conditions describe the same background at the loop level. The disc representation (8) has to
do with some particular off-shell gauge fixing. Since the boundary term.in (8) is rotatlonally
»mvarlant it is naturally, to expect that at the one-loop level. the same background must be
) represented by boundary condltlons on an annulus g < |z] <1, z=re* in such a way ;that
on each circle |z = 1 and |2] = 7o the boundary term.is equivalent to the one in, (8). A
conformal transformation that interchanges the two circles is the inversion z — /2. So one

7



can take for the circle |z] = 1 exactly the same boundary term as at the tree level and on
“the-circle |z| = ro the one obtained from it by the aforementioned conformal transformatlon
The boundary conditions then read : :

%X—G—UX 0, r=1, —HTO%X;'_-l—nX\:O, r=rug. (9)
The one-loop partition function for the quadratic tachyon potential was considered in a
number of papers [43], [44], [45]. The boundary conditions on the annulus considered in
papers [45], 46} (section 4) match with ours., The other papers consider boundary conditions
that either do not have a relative sign in (9) that we think is quite unnatural from the point
.. of view that tachyon does not carry any charge, or do not have a factor of ¢ in the second
' 'condltlon in, Wthh case we think the two boundaries are not treated on equal footing, |
_ - These boundary conditions take the most transparent form on a cyhnder with coordinates
' o = ¢, 7 =Inr withranges0 <o <27, -1 <7<0,¢t= —Inrg. They can be represented by
- means of a boundary state ]u) in the Fock space of the first. quantized closed stnng theory
Itis deﬁned up to an overall constant by the equation :

Then the boundary condition (9) is represented on the cylinder by the boundary state |u),—o
being the initial state at the right end of the cylinder and by the conjugated state (u|,—_¢
being the final state at the left end. The partition function for the cylinder of length tis
then glven by the expression .

Zy(u,a,t) = e 2 (ulelotDotlyy )

where |u) = [u),—o- : : :
Note that the tree level partition function Zo(u,a) correspondmg to the action: (8) is
given up to an overall numerical constant C to be discussed later by the overlap ‘of ]u) Wlth'

the closed string vacuum , S
Zo(a, u) ~%(0}u) (12)

‘where we prefer not to-include the factor'e™® in the definition of |u). The overlap itself in the
conformal situation gives the value of the boundary entropy [33]. Equation (12) along with
" equation (10) allows one to compute |u) up to an overall numerical constant. The inversion
used on the annulus corresponds to the reflection about the middle of the cylinder’that
’ 1nterchanges the two ends of the cyhnder Ev1dently the boundary condltlons are syrnmetrlc

w1th respéect to this reflection. ' :
“It is instructive to note that the tree level representation as it is fixed on the unit disc
* favors the cylindrical quantization. 'For instance the same boundary conditions o ‘an infinite
strip ‘will'be time dependent. This suggests that quite generally in BSFT one may think of

. the open string configuration space as some suitable space of boundary states:



Consider now a conformally equivalent cylinder with coordinates ¢/ = —7- %, 7' =& -
ranging as 0 < o' <7, 0 <7 < 2” = 27T with the boundaries 7 = 0 and 7= 27rT

identified.
The boundary condltrons (10) belng mapped on this cylrnder take the form ‘

90X ' 3X
—%'l- X O 0’ 0 a T

where T'= % :

This plcture corresponds to an open string Wlth boundary conditions (13) propagating in
a loop of length 27T in Euclidean timeé. The nonlocality in time of the boundary conditions
(13) stems from the fact that the boundary perturbation at hand is not conformally invariant.
Still it is relatively easy to quantize the theory’ in this representation that is quite useful in
studying the partition function in the dppropriate region of the moduli space.

The full one-loop partition function is obtained from (11) by integration over the moduli
space. We assume the measure of integration to be the same as in the conformal case, given
by the approprrate ghost determinant. In general we will consider all 26 coordinates of the
string X,, with the boundary condition bemg either the ones specified by the background
(8) or the usual Neumann ones. In'that case the sigma model action on the-annulus has the
form : '

/d¢/rdr§ja X, 07X+ +Zu,(/ d¢X2(¢) +/ d¢X2(¢))) +2a.

The background is thus ‘specified by the couphng constants u, 1= 1,. D a. The full
boundary state correspondlng to these boundary corditions is then a tensor ‘prodiict

- With this notation in mind we can. write now. the.full one-loop partition:function as-

U nwa e [0 Eapcypeeots
where 5 EEIRE AU oo" T i o
)y =(f (t)) 1:[1(1 — g 2tn)2

comes from the ghost determlnant

4 The partition functionﬁlin;Jt'he.’cl'osed 's"tfing- charinel

- We now proceed to calculate the boundary state (10) and the part1t10n functlon in the closed
string channel. The mode expansmn for a smgle coordinate field X has the form '

X = q 2Zp’7' +Z \/_[ ’r mT-Hma +a’[ mr-: zma+ame mr—imo +ame—mr+zma] (15)
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" - and the commutation relations -are:

[G,P] = i ’[am,au = B -

Our converitions here coincide with the ones in [24] that correspond to the choice o/ = 2 (in
. -accord with the factor 1/8m in’ front of the action (8)). Substltutmg this mode expansion
into (10) we obtain

i) = g,

T A
) = (a:z)*rf“”
amli) = (S gl Juy

It is easy now to find a 'so1ution”to'these equ"‘at"ions- ’

1 A2

7.-»_|A;UI)TH.—_ (u) \/‘/__ ea:p(f: (:Z:Lu) ol ‘reznrf)ezp( 4_'(I-1_Lgu_T))IO) ) »

