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Abstract 

In this paper, we describe a method for obtaining the nonabelian 
Seiberg-Witten map for any gauge group and to'any order iri O. ,The "­
equations defining the Seiberg-Witten map are expressed using accibound~'" 

, "ary operator; so that they can be solved by constructing a.correspond- ,I 

; ing -homotopy operator. The ambiguities, 'of both the gauge and co~ 
, variarit type,which arise in this, map are manifest in our formalism. 
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1 Introduction 

Noncommutativefield theories have recently received much attention after it 
was realized that in the presence of a background NS B-field, the gauge the-, 
ory living on D-branes becomes noncommutativ~ [1]. Based on the existence 
of different regularization procedures in string theory, Seiberg and Witten[2j 
argued that certain noncommutative, gauge theories a,rei~quivalent to com­
mutative ones and in p~rticular that there exists a map from a commutative 
gauge field to a'noncommutative one, which is compatible with the gauge 
structure of each. This map has become known as the Seiberg-Witten (SW) 
map. In this paper, we give a method for explicitly finding this map. We 
will consider gauge theories on the nqncommutative space defined by 

(1.1) 

where () is a constant Poisson 'tensor.' Then the"*" operation is the associa­
tive Weyl-Moyal product 

... +-~ 

f f · "O'JO·O· * g = :e2 ' .. , Jg . (1.2) 
, , 

We believe that our method is mUGh more general, and can in fact .be used 
even when () is not constant. ' " , ' 

In the next:section, we review·. SOme previous work [3], which. provides 
an essential starting point for our own; , In Settion3, we replace the gauge 
parameters appearing in the SW map'with, a ghost field, which makes explicit 
a cohomological structure underlying the SW map [4]. We then discuss the 
ambiguities that appear, distinguishing the gauge and covariant types. In 
Section 4, we define a homotopy operator, which can be used to explicitly 
write down the SW map order by order in (). In Section 5, we discuss some 
complications that arise in this formalism and some ways to overcome them. 

2 General Review 

In this section, we review the formalism developed in [3], which provides an 
alternative method for obtaining an expression for the SW map. 

The original equation which defines the SW. map [2] arises -from the re­
quirement that gauge invariance be preserved in the following sense. Let ai, 
a be the gauge field and gauge parameter of the commutative theory and 
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similarly let Ai, A be the gauge,:fi~ld anq~)g;<;tuge parameter of the noncom­
mutative theory. Under an infinitesimal gauge transformation, 

,'".,' .><, '.'i:,',· 
6o:ai = GiQ - i[ai, a], (2.1) 

6AAi ' 8i A -"i[A/~ Al'aiA'--ir}~/k A - 1\ ~ Ai) . (2.2) 

Then, the SW map is fo~nd by requiring 

(2.3) 

In. order td 'Satisfy (2;3) the rroncbiniliutativegauge:fie'1d and gauge parafu.eter 
must have the following r functibnal dep~rrdenGe 

(2A) 

~~e~e;the dots indicate higIi~itderita'ti~~s~ ~It\nu~'tbe emphasized that a SW 

map .~s Il9t)}-Pt,i:<;lJl~!Y A~fiIl,<rr (·b,Yi,,<;:op.ditt?H ;(2,~).;_; ~h~ :;tm~ig}liti~s tha~ ~r.ise 
[5] will be discussed shortly. ' , , : ' 

Theconditi0n .. {2,~J. rYieldsa !sim~ltaned4s~CJ,ufttion ''£0I; Ai an.d A. For the 
constant ,f) case, explicit solutions of the Seiberg-Wittenmap have been found 

. ..' ", " ~ '. 

byJ vati0us authors' lip td's'etoiId, (jrd~rJin;if)I3i, i6'];'Tli'e sblht'iOns';were'fbund 
by writing the map' 'as'; a4iil~;:tr~doriiHiI1a;tiJiFdf'a:flipoi:;s'fbl~';t~'rms)a:llowed 
by index structure' anq dimensional c<;mstraints ,and then ,determining the 

