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Multiple Arrivals using Liouville Equations 
S. Fomel and J .A. Sethian 
Mathematics Department 

Lawrence Berkeley National Laboratory 
University of California, Berkeley 

April 16, 2001 1 

Traveltime from a fixed source rex) in an isotropic medium (x ERN) IS 

governed by the eikonal equation 

(1) 

where vex) is the velocity distribution. 
The rays [characteristics of equation (1)] are defined by the system of Hamilton

Jacobi ordinary. differential equations: 

dx 
dt 
dp 

dt 

v2 (x)p; 

1 
- vex) \7v , 

(2) 

(3) 

where t has the meaning of the traveltime along the ray, and p corresponds to 
\7r and is constrained by the Hamilton equation 

(4) 

equivalent to (1). 
In the two-dimensional case, where x = {x, z}, it is convenient to introduce 

the angle Bbetween the vertical. and the slowness vector p such that p = 
{sinB/v(x,z),cosB/v(x,z)}. Equation (4) is then automatically satisfied, and 
we can rewrite system (2-3) in the form 

dx 
v ( x , z) sin B ; (5) 

dt 
dz 

vex, z) cos B ; (6) 
dt 
dB ov. ov 

(7) - sm B - - cos B . 
dt oz ox 

The initial conditions for solving system (5-7) consist of the initial point {xo, zo} 
and the take-off angle Bo. 

The solution of system (5-7) as a function of time t and the initial conditions 
Xo, Zo, and Bo satisfies the Liouville partial differential equations: 

ox . ox ox ( ov ov ) ox - + v sm Bo -- + v cos Bo -- + - sin Bo - -- cos Bo -
at oxo oZo oZo oXo aBo 

0~8) 

IThis Lawrence Berkeley National Laboratory Technical Report was written on April 16, 
2001. Backup files listing from Department of Energy computers are included at the end of 
the report, as well as dated e-mail containing the correspondence between the two authors. 

1 



oz . oz oz (ov. ov ) oz 
~ + v sm 00 ~ + V cos 00 ~ + ~ sm 00 - ~ cos 00 
ut _ uXo uZo uzo uXo aBo 

0~9) 

8B . 8B 00 (ov. ov ) oB 
~ + v sm Bo ~ + v cos 00 ~ + ~ sm Bo - ~ cos Bo 
ut uXo uZo uZo uXo 000 

= ~~O) 

where the velocity v is evaluated at {xo, zo}. The appropriate initial conditions 
for system (8-10) are {x, z, O} = {xo, Zo, eo} at t = O. 

Let us denote by T( x, z, 0) the time at which the ray that starts at point 
{x, z} with the take-off angle B first reaches the surface z = O. Correspondingly, 
the emergence point and the emergence angle of this ray at the surface will be 
defined by functions X (x, z, B) and 0( x, z, B). Differentiating the condition 

z(T(xo, Zo, (0), xo, Zo, (0) = 0 , (11) 

where z(t, Xo, Zo, Bo) is the solution of equation (9), we find that, in the re
gion where ~; is different from zero, the function T has to satisfy the partial 
differential equation 

. ~ ~ (~. ~ )~ v(x,z) smO ax + v(x,z) cosO oz + OZ smO - ax cosB 8B = 1. (12) 

with the boundary condition T!z=o = o. As follows from equations (12),(8), 
and (10), and the conditions 

x(T(xo, Zo, (0), xo, Zo, 00) 

B(T(xo, Zo, 00), Xo, Zo, 00) 

X(xo, Zo, Bo) ; 

0(xo, Zo, Bo) , 

(13) 

(14) 

the functions X(x, z, B) and 0(x, z, 0) additionally satisfy the orthogonal equa
tions 

. aX aX (ov. ov ) aX 
v(x,z) smO ax +v(x,z) cosO a; + oz smB- ax cosB To !XI5) 

