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Abstract

In this paper, we describe a method for obtaining the nonabelian

- Seiberg-Witten map for any gauge group and to any order in 6. -The *-

equations defining the Seiberg-Witten map are expressed using a cobound-"-

- 7 ary operator, so that they can be solved by constructing a-¢orrespond- *'
. +ing -homotopy operator. The ambiguities, of both the gauge and co-
.-variant type, which arise in this map are manifest in our formalism. -
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1 Introduction

Noncommutative field theories have recently received much attention after it
was realized that in the presence of a background NS B-field, the gauge the-.
ory living on D-branes becomes noncommutative [1]. Based on the existence
of different regularization procedures in string theory, Seiberg and Witten[2}
argued that certain noncommutative gauge theories are;equivalent to com-
mutative ones and in particular that there exists a map from a commutative
gauge field to a'noncommutative one, which is compatible with the gauge
structure of each. This map has become known as the Seiberg-Witten (SW)
map. In this paper, we give a method for explicitly finding this map. We
will consider gauge theories on the noncommutative space defined by

L Eyel=en, -

where 0 is a constant Poisson tensor. Then tlie “x” operation is the associa-
tive Weyl-Moyal product

frg= fe-‘“a'aag. (1.2)

We beheve that our method is much more general and can in fact be used
even when 6 is not constant. . , . :

In the next-.section, we review.some prev1ous work [3]; Wthh prov1des
an essential starting point for-our own:. In Section 3, we replace the gauge
parameters appearing in the SW map-with.a ghost field, which makes explicit
a cohomological structure underlying the SW map [4]. We then discuss the
ambiguities that appear, distinguishing the gauge and covariant types. In
Section 4, we define a homotopy operator, which can be used to explicitly
write down the SW map order by order in 8. In Section 5, we discuss some
complications that arise in this formalism and some ways to overcome them.

2 General Review

In this section, we review the formalism developed in [3], which provides an
alternative method for obtaining an expression for the SW map.

The original equation which defines the SW.map [2] arises from' the re-
quirement that gauge invariance be preserved in the following sense. Let a;,
a be the gauge field and gauge parameter of the commutative theory and



similarly let A;, A be the gauge field. and‘,gauge parameter of the noncom-
mutative theory Under an 1nﬁn1tesrmal gauge transformatron,

. 5 a = Ba z[d,,, a] | B (21)

CSaAi= Oh < i[A Al = 0N (A *A= KA A ) (2.2)

Then, the SW map is found by requiring o o
A + 8xA; =A (a5 + Saajy ) (2.3)

In order to satisfy (2:3) the noncommutative gauge ﬁeld and gauge parameter
must have the followmg functlonal dependence -

o

| -,
where the dots indicate higher'derivatives: ‘It 'must be emphasized that a SW
map is not,uniquely defined by condition (2. 3) . The amblgultles that arise
[5] will be discussed shortly.

The condition-(2.3) yields a simultaneous equation' for A; and A. For the
constant § case, exphcrt solutions of the Serberg—Wltten map have been found
by various: authors up to'second order in¢-{3, 6] "The solutlons swere found
by writing the map-as adinéar-dombination of all: possible termis allowed
by index structure and d1mens1onal constraints and then determining the
coefficients by pluggmg this" expressron irito the SW. ‘equition. The method -
we will describe in the rest of the paper provides a more, systematic procedure'
for solvmg the SW map For the spec1al case of a U(l) gauge group, an

g

8, 9 10, 11] present an inverse of the SW map to all orders in.

An alternative charactérization of the Selberg—Wltten map can be ob-
tained following. [3]. In the ,commutative gauge theory, one may consider
a: ﬁeld % in the fundamental representatlon of : the gauge group. - If we as-
sume that -the SW .map- can, be extended to. 1nclude such fields, then there
will be a field ¥'i in the noncommutative theory ‘with the followmg functional
dependence

- a,8a,-- ), o (25)

(26)




SA = iAxT N )
An alternative to the SW condition (2.3) can now be given by |

» \Il+5A\I!:}Il(z/)+(5a¢,-e-,aj+5aaj?z-~)."_ (28)
More compactly, one writes L ‘ | __ ’ e
(SAQ\I’(@[)_,_GJ','--) :_JC,XII(Q/),aj,-j.-). (29)