Here we inserted the factor \/L corresponding to the normahZatlon of the spreading Gaus-

sian wave packet exp(— WL) that gives the correct timie evolutlon The time independent

constant N(u) can be obtained up to a numerical factor from equatlon (12). The tree level
partition factor for the boundary mteractlon (8) Was found in [13] to be equal to

Zo(u) = ﬂ e = VT 17)

where v is the Euler constant. -We kée‘p "the' ovérall' normalization of Zo(u) as it appeared

in [13]. Thus by (12) we have N(u) = No* Zo(u) where Ny is a numerical constant. An

analogous boundary state in the supersymmetrlc case was computed in [42]. ' '
Plugging the boundary state (16) into formula (14) we obtain

zwe=aww?wﬁwﬂwfewnm”%zgﬁﬁ—gﬁ(“f‘“@

We can fix the value of Ny by comparing to the open string, channel (see section 8):
'Ny = 1/(/2). Tt comes out that with this noriialization the proportionality constant € in
~ (12) is equal to 1/ v2r. In addition to that we fix the normalization of Neumann boundary

' ‘Staté for a coordinate X compactlﬁed as X X + R by matchmg contrlbutlons of the Z€ro
modes as’ R

hm-—'—N— e

ﬁ
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With this normalization the full one-loop partition function(14) for D coordinates sat-
isfying the boundary conditions (10) and 26 — D satisfying the Neumann ones reads

D

w.a) — " Vas-p v-—2a uv
Aac) oD [¢ter

/ 2 fD ()\/8ﬂ(1+tu,/2);—[11_e_2mt(m u,)2]' _‘ (1.9)

m-u;
"5  Green’s funotion on the annulus, pai‘tition_'fffun(:tion
and renormahzatlon

In the previous sectlon we computed the one—loop partltlon functlon using computationally
the shortest path. It is instructive to do an independent computation via Green’s function
on the annulus. In particular in this approach the renormalization 1mpllcltly hidden in the
factor (Zo(u))? becomes transparent. :

Consider an annulus 7 < 2| <1. A Green s functlon G(z Z') satisfying

199 , 9 ‘
_—Eaa_G( z)—d(z z)

" and boundary cond1t10ns (9) can be computed by exploiting an ansatz correspondlng to a.
‘decomposition into a particular solution and a general solution of the homogeneous equatlon
'represented ina form of Lorant expansion plus an addltlonal lnlzl2 term '

G,(Z’Vzl)__j _lnlz I|2 + kX_: (Zk.fk(z Z ) + Zkfk(z z )) +C(ZI,2’)1n|zl2 .

't‘where fiul2,Z) and C(7, z) are'some unknown functions.
" Pluggmg in the ansatz 1nto (9) and solving it we obtam

| G(z, z') —,_-'.—_inlzv— Z"2 + g _ 2 ( 5‘2’-' ) ( ulz’ ) +

7 u(2 — ulnrg)

’ ‘-/' ko ‘ k k2 —u?
> [(=2)" + (22) ]k((k Fu)?— g (k — u)?) +

k£0

S () (D e

This Green’s function can be explicitly checked to satisfy G(z,7) = G(ZQ 2').
. To determine the partition function Z;(u, 7o) one can write out two kinds of equatlon
' correspondmg to the variation of InZ;(u, o) with respect to u and the modulus 7g:-

I =g ([ geeen + [ ao0n) @)

11




- OlnZy(u,rg) To 2, T,. Tz ..

e ) /ro<|z|<1d : (22 * _2—2_) o : .(22)
where T}, and T3; are the components of the stress-energy tensor. (See [25] for the derivation
of the second equation. Note a factor of —1/47 missed in their formula (4.11).)

The correlator (X?(#)) entering the first equation can be obtained by renormalizing the
values of Green’s function G(z, z’') on-each of the boundaries in the limit when z approaches
2. One finds that the divergences come from the bulk part —In|z—2/|? and from the terms in
the second line of equation (20). The last divergence is exactly of the same form as the first
one and has a natural interpretation as a divergence coming from the image charge. Thus
" one can show that on’ each component of the boundary the dlvergent part of the two-point
correlator is L
limg_pG(0, ) = ——2111]1 _ - )|2 + ﬁmte part. (23)
’ 'Subtractmg the d1vergent part we obtain - ' ' - o

N+ (X = = 0] s SO ) el

2'— ulnrg

This expression can be now plugged into equation (21) and integrated. This gives the par-
tition function up to a factor that may depend on r¢. To fix this factor one may utilize
the second equation (22). Before explaining how this is done let us make some remarks on
~ the subtraction we performed to make the two-point correlator finite. First let.us make an
0bv1ous remark that we employed the point splitting regularization.. It is 1mportant to stay
consistently with the same regularization when analyzing the system in various coordinates
(see the sections below that deal with the open string channel). The corresponding coun-
terterms are constants on each boundary that are equal in value. Thus this subtraction is a
renormalization of the coupling constant a. Of course this subtraction is the same as the one
made in the tree level calculation [13]. In the calculation via the boundary state described
in the previous section this regularlzatlon is 1mphclt1y present. in the normahzatlon ‘factor
(Zo(w)) of the boundary state that enters squared (via two boundaries) in the partition func-
tion. As we will see below the above subtraction is the only subtraction logarithmic in scale
that is needed to render the partition function finite. Therefore the beta functions (including
the parts corresponding to the classical dimensions) for the coupling constants a and u are

ﬁy =-u,- ﬂa,: —a —U. C (24)
‘In a more general case when one has boundary conditions (9) in D directions one has

, . D
Bu, = —u;, t=1,...D, ﬂaz—a—Zui. (25)

When using equatlon (22) one first uses the Green’s functlon (20) to compute the com-
ponents of the stress-energy tensor.