. 00 00 (ov. ov ) 00 
v(x,z) smB ax +v(x,z) cosO a; + oz smO- ax cosO oB !XI6) 

with the boundary conditions X!z=o = x and 0/z=0 = B. 
We propose to apply equations (12), (15) and (16) for a numerical com

putations of ,traveltimes on a fixed x, z grid. Although both T(x, z, B) and 
X(x, z, B) functions are strictly single-valued, we can extract from them the 
possibly multi-valued travel times from every grid point x, z to a surface point 
yat z = O. The extraction would simply amount to evaluating T(x, z, B) at the 
level set of X(x, z, 0) = y. 
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Dated E-mail Correspondence containing Technical Memo 

From fomeIQmath.lbl.gov Mon Apr 16 14:00 PDT 2001 
Received: from math.lbl.gov (math.lbl.gov [128.3.7.22]) 
by math.berkeley.edu (8.9.3/8.9.3) with ESMTP id OAA04060 
for <sethian@math.berkeley.edu>; Mon, 16 Apr 2001 14:00:25 -0700 (PDT) 
Received: from dniepr (dniepr.lbl.gov [128.3.3.153]) 
by math.lbl.gov (8.10.2/8.10.2) with SMTP id f3GLOPD27256 
for <sethianQmath.berkeley.edu>; Mon, 16 Apr 2001 14:00:25 -0700 (PDT) 
Message-Id: <200104162100.f3GLOPD27256@math.lbl.gov> 
Date: Mon, 16 Apr 2001 14:01:16 -0700 (PDT) 
From: Sergey Fomel <fomel@math.lbl.gov> 
Reply-To: Sergey Fomel <fomeI0math.lbl.gov> 
Subject: Re: Your Message Sent on Tue, 10 Apr 2001 09:41:07 -0700 (PDT) 
To: sethian@math.berkeley.edu 
MIME-Version: 1.0 
X-Mailer: dtmail 1.3.0 CDE Version 1.3 SunDS 5.7 sun4u spare 
Content-Type: MULTIPART/mixed; BOUNDARY=Band_of_Gorillas_852_000 
Content-Length: 7111 
Status: RO 
X-Status: 
X-Keywords: 
X-UID: 352 

--Band_of_Gorillas_852_000 
Content-Type: TEXT/plain; charset=us-ascii 
Content-MD5: m/JCi/3d78hmCIIQgeIGOeg== 

>1 would think that we should indeed link them together. Can you send me 
>a very short latex file with the equations, pointing to the exact 
>point you mean - I want to think about it while I am traveling .... 

Jamie, 

Please find the latex file enclosed. The explanation is very raw and will 
probably need some refining, but the main equations are there. 

I have been reading, some more literature on the subject. Apparently, the idea of 
computing traveltimes in the (x,z,theta) space is not new. This idea is the 
essence of Maslov's asymptotic ray theory. Asymptotic theoreticians (like 
Hormander) use it to construct uniform asymptotics of the ray-theoretical 
solution near the caustics. However, the idea to use Liouville's POE and the 
corresponding numerical scheme look like an entirely new computational approach. 

Have a nice trip. I plan to be in the office on lIednesday. 

Sergey 

--Band_of_Gorillas_852_000 
Content-Type: TEXT/plain; name="theory.tex"; charset=us-ascii; x-unix-mode=0644 
Content-Description: theory.tex 
Content-M05: sOqmS4duOZQOHleCwIlkHQ== 

Traveltime from a fixed source $\tau(\bold{x})$ in an isotropic medium 
($\bold{x} \in R-N$) is governed by the eikonal equation 
\begin{equation} 

\label{eq:eikonal} 
\leftl\nabla \tau\rightI A 2\,v-2(\bold{x}) = 1\;, 

\end{equation} 
where $v(\bold{x})$ is the velocity distribution. 

The rays [characteristics of equation-(\ref{eq:eikonal})] are defined 
by the system of Hamilton-Jacobi ordinary differential equations: 
\begin{eqnarray} . 

