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Abstract 

We compute theone-loop partition function for quadratic tachyon background in 
open string theory. Both closed and open string representations are developed. Using 
these representations we study the one-loop divergences in the partition function in 
the presence of the tachyon background~ The divergences due to the open and closed 
string tachyons are treated by analytic continuation in the tachyon· mass squared. We 
pay particular attention to the imaginary part of the analytically continued expres
sions. The last one gives the decay rate of the unstable vacuum. The dilaton tadpole is 
also given some partial consideration. The partition function is further used to study 
corrections to tachyon condensation processes describing branedescent relations. As
suming the boundary string field theory prescription for construction of the string field 
action via partition function holds at one loop level we study the one-loop corrections 
to the tachyon potential and to the tensions of lower-dimensional branes. 
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1 Introduction 

First attempts to find a stable nonperturbative vacuum in bosonic string theory were made 
way back in the 70's [1], [2], [3]. Part of the complexity of the problem comes from the fact 
that tachyon condensation is an off-shell problem. With the advent of string field theory 
new attempts were made [4], [5] that studied tachyon potential and provided more evidence 
that a new stable vacuum indeed exists. Later an important insight into the problem was 
provided by A.£en [6] who among other things put forward a conjecture thf1t the hight of 
the tachyon potential in open bosonic string theory is equal to the tension of the space
filling D25-:-brane.This point of view as well as string field theory methods were further 
developed in a series of papers [7], [8], [9], [10], [11] (and references therein). The t~chyon 
condensation is belieyed to yield a complete. decoupling of the open string states. The D25-
brane desintegration into the closed string vacuum may go through various metastable phases 
described by lower-dimensional branes [8]. These descent relations are in general easier to 
study than the complete condensation. 

In the papers cited above the cubic string field theory was one of the primary tools of 
investigation. Recently it was realized that another version of open string theory nowadays 
christened as Boundary String Field Theory (BSFT) can be very usefuJ in studying, the 
question. The BSFT was put forward by E. Witten in [12] and further developed in the 
papers of E.Witten [13], K. Li and E. Witten [14L and S. Shatashyili [15], ,[16]. Using 
BSFT methods the exact tree level tachyon potential was derived in [34], [35] and the Sen's 
conjecture regarding the hight of the potential was shown to be true. In partiGular BSFT 
was shown to describe rp.ost elegantly brane descent relations. We would like to note that 

. the BSFT in its spirit is very SImilar to the old sigma model approach (see [21], [22] for 
a review and [23] for a recent discussion). The picture of taclwon conden!3ation in bosonic 
BSFT (as well as the BSFT itself) was further developed in [~6], ;[39], [37]; [40], [41], [38]. 

In this paper, we investigate one loop corrections to the effect~ve acti~n of the tachyon 
field, probed by the mixed boundary conditions 

ax . 
aT = uX, (1) 

first studied in [13] and later used in many subsequent papers. Ther~ are several motivations 
for studying this problem; for example, one would like to. see whether the system stays 
weakly coupled as the tachyon rolls down the potential and also one would like to test Sen's 
conjectures. Our aim in this paper is more modest; we wish to carry out a divergence free and 
internally consistent one loop correction to the tachyon potential and the D~brane tens'ion. 
In our analysis we take the approach of. BSFT. BSFT gives 'a . (background independent) 
prescription of how to compute a space-time action in the presence of an open string (off
shell) background. The prescription was only developed at tree level string theory. In 
view of the lack of a general theoretical foundation of a quantum BSFT, we pr:oceed with a 
speculative procedure for computing the effective space-time 'action that extends the tree level 
prescription in the most direct manner. The key ingredient in the computation isa one-loop 
partition function in the presence of tachyon background (see section 2 for a discussion). This 
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amplitude can be considered as a closed string propagating at,tr~e1eveLfor.:a (Euclidean) 
time T between initial and final states representing the boundary conditions (boundary 

, states) ~ This: is ;represented 'by af :cylinder 'graph. We choose' the boundary' conditions to 
be indep~ndent of 'the time'Tin'this picture. 'IIi section '3, the cylinder is mapped' into' an 
a~nulus; by:,ra;'conf6hn~1 :'trariformiition, and 'tlie'r~sulting boundary' 'conditions 'are "shown 
to 'depend I on' iT: , We I should point 'out" that the 'imposition of the simple (T independent) 
bouhdary conditions'irt- the cylinder picttite,as'dpposed to,' say, 'in,the antnihis picture, is 
'Soinewhat;:atbitr'aty;" although 'in ~ui opiniori, a natural choiCe':' in section 4,' we compute 

'.' ,the cylinder (affiplitude 'up to :an. 6veraJJ:~ormalization"constant usihg'BSFT,!~1ii'd in section 
, '5~: we' peif6rm 'an independertt ·bheckon our result by computing ,tHe same amplitude in' 'the 

'annular tegioiI.,', ',',' , ' :" ,,',' .. ",;:' 

We should stressthatthe;cruculationsdJscribed'so far\vere cartieaout at a fixed mo'dulus, 
whiCh 'i~" the time iT' fot the cylinder or the 'ratio of the' t~6 radii fcir !tlre: ;anntilUs.' To 

\. complete the calculation; dfthe 'one loop partition functi~n, we"have'to"add tHe tcmtribution 
of the ghost sector and integrate over the modulus' with a suitable meaSure. ,In the Case 
of the usual' bo\mdary conditidlls:,;'(Neumarin or D'irichh~t ),'cohf~rrnal iiwariante uniquely 

, "determineslJoth the ghost contribution and the modular measure.' Since in out prbblem the 
'boundary' conditions viola:te coi1forinall~vafiance, we'know no cdnviilcingway; of-uniquely, 
'fixing'these coritiibutldns. In thE{absenc~ ofa guidirig'prinCiple';we have' decided td:keep the 
: 'ghost c~ntt'ibutioiithesa:me' as in the 'Conform.al, case; 'and use the samet b6nfoniial measure 
ih tne !integrati6Ir over 'the' m6dtilus T in the' cylinder picture (see' eq.(14))': Altffohgh 
tliis 'is, ah ad'lioc recipe,it has the virtue of being'simple and having the correct 'limit as 
it ~'O '(NeUrhann boundary). 'We should point' out' that in principle th~re' is aifainbigUity 
'even ih the'!ca1culation of the tree level open string' a~plitude with rton-conformaliboundary 
'conditions; [13]. The result 'of 'the calculation would"in general' depend :on,theregi-6n'of the 
: world sheet ' 'chos€mi' for' eic:ample, i,acruculation dorie 'using' the "upperihalfplane' 'wo~i'(f: give 
a' different: result than tIre' one done using' a Circle. 'This is ;a,' consequence i of the'lack of 
invariance under the conformal tranformatio'It:'connecting' the two itegions.' ! Of coUrse; 'this 
does not mean that the ambiguity in the calculation of the amplitude c()rresponds to an 
ambiguity in the resulting physics. Since the ci1lculation of the tree amplitude in [13} rests 

, on firm foundation, nam~ly BRST invariance [12], -it)s ge.nerally believed that amp~itudes 
'calculated in different'regions must he related oy fieid redefinItions, '~hlch do no't change the 

• .. ..' _ '.. . I" • . : j . ., ~ ;. " : • " h; .• • , •• , , ; • .' ":' • • 1 • ~.' • ~. • "': • 

, undedying phy~iCs. However, in the "case of ,the one loop arriplihid~,' there, is no ,such well 
, ' founded starting p~int, ,ailif o~ n~i~e prescfiptio'n may need to be' ihodifi~ci"iIi :the''fut~e§ . 

. . ~. . ... -:. .. . - . " I''''~~·; ,.·t, '. ,\, • .J I', ."' : - " ...... -. :~i: '. I ' ,," ;'.'., ' 

In spite" of these reservations, we 'believe that it 'is of some' interest to carry the ,calculation 
, t~:(the 'end t~ find the cor~'ecti~h,' to, 'the tachyon :p~teriiiaL As w~' ~haI1 argue later, the final 

r~shlts appear to ,be :rekonabl~; ?-nd self cori~i~t~nt.' ""'" -,;.' '," ,',' :,', ,,: 
.'An alternative way ~f"lo~king at'the ~yn\nder amplhud~ 'is\o ~i:e~it as thecakula:tion 

, " , ""I • ~. '; ~ :. ,.:""': : ) , ; '. "":... ."' ,- • ,"' ," " I" '. f. : , : . " ,". -: - -,:". 

of the partition' function of an oper string with mixed boundary conditionscorrespoIiding 
to (1 ).'This cal~ulatioti; 'w hith 'is 'te~hrncally;: m:ore inv6Iv~d" thert'the 'dlculatiqn' ~f the 

'§A~e~:thi~ wpr}{ c~~,c~~ple~ed p~eprj~t'~[4~1 ,: [50] 'appeared tl1at' p;o~~se a:diff~re~~ !~~he~~ for ~~p~~ing 
loop correctio~~ in.1~SFT. 

• ," C • _ •• ,. """'",.-; 
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cylinder amplitude, is carriedout~ iIi section 8. The :final answer is in ,apa:rtially implicit 
form difficult to compare with the earlier result in detail. However, the open string picture 
has its advantages. For example, some of the divergences of the aniplitudeare easier to 
handle, and the undetermined overall constant of the previous calculation is easily fixed. 

We would like to "remark that the computation of the boundary state 'and the bne
loop partition function in two channels is essentially independent of its further use in the 

: ,construction of space-time effective action and we believe it to be of interest by itself. 
Finally, we would like to discuss briefly the divergences encountered in the integr(l,tion 

over the'modulus. These divergences ~e caused by the tachyons preserit"in both the open 
and cl~sed string channels, an<;l by the dilaton in the dosed string channel. We think of the 
divergences due to the tachyons as being similar to the superficial divergences encou.ntered 
in' the' integral representation of the tree level string amplitudes. These'latterdlve~gences 
are easily circumvented by appropriate analytic continuations in external momenta. The 
same idea of analytic continuation can be ,used for the tachyonic • divergences , [27], with a 
resulting complex tachyon potential. This is, of course, due to the instability of the vacuum 

" in'the presence of the tachyon. An 'alternative approach, which we will ~rit 'use, 'is to cancel 
, the tachyon divergence by a tree level counter term (Fischler- Susskind mechanism [3'1]). 

The divergence dlie to the dilat6n, however, has to be canceled by the Fis~hler-Su~skind 
mechanism when it is present. However" in this paper we will restrict ours~lves't'b"the 
situation when there is no' dihltonic divergence and no need for tree level counter terms . 