3?G(z,7) 1
Tex(2) = lim 2[ 820z (z— z')2] i

12



A straightforward computation yields
l[v Cu >, '_rg’“_k(k—u)?v

=2 T 4(2 —ulnrg) kzl (k +u)? — 8 (k — u)z] '

Now we can plug this and the complex conjugated eXpression for T3; into (22) and integrate
it. After checking the result against the same kind of computation made using equation (21)
we obtain that up to an arbitrary overall numerical factor the partition function coincides
with the one computed in the prev1ous section (equatlon (18)). :

6 One-loop bosomc strlng dlvergences

In this section we remlnd the reader of the. 31tuat10n w1th one—loop dlvergences in the con-
formal case. Consider an open bosonic string satisfying Dirichlet boundary condition in D
directions and the Neumann ones the remaining 26 — D dimensions. Its one-loop partition
function written in the open string sector -has the form

o dl -~ Valp [ dT

<—‘TI‘6—2"TLO — T—(24 D)/2 27T T (26

Jo 2T (e b 2 s ) - )
| - This integral dlverges at T — 0. The dlvergent part in the trace comes from the open string

tachyon states and i is equal to ) :

Zl=

V26— dT —a 2xT
(«/87r2a’ 2%6-D Jp QTT € (27)

where we put in some cut-off R and a = (26 D) / 2 The physical origin of this divergence
is in the wrong sign of the tachyon mass squared. The divergent part can be represented as
a point particle path-integral (see Polchinski’s book [28] for a detailed discussion)

.l o a 26-D "—.(p2'—'1)l/2
d / 21/ dp™e |

* where [ is a proper time alehg the particle World line. This amplitude gives the (connected
part of) one-loop vacuum amplitude for an open string tachyon vibrating in 26 — D dimen-
sions. Equivalently in field theory the above formula can be rewritten as a contribution of
the tachyon to the vacuum energy density (in spa.ce—time)

1 dp26—D
2 o)

-

that clearly 1nd1cates (by the presence of negatlve values under the logarlthm) that the

" correctly defined amplitude may develop an imaginary part. : :
The divergent part (27) can be defined ‘by means of analytic continuation.- Here our

discussion closely follows paper [27]. One treats the exponential in (27) as a parameter b,

13



evaluating the integral for b = —27 and then rotating in complex plane.as b+ be™™. ‘The
direction of rotation can be fixed by carefully inserting the i in the propagator (see [27]) for
details). It is easy to. obtain the i 1mag1nary part of the analytlcally continued integral using

the formula
o dr

™

I — g%t = —— _p*, o
_ 4 o R I Toe - T(1+a) R (28)
This véay'we get for (27) - o .
' : : (26-D)/2 : S
-7r [m2 o toch|
Iml = Voe_ 0.S. tach
m | 26 D2F(14—%) ( 47( ) (29)
where m2 _ ... = —1/d’ is the open string tachyon mass squared.

‘The appearance of imaginary part for the partition function:arnd thus for the one-loop
space-time effective tachyon action of course signifies the instability ‘of ‘the system. ‘It is
known in field theory [29], [30] that an imaginary part of the vacuum energy gives a decay
rate of unstable vacuum. More precisely the decay rate per unit volume is I' = 2ImE.

One can also compute the real part of the analytically continued expression. However
* the real part will depend on the cutoff and needs to be pasted together with the other part
of the partition function. The resulting number can be obtained numerically (see [27] for an -
-example of this type of computation). :

The divergences due to closed strlng states can be studied by performmg a closed/ open
string channel duality transformation ¢ = 7/T". The partition function (26) takes the form

V26 D oe. -D —
7y = dit— D22t £=24(4) | 30
= 27r(\/§p—)26 D/ A0 (30)

When. D > 2. the dlvergent part comes only from the closed stnng tachyon states.

o V26 D —D/2 2
1 i
I'= 2n(V/8m2q’)26-D. / att

This expressmn corresponds to a vacuum—vacuum tree—level dlagram for the closed string

‘tachyon - : : -
o - . ) . dp26—- 1

I~ : o
-~ e D=3
Using formula (28)- we obtain for the iméginary part

' 2D/2—2 lmcsta.chl @-D)2 |
I’ = Vi DI‘(D/Z)( 3272 ) | (31)

where m2 o = —4 / o is the closed string tachyon mass squared.
“When D <.2 one also has a divergence corresponding to a dilaton tadpole. This is a
true physical divergence that cannot be eliminated by -analytic continuation and is due to

14



. the propagation of massless particles between the vacuum. states.. The momentum space
_propagator for a massless particle is 1/p? that diverges.on the mass shell. The momentum
conservation on the other hand requires that the massless particle emerges from the vacuum
with the zero momentum, i.e. precisely on the mass shell. The problem with this divergence

- can be resolved by a shift of the dilaton background [31] that results in adding a source term

~to the space-time eﬁectlve action. : :

7 Dlvergences in the closed string channel in the pres-
' ence of tachyon background

_In this sectlon we consider divergences of the one-loop partition function (19) coming from
"f?'the closed string sector. By looking at the boundary state (16) and the expression for the
. partition function (14) we see that divergences at'¢t — 0 come from the vacuum part of the
...boundary state

|tach“)'= N(u) : \/_e:cp(;—ﬂ)]O) | (32)

that describes a tachyon Wlth a Gaussmn wave functlon and in the case when D < 2 from
.?the part. - S - ' '
| dil) z-mu) (= ) falalexp(—*)um BN ¢
“ corresponding ‘to a-dilaton with the same Gaussian wave function. ' Co
-For .D:> 3 there is no divergence due to the dilaton (c.f. the discussion in the previous
section). Physically one may think about this fact as follows. By plugging the state (33)
“~into expression (14) for the partltlon functlon we: ﬁnd that the contribution of this state up
to-an overall constant is- ' : !