\label{eq:xray} 
\frac{d \bold{x}}{d t} It It vA 2(\bold{x})\,\bold{p}\;; \\ 
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\label{eq:pray} 
\frac{d \bold{p}}{d t} t = t . \frac{l}{v(\bold{x})}\,\nabla v\;, 

\end{eqnarray} 
where $t$ has the meaning of the traveltime along the ray, and 
$\bold{p}$ corresponds to $\nabla \tau$ and is constrained by the 
Hamilton equation 
\begin{equation} 

\label{eq:hamilton} 
\leftl\bold{p}\rightl-2\,v-2(\bold{x}) 1\;, 

\end{equation} 
equivalent to-(\ref{eq:eikonal}). 

In the two·dimensional case, where $\bold{x} = \{x,z\}$, it is 
convenient to introduce the angle-$\theta$ between the vertical and 
the slowness vector-$\bold{p}$ such that $\bold{p} = . 
\left\{\sin{\theta}/v(x,z),\cos{\theta}/v(x,z)\right\}$. 
Equation-(\ref{eq:hamilton}) is then automatically satisfied, and we 
can rewrite system-(\ref{eq:xray}·\ref{eq:pray}) in the form 
\begin{eqnarray} 

\label{eq: xt} 
\frac{d xHd t} t & v(x,z)\, \sin{\theta}\;; \\ 
\label{eq: zt} 
\frac{d zHd t} &. & v(x,z)\, \cos{\theta}\;; \\ 
\label{eq:thetat} 
\frac{d \ thetaHd t} & = .& 
\frac{\partial v}{\partial z}\,\sin{\theta} . 
\frac{\partial v}{\partial x}\,\cos{\theta}\;. 

\end{eqnarray} 
The initial conditions for solving 
system- (\ref{eq :xt}·\ref{eq: thetat}) consist of the initial 
point-$\{x.O,z.O\}$ and the take·off angle-$\theta.O$. 

The solution of system-(\ref{eq:xt}·\ref{eq:thetat}) as a function of 
time $t$ and the initial conditions $x.O$, $z.O$, and $\theta.O$ 
satisfies the Liouville partial differential equations: 
\begin{eqnarray} 

\label{eq: xl} 
\frac{\partial x}{\partial t} + v\,\sin{\theta.O}\, 
\frac{\partial x}{\partial x.O} + v\,\cos{\theta.O}\, 
\frac{\partial xH\partial z.O} + \left( 

\frac{\partial v}{\partial z.O}\,\sin{\theta.O} . 
\frac{\partial v}{\partial x_O}\,\cos{\theta.O}\right)\, 

\frac{\partial x}{\partial \theta.O} & = & 0\;; \\ 
\label{eq:zl} 
\frac{\partial z}{\partial t} + v\,\sin{\theta.O}\, 
\frac{\partial z}{\partial x.O} + v\,\cos{\theta.O}\, 
\frac{\partial z}{\partial z.O} + \left( 

\frac{\partial v}{\partial z.O}\,\sin{\theta.O} . 
\frac{\partial v}{\partial x.O}\,\cos{\theta.O}\right)\, 

\frac{\partial z}{\partial \theta.O} & = & 0\;; \\ 
\label{eq:thetal} 
\frac{\partial \theta}{\partial t} + v\,\sin{\theta.O}\, 

·\frac{\partial \theta}{\partial x.O} + v\,\cos{\theta.O}\, 
\frac{\partial \theta}{\partial z.O} + \left( 

\frac{\parti~l v}{\partial z.O}\,\sin{\theta.O} . 
\frac{\partial vH\partialx.O}\, \cos{\ theta.O}\right) \, 

\frac{\partial \theta}{\partial \theta.O} & = & 0\;, 
\end{eqnarray} 
.. here the velocity $v$ is evaluated at $\{x.O,z.O\}$. The appropriate 
initial conditions for system-(\ref{eq:xl}·\ref{eq:thetal}) are 
$\{x,z,\theta\} = \{x.O,z.O,\theta.O\}$ at $t=O$. 