. T.4is happens in the process describing the descent relation of D25 brane toa D25-p brane 
withp> 2. 

The paper is organized as follows. In section 2 we give a general discussion of BSFT 
and the Ipop corrections in it. Section 3. contains a further discussion of the, boundary 
conditions at one loop corresponding to the quadrfttic tachyon perturbation. In ~ect~<;>.n 4 
we compute the corresponding boundary state and find the expression for partition function 
in the closed string channel. In section 5we give an alternative computation via Green's 
function on the annulus and discuss renormalization conditions. In section 6 we remind 
the reader about the situation with one-loop divergences in the conformal case .and about 
the analytic continuation treatment of the tachyonic divergences. Thedivergenc~s in the 
closed string channel in the presence of the tachyon background are considered in' se~tion 7. 
In section 8 we develop the open string channel description of the partition function. We 
approximately compute the modified Casimir energy for the boundary conditions describing 
the open string channel. The openstring tachyonic divergence comes from the contributions 
of the ground state (whose energy is given by the Casimir energy) and the first excited sf~te. 
We derive a general integral representation for the Casimir energy as well as an approximate 
expression valid for small coupling constant. These results are used then to study the general 
form of the tachyon divergence. In section 9 we discus~ the dilaton divergence ~ndcompute 
theone-loop correction to the tachyon potential. In section 10 we derive the tensions of the 
lower-:dimensional branes by finding the asymptotic value of the action in ,the limit a, u -::-+' 00. 

We conclude with a discussion and a list of unsolved questions in section 11. 
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: :2,; Bosonic boundary string ,;iieldi theory : ' . ; ~ ',: . 

~. :- -: ';~"? 1.';, 'r", , ..... \. ., -, ;~: . : ·~!_·3 -.:; .... j.' , <t~';,; :;.1,':"1 " ~ ~ ,.Ot;;; '.~' :,;:)1 

.' The sta~ting ,p,ojnt of the origin~l paper [12}iu.whkh BSFT:,were,introd~ced was a .B~talin
ViJkovisk,y, (BY.) ,formalism, on, th,e space ,of.~ig{n~·,m0.del :boundary . per.turb:atjoIls;, ,CQnl;lider 

;,~ worl<f;~heet.;<l-ction,defined oil a UIl~t discq,nthe',c;omplex p}aI;le, with standar<f-;metr.ic that 
" ; iha$t'4e fQfIP;r. ,,', " ,'; ,; , "", ",1: ,', : 't ',f,).-;j 

,,:"::" _ ,,~' f , ., ..,88°,+ h~~¢V~", " ' , .... '.. ,_ >':' (2) 
. "thaUs $'is;equal t;)~~um.Qf the standard fTe,e aptiori',$o'hi'th:e bulk,correspond~ng to a £Peed 

, " cio~~d, istring' back~bu~d; dnd' a b:olllidai-y"pert{iItahon' ip~dn~dby ~ some J~cai ~p~r~to~ of 
-',; ~'l ..!;:·r1t~-' ~·t . .. ":;;~, ',: ::.:"." :~< - ~ \' ;.: ... : ·.··/.1 i.J.·~ '.,: :~'; .: .. f.: ,",!'.. ',,'" .~<"' .. ~: ,'or.,: .~:l t~i:fr' 

, gh()st ,Illimber,zeroV, Gonstructedf!Qm,the,fields,X:J.L and ghost~ b, c. ,The 'space of sUGli pper-
, ' "atcih3 -i~:~oilsidered:tb B~a' ph~e ~p~ce: ofihe ' 138FT.' Note' thit't: the i&k ~rpre~ls~~a~fi'nitlon 

',: ',' ~fth~ ~<i,rhlssibl~~: d~s of~perat~rs V· t9~ 'e4~~Yi¥~ntly. ~ I sp~~, oLbo~h4a:ry co,ridi(ig,~~) Iii ~till 
;"',,~u~~j?tp!:o.bl~~'~~f)3S.F:r. :',", " "'J; _':,';~",-:""I ',,';',;:'.', ~.,' ":.:" : · ,,,:: ,:~;~:::,,;:::: 
" A further aSsumption is that V can be represented as V = b-iO.' In'the situation 'when 
',; ':;gh6st~;~~i'm~Uer ar~ d~coupl~d one hia:s: O':c)/ (St}'ictly ~peaking iii witt~ii's form:~l~tion 
• ~ ... ; .. ..:. - ;"',~f I{ j'., !';: '" " 'i: .. '. !~; ' ...... ; ... ~ ........ ~ j(, '>:'1 .... ' ..... " :T./_.'· ,,!! ~'.: 

: "0. is the main 'op j ect specifyirig a: point, iIi~h~ ,phase space. ~ovYever we, will soori~sume 'that 
: ~" I",'''' t.~ . • ! ~, , ~ i' J .. ' .. "" f""'. • '.. . ' . . .' .. I • _' . . ... ~ "... ~' ..: .", '. . • . • "', ' ' , ' 

, 'matter'and"ghosts'decouple and work only 'with V's.) Then theWitteh's' BVan:tibracket is 
,!: ... ·d.efu~d'1is';.f:,;; ":'! ~ .: " ... ',-::,1.;. ,'t''',-";<!,, ;f~'~ ; ~" " •• ,:": ,n:':, :. ..,~,., 

::",/ t',,':~~U!:,~:;':ti' r',':;';" 'w(OO\2/~2) / :;/41,1.} d<A~'(8(J~,(~~,)80;(¢~)) " -, '" ~ ''-;~,' 'j ': 

! "·'whete:~::.Z)stahds'for a correlator iii -the pres'erite of-the backgrouhd V;( 0), +~>:thelp8i'ni in 
phase space at which we evaluate w, ' ",,,,:,, 

, .1 ,~:'~ The' strinf(field 'action S isdefihed as 'a,'Ham:ilt6Iiiah for the vector field;'speCifietfon the 
:.;" 'Phase' splketiby, the'! BRSToperator-Q that' is' aSstim~a to: be determined by' the,sta:ridard 
. '~btitk"paft Sc\)iUet 'us ,expand the' b'oundary peftrirbation"O in terms of some basisQ~':":,' i 
: ,:,~"., ":~,.(1,~ "~"'~,~. ",<:'; ;', :~'~',{ ':",[, :~,i.',,> "/';J:', i,~ :"'~' "r'~ '" 

.//) _ P ,i//l", ' v_ ~'~ /\ V z·· .' , "I, " , , 

~ :; :;'!"', .: ',~,' '" ' : :} :' -;, : , , i" 
~ . ~ "; . " :; 

i ;"'-\~4e):El'Ai'~are ;tollplirig 'constants' (co6idf#ates" ort the ;phasespace). \W~;Ca.n ;wi-'i'te 'iheh the 
",: followlhjg1;;qti~~i6il for S " , ';~,':' " ' . ' , : " 'f " :" 

,- ~'; ";~ '::~:'~:-; ,(., li:',i ,":LiY'l.'·~. ;"! ':. ,:~f' -., ~ ~"::i'l :,~ ::.. -: :' 

" '{S'S}" !, , 0 , .. , ~y 
, ',," ! 

~' ,",= : 

, :nwhete l{i.,if,,,}'S\J"'isthe BVibracket specified'by>w, ", " :, II~ , ' ( 

, ,L ",Ie The::a;6fiort: S·'is a;;sttlI'lg field tree-IJve'l-'itction> A ,natural way to eXtend 'Wittefi?g f6r:mu
" 'iatidn' to' the 'full ?qu~I'ltum tHe'oiy-woilld' (be to 'consider a quantum', master-' equatio'n 

: f f,'" " , ; ""'_'~~~' i' '~:;, ~ I,;: ; ~"~i 

, 1 ' , 
1i~pS + 2 { S, S}BV = 0 , 
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To specify the operator t1p. one needs to supply the phase space with .a measure p [17]. Then 
t1p IS an operator that acting on a function A gives the divergence, 

where Ai is a vector field corresponding to A. The loop expansion then would correspond to 
the expansion of S in powers of n. The density p is essenti~lly an independent ingredient in 
the formalism (see [18] for a thorough discussion) .. Lacking a rigorous definition of the phase 
spa~e itself the idea of finding some n~tural measureon it does not look very promising at 
the moment. Thus we will have to proceed in some other way tod~fine the loop co~recbons. 

From now on we will talk only about the situation when matter and ghosts are decoupled 
and. 0 = cV. In paper [13] (see also [15]) it was shown on general grounds that a solution 
to (3) (for the case when matter and ghosts are decoupled) must be of the form 

(4) 
i ' . . . 

where Z is the disc partition function corresponding to (2) and Vi IS sOIl1e ~ector field on 
the space of open string fields V. The equation of motions following from this action are 
always linear. 

It was shown later by ,Shatashvili [16] that a mor~ carefurtre~tIll~nt ,of tot~l d~rivatives 
in correlation functions leads to a natural modification of (4) allovvin,g n~nlinea~itiesi~ the 
equations of motion and proposed the following relation 

(5) 

. where f3i is the beta function corresponding toconpling constant Ai. This relation was 
shown to be true in the first o~der in conformal p~J:t~batioIl theory [16] . N'ote that in 
order to account for the nonlinear contributions in /3i(contrHmtions of contact terms) in 
the framework of the original BV formalism one has to modify the BRST operator. Q that 
now has to be dependent on Ai. Ap long as the beta function ~s 'linear (and o~e ca~ always 
chooselocally such set of coordinates Ai when this istrue),t~e equations (4) an~ (5) seem to 
be equivalent. However that describes only one coordina~epatch in the wh6lEiphase' space 
manifold. In particular the set oLcoordinates in which the beta function is linear is ,singular 
when perturbations V approaGhthe mass shell. But as long 'as"we stay faroff shell that is a 

, situation of primary 'interest in the case with t~chyon condeQ.sation this) c~ordin~te system 
works well. (See [35], [38] for a discussion' of the on shell behavior of BSFT.) .' . 