2
Pi

[~ (dil] / dt et |dil) = (dil.| 5 |dil.) = / d2p — ¢ Lim i
| 0 p S rp
Fourier transforming this expression we obtain it

I N/d26 6 zzz_ uig?.:

:that can be interpreted as a Coulomb potential self‘—en'e’rgy of a matter that has a Gaussian

density distribution in D-directions. For D > 3 it is finite. The Gaussian factor plays a role

- of effective infrared regulator. However in the limit v — O the divergence will show up as a
more singular behavior of the partition function.

.. Let us _postpone a further investigation of the dilaton dlvergences until section 9 and

A“__'cons1der now dlvergenees due to the tachyon state. The dlvergent contrlbutlon of state (32)

to the partition function has the form .

Vas_p ~2a > '2 A o di ';t - Ui
I tac},.(u) = _WT)%S:Be 1:[1 [(ZO( )) 0 27_‘_6 m] .
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-For the sake of simplifying the computation’' we will assume that all u;’s are equal to a single
parameter u. Then changing the exponent 2 to a complex parameter —b and- shlftlng the
1ntegrat1on varlable we can rewrlte the above mtegral as :

. R V26 D ,: 4 ' 1 2;/1‘ e;b.«,‘f‘"
()= (V162)26- D( (Zo(u)) y me 2/udt @07

Applymg formula (28) we obtam

o Viep B ' ;1 oD/2<2"
Im[cl tach. (u) (\/ﬁ_)26 D( (ZO(U))D) (4 )D/2 / (D/2) (34)

‘As we will show in section 10 minimizing the space-time effective action with respect to a
" the limit of the quantity e ~2(Zo(u))P along the RG trajectory U — 00,0 — 00 IS a number

. (\/2—7r) just as in the tree level computatlon [35] Thus the imaginary part (34) as u =— oo
approaches the finite value : 1 S

- Vas—p(2m)P/?
4(\/@)26 DF(D/2)

Up to a numerlcal factor (that essentlally comes from (e~ “Zo(u))w ) ((35) agrees with
. (31) and we see that for this divergence the naive prescription of first taking the « — oo limit
that yields the Dirichlet boundary conditions.and then performing the analytic continuation
gives the same result as the accurate procedure described above. We see however that along
- the RG flow the imaginary part due to the closed string tachyon grows (in absolute value)
from zero at u = 0 to the constant value (35).

- Theclosed strmg tachyon one-loop dwergence in the- presence of the quadratlc open strlng
tachyon background was also considered in [48] where a different treatment than analytic
continuation is proposed. .

I L, cacn, (60) = (35)

8 Open strin'g channel

The divergences of the partition function (19) in the limit ¢ — 0 are best studied in the
open string channel that describes an open string propagating in a (Euclidean) time loop of
Jlength 27T .= 2r%/t and satisfying the boundary conditions (13) that for the sake of readers
_convenience we write here once more:

L0X T u foL 8X u - AN
—— —X =  — X = =

5 0, c=0, - +T 0, o= 7r o - (36)
“(To 31mphfy the notations in this section we w111 drop ‘the primes at the open strmg world
' sheet coordinates o”, 7. ) Although these boundary condltxons have & nonlocal tlme-dependence

via the factors of % 1 in order to compute the partltlon function

. % dT; J-2THW/T) :
Zy= [ et TR (37)
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we may first canonically quantize the theory with the boundary conditions: - -

X 0X e
—%—l—vX 0, 0=0, 5—+UX—0, o= (38)

where v is a constant write down the partltlon function and then replace v Wlth u/ T. The
" Hamiltonian H(v) will have a spectrum of the form

h = Egqs ’U) + Z N, )\n(’l)) :
n=0

 where Ec,s(v) is the Casimir energy in the background (38) An(v) are oscillator frequen01es
“and N, - the occupatlon numbers.. The partltlon functlon (37) 1s thus of the form

o dT'

7 = htl

1= )y or°

1
1 — e—27TAn(u/T)

—27rT.E'c-as (u/T)- H (39)

If the spectrum in the presence of u- background is not s1gn1ﬁcantly modlﬁed the diver-
gences in (39) will come only from a finite number of the first excited states, i.e. the ground
state with energy Fc,s(u/T) and possibly some number of the low lying excited states.

We start by deriving the spectrum of frequenc1es A general solution to the Laplace
equation '

82 82 . .
| - (Grtga)X=0 |
“with the boundary conditions (38) can be expanded' into eigenfunctions as
X(o,7) = Z M (apeTiM —|—_,3newv’\?“) .