. - ~ ~'.': ,~ ." ' . : . ,! \ : r },~.l '- , (."\. l' , 1 " 

coefficients by plugging this" expre'ssion into tlie SW 'eq"U'a;tibn. The method 
we will describe in th.~ r.e:~tpf t~~,p.rR~rpr();vi~es a rn<?r~'isystematic procedure 
for solving the SW map.' , For the special case of aU(l) gauge group, an 
exact solution in terms 6ftn;e',Rbfitsevit~forma:HtYmap is' givenirl rn; whi1~ 
[8, ,9, 10, 11] present an inverse of the SW map,to all orders in f). 
, A~ alternativechat)tct'eriihtion of 'the Seil~e't~-Witt'en map can be ob­
tain~d follo~ing J~L )1:1 ,f;h~: GOIRm,utativ~ga~g~}heor:y" ,o'9,;e .,way consid~r 
a:fi,eldw in t~e fun4i1IH~B-ti1Lfepp1sen~a~i?,¥:of ;t,l;1e gavgEl/~r8'-':F>· If vv~ (;1,S,­

sum~ that .the Svy:, m~p' cp,p-,be e~t,en~ed, ;toin«l~de, su<::l.t.:nelds, .then. there 
will be afield 'lJ!'int~e nonc6~~utati~~ the~ry'~ith the'fono~in:g f~nctional 
dependence 

lJt = lJt(·I. 8.1• ... a 8a ... ) 
,/-" ,/-" " , , (2.5) 

and with the corresponding infinitesimal gauge transformation 
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OA W = iA*\I!. (2}) 

An alternative to the SW condition (2.3) can now be given by 

W + OA W = ,W(V; + oaV;,"', aj + Oaaj';' .). (2:8) 

More compactly, one writes 

(2.9) 

The dependence of A on ais shown explicitly,on the left hand side; and on 
the right hand side oa acts as a, derivation on the fun(tion W, with an action 
on the variables V; and ai given by (2.6) and (2.1) respectively. Next, one 
considers the commutator of two infinitesimal gauge transformations 

• (2.10) 

Since [<Sa,o.sl = o-i[a,.sl, the right hand side of (2.10) can bEl'rewritten as 
, ., ' ". 

O-i[a,,BjW = OLi[o,fJl W --.:. iA-i[a,.sl * W = A[a,.sl *W. 

Thelast equality follows from the fact that A is linear in'the ordin;try, gaJ-lge 
para,meter, ,which is infinitesimal. As for the left hand side, .. 

[OAo,OA/l] W = OAo (iA.s*W) -:oA/l{iAa*W) 

= i (oaA.s - o.sAa) * W,+ [Aa ~ A.s] * w: 
Equating the two expressions and dropping W yields 

(2.11) 

An advantage of'this formulation is that (2.11 )is an equation in' lA' only, 
whereas (2.3) must be solved simultaneously in Ai:md A. 1f(2.11) is'sblved, 
(2.2) with (2.3) then yields an equation for Ai and (2.7)'with (2.8) for W . 

. , 

3 The Ghost Field and the Coboundary Op-
erator 

It is advantageous to rewrite equations (2.2), (2.7) and (2.11) in terms of a 
ghost field in order to make explicit an underlying cohomological structure. 
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Specifically, we replace the gauge parameter a with ,a gh9~,t V, wh,ich iSa,l1 
enveloping algebra valued, Grassmannian. field 1. Wedefi~~'agho~t number 
by ~ssigning ghost number one to ~and zero to ai and 'l/J. The ghost number 
i'iltrb'ditces a; Z2gradihg, with even quantities COinhtuting' and :;odd- quantities 
anticommuting. In our formalism, the ga~ge transfotrriatioITs:(2il') iand "(2:6) 
are replaced by the follo",\ing BRST transformations: 
! ;:-".; , ~ ~.r ,; 

6v V = iv2 

;'6~ai= OiV - i [ai, iJ] (3.1) 
'8~'l/J' = ivY; . , . 