Let us denote by $T(x,z,\theta)$ the time at which the ray that starts 
at point $\{x,z\}$ with the take·off angle $\theta$ first reaches the 
surface $z=O$. Correspondingly·, the emergence point and the emergence· 
angle of this ray at the surface will be defined by functions 
$X(x,z, \ theta)$ and $\Theta(x,z, \theta)$ . Differentiating the 
condition 
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\begin{equation} 
\label{eq:zsurface} 
z(T(x_O,z_O,\theta_O),x_O,z_O,\theta_O) = 0\;, 

\end{equat ion} 
'where $z(t,x_O,z_O,\theta_O)$ is the solution of 
equation-(\ref{eq:zl}), we find that, in the region where 
$\frac{\partial z}{\partial t}$ is different from zero, the function 
$T$ has to satisfy the partial differential equation 
\begin{equation} 

\label{eq:tmarch} 
v(x,z)\,\sin{\theta}\, 

\frac{\partial T}{\partial x} + v(x,z)\,\cos{\theta}\, 
\frac{\partial T}{\partial z} + \left( 

\frac{\partial v}{\partial z}\,\sin{\theta} -
\frac{\partial v}{\partial x}\,\cos{\theta}\right)\, 

\frac{\partial T}{\partial \theta} = 1\;. 
\end{~quation} 

with the boundary condition $\left .T\right 1_ {z=O} 0$. As follows 
from equations-(\ref{eq:tmarch}), (\ref{eq:xl}), 
and-(\ref{eq:thetal}), and the conditions 
\begin{eqnarray} 

\label{eq:xsurface} 
x(T(x_O,z_O,\theta_O),x_O,z_O,\theta_O) & & 
X(x_O,z_O,\theta_O)\;; \\ 
\label{eq:thetasurface} 
\theta(T(x_O,z_O,\theta_O),x_O,z_O,\theta_O) & & 
\Theta(x_O,z_O,\theta_O)\;, 

\end{eqnarray} 
the functions $X(x,z, \theta)$ and $\Theta(x',z, \theta)$ additionally 
satisfy the orthogonal equations 
\begin{eqnarray} 

\label{eq:xmarch} 
v(x,z)\,\sin{\theta}\, 
\frac{\partial X}{\partial x} + v(x,z)\,\cos{\theta}\, 
\frac{\partial X}{\partial z} + \left ( 

\frac{\partial v}{\partial z}\,\sin{\theta} -
\frac{\partial v}{\partial x}\,\cos{\theta}\right)\, 

\frac{\partial X}{\partial \theta} & = & 0\;. \\ 
\label{eq:thetamarch} 
v(x,z)\,\sin{\theta}\, 
\frac{\partial \Theta}{\partial x} + v(x,z)\,\cos{\theta}\, 
\frac{\partial \Theta}{\partial z} + \left( 

\frac{\partial v}{\partial z}\,\sin{\theta} -
\frac{\partial v}{\partial x}\,\cos{\theta}\right)\, 

\frac{\partial \Theta}{\partial \theta} & = & 0\;. 
\end{eqnarray} 
with tho boundary conditions $\left.X\rightl_{z=O} x$ and 
$\left.\Theta\rightl_{z=O} = \theta$. 

We propose to apply equations-(\ref{eq:tmarch}), (\ref{eq:xmarch}) and 
(\ref{eq:thetamarch}) for a numerical computations of travel times on a 
fixed ${x,z}$ grid. Although both $T(x,z,\theta)$ and $X(x,z,\theta)$ 
functions are strictly single-valued, we can extract .from them the 
possibly multi-valued traveltimes from every grid point ${x,z}$ to a 
surface point $y$ at $z=O$. The extraction would simply amount to 
evaluating $T(x,z,\theta)$ at the level set of $X(x,z,\theta) = y$. 
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Traveltime from a fixed source $\tau(\bold{x})$ in an isotropic medium 
($\bold{x} \in RAN$) lS governed by the eikonal equation 
\begin{equation} 

\label{eq:eikonal} 
\leftl\nabla \tau\rightI A2\,vA2(\bold{x}) = 1\;, 

\end{equation} 
where $v(\bold{x})$ is t"he velocity distribution. 