The dependence of A on « is shown explicitly on the left hand side; and on
the right hand side 4, acts as a.derivation on the function ¥, with an action
on the variables ¢ and a; given by (2.6) and (2.1) respectively. Next, one
considers the commutator of two infinitesimal gauge transformations

] o [5Aa75Aﬁ] U= [501763] \I} : o . (210)
Since [6a, 0g] = 0_i[a.g), the right hand side of (210) can bé"'r"eWritte'n as

6——:[0( 3]\11 = 5A ZA_z[a 5] * \Il A[a 8] * \Il

i[a, ﬂ]

The last equality follows from the fact that Alis hnear in the ordmary gaugev
parameter, which is infinitesimal. As for the left hand side, .

800 0n,) ¥ = ., z‘Aﬁ*\If'é&A (iAa*T) -
6 8 . \

= 7,(5 Aﬁ -—55Aa)*\1’ +[AO, ) AB]*\I‘
Equatmg the two expressions and droppmg v ylelds

 (8ahs — s )~Z[Aa * Ag) tidpg=0. (211)

An 'ad\‘/anta,ge of this formulation is that (2.11) is an equatldn in ‘:A:'oiﬂ‘y,:
whereas (2.3) must be solved simultaneously in'A-and A;. If (2.11) is’ ‘solved,
(2. 2) Wlth (2.3) then yields an equation for A; and (2.7) w1th (2 8) for \Il

3 The Ghost Field and the C_obo_undaf}; Op-
| erator

It is advantageous to rewrite equations (2.2), (2.7) and (2.11) in terms of a
ghost field in order to make explicit an underlying cohomological structure.
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Specifically, we replace the gauge parameter o with a ghost v, Wthh is an
enveloping algebra valued, Grassmannian. field'. We define a ghost number
by assigning ghost number one to v and zero to a; and . The ghost number
introduces a:Z; grading, with even quantities commuting and ‘odd: quantltles
anticommuting. In our formalism, the gauge transformations-(2:1) ‘and (2:6)
are replaced by the following BRST transformations: N

8,v = 102 | |
5 CI,z = 61} —_— Z[a“v] " (_,', _. Cote (31)

We.also take &, to commute:vs-/isth the partial deriYatives,
go=0. (2

The operator &y has ghost number one and obeys a graded Lelbnlz rule

:v:_‘:; D ;':j;' -

S = (ot (-] )deg(f“fl(avfn o (33)'

where deg(f) glves the ghost number of the expression f. One can read-
ily check that 4, is nllpotent on the ﬁelds @i, '¢v and v and therefore as a
: consequence of (3: 3) we have o : P

i . . ; ( .4)

52—0

the SW map as follows We 1ntroduce a matter ﬁeld A\If.(z/) 81,[), 7; ,a Ba, ‘ -_f‘)‘
and an odd gauge: parameter A(v,dv,---,a, Ba ) correspondmg to-1 and
vin the commutatlve theory ‘Ais lmear in the 1nﬁn1tes1mal parameter v and
hence has ghost number one. As before we requlre that the SW map respect
gauge invariance

| | U =iAxU=69. .. (35
The consistency condltlon (2 10) now takes the form

5A V=80=0, & (3.6)
_ and again it yields an equatlon in A only Smce ‘i

0=00=086,(iA»T) = z6 A*\Il +A*A*\IJ
! In the U(1) case, the introduction of a ghost has been considered by Okuyama [12].




we can drop ¥ and obtain =

SA = ih*A. v (3:7)

Once. the solution of (3 7) is known one can solve the- followmg equatlons
for ¥ and the gauge field

§,U =ihx¥, S,A=0A—i[AtA.  (38)

It is natural to expand :A and A; as power series in the deformation
parameter #. We indicate the order in: ¢ by an upper index in parentheses

A=32, A(")—v-{—z“’_lA("). o
Ai= E i = ai+ Zoo 1 Agn) .
Note that the zeroth order terms are determined by requiring that the SW

map reduce to the identity as:d goes to zero.: Using this expansion we can
rewrite equations (3. 7) and (3 8) as

(3.9)