. ,c" We;.also take 6v to comrilUtewith the partial derivatives, 
. ~.,' ; . '. ' " 

:'l .. 

(3.2) 

The operator 6v .has ghost-riumbet, one and dheys' a graded~Leibn:izrule,' . 

(3.3) 

vVhete deg(f) gives the ghost ,number of the e}Cpression f. One can read­
ily check that 6v is nilpotent on the fields ai, 'l/J and v and therefore,as a 
cOllse:quenceof(3:3), we have:' . '.,t·'l}) 

t'"'" (5~= 0 . . ,(3:4) 
., . t _ ! • -,' • : ".' : ~ ~t 

.. >Follpw,ingt~e 'pro;cedl.1re, op.t1inr4; in th~ previolts, ~~(1Epl).,:,,';V~,characJeri;ze 
the SW. map~slpl~ow,s. We-" introdl..\ce a mat;t~rfield W(~, f!'l/J,.: ", a,oa",; .'J 
andal,l odd, gq,tIge parameter A( v, ov, ~ .. , a, Ga, .: . ) corresponding t(j):W; ,anq, 
v in the comm~t~tivethe~ry.A is rinear in the i~finit~simal, p~r~~eter v arid 

", • '.' ,.; , • < • : • ," i. _. ~ . ~ I . ""'-. , ., •. ' , 

henQe has ghost number one. As before, we requireth<1ttlJ.~ SW map re~pect 
< '., : -. - • : • ~ 1 _ . ' :; " 

gauge invariance 
: (3.5) 

The consistency condition (2.10) now takes the form 

(3.6) 

and again it yields an equation in A only. Since 
,".; ; ~ i : r·, " .' ~,,' 

o = 6~ 'l1 = 6A(iA * W) = i6vA * w + A * A * 'l1 , 
i 

1 In the U(l) case, the introduction ~(a ghost has been considered by Okuyama [12]. 
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we can drop. \]1 and obtain 
(3~ 7) 

Once the solution of (3.7) is known, one can solve the following equations 
for· \]1 and the gauge field . 

(3.8) 

It is natural to expand A. and Ai as power series in the deformation 
parameter e. We indicate the order in,e by an ,upper index in parentheses 

A:;= 2J~=o A (n) - V + L:~=1 A (n) , 

Ai = L:~=o A~n) = ai + L:~=1 A~n) . 
(3.9) 

Note that the zeroth order terms are determined by requiring that the SW 
inap reduce to the identity as:e goes to zero. , Using this expansion we can 
rewrite equations (3.7) and (3.8) as 

.' ' 

6v A(n) - i{v,A(n)} = M(n) 
,1"' A~n) ~ .[. A~n)] = U~n) av t Z v, t t' 

(3.10) 

where, in the first equation, M(~) collects all terms of ordern which d~ not 
contain A (n), and similarly Ui(n) colle,cts terms not involving A~n). We refer to 
the left hand side of each equation as its homogeneous part, and to M(n) and 
Ui(n) as the irihomogeneous terms of (3.10). Note thatM(n) contains explicit 
factors of 8, originating from the ex'pansionof the Weyl-Moyal product (1.2). 
Ifthe'SW mapfor Ais known up to order (n-l), then M(n)can be calculated 
explicitly as a function of v a~d ai'~' On th~ other hand, Ui(n) depends on b~th 
A and Ai, the former'up to order ri and 'the latter up to order (n - 1). Still, 
one can calculate it iteratively as a function of v and ai. 

The structure of the homogeneous portions suggests the introduction of 
a new operator ~ 

~'= { 
6v - i{v,. }on odd quantities 
6v - i[v,·J on even quantities. 

In particular, ~ acts on v and ai as follows 
.. 

~v = -iv2
, ~ai =8i v . 

5 
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As ,a consequence orits definition, .6. is an anti:-d~rivation. with gh6st~number 
one. It foliows ~ graded t~ibni~ r1.lle ide~tical t~the o~e for J~(3.3).·., Another 
c9ns7quence of the definition (3.11) i~ ~~at ~ is nilpotent' . 