By plugging in this expansion into the boundary conditions (38) we obtain the system of
two hnear homogeneous equatlons The correspondmg determlnant factonzes as’

- an, 2 )\n y ECO. 5 )t )
| Thus we ohtain two snectral,_ eQuatio_ns_ o | “ .: oo
Ctem(Te)
f 2 ) AT

- (W;\ ): _1 | (40) |

deﬁmng the even and odd parlty elgenvalues respectlvely We Would hke to remark here that
the spectral problem we are looking at here is equivalent to the followmg quantum mechanical
model. Consider a one-dimensional system on a circle with coordinate 0 < x < 27 subject

17



to Zs orbifold identification  ~ 2w — x. If we consider a quantum mechanical particle in
this space with a potential '
: V(z) = 2ué(x) + 2ud(z — =)
then for the corresponding Schroedinger operator one obtains exactly the same spectrum
as (40) provided‘one restricts himself to the solutions that are even under the reflection
T — x —27. '
Alternatively both parity branches can be combined in a single equation
2X\,v
A2 —p2°
It is clear from thls equation or equatlons (40) that for suﬂic1ently large n one recovers the
regular Regge spectruin with the first correction of the form

tan(mA,) =

Ay =n+ —2—11 + O((v/n)2) ; : o (41)

. For v < 1 equation (41) is a fairly good apprommatron to all elgenvalues with the excep-
tron of the lowest elgenvalue ‘The last one 1s approximately

dox \E | @

with the correction being of the order of v3/2.

Despite the fact that we cannot solve the transcendental equations (40) exactly (and thus
cannot use the direct mode summation formula) we still will-be able to derive an integral
formula for Ec,s(v) valid for all (nonnegative) values of v. Before we go into that let us
first consider as a warmup the small v case when the expressions (41), (42) provide a good
approximation for the spectrum. Using those expressions and the mode summation method
we can compute an approximate expression for the Casimir energy that is valid up to the
terms depending on v as vP, p > 1. Note that after we substitute v = «/T and plug
these terms into-the Hamiltonian we obtain factors of the form e=2™"T""" that tend to 1 as
T — oo. Thus for small u our approximation will allow us to derive the leading dlvergence
of the partition function as T — oo. Moreover, despite its seemingly limited range of use,
this asymptotics essentially sets the imaginary part of the analytically continued T — oo
divergence. This is due to the following observation. The imaginary part should not depend
on the lower cutoff in T-integration. Thus for any value of u we can place the cutoff high
enough so that v = u/7T is small and thus the approximation we are talking about is useful.

To compute the Casimir energy in such a way that the resulting partition function will
match the one computed in the closed string channel we must employ the equivalent regu-
, larization scheme. Thus we should proceed by using the point sphttmg regularization. Note
that there is a subtlety here. The pomt splitting parameter ¢/ — ¢ = € used on the annulus
(23) corresponds to a point sphttmg € =¢-T on the strlp in the open channel. The factor
,T comes from the coordlnate mappmg
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- relating the two pictures..:Here z is the complex coordinate on the annulus and-o,T are

coordinates on the strip. .
With this identification in mind we can wrlte the point sllttlng regulated Ca81m1r energy
for small values of v as -

/— 1 F 2wy
EC’a,s( ) = —)‘0 ’l‘ Z Ane-ev 'l‘ ( U) »ﬁe (n+2v/(1rn)) +O(’U) =

n
1 .
T _ = ~? _Ylne— Yt
2w 24+2T262 L 7‘rn6 7rn¥-+?‘,(6)jl—o(v)'

Subtracting the divergent quadratic and logarithmic parts we obtain after sending ¢ — 0

1 7

' voov,
E as o - ' ;
=g Ty p TR W)
;Y:There_fore it follows that L o | L
T . ! P K
it oo Tre 27 TH/TY = T2"62ue:vp (—ﬁ - 2\/27ru — 2T f(u/T)) (44)

where f(u) is some unknown function that has the property

g - f(u/T) = 0.

- We 1ndependently obtained the same asymptotrcs (up to an’ overall exponent e’ for Wthl'l

we were unable to pin down the value of C') by analyzing the expression for the partition
function in the closed string sector by means of the Euler-Maclaurin summation formula.

~ We would like to derive now a general integral formula for the Casimir energy Fc,s(v)
that is valid for all values of v. This can be done as follows. It is easy to show that the

- spectrum A, coincides (except for the zero poit) with the set of zeroes of an entire analytic
. function

(z) = e”’z(v + zz)2 "’z(v zz)2

The regulated Ca,51m1r energy then can be represented as-a contour 1ntegral

ECas(U 6 = _fze*e zdll’ld)(z) . R “ (45)

“Wherethe contour should encircle the positive eigenvalues and can be convenlently chosen

to consist of two slanted tays: z = (i + )z, z = (=i + &)z where § > 0 and  runs from zero
"'_"to infinity. ‘One should also keep in mind that we do not include the zero into the spectrum.

Although formally ‘it ‘does not contribute to the regulated infinite sum of the elgenvalues

"‘one may still wish to avoid potential troubles by mod1fy1ng the contour by cutting out small

_initial segmets of the rays and connecting their endpoints by a small half-arc.

To simplify the manipulations below we note that both § and the point spl1tt1ng parameter
€ act as regulators, and one can achieve the same- result by keeping only ¢’ and assuming that
it has an appropriate imaginary part that provides a damping exponential factor. With this



- in mind and taking also into account that the function ¢(z) is odd we can write ECas(v €)
as the followmg integral ,.

Ecas(v,€) = —5- /0 xcos(e’x)dln(e”(v +z)? — e (v = w)2) .