§AM — ifv, A(")} = M®

5,4 = ifo, AP = U (3-10)

where, in the first equatlon M ® collects all terms of order n which do not
contain A, and similarly U () collects terms not involving A( ™). We refer to
the left hand side of each equation as its homogeneous part, and to M™ and
U™ (™) as the inhomogeneous terms of (3 10). Note that M () contains explicit
factors of 8, originating from the expansion of the Weyl-Moyal product (1.2).
If the SW map’bfof A is known up to order (n—1), then M(™ can be calculated
explicitly as a fimction of v and ;. On the other hand, U, (m) depends'on both
A and A;, the former up to order n and ‘the latter up to order (n — 1) Stlll
one can calculate it iteratively as a function of v and a;.

" The structure of the homogeneous portlons suggests the introduction of
a new operator A :

A { ’ —i{v,-} on odd quantltles (3.11)

—i[v,:] on even quantltles
In particular, A acts on v and @; as follows

Av = —t’v? - .Aai =0 . (3.12)



Asa consequence of its definition, A is an antl derivation. wrth ghost-number
one. Tt follows a graded Leibniz rule identical to the one for 5 (3 3). Another
consequence of the definition (3. 11) is that A is nllpotent o

' The actlon of A on expressrons 1nvolv1ng a;, and 1ts derlvatlves can also
be characterized in geometrlc terms Specrﬁcally, A'differs from 8, in that it
removes the covariant part, of the gauge transformatlon Therefore A acting
on any covariant expressmn will g glve zero. For 1nstance, 1f one constructs the
field-strength, F;; = Oia; — 3 ‘a; — [a,, aJ] one finds by explicit calculation

AF,, :ﬁro. o (3.14)

It can also be checked that the covariant derivative, D; = ; — i[a;, ], com-
mutes w1th A

| N 9> A S )

In terms of A the equatlons (3 10) take the forrn
. BV G YO R ) e
AAP = U™ (3:18)

In the next section, we w1ll provide a rnethod for solvmg these equations.
Also note that smce*Az.-— 0;.1tmust be true that

CAM® =g

AU(") - 0 - (3.17)

: Indeed one should venfy that (3 17) holds order by order. If (3. 17) did not
hold this would SIgnal an inconsistency in ‘the SW map.

Many authors have commented on the amblgultles of the SW map [3 5
6;13]: At any particular order, ‘the ambiguities can be seen as an invariance
of..(3.16) when A is changed by an-amount AS™

A® 5 A L AGE) e (3018)

which’ follows from the fact that A is nllpotent Then the corresponding
change in the potential.is. .. . v :

"*“““:A“sAW+Dﬁ”,j?;T,_I(Mm
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This follows from the fact that the equatlon of order n for the gauge field is
always of the form o _

AAY = DA 4. S (3:20)
where the ellipsis denotes terms which are explicitly 6-dependent. Notice
that (3.19) is a consequence of the fact that the coboundary operator A
commutes with the covariant derivative D;. The ambiguities at order n also
affect the solutions at hlgher order.

These amblgultles can also be understood as an 1nvar1ance of (3.7
-~ and (3.8) under the followmg transformatlons [13]

A = G'NAG+:1G716,G
A = G;‘A5G+iG‘18iG (3.21)
Voo GI

where all products are star products and G is an arbitrary éIémént of the

enveloping algebra with ghost number zero. Notice that G should also be

unitary if we require that A and A; remain real.
To compare (3.21) with (3.18) and (3 19) it is useful to introduce the
operators

Dizepdmgq' (3.22)
A 8y = z[ Ax-] for exren quantities o
A = { 6y — z{A -} for odd quantities , (3.23)
whichi satisfy o o _ :
~ A?=0, [DiA] =0 | (3.24)

and which reduce to D; and A in the hmlt of vamshmg 6. Then (3. 21) can
be rewritten as

A —>;,AV+¢G-IAG | f (3.25)
A = Ai+iG'DG . (3.26)

- To recover (3.18) and (3.19) we set v
G=1-is™, - (3:27)

| and take (3 25) and (3.26) at order n. These ambiguities are ‘of the form of
a gauge transformation. Notice that in the particular case, AS™ =0, A"
is modified while A™ is unaffected.” :



1In [5] it has been observed that there are also other kmds of ambiguities,
which don’t have the form of a gauge transformatlon but are of a cpyalkflant
type To see this, we rewrite the SW equation for A (3 8) using A -

TAA=GN . (3.28)

It is then poss1ble to add to the gauge potentxal a quantlty S,, “

Ay A +Sn AS =05 0 T (3.29)

while keepmg A unchanged

4 The Homotopy Operator

Tl R

For s1mphclty, we begin by cons1der1ng in détail'the’ SW 1 map for thie' case 6f
the gauge parameter A. Much of what we say actudlly’ apphes £6°t1e other
cases as well with minor modifications. = * .