We will take formula (5) as a starting point for constructing th~ B$FT action. Written in 
thai form the BS,FT ac:tion can be easily linked with the ~igma mod~l appro8:c~ (see [2l] for 
ag~neral review and [23] for a recent discussion on the relatioit of the sigma model approach 
and'13SFT). Indeed it was 'noticed a long time ago[201'tliat being a generati~g functional for 
scattering amplitudes the renormalized sigma model partition function is a natural candidate 
for string theory effective action. And this identification works quite well in the vicinity of the 
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. mass shell of massless particles .. However if on~ wants .to include' tachyons in the. sigma model 
approach (that is natur-al:.becausep'erturbations 'correspDnqing to tachyons' 'are relevant and 
do not change the renormalizability unlike the massive string fields) than the identification 
S = zren does not work. It does not give the c~~rect equations of motion because 

az . 
'8A': jd¢('V(<A)) " . ! ~ . ~ " '.' .. ': . .,; 'I , , 

. , , 'doe~,:riot vanish' ingehe~al at the'2~Iiformal :p~int,~ " 0 i if V~'has 'conformaJ cliIriensibri '1 :that 
. ':.' is for exampleth~ ~e fo~' the' 'constant t~liyori: 'iribde.'·:The' s~dbrid' term in the' ~xpr~~siori 

(5) corrects that ·problem. Thtls' if we·substitlite.,B(A)·" ~> + O{A2):wewiiig ef' ." 
',: ' .: .. : ~ :. : 1 .' .' .' ", . . .:. I. ;. ,_ .. :;' ~ . t :. ~ . : '. , . ' ; . - .:: 

'.i.. '.,t, ",''.. " '. as, , '(;~6,: (>?)\i'·C. ,., '..' 
,a>... ..... J aAI'· .. ·!· ,'l:,' ", " ;;,' 

. .. .'. .' , '. . , ,.r., ':, :' ~.. . , _ '; .:. t . _ . \ .' .. 
that evidently vanishes at the original fixed point A = O. This means that in a coordinate . 

. patch in which the beta function is linear (5),; giv:~s the correct equations of motion. It is 
'. believed that in general there exists a'norisingtilar 'metric Gij defined on the whole manifold 

of string field,S ~s.uch t h
i
at . as . '.'""., ' ... , ',: 1 .. 

::, aN =.Gij,(>"'){P. . '!"(" 

In the sigma model approach a generating functional for scattering ampiittides'that in-' . 
. dudes all' string loop . cdrr~ctioriS is given by; the . totalierior~alized . sigfuii 'iriodel' partition 

, : function. FoI' the drJen' string thebry;~t 'h!is th~' form' f • 

",,' ',; ',(t 

g-1+b 

. .z .L~Zb 
, . b· .' 

where the sum is over world sheets with b-bouridaries. Mor.eover the beta functions of 
massless fields are'kn:qvm to receiv~ loop'cotrectlorts'cdfuing from modular infinities (s'ee' [22] 
for a 'f~view).'We see:the'n that fr~ttl th~·sigmli.iliode(~oint 'of ~iew forr;nula (5) has a natural 
'g~'fier~liza:ti6n',that~iricjtid~{lo'op c6rtecti6h~~' ' ~~. "',;;:'::;". ' , .,' . 

", ; "It sh6U:id be llbted'that dn ofrsheU ex't~ilsioii bf the siginafuodel apprb~ltto sttlhg theory 
: • ••. .' .•. • ! • . . _ .. . . . I ." ," . ~ "':~ /' :,.' ," l .' • .".. ; _, • ," 

, ... involves a,' great deal df arbitrariness having td db with gauge fixiilg' and field redefinitions. 
;, ~ When d61~g lodp': corrections tlle~or1d'Shee't' IifetricS"~iid' 'the.: sigma; mod~t' backgroUnds: need 

':;'to be '~hoseirconsisteritly;,8;f;e'ach' :diaer::idf pe'rturbatiq'ii"tneorY. ;,' ;Sirice in the.problem at 
. ': . hand 'th~:b~lk; part' of'the sigma' fnodel i3.c#<;>Il ~ is 'fuced) (that corr~$ponds to' 'a fi~ed closed 

. ..' . "', .... ". '.':" ., ./ . . . : :. ,:' . ~.,' "" 'i' I' t"" , '. '. .... . . . 
" "string' baCkground)' it seems to he 'natural 'to' 'integrate 'Over . th~' moduli; using' it closed' string 

, pictuiJ"of 'ihe~#iplitiid~ ateach"otder~:rri.: ¥his picttIte \v~tcodSl4er:a'.l/~'1-1oop o~eri string 
• '" ".."." , . .:: • I - ,,' 1 " '.:~ ! . ,!,. '.:.... , ~.: . '. . \' ;,' 1 '., , t '. t, ,. 1 .... ' '.' 

vacuum amplitud~ as a: H-p~int tree level. '$c~ttering ofd6sed string states' IVY specified by 
'the' opeIisttlng b~ckgrdun:d ;tlllitiio'il~i, V: i Iii: the:~lLs~' ~hkn :thepetiilf~ation,V 'i~ collfOJ;mal . 

", this correspdnderice'l~'Well'e~t~blish~d~ ;and';tHet c6ires'po~dihg Clos,~d strln:g' st~te '.I V)' is' called 
'a 'bdfin'dk-y' 'siiiie [24f'> ThE/ ttrihnaliia,tlon" onV),IS fuCed fby the 'equality pf :open, ~ri.d Closed 

", . ,:, ,f::! 1'" : .:. ~ '. ";;"1 :"-) .• ~::, '.~'." t·'· "i' ·ij· .. ·}) ... },- ' .. ~: • ~ ..... :." .'J '" ! ;.t: "t,. . ,~ •. ' • 

string channel i:'epres~htatioriS for th~ one-Ioop'partition function 
, ' ,') , . '.,! .;, -..;.~. ~ i .'; , 1· . I': '. ".'.: ) . '. ~ ~ ; ',: : -. ~ l '';. >!". t ': • ~' ~. ,-:' .; : ,~ , .... " , 

'_HopenT (I' ~Hcl.1r/T ) "; .";"'" ',.'T:re"'V~·"·:.},Ve;.o<: IV .. '(6) 
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In the left hand side of this equation we have an open string partition function ona strip of 
.lengthT with periodic boundary .conditions in the time direction and the perturbed open 
string Hamiltonian HVen

. In the right hand side we have, a closed string amplitude evaluated 
on a cylinder of length 7f IT using the free closed string Hamiltonian HOi.. The overlap of 
IV) with the closed string Foc~ space vacuum 10) is called a boundary entropy [33] and is 
proportional to the disc partition function 

(7) 

In' this paper we construct a boundary~tate satisfying (6), (7) for the case of quadratic 
. taChyon perturbation on the bouridary~' Lacking a general quantum BSFT' theory We explore 
an ad'hoc prescription for a: one loop corrected BSFT effective space-time action that uses 
formula '(5}'and the 'one loop partition function. Note that this construction is guaranteed 
to give the -correct one loop correctioIls to the on-shell amplitudes. -However a):>riory it is 
not dear whether this prescription has all of the desired properties for the truly off-shell 
quantities. We believe 'that whatever the correct'one loop prescription may be many of the 
features present in our speculative construction, such as the imaginary part of the tachyon 
potential and loop corrections to the brane tensions, should remain. In the next section we 
will discuss in more detail the I-loop boundary '(~onditions corresponding to the quadratic 
tachyon background. 

3 ~. -B()undary condition 
; , . 

As it was discussed in [35] a boundary perturbation correspollding to quad~atic tachyon 
: profile is particularly useful for describing descent relati()p. between unstable D-branes. The 

quadratic profile has a unique property of preserving its shape along the RG flow, i.e. the 
corresponding modes (coupling constants) can be consistently decoupled from all other string 
modes., 

In the conventions of Witten's paper [13] the particular 'background-weareintereste<;l in 
is specified (at tree level) by the following action on a unit disc ' 

1 . , ' ~ 

[S'=87f (lac/> jrdr3a X3a X:+ u,lo. _·ficpX~(</»)+a , .,. (8) 

which is written for~~single string coordinate fieldX. Here r,cp, are polar ~oordin~tes, p,and 
a. are (nonnegative) constants. - , 

. Due to the lack of conformal invariance it is not immediately obvious what ,boundary 
cOll(iiti~ns d~scribe the sam~ background at the loop l~v~L The disc repr,esentatiqIl.(8) 4~ to 
do with some particu,lar off-shell gauge fixing. SinCE) th~ b()undary term in (~) i~ rota~ionally 
. inv~~iant; it ,'is naturally toexpec;t :thatat the one-loop level the same backgr~mnd mus~ be 
repre~ented by b01mdaryconditiqns on a:n annulus ro :Sizl ::;.1, ,z = rei</> in,such;a way;that 
OIl 'each circle Izl'= 1 and Izl = ro the boun~ary term.is ~quivalent to t~e one in,(8). A 
conformal transformation that interchanges the two circles is the inversion z ~ r5! z. So one 
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can take for the circle Izl = 1- exactly the same boundary term as at the tree level and on 
the ,circle Izi = TO the one obtained from it by the aforementioned conformal transformation. 
The boundary conditions then read 

o ' 
or X + uX = 0, r = 1, 

o , 
-ro-X+uX = 0, r = roo 

Or 
(9) 

The one-loop partition function for the quadratic tachyon potential was considered in a 
number of papers [43], [44], [45]. The boundary conditions on the annulus considered in 
papers [45], [46] (section 4) match with ours., The other papers consider boundary conditions 
that E)ither do not have a relative sign in (9) that we, think is quite unnatural from the point 
of,viiw that t;lchyon does not c'arry any charge"or do not have a factor of TO in the second 
'coitdition in, which case we think the two boundaries are not treated on equal fqoting: " 

, These boundary conditions take the most tr&~sparerit form on ~ cylinder withcoo,rdinates 
a '</J, T = lnr with ranges 0 ~ a,< 27T, -t::; T ::; 0, t = -lnro. They can be represented by 

" ,means of a boundary state lu) in, the Fock space of the first quantized closed string the,qry . 
. It is defined up to an overall constant by the equation .. . -

(10) 

Then the boundary condition (9) is represented on the cylinder by the boundary state IU)r=o 
being the initial state at the right end of the cylinder, and by t,he conjugated state (ul:r=-t 
being the final state at the left end. The partition function for the cylinder of length t is 
then given by the expression 

(11) 
,. 'r :. 

where lu) = IU)r=o; 
Note that the tree level partition function Zoe u, a) corresponding to the action(8} is 

given up to an overall numerical constant C to be discussed later by the overlap of 1'Ii,) with 
the closed string vacuum 

(12) 

where we prefer not to include the factor'e-a in the definition of lu). The overlap itself in the 
conformal situation gives the value of the boundary entropy [33]. Equation (12) along with 

, . equation (10) allows one to compute lu) up to an overall numerical constant: The inversion 
used on the annulus corresponds to the reflection about the middle of the cylinder' that 
interchanges the two ends ofthe cylinder. Evidently the boundary conditions' are symmetric 
with!'respeCt to'this reflection. '. 
, , '·It is iristructive to note that the tree level representation as it is fixed on the: unit disc 

, " favors the'cylindrical quantization. 'For instance'the same boundary conditions on'an infinite 
'stripwillbetitne dependent, This suggests that quite generally in BSFT one inay think of 
th~, open string configuration space as some suitable space of boundary states; 
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Consider now a conformally equivalent cylinder with coordinates a' =-:-7' T' 7' =, (]"; . T 
ranging as 0 :::; a' :::; 1f, 0 :::; 7' < 2~2 = 21fT with the boundaries 7' = 0 and 7' =.21fT 

identified. 
The boundary conditions (10) being mapped on this cylinder take the form 

. . . , , : . . . . ~, ; 

, ' ax, U x '0 8X ,ux ' " 
, -aa' + T = 0, ,'a =, 8a' + T = 0, a = 1f (13) 

where T = T' ' 
This picture corresponds to an open stting with boundary conditions (13) propagating in 

a loop of length 21fT in Euclidean time.' The nonlocality in time of the boundary conditions 
(13) stems from the fact that the boundary perturbation at hand is not conformally invariant. 
Still it is relatively. easy to quantize the theory in this representation that is quite useful in 
studying the partition function in the ~ppropdate region of the moduli space. 