Factoring out the term e™(u + 33)2 we obtain after one 'parj;ial.integrati()n )

Ecas(v, €') = 5}— /0 °°'1nf(1 — e 2" (:c — v)2)d(»xcos(e’a:))

T T+
' —-1—/ zcos(e x)dx —/ zcos(¢'z) .
2Jo : T+

" Here the first integral is finite as ¢ —, 0, the second term is quadratically divergent and the
third one is logarithmically divergent. The divergences are regulated by imaginary part of €
that is chosen with an appropriate sign. Let us show how to treat the logarithmic d1vergence
We can rewrlte the logarlthmlcally d1vergent part I, as

| T1o v—e“’( E( ve ))

where Fi(z) denotes the exponential integral function. Its asymptotics near zero is such
that (see for example [47]) —Ei(—z) = —y — In(z) + o(z), |argz| < 7 where 7 is the Euler
constant. Using this asumptotics we can go ahead subtract the infinities end send€ =€ /T -
to zero. 'We obtain the followmg expressmn Lo

1 e fo—o\h v e
EOas@ z )y B(-e (55) Jae—Zmem) =20 o
" Note that the fitst term’in this expression wé could have easily gotten starting from the
closed string expression (19) and using the Euler-Maclaurin summation formula. Thus we
see that in terms of that formula the open string channel Casimir energy is essentially the
integral approximation to the infinite series while the corrections (that can be .written for
example as integrals involving saw-tooth function and its integrals) correspond to the excited
.states. Note that the first term.in (46) glves the standard conformal Casimir energy —5; in
'~ the limits v — 0 and v — oo.
- Let, us discuss now the divergence T' — 0o (t — 0) of the partition function. ‘The general
. form of asymptotics is given by formula (44) in which. the. function. f(z) is in.principle
extractable from our general expression (46).. This. function cannot be dropped because. the
_ correspondlng contributions are still divergent. Also note that the states coming from the
excited levels of the first oscillator with frequency Ao also have negatlve energy. and thus
contribute to the dlvergence (44) an overall factor-

1 —_ e—QﬂTAo(u/T) 1 . e_2m <o .o i )
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Note that in the limit % —i0'this factor restores the contribution :of zero-modes
' 1
' 2\/ 27rTu

. By comparmg the u —- 0 behavxor .of the partition functmn in the closed strmg channel (18)
¢ to the expression above we find the normalization of the boundary state (16).
" Thus we can write down the following general expression for the tachyon divergent :part
of the partition function for'26 scalars with D, scalars satisfying the boundary condition (36)
+ has the form

e Vaep . edT
% Su 26— D 2
Iotacn(u) = e WWE R 2TT - ¢ )/

exp (2rT +2DV2ruT — 2r DT - f(u/T)) |

1= a-DvarTaaeTgtarm) 1)

.. where ¢(u) stands for a correction to Ag(u), b =27 to be rotated to —2m, and R is a cutoff.
,Further analysis of this formula is obstructed by two facts:, our integrable representation
'_:(46) is not very useful in analytlc nianipulations and second we do not. have any explicit
analytic expression for ¢(u).

. The terms contained in f(u) and ¢(u).are responsible for the flow from the Neumann to
the D1r1ch1et spectrum:. In the course of that flow the even integer elgenvalues get shlfted by
one unit and become the odd ones and vice versa. Since the limit u — co'sends the variable
w/T to infinity and the limit T — oo sends it to zero for a fixed cutoff R the contributions
of f and ¢ become more and more important in that limit. However as we argued above for
the purposes of computing the imaginary part of the analytic continuation one may always

~..adjust the lower cutoff.so that the terms in f in ¢ are all subdominant. One can expand in
" this terms 50 that the typical expression u- dependent term in the 1ntegral is of the form

- O(u)- fR e tTH2DVImUTpa(w)™ T (4R)

“where a(u) and O(w)-are such that a(u) = constant, O(u) — 0 as'u — 0. Each term of
this form can be analytically continued in b.

One may be interested in two kinds of questions about the analytic continuation. and the
~imaginary part. First one may worry whether taking the limits 4 — 0 u — 0o commutes with
.-analytic continuation, or in other words do we recover the standard analytically continued
Dirichlet and Neumann partition functions. If this were not true it would clearly signal
some inconsistency of the analytic continuation procedure applied to. the off shell situation
at hand. In view of expansion (48) above it seems to us that this is not the case.

A second, less formal question one may be interested :in has to do with the physical
* interpretation of the imaginary part. Since it gives the decay rate of the unstable vacuum,
“it-could be used as‘a measure of the vacuum stability. It would be very interesting then to
. see how it behaves. along the RG trajectory: ‘One may expect that: the flow:monotonically
. ~decreases-to the value set. by (29) for the appropriate: D. Unfortunately we:did: not: galn
enough analytical control over the open string channel to see that.
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9 Correction to the tachyon potential.

Cons1der now a boundary perturbatlon spemﬁed by coupling constants u; switched on in D
directions with the other 26 — D Neumann directions being compactified as X; ~ X; + R;,
4 =D +1,...,26.-We will restrict ourselves to the case D >:3:s0 we will not have to deal
with the dllaton dlvergence dlrectly from" the ‘start, although 1nev1tably it will show up in -
.the u— 0 limit. : : — ; ‘

We -assume that the space—tlme one—loop effectlve action is given by the expresswn

= (1 'i: /Ba + Zﬂu, - ZO(U a’) + Z (uv a))

h 1,

where Zo(u, a) = e [12; Zo(u:) [12p +1:% is the tree:level partition function, g is a string
coupling constant and
Zg(uya)= e 2 Z¢*(uy, - ., up).