(3.13) 
; 

The actio1.l~¥4 o~exp:r~~sions ip.v9,lving,ai:~~dit'~· d~rivatiyes 'ca~ also 
be' ~h~racteri~~din geo~~tri~ 't~r~~.Sp~cifi~~ll~t,ft\· ¥ff~r~'lr9~' 'j)' 'i'n ~hat . it 
removes thecoy~!"iant ,part, of th~,g,Cl;~,ge traJl~{9r.mCl;ti(;m .. · The~~fory, 4 acting 

. ) , . i. > • ~ • .' • ~ (' •• ~ f • , . "- .,,1, '", . . < ' .', > _ 

on any covari<il.llt expn:;ssion:w:ill give ier9. For, ip.stCl;nq~,;ifoJle cOIlstr,ucts the 
field-strength, Fij Oiaj - 'ajai ~) i['ai, d;] :'~d~ fi~d~"bye~plicit cakulatio~ 

i . 

(3.14) 

It can also be checked that the covari~ntderivative, Di = Oi - i[ai, .], com­
mutes with .6. 
,'~ ". .' ,';", !.- - : 

In terms of .6. the equations, :(3.:WO·ta1,<:e the:fOrm:. " 
i: (·I~. \..:' :'~.'<.\; ,~:.~, j. 

.6. A (n) = M(n) 

.6.A~n) = uln
) . 

t '\' 1; 

(:tl6) 

In the next section, we will provide a method for solving these equations. 
Also note that since! .6?:-iO~ .iVmtrst be tniet-hat 

.6.M(n) = 0 

.6.U
i
(n) = 0 . (3.17) 

Indeed-one should v~rifYf:~hat f~,17) holdsor<:!eF by order. If (3.17) did not 
hold, this would signal an inconsistency in the SW map. 

Many authors have commented on the ambiguities of the SW map [3, 5, 
6;13]; At any particular order/the' ambiguities dan be seen as an invariance 
of, .(3.16) when A (n) is changeiL by ananiount .6.s(n) 

A (n) -+ A (n) + .6.s(,n) , (3~18) 

which follows from the fact that L:\' is nilpotent. Then the corresponding 
sha:llgejn,tp~,p(),teIlt,~9-1: i~, .. ' 

(3.19) 
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This follows f~om the fact'that the equation of order n for the gauge field is 
always of the form ' 

,6,A~n) = Di A (n) + ... , (3.20) 

where the ellipsis denotes terms which are explicitly O-dependent. Notice 
that (3.19) is a consequence of the fact that the coboundary operator ,6, 

commutes with th~ covariant derivative Di . The ambiguities at order n also 
affect the solutions at higher order. . 

These imbiguities can also be understood as an invariance of (3.7) 
arid (3.8) under the followi~g transfor~ations [13] 

A --+ G-1 AG + i G-1JvG 

A --+ G:"' 1 Ai G + i G-10i G (3.21 ) 
\II . ...,-t: G-1 \II 

, , 

where all products are star products and G is an arbitrary element of the' 
enveloping algebra with ghost number zero. Notice that G should also be 
unitary if we require that A and Ai remain real. 

To compare (3.21) with (3.18) and (3.19) it is useful to introduce the 
operators 

which satisfy 

{ 
Jv'~ i[A ~.] 'for even quantities 
Jv - i{A ~ .} for odd quantities, 

(3.22) 

(3.23) 

(3.24) 

and which reduce to Di and ,6, in the limi't 'of vanishing O. Then '(3.21) can 
be rewritten as 

A --+:,A +.i G-1 AG 
Ai..' --+ . Ai +i G- 1 biG. 

T9 recover (3.18) and (3.19) we set 

G = 1 - i s(n) 
.' " , 

(3.25) 
(3.26) 

, (3.27) 

and take (3.25) and (3.26) at order n. These ambiguities are :of the form of 
a gauge transformation. Notice that in the particular case, ,6,s(n) = 0, A(n) 

is'modified while A (n) is unaffected.' 