The full one-loop partition function is obtained from (11) by integration over the moduli 
space. We assume the measure of integration to be the same as in theconfoJ~al ~ase, gi.ven 
by the appropriate ghost determinant. In general we will consider all 26 coordinates of the 
string X/1- with the boundary condition ibeing either the ones specified by the background 
'( 8) or the usual Neumann' ones. In that Case the s~gma model action on the ,aimulus has the 
form 

s = ~(jd4>j"," ;dr'f'8a X/1-8a:X/1- +I:ui(l' :: d4>X;(4)) + [' ,,'d4>xl,(4)))) t 2a. 
,81f ' jid:l' 'i=l ' Izl=l ' Izl=ro "', I" " 

The background is thus'specified by the coupling constants Ui, i = 1, ... ~iD,a.The full 
boundary state corresponding to these boundary coriditions is then a tensor product 

26 

IE) = fIIBi ), lEi) ~IUi) ,i = 1, .... ,D, IEji) = IN), fJ, > D. 
/1-=1 

With this notation in min,d we can write now theJul1one-looppartitionfu~ction as· 

"ZI(:Ui, a) .: e-2~fOoo~: e,2t p( ~t)(Ble(Lo+Lo)tIB) , (14) 
, i 

where 
, '; ~ 

00 

j2(t) = (J(t»)2 = II(1 _ e-2tn )2 
n=1 

comes from the ghost determinant. 

4 The partition functiQn'jn ·the closed s,trlng ,ch(;uir;t~l 

We now proceed to 'c~lCulate the b~~ndary ~t;ate (10) and' th.e partiti~p. fun6tion in the closed 
string channel. The mode expansion for a single coordinate field X has the forlll j( 

• ~<. , '. 
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· and the commutation relations are 

[q,p]=i, 

Our conventions here coin~ide with the ones in . [24l that 'correspond'to the choice ~I = 2 (in 
accord with the factor 1/87r in 'front of the ac~ion (8)). Substituting this mode expansion 

.' into (10) we obtain 

" • • J" " 

amlu) 

ami'll) . 

It is easy now to find a solution. to these equations' 
"; :". . ';I Y 

He~e we inserted the factor ""CUT corresponding to the, normalization of the spreading Gaus-
" . . . 2 ... • . . . ' . . 

sian wave packet exp( - 4(~!!:UT)) that gi:ves the Gorrect time evolution. The time independent 
constant N(u) can be obtained upt.oa numer:ical fa,ytor frpmequation (12). The tree level 
partition factor for the boundaryint~raction (8) was found in [13]' to be equal to . 

1 00 1 
Zo(u) .:..- - II. . e u

/
k = y'ueI'Ur(u) 

Vuk=11 + u/k 
(17) 

where '1 is' the Euler constant .. We keep' the overall normalization of Zo( u ) as it appeared 
in [13]. Thus by (12) we have JV(u) = No,· Zo(u) where No is Ct numerical constant. An 
analogous boundary state in the supersymm~triccasewascomputed in [42]. 

Plugging the boundary state (16) into formula (14) we obtain 

We can fix the value of No by comparing to the open string, channel (see. section 8): 
• No .:..- 1/(~v'2).· It comes' out' that wiih this norMalization theprbportionality t~~stant C in 
(12) is equal to 1/V2ii. In addition to that we fiX.the npnp.alization of Neumann boundary 

~ • .'··f . ." , : " ",' . ~ . .' . -', -, ; '-:i ; "" . .': ; ; :.') \ : ,.' ,: " . '. .' ~.' . ... :" . " . , 
state for 'a coordinate X compactified as X'/'V X + R by matching ,contributions Of the zero 

d
· '," ,'.' .... ". '.' ;;.· .. ;'·i·<:· .";,';' .'. , 

mo es as 
1 R. 

lim - /'V -,-, -.' 

U-+QO Vu v& 
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With this normalization the full one-loop partition function (14) for D coordinates sat
isfying the boundary conditions (10) and 26 - D satisfying the Neumann ones reads 

. . D 

Zl(U,;, a) =~D e~2a II [(ZO(Ui))2. 
. (v 1611"2)26-D i=l 

r-----

I~ ,dt e2t fD-24(t) '; Ui IT, ,L ·.··:2]-
Jo. 211" 811"(1 + tui/2) k=l l' _ e-2mt (:~~:) 

. (19) 

.. ~ ; I 

,5 Green's function 'on the annulus; partition)\rnction 
and renormalization 

In the previous section we computed the one-loop partition functi<:m, ,using computationally 
the shortest path. It is instructive to do an independent computation via Green's function 
on the annulus. In particular in this approach the renormalizatioI;l implicitJy hidden in the 
factor (Zo( u))2 beconiestransparent. ., . , 

Consider an annulus TO, < Izi ::; 1. A Green's function G(z, z') s~tisfyhlg." 

18 8 G(") 2( ') -------= z, z = ~ z, z . 411" 8z 8z '. . . . 
';',: 

. and boundary conditions (9) can be computed by exploiting an ansatz corresponding to a. 
decomposition into' a particular solution and a general solution of the hoin~geneous equation 
represented in a form of Lorant expansion plus an additional Inlzl 2 term: 

+00 
G(z,:z') .-: -:lnl~~ Z'f2 + I: (zk fk(Z', z') + zk ik(Z',Z')) + C(z', z')lnlzl2 

k~'-oo .:, . 

where A(z', z')and C(z',z') are'some unknown functions. 
Plugging in the 'ansatz into (9) and solving it we obtain 

. ,.' 12 2 2 (1- ~lz'F) (1-~lzI2) 
G(z, z ) -: -lnlz - zl' + - - . + 

U u(2 - ulnTo) 
. . ' . ~ 2 

{1o[(zz')k + (zz')k]k((k + U)2--T~k(k - u)2) + 

_0+_0+_0+_0 . +00 (ZT2) k (Z'T2)k '(ZT2) k '('Z'T2) k (k _ U)2 .< .: i E [ z, z Z' z] k((k + u)2 - Tr/(k - U)2) 
(20) 

2 

This Green's function can be explicitly checked to satisfy G(z, z') = G(f, z'). 
To determine the partition function Zl (u, TO) one can write out two kind$· of equation 

corresponding to the variation of InZl (u, TO) with respect to u and the modulus TO:' 

(21) 
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. 8lnZl(U, TO) _ TO .. '1 d2. (Tzz Tzz) 
'--'--~-'--":" - - Z - + -

. ,BTo 1r(1 - TZ) ro:=:;lzl9 Z2 Z2 
(22) 

where Tzz and Tzz are the components of the stress-energy tensor. (See (25] for the derivation 
of the second equation. Note a factor of .,-1!41r missed in their formula (4.11).) 

The correlatot (X2 (<p» entering the first equation can he' obtained by renormalizing the 
values of GreE:)n'sfunction G(z, z') on each of the boundaries in the limit when z approaches 
z'. One firids that the dive,rgences come from the bulk part -lnl z - z'1 2 and from the terms in 
the second line of equation (20). The last divergence is exactly of the same form as the first 
one and has a natural interpretation as a divergence coming from the image charge. Thus 

. one 'tari~hoW that' onf each component' of the boundary the~ divergent 'part 01 'the two-point 
correlator is 

limq,-+q"G(<p, <p') = -21n11 - ei(q,-q,/) 12 + finite part. (23) 

Subtntcting the divergent parfwe obtain 

'\X'(z»i;i~o + (X'(z})I_I=l = ~g = :~~:l + 8 E T~k~i(; :~~22k -=-T~L(~:(~)~ u) . 

Thisexpressioti can be now plugged into equation (21) and integrated. This gives the par
tition function up to a factor that may depend on TO. To fix this factor one may utilize 
the second equation (22). Before explaining how this is done let us make some remarks on 
thesllb~raction we performed to make the two-point correlator finite. First let us make an 

. obvio'us reIh¥k that:we employed the point splitting regularization. It is important tostay 
consistently with the same regularization when analyzing the system in various coordinates 
(see the sections below that deal with the open string channel). The corresponding coun
terterms are constants on each boundary that are equal in value. Thus this subtraction is a 
renormalization of the coupling constant a. Of course this subtraction is the same as the one 
made in the tree level.calculation [13]. In the calculation via the boundary state described 
in the previous section this regularization is implicitly present in the normalizatiori,' factor 
(Zo(u» of the boundary state that enters squared (via two boundaries) in the partition func
tion. As we will see below the above subtraction is the only subtraction logarithmic in scale 
that is needed to render the partition function finite. Therefore the beta functions (includi~g 
the parts corresponding to the classical dimensions) for the coupling constants a and u are 

f3u = -u, /3a = -a -u. 

In a more general case when one has boundary conditions (9) in D directions one has 

D 

f3a = -a - 2:= Ui . 

i=l 

(24) 

(25) 

When'using equation (22) one first uses the Green's function (20) to compute the com
ponents of the stress-energy tensor 

. 1 [82G(z, z') 1] . 
Tzz(z) = lzmz -+'zI 2 8z8i' - (z - z')2 . 
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A straightforward computation yields 

T _ ~ _ u·· _ 00 . T5kk(k - U)2 
zz - Z2 [ 4(2 - ulnro) {; (k + U)2 - rll(k -U)2] . 