1In the previous section, we have seen.that order by: order inan expans1on
in. 0 .the SW .map:has the forms: 0 e e e ;

AA(n) M(n)

where ‘M™ depends only on A ‘with 1 ¢ n: Clearly, i on could mvert
A soméhow, ‘we could solve for A™). But ‘A"is obvi "sly ot nvertlble as
A? = 0. In particular, the solutions of (4.1) are not usiiqué,sinceif AODigy
solution so is A™ + AS™ for any S50 of ghost number zero®. That is, A acts
like a coboundary operator ifi a cohomology theory, afd the solutlons that
we are looking, for are actually cohomology classes of solutions; unique only
up to the addition of A-exact terms. The formal ex1stence of the SW_map
is then equivalent to the statement that the cycle M), is actually‘Amexact
for all n. Since we know that A? = 0, this fact would follow as a corollary
of thie stronger statement that there i is o nor-trivial- A cohomology in: ghost
numiber two. Itvother words, there are no A-closed, érdef ! 'polynomrials With
ghost number two which are not also A-exact. To prove this stronger claim,
we could proceed as follows. Suppose that we could construct an operator
K such that

KA+AK=1 7 I Y 2)'

";f,:. s - . ";,s‘

2These are preasely the amblgumes ir the SW map; that were ﬁrst dlscussed%m {5],
where our operatorA was: called 6’ e i




Clearly, K must reduce ghost nurnber by one, and therefore must be odd
Consider its actlon on a cycle M, (so AM = 0) ' '

(KA +AK)M = AKM = M. (4.3)

Therefore, M = AA, with A = KM, which not only shows that M is ex-
act, but also computes explicitly a solution to the SW map. We note that
this method of solution is nearly identical to the method used by Stora and
Zumino [14] to solve the Wess-Zumino consistency conditions for nonabelian
anomalies. In fact, it was the parallels between these problems that moti-
vated the current approach. [4]
We now proceed to construct K. First we notice that MY ®) depends on
v only through its derivative G;v, as one can see by looklng at the explicit
expressions.. The same is true for U ) since it depends on v only through A.
It is convenient to define S L L
bi = 6,"{)*, S S (4.4)
so that M and U; can all be expressed as functions of a;, b; and their deriva-
tives only. Furthermore, we rewrite M (™ solely in terms of:covariant deriva-
tives, rather than ordinary ones. After these replacements, we may consider
M an element of the algebra generated by a;, b;, and D;. As explained in
the next section this algebra is not free, but for the moment we ignore this
issue., The action of the operator A takes on a partlcularly simple form in
terms of these variables:

Aai=b;, Ab=0, [A,D]=0.  (45)

Let us ﬁrst define an odd operator L whlch obeys the super Le1bn1z rule,
and satlsﬁes

La; =0, Lb_az, oj=0. (4.6)

Actmg on elther a or b, we have LA + AL =1, but thlS is.no longer true.
acting 'on monomials of higher order...The solutlon is to define :

K=p"rL, @D

where D! is a linear operator which when acting on a monomial of total
order d in ¢ and b multiplies that monomial by 1/d. In can be proven that
K defined in this way satisfies (4:2) when acting ot monomials of degree
greater than or equal to one. Since L satisfies the Leibniz rule, we see that



L? =0, by considering 1ts action on the generators of the algebra (4 6). It
then follows that o R
K*=0. ' (4-8)

Notice that this jprescription irequires that we rewrite any expression involving
ordinary-derivatives in'terms of covariant derivatives and gauge fields only.