,;}~ [5] it, h~s;>b~~~l obser:ed th,at th~~~ a~~;als() ~~her kinds ,of am,?ig;¥i~~~s, 
whIch don't have the form of~, gauge, transformatIOn, but ar~ of a ~()v'afl~nt 
type. To see this, we rewrite the sw equation for A (:f8) ~slng A " 'I ' 

',' AAi ~ 'OiA . (3.28) 

If'is then pois'ible to addto'tlieigauge potentiahtqllantity Si, 
. ;.,; . " ... y..... ' 

::5' I 

while, keepingiA: uns~anged. : 
" ,. ! ! 

4 The Hbmot't>py' Op¢rator' , 
, _; .~, . , ,.,' . ~. c.', 

: i: 

ForsimpliCity,'\ve begiIi by ;cbiIsid~iihg in detlil'the'SWrti'ap'for the"c'aS~;6f 
thegauge parameter A. Much of what we say actui!LnY':kpph~s"tb:;t1re)otlle't 
cases as well with minor modificatioJs. 

In th~pr~vi0uf!\s~Gti()n, owe ,ha,ye seen,thatf9rdel1 by; op:ler irf::qQ, e~pi!-Il~iQn 
in· .. Oi;i the S.w. :~ap··;·h_as the fQrm..:;: ,~~ '1", -'~. ';., i'.~) :·::t·:~~· 

where 'M(n) dep~Iids6hlyoIiA~i):\vith i '< rLel~a~ly"iirdni)2ould':lnveit 
, ~ , M ' 

A somehow,Jwe coo.ld solve 'foi:Mn). But '1iis'bBvicilisly Ii'alrinvei-iible;:~s' 
A2 = O. In particular, the solutions of (4.1) are not iirii~ii~~I;~{in'ctVit A(n)ni~'a 
solution so is A(n) + AS(n)for any s(n) of ghqst number zero2. That is, A acts 
like a coboundary operat&'iA a cohomol6~y theory, ;~iia the solutions that 
we a,re lookiI~.g;,fQr are ac.tvaV¥ <;()~omology cl~sses of.S()~uti~Il§j unique, p~b: 
up to the additi()n of A-exact terms. The formalexlstence~rthy:,SW ni~p 
is then equivalent to the ~taterp.ent that the cycl~ M(n)" is actuaif:yLi:exa~t 
for all n. Since we know that K2 = 0, this fact ~ould follow as a corollary 
of the stronger; statement' thatth~re is,I1o 'ndnc.litivial·'A~cohOfuologYin,~ghost 
number two. Ih' other words, there are' no ~-Hosetl, brder;n[pblyhohii;ils~Wil1f 
ghost number two which are not also 4-exact. To prove this stronger claim, 
we could proceed as follows. Sup~ose 'that we could construct an operator 
[{ such that 

,2These arep;~ci~ely, the ,:ambig~itie~ "iIi .the'SW map,that W~f;~ fitst, dil':ctis§e~hin, [5], 

where o~r op~ra~~r "Ll., was c~Jle(:hV ,-",:" ' , " ' ;':, j 'i ' 
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Clearly, J{ must' reduce ghost number by one, and therefore must be odd. 
Consider its action on a cycle M, (so !)'M = 0) 

(J{!). + !).J{)M = !).J{M = M. (4.3) 

Therefore, M = !)'A, with A = J{ M, which not only shows that M is ex­
act, but also computes explicitly a solution to the SW map. We note that 
this method of solution is nearly identic"al to the method used by Stora and 
Zumino [14J to solve the Wess-Zumino consistency conditions for nonabelian 
anomalies. In fact, it was the parallels between these problems that moti­
vated the current approach. [4J 

We now proceed to construct/{. First we notice th~tM(~) depends on 
v only through its derivative OiV, as one can see by looki'ng at the explicit 
expressions .. The same is true forUi(n) ,since it depends qn v only thr~ugh A. 
It is convenient to define . 