Now we can plug this and the complex conjugated expression for Tzz into (22) and integrate 
it. After checking the result against the same kind of computation made using equation (21) 
we obtain that up to an arbitrary overall numerical factor the partitionfur{ction coincides 
with the one computed in t:p.e previous section (equation (18)). 

6 One-loop bosonic string divergences 
, ,. ~ 

In this section we remind the reader. of the situation with one-loop divergences; in ·the con
formal case. Consider an open bosonic string satisfying Dirichlet boundary condition in D 
directions and the Neumann ones the remaining 26 - D dimensions. Its one-loop partition 
function written in the open string sector· has the form 

Zl = roo. dTTre-21rTLO =. V26~D roo dT T-(24-D)/2 e21rT f(7rT)-24 . (26) 
Jo 2T . (V87r2o:,)26-D J02T2. . '. 

. . . .'. '. 

This integral diverges at T.--+ O. The divergent part 'in the trace comes from the open string 
tachyon states and is equal to 

I = V26-D roo dT T-oe21rT 
(V87r2o:')26-D JR. 2T 

(27) 

where we put in some cut-off Rand 0: = (26 - D)/2. The physical origin of this divergence 
is in the wrong sign of the tachyon mass squared; The divergent part can be represented as 
a point particle path-integral (see Polchinski's book [28] for a detailed discussion) 

I f'o.J J ~~ J dp26-D e~(P2-1)l/2 

where l is a proper time along the particle world line. This amplitude gives th~ (connected 
part of) one-loop vacuum amplitude for anopeiI string tachyon vibrating in 26 - D dimen
sions. Equivalently in field theory the above formula can be rewritten as a contribution of 
the tachyon to the vacuum energy density (in space-time) 

.: 

1 J dp26:-D 
1 f'o.J -- In(p2 - 1) 

2 (27r)W-D . 

that clearly indicates (by the presence of negative values under the logarithm) that the 
correctly defined amplitude may develop an imaginary part~ 

The divergent part, (27) can be defined by means of analytic continuation;· Here our 
discussion closely follows paper {27J.One treats the exponential in (27) as a parameter b, 
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evaluating the integral for b = - 27r and then rotating in complex plane, as' bt---t' be:-7ri. ·The 
direction of rotation can be fixed by carefully inserting the if in the propagator (see [27]) for 
details). It is easy to obtain the imaginary part of the analytically continued integral using 
the formula 

1m roo dx x-ae(b+iE)x = 7r ba . 

" JRX r(1 + a) 
(28) 

This way we get fo~ (27) 

7r (Im~. s. tach. I') (26-D)/2 

ImI = 1I26-D ( D) 4'"' 2r 14 - "2 II 

(29) 

where m~. s. tach. = -1/ a' is the open string tachyon mass squared. 
The appearance of imaginary part for the partition function·aIid thus for theone-loop 

space-time effective tachyon action of course signifies the instability of the system. It is 
known in field theory [29], [30] that an imaginary part of the vacuum energy gives a decay 
rate of unstable vacuum. More precisely the decay rate per unit volume is r ~. 21mE: 

One can also compute the real part of the analytically contin~ed expression. However 
the real part will depend'on the cutoff and needs to be pasted together with the other part 
of the partitfon function. The resulting number can be obtained numerically (see [27] for an 

'example of this type of computp.tion). 
The divergences due to closed string states can be studied by performing a closed/open 

string channel duality transformation t = 7r /T. The partition function (26) takes the form 

Zl = V26- D lOOdtt-D/ 2e 2t j-24(t) . 
27r( V87r2a /)26-D Jo 

(30) 

When, D ::> 2 the divergent part comes only from the closed string tachyon states 

tr, " 00 

I' = 26-D r dtt-D / 2e 2t 

27r( V87r2a/) 26-D J R 

This expression corresponds to a vacuum-vacuum tree-level diagram for the closed string 
tachyon 

.' d 26-D '1 " I'{'VJ P , " . 
" (27r)26-D. p2 - 2 

U sing formula (28). w,e obtain for the imaginary part 

1 I ' T T . c. s, tach. 
. 2D/ 2- 2, (1m2 I) (26-D}/2 

,m= v26-D r(D /2)' . 327r2 (31) 

where m~, s. tach: = -4/ a' is the closed string tachyon mass squared. 
'When D :::; 2 one also has a divergence corresponding to a dilaton tadpole. This is a 

true physical divergence that cannot be eliminated by 'analytic continuation and is due to 
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the propagation of massless particles between the vacuum, states. The momentum space 
"p):"opagator for a massless particle is l/p2 that diverges, on th.e mass shell. The momentum 
conservation on the other hand requires that the massless particle emerges from the vacuum 
with the zero momentum, i.e. precisely on the mass shell. The problem with this divergence 
can be resolved by a shift of the dilatonbackground [31] that results in adding a source term 

, to the space.:.time effective action. 

7 Divergences in the closed string channel in the pres
ence of tachyon background, 

", Tn this section we consider divergences of the one':loop partition function (19) coming from 
?'the dosedstdng sector. By looking at the boundary' state (16) and the expression for the 
,. partition function (14) we 'see that divergences at' t ~' 0 come from the vacuum part of the 
.~, boundary state ' i: 

, ' uq2 
Itach.), .N(u) . Vu~xp( -4 )10) (32) 

that describes a tachyon with a Gaussian wave function and in the case when D ::; 2 from 
'the part 

IdiL) -N(u). ',(I-i/.(,) . yualalexp(:"- U
q2 )IO) 

. ,I,+u: ,4 
(33) 

': corresponding 'to'adilaton with the same Gaussian wave function. 
For D';::: 3 there is Iiodivergence due to the dilaton (c.f. the discussion in the' previous 

section). Physically one may think about this fact as follows. By plugging the state' (33) 
, '<into expression (14); for the partition fun'Ction wefind.that the contribution of this state up 

to an overall constant is ' 

I rv, (dil.l tx) dt e-fh Idil.) = (dil.l :2Idil.) = J d26p 12 e - 2:::1 .;h . 
io p p 

Fourier transforming this expression we obtain '"" : 

! 26 ' 1 1 "D 2 I rv' , d q -e-2 L....i:io1 Uiqi' 

q24, , 

",;' 

, 'that can be interpreted as a Coulomb potential self.:.ene~gy of a matter that h~s a Gaussian 
density distribution in D-directions. For D > 3 it is finite. The Gaussian factor plays a role 

, of effective infrared regulator. However in the limit u ---+ 0 the divergence will show up as a 
more singular behavior of the partition function. 

, ;, Let us postpone a further investig&tioll of the dilaton divergences until se<;;tion 9 and 
, consid~r 'n~wdivergences due to the taGhyonst&te,. Th~ divergent'contributiori9r~tat~ (32) 

tothe partition function has thefo~m' ':.. , , ,"', , " ' 
, ',' , 

( ) V26- D , -2a lID [(Z(' ))2 (Xl dt 2t Ui ] 
leI. tach, U = (v'167r2)26-D e '~=1' 0 Ui io 27r e 87r(1 + tui/2) . 
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For the sake of simplifying thecbmputation'wewillassume that all u/s are equal to a Single 
parameter u. Then changing the exponent 2 to' a complex parameter -b and shifting; the 
integration variable we can rewrite the above integral as 

" ""', = ~ 

Icl.tJh,(U, b) = (~)~6_D(e~a(Zo(u})D)2~7r'(4~)D/?e2b/U 1/u dt' (;)D/2' 

Applying formula (28) we obtain 

I '1' '(')" _ V26-D ' ( -a('z'(' F )')'~')2 1 -4/u 2D/2-:"2' ' 
m cl.tach. U - (J167r2)26-D ~ ,,0 u, '(41!)D/2 e , T(D/2)' (34) 

As ~e will show in sectiQn 10 minimizing the space:-time effective action with respect to a 
'th~ limit o{the quantity e-a(Zo(u»D along the 11G~ra-jectory ,u ~ oo,a ~ 00 is a number 
(V21i)D just as in the tree lev~l computatiQn [351: '~~us theimaginarypart (34)~ u' ,~ 00 

approaches the finite value 

, TT, (2 )D~ 
ImId. tach. (00) '4( ~~26-:r(D/2) . (35) 

Up to a numerical factor (that essentially comes from (e-aZo(u»2D ) ((35) agrees'with 
(31) and we see that for this divergence the naive prescription of first taking theu ~ 00 limit 
that yields the Dirichlet boundary con'ditions ,and then performing the analytic continuation 
gives the same result as the accurate procedure descrlbed above. We see however that along 
the RG flow the imaginary part due to the closed string tachyon grows (in absolute value) 
from zero :at u ,0 to the constant value (35) .•. 

, The dosed string tachyon Qne-Ioop divergence in the presence of the quadratkopenstring 
tachyon backgrQund was also considered in [48] where a different treatment than analytic 
continuation is proposed. 

8 Open string channel 

The divergences of the partition functiQn(19) in the limit t ~ 0 are best studied in the 
open string channel that describes an open string propagating in a (Euclidean) time loop of 

i length 27rr.:,~ 27r2 It and satisfying the boundarycqnditions (13) that for ,the sake, of readers 
convenience we write here once more: ' 

:ax U 
"-a +TX=O, a,=7r. a " " 

(36) 

, (To simplify the notations in this s~ction we "will drop i the primes at the open string world 
sheet coordinates ai, T' .) AlthQugh these 'bouIidary conditions have a nonlo~al time-dependence 
via the factors of ~ in order to' compute the partitio~ function ' , 

'Z' - loOC?dT in..'--27rTH(~/T,) 1 - .lIe ' " 
o 2T ' 

(37) 

; 16 



'" 

we may first canonically quantize the theory with the boundary conditions 

ax --+vx=o ()=o, a() , 
ax . 
- + vX = 0 () = 7r a() , (38) 

where v is a constant, write down the partition function and then replace v withu/T. The 
Hamiltonian H (v) will have a spectrum of the form 

00 

h = ECas(v) + L NnAn(v) 
n=O 

where Ecas{v) is the Casimir energy in the background (38), An(v) are oscillator frequencies 
and Nn - the occupation numbers. The partition 'function (37) is tlmsof the' form .' 

; , '"r" 

. 100 dT 00 . 1 Z - .-' _e-27rTECas(u/T). 
1 - 0 2T II 1- e-27rTAn(u/T) 

n=O 
(39) 

If the spectrum in the presence of u- background.is not significantly niodified ,the diver
gences in (39) will come only from a finite number of the first excited states, i.e. the ground 
state with energy Ecas(u/T) and possibly some number of the low lying excited states. 