5 Constramts

We have S0 fa,r only con51dered the free algebra generated by a, ) b and D;,
where the constructlon of K was relatlvely s1mple To show that our algebra»
is not free cons1der the followmg

5 AE] = A(D aJ - Dja; + ifai, aj]) . .' (5‘1)
—Db Db +z[b,,a]]+z[a,,b] ST
Asian elémert of the Af-re"e*“;emlgebra, "the‘ right-hand side is not zero; bit ac-
cording to (3. 14) the left hand side should be. The probléinibecomes more
serious ‘when-ore: fewritessM (M intérms of the elements of the: free algebra.
Beyond first .order, one finds thdt AM™ is:no loiigér zero: in “genetal, but
vanishes only by using the following constraints :

(P ] —ilDa D) =0, AFs=0. _  (52)

IEAM (") is not zero identically, K no longer inverts A when acting on M (”)
and we no longer have a method for solving (3.16) for A®). The origin of the
constraints can be traced:to the fact that partial derivatives. commute -

R

since b; = d;v. This is'no longer manifest in our algebra. In fact, written
in terms of covariant derivatives, (5. 3) becomes (5.2). There seems to be no
way “t6-eliminate thése’ constra,mts since K is not defined on v, but only on
by =G, One’ mlght expect that ‘at hlgher orders oné" would have t6 use
additional cotistraints to- venfy that AM™ vamshes but thls is not the'¢ case :
For exa,mple, when one rewrltes o ' AT IR

et e oty

R 68k Bjakbi =90 R | . (54)
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in terms of covariant derivatives, the resulting expression is not an indep‘en—
dent constraint, but can be wrltten in terms of the two fundamental ones
(5.2).

The reason why AM ™ is not zero in general is because the existence of
the constraints- allows us to write M{ in terms of the algebra elements in
many different ways. Our goal will then be to define a procedure for writing
M®™ in terms of algebra elements so that AM™ = 0 1dentlcally We will
describe two. procedures. ‘

The first is the method used in [4] to calculate some low order terms of
the SW map. One begins by obtaining an expression for M (") in terms of the
algebra elements. Generically, AM®™ will be proportlonal to the constramts
At low orders, once AM™ is calculated, it is easy to guess an expression

m(™ which is proportional to the constraints, such that the combination
M® 4 m(™ is annihilated by A. Acting K on this new combination then
gives the solution A("). We believe this guessing method can be formalized,
but at higher orders the second procedure which we will now describe seems
to be more systematic. S ‘ -

. First we introduce a new. element of the algebra f”, which is annlhllated
by all the operators defined in previous sections .

Afij = Lf;=0. ' (5.5)
We also introduce a new constraint =
fi—Fy=0, - (66

where F;; is considered a function.of D; and a;. We want to show that- using
this enlarged algebra and the constralnts we can rewrite M(™ so that it has
the following dependence

M™ = M™(a,b,(D*a),, (D b)s,D"f) (57

where the subscrlpt s mdlcates that all the 1nd1ces w1th1n the parentheses
shpul_d be totally symmetrized. It would then follow that AM ™ depends
on the same variables. Since it is impossible that AM(™ contains any term
antisymmetric in the indices of Da or Db, the constraints. (5.6) and (5.2)
cannot be generated. However, we may find that AM ™) is proportional to
the following constraints :

[fija'] - Z[DiaDJ]() =0, Difjk + Djfki + Dkfij =0. (58)

11



Since these constraints commute with the action of both K. and A,
add to M a term proportional to (5.8), our result for AW = K M
unchanged To. show .that -we.can actually write .M: in. the form suggested
above, we-begin with an expression for M(™ .as found by.expanding the star

product G
M®™ = M®)(q, (ak) a (a’)su) ‘ , (5 9)

where we choose to exphcltly erte the derlvatlves 1n symmetrlc form By l
replacing 0(- ) — D( ) + ila, ], and 6'0 b the expressron ‘takes the form

{

M(”) —,M(”)(a b, (Dk)sa (' b)) o (5 140)

The difference (D*a), — Dka contains terms that 'a're propofti:é)ndl to the
antisymmetric parts of DD or Da. But using the constraints we can: make
the followrng substitutions: * '