( 4.4) 

so that M and Ui can all be expressed as fUIictions of ai, bi and their deriva­
tives only. Furthermore, we rewrite M(n) solely in terms of covariant deriva­
tives, rather than ordinary ones. After these replacements, we may consider 
M(n) an element of the algebra generated by ai, bi, and D i . As explained in 
the .next section this algebra is not free, but -for the moment we ignore tp.is 
issue., The a~tion of the operator!). takes on a particularly simple form in 
terms of these variables: 

(4.5) 

Let us first define an odd operator L, which obeys the super Leibniz rule, 
and satisfies 

Lai = 0, Lbi = ai ,[L, D i ] = 0 . (4.6) 

Acting on eithera or b, we have LA + !)'L = 1,but this is no longer true. 
acting on monomials of high~r order"The solution is to define 

(4.7) 

where D-1 is a linear operator whi~h when acting on a monomial of total 
order din a and b multiplies that monomial by lid. In can be proven that 
J{ defined iIi this way satisfies (4:2) when acting oIi monomials of degree 
greater than or equal to one. Since L satisfies the Leibriiz rule, we see that 
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L2_ ",0, by cQIlsidering its action on t~egenerators of the algebra (4.6t It. 
the~ f~llows' th~t ,'"" ," ", " , ' " ,:" 

, " , .l; K2 ~ 0.' '(4.8) 

Notice that thi's ;prescripti0n ;requires that werewrite any expression involving 
ordinary,derivatives in: terms.of Govaiiant derivatives and gauge fields only. 

• .' " '. I ' •. ~ 

i: 

5 

Wy. 4a~~, sg f~ii oldy ~w~si4~r~1the free algebra, g~n~rat~d R,y~i,' 'bi ; an~t 1)t'" 
where thecon~tructipn of K was relatively simple. To show thatour alge1rra 
is not f~ee co~siderth~ following, ' '," . ' " , ", 

: • ~." . ; '. " • ~: /. . .' ~ , '. ~ t c ,:~ "-, '" ," 

'l.' 

tiFh ~j~ CDi:(1j- Djai + i[a~, ajD· : 
"'jJ}bj', ~ DJ'bi + i[bi', ail +iJai;bjr 

. 0'." "Ji ~. . 

(5;t) 
i ,:.,. 

Asian elemerit of the'lfteeCf'algelJta, ,the right hand: side' iiHiot zetb(blH ac':' 
cording to (3.14), the left hand side should be. The problefurbecdirl'es mbte 
skrioas lwl1eIl'brte' rewritesiiM(~)jin'lterrhS ,0£ the'elerrtents'6t>the' free algEibra. 
Beyond first order, one finds"that ~M(n) is ,no lbtiger:zefo ih'genetal~\'but, 
va,nishes only by using the following constraints 

. r {. . - ; . "~~ " . . ' 

.(5:2,) 

IfA,M(n) is not zero identically, I{ no IQnger inverts ~ when acting on M(n), 

a~l(lwe no longer have a method for solving (3.16) for A(n). The origin ofthe 
cpnstraintscan:be :traGed,to' t4e fact that ,partial derivatives. commqte ),' 
".i.i: 1 . • •. . ." ;. 

OiOj - OjOi = 0, Oibj - ojbi = 0" 

siIi<:;e bi = OiV, This IS':t;lo)<)i1ge( manifest in our algebra. In fact, written 
in terms of covariant derivatives, (5.3) becomes (5.2). There seems to be no 
way';to'eliminate :th~s'e'; consErahits sirrceK' is' riot· defined' on 'v,' hut jon'}y 'em 
W·;'fJiV . . Oite'-might expe~Uth~t 'at';higher orders one"wo'tild' navl to use 
adoitiOn'al coif~'traints:tb4~etrfy'th:at~M(n) vanishes, 'but this is not'the'c<1se. 
For-example, ,w;hetr :drie '-rewrit~s ,(' .". 

, ",' ~. -' . ':, ;.~ ;" 

;'V5.4) 
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in terms ofco\Tariant derivatives; the resulting expression is not an indepen­
dent constraint, but can be written in terms of the two fundamental ones 
(5.2). . 