We start by deriving. the spectrum of frequencies. A general solution to the Laplace 
equation 

with the boundary conditions (38) can be expanded into eigenfunctions as 

+00 , . 
,X ((), T) =L eAn'T (O!ne-:-iO'An +,BneiO'A~) . 

n=-oo 

By plugging in this expansion into the boundary conditions (38) we obtain the system of 
two linear homogeneous equations. The corresponding determi:nant fact<?rizes, as ' 

Ll = '(tan :(7r An)' _ ~), (',cot (7rAn.)' +.~). 
. . 2 . An· 2. .An 

~ ", 

Thus we obtain two spectral equations 

iT •• 

, (40) 

":defining the even and odd padty eigenvalues respectively: We ~ouldHket6 ;rertmrkh~re' that 
the spectral problem we are looking at here is equivalent to the following quantum mechanical 
modeL Consider a one-dimensional system on a circle with coordinate 0 ~ x < 27r subject 
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to Z2 orbifold identification x "-' 21r - X. If we consider a quantum mechanical particle in 
this space with a potential 

V(x) = 2u8(x) + 2u8(x - 7f) 

then for the corresponding Schroedinger operator one obtl;l.ins exactly the same spectrum 
as (40) provided~one restricts himself to the solutions that are even under the reflection 
x ---+ x - 27f. 

Alternatively both parity branches can be combined in a single equation 

( ) 
2Anv 

tan 7f An = A2 2 . 
n- V 

It is clear from this equation or equations (40) that for sufficiently large n one recovers the 
regular Regge spectrum with' the first correction of the forni . 

An = n +2v + O((v/n)2). (41) 
7fn . 

For v < 1 equation (41) is a fairly good approximation to all eigenvalues with the excep
tion of the lowest ~igenvalue. The last one is approximately 

~ 
Ao ~ V-;- (42) 

with the correction being of the order of V 3/ 2 . 

Despite the fact that we cannot solve the transcendental equations (40) exactly (and thus 
cannot use the direct mode summation formula) we still will.be able to derive an integral 
formula for Ecas(iJ) valid for all (nonnegative) values of v. Before we go into that let us 
first consider as a warmup the small v case when the expressions (41), (42) provide a good 
approximation for the spectrum. Using those expressions and the mode summation method 
we can compute an approximate expression for the Casimir energy that is valid up to the 
terms depending .on vas vP , p > J. No~e that after we substitute v = u/T and plug 
these terms into the H,amiltonian we obtain factors of the form e-27ruPT1-~ that tend to 1 as 
T ---+ 00. Thus for small u our approximation will allow us to derive the leading divergence 
of the partition function as T ---+ 00. Moreover, despite its seemingly limited range of use, 
this asymptotics essentially sets the imaginary part of the analytically continued T ---+ 00 

divergence. This is due to the following observation. The imaginary part should not depend 
on the lower cutoff in T-integration. Thus for any value of u we can place the cutoff high 
enough so that v = u/T is small and thus the approximation we are talking about is useful. 

To compute the Casimir energy in such a way that the resulting partition function will 
match the one computed in the closed string channel we must employ the equivalent regu
larization scheme. Thus we should proceed by, using the point splitting regularization. Note 
that there is a subtlety here. The point splittIng parameter cp' - cp = E used on the annulus 
(23) corresponds to a point splitting E' = E • T on the strip in the open channel. The factor 
.T comes' from the coordinate mapping . 

~ • 1 i ' 

_ utir 
Z = e T 
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, ", relating the two pictures. • Here z is the complex coordinate on thE1- annulus and a, Tare 
coordinates on the strip. 

, ; 

With this identification in mind we can write the point. slitting regulated Casimir energy 
for small values of v as 

Ecas(v) = !Ao +! fAne-elAn =:: rv. + ! f(n + 2V) e-e/(n+?~/(7rn)) +o(v),= 
2 2' V ,2; , 2 1fn ", , 

n=l n=l 

{;; 
1 1 v v v - - - + -, - - - - -lnf - -lnT + o{ E) + o( v) 

21f 24 2T2f2 1f' 1r 1f ' , ',. 
i ~ 

Subtracting the divergent quadratic and logarithmkpartsweobtain after sending f --+ 0 

'1 [V v v' 
,:Eca~(v) - 24 -I:" V 2; -:-~ ;.- ;lnT ,+ ?(v), '. (43) 

'Therefore it follows that 

limT-->oo Tre-27rTH(u/T) ':, T2U~2U;efp{~~'~ 2.;J21fuT - 2irT· h ~/T)) (44) 

where f ( u) is some unknown f~nction that has the p~operty 

limt~ooT· f(u/T) o. 
, .•• 1 

We independently obtained the same asymptotics (up to an overall exponent eCu for which 
we were unable to pin down the value of C) by analyzing the expression for the partition 
function in the closed string sector by means of the Euler-Maclaurin summation formula. 

We would like to derive now a general integral formula for the Casimir energy ECas (v) 
that is valid for all values of v. This can be done as follows. It is easy to show that the 

; , spectrum An coincides (except fo;r the zero ,poit) with the set of zeroes of an entire l:l,nalytic 
function 

The regulated Casimir energy then can' be represented asa contour integral 

"" ..... 
, (45) 

':where -the contour should enci~cle the positive eigenvalues' arid dm be conveniently chosen 
, •• :to consist of two slanted rays: z"":' (i + 6")x, z = (~i + 6")x where 6" > 0 andi runs from zero 
itoirifinity~One should also keep in mind that we do not include the zero into the spectrum. 
; 'Although formally'it does hot contribute to the: regulated infinite sum of the, eigenvalues 
',\one may still wish to avoid potential troubles by modifying the contour by cutting outsmall 
.initial segmets of the rays and connecting their endpoints by a small half-arc. ' ' 

To simplify the manipulations below we note that both 6" and the point splitting parameter 
f' act as regulators, and one can achieve the same result by keeping only f' and assuming that 
it has an appropriate imaginary part that provides a damping exponential factor. With this 
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in mind and taking also into account that·the function ¢(z) is odd we can write Eca,${v, c') 
as the following integral 

ECas(v, c') = - 2~ fooo xcos(c'x)dln( e7rX (v + X)2 - e-7rX (v -'- X)2) . 

Factoring out the term e7rX (u + x)2 we obtain after one partialintegration . 

1 rX) .. (X - V)2' . 
Ecas (v,c')=27r}0 In(1-e-211"x. x+v )d{xcos(c'x)) 

1100 (")d' ;1,10' ooxcos(c'x)d· - - xcos c x x - - x . 
2 0 7r 0 x+v 

, " 

: Here the first integral is finite as c' 4. 0, the second term is quadratically divergent and the 
third one is logarithmically divergent. The divergences are regulated by imaginary part of c' 
that is chosen with an appropriate sign. Let us show how to treat the 10'gadthmiC div~rgence. 
We can rewrite the logarithmically divergent part I 10g as, 

,. , ". 

where Ei (x) denotes the exponential integral function. Its asymptotics near zero is such 
that (see for example [47]) -Ei( -x) = -,-In(x) + o(x), largxl < 7r where, is the Euler 
constant. Using this asumptotics we can go ahead subtract the infinities end send,c = f! IT 
to zero. We obtain the following expression ' 

" ' ",!:" " , 2 ' .. , 

E () 1 1001 .( -27rx·(X-V))d VI· ( ) v, . Cas\v. = - n 1 - e . ,-'- x - - nvT .. - -,. 
, ,27r, 0 . . x+v. . 7r. ' 7r. '. 

(46) 

Note that the mst term' in· this' express'ion . we . could have easily gotten starting from· the 
closed string expression (19) and using the Euler-Maclaurin summation formula. Thus we 
see that in terms of that formula the open 'string channel· Casimir energy is essentially the 
integral approxim~tion to the infinite series while ,the corrections (that canbe:written for 
example as integrals involving saw-tooth function and its integrals) correspondtothe excited 

,states. Note that the first term, in (46)g~:ves ,the standarq conformal Casimir energy - ;4 in 
the limits v ---+ 0 and v ---+ 00. 

Let us discu,ss now the divergence T ---+00 (t .~ 0) of the partition function. The general 
form ofasymptotics is given by formula (44) in which, the}unction f(x) is :iI;l~principle 
extr?-ctable from our general expression (46). Thisfunction canno~ .be,dropped ,becau!3e, the 
corresponding contributions are still .divergent. Also note that the states coming from·the 
excited levels of the first ,oscil~ator with f:r~qllency' Ao' also have negative energy a:nd thus 
contribute to the divergence (44) an oyerall factor. 

1 ' 1 
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Note that in the llmit u--+;O"this factor restores the contribution;;oLzeroinodes' 

1 

" , 
',' 

,2-J'27rTu' 

By comparing the u -'--t,Obehavior ,of the partition function in the closed string channel (18) 
; to the expression above we find the normalization of the boundary state (16).; 
, Thus we can write down the following general expression for the tachyon divergent 'part 
of the partition function' for 26 scalars with D scalars satisfying the' boundary condition (36) 
has the form 

10 • tach. (u) 2iL V26-D ' t>O dT T'2uT~(26-D)/'i ~ , : 
e (167r2)(26-D)/2 iR 2T "', 

exp(27rT+2DJ21ruT-27rDT.j'(U/T))' , i:' ~ " /(47) 1 - e~2D 27rT,u-2D7rT</>(u T) , 
:: '. : -' ,; . .~-:,!' . ,"',' , 

:::;.where ¢(u) stands for a correction to Ao(U), b = 27t'to be:rotated to -27r, and R is a cutoff. 
,F\rrther analysis, of this formula i~ obstrtlCted, by two facts:, our ,integrable rep,r~s~ntation 
(46) is ,not very~sef~l in a~alytic nian~pula~ions3;nd seco~d, we' do. not. h~ve ~ny explicit 
analytic expression for ¢(u). " .' 

,Th~,termscontained inf(u) and ¢(u).are respon~ible fqr the flowfro~ the)\f~umann to 
the Dirichlet spectruJIl. In the course .of that flow the even integer eigenvalues, get shifted by 
one unit and b'ecome the odd ones and vicevers~. Since the limit' u ~ cx)'se~ds the variable 
u/T to infinity and the limit T --+ 00 sends it to zero. for a fixed cutoff R the contributions 
of f and ¢ become more and more important in that limit. However as we argued above for 
the purposeS of computing the imaginary part of the analytic continuation one may always 
,adjust the lower cutoff so that the terms in f in ¢ 9Ie all subdomiQ.ant. One can expand iIi 
"this terms so that the' typical expression u-dependent term in the integral is of the form 

(48) 

where a(u) and o (u}are such that a(u) ~ constant, O(u) ~ 0 asu ~O. Each term of 
this form can be analytically continued in b. 