‘stands for the one-loop partition function '(19) ‘defined by ‘means of analytic’continuation.
For D > 3'it takes finite values and 'contains an imaginary part | due to both closed and open
strmg tachyons.

At this point we would like to restofe the factors of o/. This can be 'easily' done by the

substitutions: u ¥ wa’/2, R; — R;1/2/c/. Substituting the beta functions (25) we obtain

’6

s = Lo a+z ‘8 HZ(U 1‘2_6[':/—& +.'
o 9 0. ) i=D+1 2ma
_2a(2a+zau7’ +1)Z (ul‘;..:.\??j,b), | E ‘(49)

On the other hand this expression shoiﬂd coinpide with the space-time action
5 =T /d26X.[ F(T)OT& T+ V(T) + higher derivative terms] (50)

. .-evaluated on the- quadratlc tachyon proﬁle
- (X)-—a—l— Zu,X25 Co : (51)
‘The tree level c‘omputa't'ijon [34]'; i[35] ' gi‘i’,e_s e

(T) =e T, & V(T) = e“T(l +T)

and the value of Tt"e“’_ = 1(27ra) where we 1nserted the 1 / g factor to match with our

~ conventions. - Qur con31deratlons below :follow..moreclosely paper [35]: Note that our nor-
malizations are slightly different from those in‘[35].. Their coupling constant u is 4 times our
u' . i L,- S .
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Let us now first study the expression (49) in the limit u — 0.. We can represent Z{* as
a sum of the “bulk part” that comes from integration over a region of moduli space with
~ cutoffs on both ends, and the analytically continued “tails” coming from the two boundaries
of the moduli space. As u.goes to zero the bulk part tends to the bulk part of the Neurhann
 partition function. The contributions to the tails due to open and closed string tachyons

i1 were. discussed in the previous-sections. We argued that both analytically ‘continued tails

due to tachyons tend to the corresponding tachyon contributions of the string with Neumann
 boundary conditions. The only problem in the u — 0 comes from the dilaton states.

For simplicity let us assume u; = ... = up = u. Then the dilaton contnbutlon to the
partition function that hides i in it the usual dilaton tadpole has the form

a 9 V26 D u\?
Idilaton('uu a) (6 (ZO(U))D) (\/ﬁ——)% -D ((24 D)+D<1+u> )

o dt 1
27 ((2/u + t)4m)D72”

' Evaluatmg the 1ntegra1 we obtaln an asymptotlcs of the form = - CER

(52)

| I - ; ; 11 .D.
. dil.a.tvon.('l%l') "‘ :s(”.ﬁSt a (ﬁ) K U—* 0
~ that contains an extra 1/u factor standing at the usual volume element. :

In the space-time effective action this term can be represented by a nonlocal term of the
form 1
¢ e T(1 +2T).

Thus as u — O we “have an exphclt infrared problem in our action. It must be resolved by
introducing a new ‘massless degree of freedom’ about which we ‘of course were aware from the
very beéginning - the dilaton ﬁeld v '

In this paper we will not try to incorporate the dilaton field in our action. Instead we
will stay at small but finite u (we may. think that we put our system in- a box) and find a
correction to the tachyon potentral

Let us come back now to the consideration of background u; (where u;’s are not necessarily
equal to each other) for D, directions where we assume D > 3 and all u;’s are away from

- - zero. As before the remaining 26 — D directions are compactified in a box with sides R;. To

-+ derive the ~correctionﬁ_}t‘o the potential we have to match the terms at 1//u as v — 0 in the
expression coming from the partition function (49) and the one coming from the space-time
_..action (50). The partition function (19) being plugged into the second term in (49) gives '

SU ~ Vas—p —2a( + D / dt 2tf 24(t) (53)

(Voimp»-D (\/_ )26 i /2

»7 where Vog_p = I1; R, and we restored the factors of . On the other hand by inserting the
quadratic profile (51) into the potential density in (50) that has to be of the form

k-e *T(1+2T)

2
2-l—a)
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where k is ‘some constant -We-obtain

D 2 :
.' S NT25k‘/26 D€ 2a(1+ 9 +2 H ’U,7r _ ) (54)

Equatmg (53) and (54) we obtain the followmg expression for the 1- loop effective potent1al

Vlloop(T) — T+ T) + Ze (1 + 2T) o )

‘where Z is up to normialization the analytically continued N eumann partltlon functlon with
the dilaton tadpole subtracted which we can formally write as

2 R0

Note that the procedure of matching (53) and (54) is quite sensitive to the normalization
of the partition function (19). In particular if we had a different normalization .of the zero
modes for the Neumann boundary conditions we would find that the coefficient k£ in (54)
depends on D which .is clearly an inconsistency. The fact that we obtained the correct
normalization based on purely world sheet considerations seems to be quite encouraging.
From the above expression for the correction to the potentlal we can read off the one-loop

corrected D25 brane tension o L L
Tf = Thee(1+ QZ ). » (56)

The imaginary part of Z is due to the open string tachyon and is given by the expression

 (29) for D = 0, multiplied by 1/(47)™. In the proper definition of the tension (56) one

“should con51der only the real part. The imaginary part specifying the decay rate is a separate
piece of information. See [30] for a detailed discussion of how it works in field theory.