The reason whY'L1M(n) is not zero in general is because the existenGe of 
the constraints allows us to write M(n) in terms of the algebra elements in 
many different ways. Our goal will then be to define a procedure for writing 
M(n) in terms of algebra elements so that L1M(n) = 0, identically. We will 
describe two procedures. 

The first is the method used in [4] to calculat~ some low order terms of 
the SW map. One begins by obtaining an expression for M(n) in terms of the 
algebra elements.Oenerically,L1M(n) will be proportional to the constraints. 
At low orders, once L1M(n) is calculated, it is easy to guess an exp'ression 
m(n), which is proportional to the constraints, such that the combination 
M(r-) + m(n) is annihilated by L1 .. Acting K on this new combination then 
gives the solution A (n). We believe this guessing method can be formalized, 
bU.t at higher orders the second procedure which we will now describe seems 
tq ,b~ more. systematic . 

. Fi,rst we introduce a new element of the algebra, iij, which is annihilated 
by. ali the operators defined in previous sections 

(5.5) 

We also introduce a new constraint 

'. (5.6) 

where Fijisconsidered a function of Di and ai. We want to show that using 
this enlarged algebra and the constraints we can rewrite M(n) so that it has 
the 'following dependence 

(5.7) 

,:\,here the subscript s indicates that all the indices within the parentheses 
should be totally symmetrized. It wOl1ld then follow that L1M(n) depends 
on the saIfle variables. Since it is impossible that L1M(n) contains any term 
antisymmetric in the indices of Da or Db, the constraints (5.6) and (5.2) 
cannot be generated. However, we may find that L1M(n) -is proportional to 
the following constraints 
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Since these constraints commute with the action of both;K~I}cl",4\t;:if~,w¢ 
add to M(n) a term proportional to (5.8), our result for Nn) ~ [{ M(n) is 
1),n<;:h~nged. To show ,that, ,we/can, ,?-ct;uaHy writell{ in, the for:ffi.{l)uggested 
apove, we' begin vvithan ;expr~ssion, for M(n) as fO\lnd by\~.~p~~di:qg.th,y s'tar 
product 

(5.9) 

where'we cho~se to expliCitly\vrit~}he a~riy~tivesin ~ymrrw~.ri~)or:~.By 
replacing 8(·) -t D(.) + ira, .], and 8v'-+ b the expressiontak~s 'theforin 

(5.10) 
. :" ; " , : '. :: ' ': ";" i:.' :', ; ~.,' ", ' ,: 

The difference (Dka)~ -Dka contains terms that are proportional to the 
antisymmetric parts oftlJp.'or Da . .J3ut using th;e constrail1tsVV~I~.aQ.' m~ke 
the ,follovviIlg, substitutipns, ., ,'.,", 

; : ... >; 

(5.11) 
, ".... -: .... \ 

This mu~~ bydorre 'r~~u~~ively sirrqethycomm:utatw,;t~r-minvqlv;iIl,g. ~:,~\q,bove 
may again be acted on by D's. But at each step, 'the number .of possible D's 
acting on' a is reduced byoue.Afterd1tryiu'gout,this. p'116c~dure!'M(n) will 
have the form (5.7). ., . ,', 0,,).;' -;,: ;', 

, ' 
.>."\", 't. \ .' ' ~, I 

We are very indebteclhto Julius Wess''''forexpiaining to 'us someofhis'Tecent 
work [3]. We are also grateful to Raymond Stora for the vahlablecdmlllents 
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B.' Zuinino' gavy at thecobJdrence '''~o(ii': A Sp.a~etirrie Odyssey'; ,'Mishigan 
Center for TheoretiC~i Phyi'sid,'AdnArbor', May'21'::25. 'Thiswork was 
supported in part by the Director , Office pf Science,Oflic~ oCHigh Energy 
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of Energy under Contract DE-AC03-76SF00098 and iii part by the National 
Science Fmmdation imder,graTht. PHV,95-14797,. B.L~C.,;is.supp:orted by the 
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