One may be interested in two kinds of questions about the analyticcontinuatidn and the 
. -imaginary part. First one may worry whether taking the limits u --+ 0 u --+ 00 commutes with 

i 'analytic continuation, or in other words do we recover the standard analytically continued 
Dirichlet and Neumann partition functions. If this were not true it would clearly signal 
some inconsistency of the analytic continuation procedure applied to, the off shell situation 
at hand. In view of expansion (48) above it seems to ~s that this isU:ot the case'." '" 

A second, less formal question one may be interested: in has to do with the physical 
,,' interpretation of the imaginary part. Since it gives the decay rate of the unstable vacuum, 
; 'it could be used asa measure of the vacuum 'Stability. Itwoltldbe very; interestiIig then to 
; see how it behaves· along the RG trajectory; One may expect that, the flow monotonically 
,decreases to the value set by (29) for the appropriate: D. Unfortunately'wefdid not: gain 
enough analytical control over the open string channel to. see that . 
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9 Correction to the tachyon potential 

Consider now a boundary perturbation sp~cified by coupling constants Ui switched on in D 
directions with the other 26 - D Neumann directions being compactified as Xi rv Xi + i4, 
i =D + 1,.',; .,26.;·We will restrict ourselves tQ the caseD >,3:so we will not have to deal 
with the dilaton divergence directly from the' start, although ·inevitably it will -show up in 
. the u '.~' O· limit. '" ';', ' 

We assume that the space-time one:-loopeffective action is given by the expression 

where Zo( u, a) = e-a nP::l Zo( Ui) n;!D+1.J;tr is the tree.:.level partition function, 9 is a string 
coupling constl;Lnt and 

za.c·(ua)·= e-2a z~'c,(u " .. U ) . 1 ,. . . 1 1, .. , D"-

stands for the one..:loop partition fmlction(19)defined by means of analytk'continmitlon. 
For D 2: 3it takes finite values and 'contains an imaginary part due to both dosed and open 
string tachyons. ' 

At thispoint we would like to restore the factors of 0.'. This can beeasilJ done by.the 
substitutions: ~ A ua'/2, i4'f-7 i4J2/ai .' Substituting the beta functions (25) we bbtain 

~ . ., . . 

s' = 

,(49) 

On the other hand this expression should coin~ide with the space-time action 

S = T 25 f d26 X [f(T)8/r8iT+ V(T)+ higher derivative terms] (50) 
!.I 

' .. evaluatJO)don,thequadratic tachyon profile, ' " ", 

'(51) 

The treele~~l computa.tion [34], '[35] g~ves ; >;' 
: ,'~' 

.; J '.l . . 
and t4~;Yalue,of.Ti5ee =~(27ra')-13where we inserted~the l/g factor to match with our 
conventions ... ·Our considerations below,follow ,more closely paper [35], Note that our nor
malizations .are slightly different fromthosein·[35]. Their ;coupling constant U is 4 times'our 
U. 
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Let us now first study the expression (49) in the limit u ---+ 0 .. We can represent Zf'c, as 
a sum of the "bulk part" that comes from integration over a region of moduli space with 
cutoffs on both ends, and the analytiCally continued "tails" coming from the two boundaries 
ofthe moduli space. As ugoesto zero the bulk part tends to the bulk part of the Neumann 
partition function. The contributions to the tails due to open and closed string tachyons 

.iI: were. discussed in the previous-sections. We argued that both analytically"continued-tails 
due to tachyons tend to the corresponding tachyon contributions of the string with Neumann 
boundary conditions. The only problem in the u ---+ 0 comes from the dilaton states. 

For simplicity let us assume Ul = ... = UD = u. Then the dilaton contribution to the 
partition function that hides ill it the usua,ldilaton tadpole has the form 

Idilaton(U, a) = (e-a(Zo(u))D)2~D . ((24 _ D) + D (1 -U)2) . 
, (161f2 )?6-D ' 1 + u 

roo dt l' 
Jo :21f ((2/u + t)41f)D/2 . (52) 

Evaluating the integral we obtain an asymptotics of the form 
"" ' ", D 

qdil~tori(U) ~ Const.'!:. ,(.~) ,u ---+ 0 
': _, : ',".' u,,jU 

that contains an extra l/u factor standing at the usual volume element. 
In the space-time effective action this term can be represented by a nonlocai term. of the 

form 
1 -2T 82 € .(1 + 2T). 

Thus as U ---+ 0 we'have an e'xplicit infrared problem in our action. It fuust be resolved by 
introducing a new'massless degree of freedom about whiCh we-of course were aware from the 
very beginning - the rlilaton fi~ld: 

In this paper we will not try to incorporate the dilaton field in our action. Instead we 
will stay at small but, fin,iteu (we may think that we put our system in-a box) and' fird a 
correction to the tachyon p-ot~ntial.· '. '.' . " - , 

Let us come backnow to the consideration of background Ui (where u/s are not necess~rily 
equal to each oth~r) for D, directions where we assllme D ~ .3 and all u/sare away from 
zero. As before -the remain,iI).g.26 -D directions are compactified ina box with sides I4,. To 

< derive the -correction to the potential we have to match the terms at 1/,jU as u ---+ 0 in the 
expression coming from the partition function (49) and the one coming from thespace"time 
action (50)~ The partition function (19) being plugged into the second term in (4!;)) gives 

S(I) rv V'26-D e-2a (1 + D + 2a) 1 (II 1 ). roo dt e2t j-24(t) (53) 
(vi a'1f)26-D . 2( v's1f)26 i=1 VUia'/2 Jo 21f . 

where V'26-D = 11 I4, and we restored the factors of d. On the other hand by inserting the 
quadratic profile (51) into the potential.density in (50) that has to be of the form 

k· e-2T (1 + 2T) 
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where k is some constant, we obtain 

(54) 

Equating (53) and (54) we obtain the following expression for the I-loop effective potential. 
" ; 

(55) 

where Z is up to normalization the analytically continued Neumann partition function with 
the dilaton tadpole subtracted which we can formally write as '" ;, 

Note that the procedure of matching (53) and (54) is quite sensitive to the normalization 
of the partition function (19). In particular if we had a different normalization.of the zero 
modes for the Neumann boundary conditions we would find that the coefficient k in (54) 
depends on D which is clearly an inconsistency. The fact that we obtained the correct 
normalization based on purely world sheet considerations seems to be quite encouraging. 

From the above expression for the correction to the potential we can read off the one-loop 
corrected D.25 brane tension 

r.1l - r.tree(l + gZ) 25- 25 . (56) 

The imaginary part of Z is due to the open string tachyon and is given by the expression 
(29 ) for D = 0, multiplied by 1/(47r)13. In the proper definition of the tension (56) one 
'should consider only the l'e~l part. The imaginary part specifying the decay rate is a separate 
piece of information. See' [30] for a detailed discussion of hpw it works in field theory. 

10' Loop corrected Dp-brarte tensions 

In this section we would like to'study the ratio of thebrane tensions by finding the limiting 
'value of the effediveadion (49) in a similar way to how it was done in [35]. .. ' 

We begin as in [35] byextremizing the action S(a, Ui) with respect toa.'To simplify the 
formulas let us assume thatZo(u) denotes the c()mplete tree level partition function for D 
boundary'conditions with Ui and the D - 26 Neumann ones. Differentiating the'expression 
(49) with respect to a and equating the result to zero we obtain the following equation for 
a* = a*(u) 
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Let us represent nowa* as a sum a* = ao + .6.a* where 

is the tree level solution. Let us also use the fact that Zf"c. ( u) has the form Zf"c. (u) 
Z5(U)Zl(U) (19). 

Then we have the following equation for the correction term .6.a* 

* ( -a* Z ( )) -t.a* ( A * " [}) - ( ) . .,-.6.a = 9 e 0 0 u . e 4ua -2~ Ui[}Ui Zl U. ; , , 

Note that as U --+ 00 the factor (e"':aoZo(u)) monotonicall; dec~ea~es to th~ value (V21r)D. 
The above equation for .6.a* is exact. However it is more consistent, in view of higher loop 
corrections, to keep in it only terms of the first order in g. This gives 

.It follows from this equation that .limu,-+oo.6.a* = 0 if the following assumptions on Zl (u) are 
;true: ' 

Both assumptions can be easily shown to be true for the "bulk'; part of the Zl(U), i.e. for 
. ··th~part where integration over the modulus has cutoffs on the two ends. Moreover it follows 

from our considerations in section 7 that these assumptions are also true .for the contribution 
of the closed string channel boundary (t --+ 00, T --t 0). As for the open ~tring channel part 
we have to leave it at the level of conjecture.' ; 

With these assumptions being true we can safely plug in the tree level solution a* = ao 
into equation (49) and take thelimitu --+ 00. 'We :obtain (rest6ringthe explicit 'volume 

".,' factor at the tree level partition function) 

) ; 

.,' . 

" 

Dropping the volume factor the last expression can be rewritten as 

TIl = lim S(u, a*(u)) = Ttree(l + gZ ) . 
p U->OO P P 

(57) 
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where 
T tree = ~(v'27fCt/)-13(27fv'a')D 

P 9 

is the tree level tension of a Dp-brane with p = 25 - D and 

Z . - ~ e2t j-24(t) . 
1 

10
00 dt (2 ) (25-p}/2 . 

P (v'41f)26 0 27f t . 
(58) 

Thus the equations (57), (58) give the one-loop corrected tensions of Dp-branes. Again 
the normalization of this result seems to be quite meaningful. In particular for D = 0 we 

, recover (56). Up to possible differences in normalization it agrees with the expected one-loop 
correction based on on-shell string theory considerations [32]. 

11 Discussion 

In this paper we have computed the one loop correction to the tachyonic potential in order to 
investigate its contribution to the tree level tachyonic condensation process. This calculation 
consisted of two steps: The first step, which was well defined and unambigous, was the 
calculation of a string· amplitude as a function of the modulus. The' second step, more 
arbitrary and open to question, was the determination of the modular measure and the use 
of formula (5) at the one-loop level. The recipe we have used for this part of the problem, 
although simple and natural, is somewhat arbitrary and lacks firm foundation. Clearly, more 
work is needed to put these results on a sounder foundation. 