D4 DJ0) = lf ] Dt~ Daz—>f,, [a;,aJ 6

Thrs must be done recursrvely since the commutator term mvolvmg a’ sta,bove
may again be acted on by D’s. But at each step, the number of possrble D’s
acting on“a is reduced by eie: After carrymg out thls procedure M™ will
have the form (5.7). O T L N R A

Ten

Acknowledgment

We are very 1ndebted to Juhus Wess “for- expla,lmng to'us some-of: hrs recent
work [3]. We are also grateful to Raymond Stora for the valaable ¢comments
we received from him. This paper is a modified version of the lecture that
B. Zumino gave at the conference “2001: A Spacetrme Odyssey”, Mlchlgan
Center for Theoreticil Phyisics;" “Ann Arbor, May''21-95. “This work was
- supported in part by the Director, Office of Science, Office of High Energy
and Nuclear Physncs D1v181on of ngh Energy Physrcs of the U S Department
of Energy under Contract DE—ACO3 76SF00098 and in part by the National
Science Foundation ander:-grant. PHY-95-14797. B:L.C.’is supported by the
DFG (Deutsche Forschungsgemeinschaft) undet grant-CE 50/1-2::-

12

is -




References

(1]

[2]

(3]
(4]

[5]

6]

[9]

[10]

[11]

A. Connes, M. R. Douglas, A. Schwarz, Noncommutative vGeome'try and
Matriz Theory: Compactification on Tori, JHEP 02:003 (1998) “hep-
th/9711162

N. Seiberg, E. Witten, String theory and noncommutatwe geometry,
JHEP 9909: 032 (1999), hep- th/9908142 ‘

B. Jurto, L. Moller, S. Schraml, P. Schupp, J. Wess, Constructwn of
non-Abelian gauge theories on noncommutative spaces, preprint LMU-

TPW 2001-03, MPI-PhT/2001-08, hep-th/0104153

D. Brace, B. L. Cerchiai, A. Pasqﬁa, U. Varadarajan, B. Zumino, A
Cohomological Approach to the Non-Abelian Seiberg- Wztten Map, JHEP
06:047 (2001) , hep th/0105192

T. Asakawa, I. Kishimoto, Comments on Gauge Equivalence in Non-
commutative Geometry, JHEP 9911‘024 (1999), -hep-t-h/9909139

S. Goto, H. Hata, Noncommutative Monopole at the second order in O,
Phys. Rev. D 62:085 (2000), hep-th/0005101

B. Jurco, P. Schupp Noncommutative Yang-Mills from equivalence of
star products, Eur. Phys. C 14:367 (2000), hep-th/0001032; B. Jurco,
P. Schupp, J. Wess, Nonabelian noncommutative gauge theory via non-
commutative  extra dzmenszons, ‘Nucl. Phys. B604:148 (2001), hep-
th/0102129 : :

H. Liu, *-Trek II: %, Opemtzons open Wzlson lines and the Sezberg-
Witten map, preprint RUNHETC 00-45, hep- th/0011125

Y. Okawa, H. Ooguri, An ezact solution to Sezberg—Wztten equatzon of
noncommutative gauge theory, preprmt hep th/ 0104036

S. Mukhi, N. V. Suryanarayana Gauge- Invamant Couplings of Non-
commutative Branes to Ramond-Ramond Backgrounds, JHEP 0105:023
(2001), hep-th/0104045

H. Liu, J. Michelson, Ramond-Ramond Couplings of Noncommutative
D-branes, preprint NSF-ITP-01-29, hep-th/0104139

13



[12] K. Okuyama, Comments on Open Wilson Lines and Generalized Star
Products, Phys.Lett. B506:377 (2001), hep-th/0101177

[13] R. Stora, private communications

{14] B. Zumino, Chiral anomalies and differential geometry, in ‘Relativity,
Groups and Topology II’, Les- Houches 1983, B. S. DeWitt, R. Stora
(eds.), reprinted in S. B. Treiman, R. Jackiw, B. Zumino, E. Witten,
‘Current algebra and anomalies’, World Scientific, Singapore (1985)

14.




ERNEET ERANEE LAYEENER EEEEY NATERAL LAEERATER
EE BVELMETREN READ | BERNELEY, BALUFERRNS 4780

reparedlionthatiSiDepartmentfoffEnergyfunderfGontractiNoYDED