10 Loop corrected Dp-brane tensionS'

~ In this section we would like to study the ratio of the brane tensions by ﬁndmg the limiting
- Value of the effective ‘action (49) in a similar way to how it was done in [35]. -

We begin as in [35] by extremizing the action S(a, ;) with respect to a. To simplify the
~ formulas let us assume that Zy(u) denotes the complete tree level partition functlon for D
‘boundary ‘conditions with u; and the D — 26 Neumann ones. Differentiatirig the’ expression
(49) with respect to a and equating the result to zero we obtain the following equatlon for
at=a (u) '

Zo(u). + 2§e_“'Zl( (a + Z —uz — i )Zo(u)

0 & l)Z“ (w)

2ge™ (2a* + Z o'u; — za
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Let us represent now a* as a sum a* = aj + Aa* where

= Z Z Uiz - 111Z0 (u)

.. is the tree level solution. Let us also use the fact that Zf- “(u) has the form Z¢#*(u) =
" Z3(w) Zy(u) (19). |
Then we have the following equation for the correctlon term Aa*

—Aa* =g (e“‘a Zo(u-)) e,‘_A“' (4Aq -2 Zu, )Z1 (u)

Note that as u — oo the factor (e‘“5 Zo(u)) fnonotbnicélly de"(':reaées to the value (v\./ 2m)P.
The above equation for Aa* is exact. However it is more consistent, in view of hlgher loop
. corrections, to keep in it only terms of the first order in g. This gives ' '

Ad* = 29‘( =% Zo(u) )Zuz Zl(u)

,It follows from: th1s equatlon that lzmu_,ooAa =0 if the followmg assumptlons on Z1 (u) are
. true: . . 8 , - :
: -limu_;oozl(u) = Const, lzmu_,00 Zu, Zl(u)

; Both assumptions can be easily shown to be true for the “bulk” part of the 21 (u), i.e. for
"“the part where integration over the modulus has cutoffs on the two ends. Moreover it follows

~from our considerations in section 7 that these assumptions are also true for the ¢contribution .

- of the closed string channel boundary (t — co, T — O) As for the open stnng channel part
we have to leave it at the level of conjecture. : :
With these assumptions being true we can safely plug in the tree level solution a* = = ag
into equation (49) and‘take the limit 4 — oco. ‘We ‘obtain (restoring the explicit ‘volume
. factor at the tree level partltlon functlon) ‘

R;

lim S u, a u)) = hm (W) 7. (y o
e ( ( )) [ ( )z~]l;)1+lm
OO -~
. i=D+1 'ITCY ) e » Ll : '
D/2 H | ( (\/_)D/ D/2, % p—24/ 5 12—6[ R
(2 ) h )P t' 20 I _
- z—D+1 (\/—_—) t S z—D+1 7!'0/
) Droppmg the volume factor the last expressmn can be rewntten as
| '» Tu lim S(u a (u)) Tt’ee(l +gZ ) . o (57)

U—00
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where

1
Tiree = —(V2rd/) " B(2rVa')P
g

is the tree level tension of a Dp—brane with p' =25—D and

.1 qeodt oam\@-Re
%= T b 3 (7) ACAECEEE

Thus the equations (57), (58) give the one-loop corrected tensions of Dp-branes. Again
the normalization of this result seems to be quite meaningful. In particular for D = 0 we
. recover (56). Up to possible differences in normalization it agrees with the expected one-loop
correction based on on-shell string theory considerations [32].

11 Discussion

In this paper we have computed the one loop correction to the tachyonic potential in order to
investigate its contribution to the tree level tachyonic condensation process. This calculation
consisted of two steps: The first step, which was well defined and unambigous, was the
calculation of a string amplitude as a function of the modulus. The second step, more
arbitrary and open to question, was the determination of the modular measure and the use
of formula (5) at-the one-loop level. The recipe we have used for this part of the problem,
although simple and natural, is somewhat arbitrary and lacks firm foundation. Clearly, more
work is needed to put these results on a sounder foundation.

Another question that needs further investigation is the treatment of divergences. We
have chosen to avoid the divergences due to the presence of tachyons by a suitable analytic
-continuation. This method generates a complex tachyon potential, which is to be expected
on the grounds of vacuum instability. An alternative possibility. is to appeal to Fischler-
Susskind mechanism [31].. Again, more work is needed to clarify the situation. There is also
~ the problem of the divergence due to-the dllaton when D < 3, which we did not treat in this
paper.

Our computations lead to corrections to the tachyon potential (55) and to brane tensmns
(57), (68) that look quite meaningful. In. particular based on our considerations we may give
the following qualitative argument on the nature of higher loop corrections to the process
describing the reduction of D25 brane into a lower dimensional brane. If the picture with
the boundary states discussed in section 2 is correct then the n-loop correction will have a
factor of (e=*Zo(u))"!. Furthermore it looks plausible that similar to the one-loop case the
corrections to the a*(u), i.e., to the value of a extremizing the action, will be negligible as
u — oo. In that case we will get a correction that up to a constant factor coincides with
the appropriate n-loop partition function with Dirichlet and Neumann boundary conditions.
Thus it looks like in this situation nothing happens to.the effective string coupling constant.
The processes we considered describe only some descent relations between branes. Of course
even if one starts with a single DO brane there are relevant perturbations that drive the
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system further to the bottom of the tachyon :potential. As discussed in [35], [36],:[37] the
constant perturbation, which one may always switch on as long as the world sheet has a
boundary, will on one hand keep the effective string coupling small and on the other hand
will damp any open string amplitude. It is not clear to us that this apparent dampmg factor
will dominate over any other possible relevant; perturbation: There may be a growing factor
in the boundary state similar to the Zo(u) that will compensate e™®.. :

Finally one should also understand if normahzatlons of the one-loop corrected Dp—brane
tensions are in accord with the on—shell string theory considerations. We leave these questlons
for a future investigation. =~ - ~ ST s S
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