Another question that needs further inve~tigation is the treatment of divergences, We 
have chosen to avoid the divergences due to the presence of tachyons bya suitable analytic 
continuation. This method generates a complex tachyon potential, which is to be expected 
on the grounds of vacuum instability. An alternative possibility is to appeal to Fischler
Susskind mechanism [31]. Again, more work is needed to clarify the situation. There is also 
the problem of the divergence due to the dilaton when D < 3, which we did not treat in this 
paper. 

Our computations lead to corrections to the tachyon potential (55) and to brane tensions 
(57), (58) that look quite meaningful. In particular based on our considerations we may give 
the following qualitative argument on the nature of higher loop corrections to the process 
describing the reduction of D25 brane into a lower dimensional brane. If the picture with 
the boundary states discussed in section 2 is correct then the n:-loop correction will have a 
factor of (e-aZo(u))n-l. Furthermore it looks plausible that similar to the one-loop case the 
corrections to the a*(u), i.e., to the value of a extremizing the action, will be negligible as 
u ---t 00. In that case we will get a correction that up to a constant factor coincides with 
the appropriate n-Ioop partition function with Dirichlet and Neumann'boundary conditions. 
Thus it looks like in this situation nothing happens tothe effective string coupling constl;1nt. 
The processes we considered describe only some descent relations between branes. Of course 
even if one starts with a single DObrane there are relevan.t perturbations that drive the 
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system further to the bottom of the tachyon potential. As discussed in [35], [36],·, [37] the 
constant perturbation, which one may always switch on as long as the world sheet has a 
boundary, will on one hand keep the effective string coupling small and on the other hand 
will damp any open string amplitude: It is not clear to us that this apparent damping factor 
will dominate over any other possible relevant perturhation~ There may be a growing factor 
in the boundary state,similarto the Zo(u)that willcompellsate e-a

. .' . . 

Finally one sho~ld- also understand if normalizations of theone-loop corrected Dp-brane 
tensions are in accord with the on-shell string theory considerations. We leave 't;h~se questions 
for a future investigation. 

Acknowledgements 
A. K. wants to acknowledge a.'useful discussion with BartonZwiebach. 

References 

[1] K. Barda~ci, Dual models .and spontaneous sy",:metry breaking, Nucl.Phys. B6,8(1974) 
331. ' '.' . ' . . 

[2] K. Bard,akciand M. Halpern, Dual M~models, Nucl. Phys. B73, (1974) 295, 
. '. ~ . \ " '. .' . 

[3] K. Bardakci, Spontaneous symiri~trY bt~akdown in the standard dual sttirig model, Nucl. 
Phys. B133, (1978) 297. 

[4] V. A. Kostelecky and S. Samuel, The 'static tachyon potential in the open bosonic string 
theory, Phys. Lett. B207 (1988) 169. 

[5] V~ A. 'Kostelecky and S. Samuel', On a nonperlurbative vacuum for'tlie open bosonic 
string, Nucl. Phys. B336, 263 (1990). . 

[6] 'A. Sen; TachYo~ condensation on'the braneantibrane system, JHEP 9808, 012 (1998) 
[hep-th/9805170]. . 

[7] 'A. Sen, SO(32/I;'pinors of Type I dnd dthe;Sol1,t~ns on Brane-Ant~brane'Pa~r, JHEP 
9809 (1998) 023 [hep-th/9808141]. ., . 

[8] A. Sen, Descentrelations among bosonic 'D~barnes, Int. J. Mod. Phys. Al~ (1,999) 4061 
[hep-th/9902105]. .. .. -

, 

[9] A. Sen,Univer~t;Llity of the tachy~n:potenti[Jl, JlIEP 9.912 (1999) 027 [hep,.th/991Yi16]. 

[10] A. Sen·and B~Zwiepach, Tachyon condensation in string field theory" JHEP 0003 (2000) 
002 [hep-th/9912249]. . 

:.::,,1' 

[11] N. Moeller and.W.Taylor, Level truncation and the tachyon in open boson.ic string field 
theory, Nucl. Phys. B583 (2000) 105-144 [hep-th/0002237] . 

. 27 



[12] E.Witten, On Background Independent Open-String Field Theory, Phys. Rev> D46 
(1992) 5467::.5473; hep-th/9208027 . 

. [13] E. Witten, Some Computations in Background Independent Open-String Field Theory, 
Phys. !tey. D47 (1993) 3405~341O; hep-thj9210065. . j" 

[14] K. Li and E. Witten, Role' of Short Distance Behavior in Off-Shell Open~$tring Field 
TheorY; Phys. Rev. D48 (1993) 853-860; hep-th/9303067. 

[15] S. Shatashvili, Comment on the Background Independent Open String T.heory, Phys. 
Lett. B311 (1993) 83-86; hep-th/9303143. 

[16] S. Shatashvili,. On the Problems '/Pith Background I'T/,dependence in String Theory, hep-
th/9311177. . .... 

[17] A. Schwarz, Geometry of Batalin- Vilkovisky quantization, Commun.Math. Phys .. 155 
(1993) 249-260; hep-th/9205088. .' . 

[18]Ft Hata and B. Zwiebach, Developing the cova:i'iant' Batalin- Vilkovisky approach to 
string theory, Annals of Physics, Vol. 229. (1994) 177-216. 

~ . , . 

[19} B. ZWiebach, Closed string field theory: quantum actiori, and the' B-V 'master 'equation, ' 
Nucl.Phys. B390 (1993) 33-152; hep-th/9206084. 

[20] E. S. Fradkin and A. A. Tseytlin, Quantum string theory effective actiOn, Nud. Phys . 
. B261 (1985) 1; Effective field theory from quantized strings, Phys. Lett. B158 (1985) 

316. . 

[21] A. A. Tseytlin, Sigma model approach to string theory, Int. Jr. of Modern Physics A 
" VoL (No.6 (1989) 1257-1318. . " . . 

[22] A. A. Tseytlin, Renormalization group and string loops, Int. Jr. of Modern Physics A 
Vol. 5,No. 4' (1990) 589-658. ...,':" " 

[23] A. A. Tseytlin, Sigma model approach to string theory effective actions with tachyons, 
'hep-th/OOll033. ", '. " '.:. . 

." ~~. ~ 

(24] C. G. Callan, G. Lovelace, C. R. Nappi and S. A. Yost, Adding holes and cross caps to 
. . 'thesuperstring,Nucl. Phys. B293 (1987) 83-113. ' ' ' 

[25] A. Abouelsaood, C. G. Callan, C. R. Nappi and S. A. Yost, Open strings in background 
gauge field;,' N~cl. Phys. B280 (1987) 599~624." '. 

[26] S. Weinberg, Cancellation of one-loop divergences in SO(8192) string theory, 'Phys. Lett. 
187B 278. ' , ' 

[27] N; Marcus, Unitarityand regularized divergences in string amplitudes, Phys . .'Lett. 219B, 
265. ',' , 

28 



(28] J. Polchinski, String theory, Vol. 1 

[29] C. G. Callan and S. Coleman, Fate of the false vacuum. II. First quantum corrections, 
Phys. Rev. 16D (1977) p. 1762. . 

[30] E. J. Weinberg and A. Wu, Understanding complex perturbative effective potentials, 
Phys .. Rev.36D (1987) p.2474. 

[31] W. Fischler and L. Susskind, Dilatontadpoles, string condensates and scale invariance 
".. II, Phys. Lett. 173B (1986) 262. 

[32] D. Berenstein, R. Corrado, W. Fischler, S. ·Paban and M~ Rozali, Virtual D-Branes, 
.. Phys.Lett. B384 (1996) 93-97; hep-th!9605168 ... 

[33] I. Affleck and A. Ludwig, Universal noninteger "ground state d~generacy" in critical 
quantum systems, Phys. Rev. Lett. 67 (1991) 161; Exact conformal field theory results on 
multichannel Kondo effect: single fermion Green's function, self-energy, and resistivity, 
Phys. Rev. B48 (1993) 7297. 

[34] A. Gerasimov and S. Shatashvili, On Exact Tachyon Potential in Open String Field 
Theory, JHEP 0010 (2000) 034; hep-th/0009103. 

[35] D. Kutasov, M. Marino and G. Moore, Some Exact Results on Tachyon Condensation 
in String Field Theory, JHEP 0010 (2000) 045; hep-th/0009148. 

[36] A. Gerasimov and S. Shatashvili, Stringy Higgs Mechanism and the Fate of Open Strings, 
JHEP 0101 (2001) 019; hep-th/00l1009. 

[37] M. Kleban, A. Lawrence and S. Shenker, Closed strings from nothing, hep-th/0012081. 

[38] S. Frolov, On off-shell structure of open string sigma model, hep-th/0104042. 

[39] D. Ghoshal and A. Sen, Normalization of the Background Independent Open String 
Field Theory Action, JHEP 0011 (2000) 021; hep-th/0009191. 

[40] O. Andreev, Some computations of partition functions and tachyon potentials in back
ground independent off-shell string theory, hep-th/0010218. 

[41] O. Andreev, More about partition function of open bosonic string in background fields 
and string theory effective action, hep-th/0104061. 

[42] S.P. de Alwis, Boundary String Field Theory, the Boundary State Formalism and D~ 
Brane Tension, Phys.Lett. B505 (2001) 215-221; hep-th/0l01200. 

(43] R. Rashkov, K. S. Viswanathan, Y. Yang, Background Independent Open String Field 
Theory with Constant B field On the Annulus, hep-th/0101207. 

29 



(44] T. Suyama, Tachyon condensation and spectrum of' strings owD..!bremes, hep
th/Ol02192. 

[45] K. S. Viswanathan and Y. Yang, Tachyon condensation and background 'independent 
superstring field theory, hep-th/Ol04099 . 

. [46] M. Alishahiha, One-loop correction of the tachyon action in boundary superstring field 
theory, hep-th/0l04164. 

[47] W. Magnus, F. Oberhettinger and R. P. Soni,. Formulas 'and theorems for the special 
functions of mathematical physics, Springer 1966. 

[48] S. Nakamura, Closed-string tachyon condensation and on;!Shell efJectiveaction; of open
string tachyons, hep-th/Ol05054. 

[49]- B. 'Craps, P. Kraus and F., Larsen, Loop Corrected Tachyon Condensation, hep..., 
th/0105227; . ' . 

. \ 

(50] E. T. Akhmedov, M. Laidlaw and G. W. Semenoff, On a Modification of the Boundary 
,State Formalism in Off-shell String Theory, hep-th/0106033 . 

. . '. 

, , 

. ;:''. :: 

30 



r:a*,"b-fij' ~ ~;J*'''3 @l*J:i!I§I~ ~ ~ 
IIDm ~ ~ ~ @bj;J3iL@?o ~19~OO ~ 