The rays [characteristics of equation-(\ref{eq:eikonal})] are defined 
by the system of Hamilton-Jacobi ordinary differential equations: 
\begin{eqnarray} 

\label{eq:xray} 
\frac{d \bold{x}}{d t} & & v A2(\bold{x})\,\bold{p}\;; \\ 
\label{eq:pray} 
\frac{d \bold{p}}{d t} & & - \frac{l}{v(\bold{x})}\,\nabla v\;, 

\end{eqnarray} 
where $t$ has the meaning of the traveltime along the ray, and 
$\bold{p}$ corresponds to $\nabla \tau$ and is constrained by the 
Hamilton equation 
\begin{equation} 

\label{eq:hamilton} 
\leftl\bold{~}\rightIA2\,vA2(\bold{x}) 1\;, 

\end{equation} 
equivalent.to-(\ref{eq:eikonal}) . 

In the two-dimensional case, where $\bold{x} = \{x,z\}$, it is 
convenient to introduce the angle-$\theta$ between the vertical and 
the slowness vector-$\bold{p}$ such that $\bold{p} = 
\left\{\sin{\theta}/v(x,z) ,\cos{\theta}/v(x,z)\right\}$. 
Equation-(\ref{eq:hamilton}) is then automatically satisfied, and we 
can rewrite system-(\ref{eq:xray}-\ref{eq:pray}) in the form 
\begin{eqnarray} 

\label{eq:xt} 
\frac{d x}{d t} & & v(x,z)\,\sin{\theta}\;; \\ 
\label{eq:zt} 
\frac{d z}{d t} & & v(x,z)\,\cos{\theta}\;; \\ 
\label{eq:thetat} 
\frac{d \theta}{d t} & = & 
\frac{\partial v} {\partial z}\,\sin{\theta} -
\frac{\partial v} {\partial x}\,\cos{\theta}\;. 

\end{eqnarray} 
The initial conditions for solving 
system-(\ref{eq:xt}-\ref{eq:thetat}) consist of the initial 
point-$\{x_O,z_O\}$ and the take-off angle-$\theta_O$. 

The solution of system-(\ref{eq:xt}-\ref{eq:thetat}) as a function of 
time $t$ and the initial conditions $x_O$, $z_O$, and $\theta_O$ 
satisfies the Liouville partial differential equations: 
\begin{eqnarray} 
\label{eq:xl} 
\frac{\partial x} {\partial t} + v\,\sin{\theta_O}\, 
\frac{\partial x} {\partial x_OJ + v\,\cos{\theta_O}\, 
\frac{\partial x} {\partial z_O} + \left( 

\frac{\partial v} {\partial z_O}\,\sin{\theta_O} -
\frac{\partial v} {\partial x_O}\,\cos{\theta_O}\right)\, 

\frac{\partial x} {\partial \theta_O} & = & 0\;; \\ 
\label{eq: zl} 
\frac{\partial z}{\partial t} + v\,\sin{\theta_O}\, 
\frac{\partial z}{\partial x_OJ + v\,\cos{\theta_O}\, 
\frac{\partial z}{\partial z_O} + \left( 
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\frac{\partial v} {\partial z_O}\,\sin{\theta_O} -
\frac{\partial v} {\partial x_O}\,\cos{\theta_O}\right)\, 

\frac{\partial z}{\partial \theta_O} & = & 0\;; \\ 
\label{eq:thetal} -
\frac{\partial \theta} {\partial t} + v\,\sin{\theta_O}\, 
\frac{\partial \theta}{\partial x_a} + v\,\cos{\theta_O}\, 
\frac{\partial \theta}{\partial z_O} + \left( 

\frac{\partial v} {\partial z_O}\,\sin{\theta_O} -
\frac{\partial v} {\partial x_O}\,\cos{\theta_O}\right)\, 

\frac{\partial \theta}{\partial \theta_O} & = & 0\;, 
\end{eqnarray} 
where the velocity $v$ is evaluated at $\{x_O,z_O\}$. The appropriate 
initial conditions for system-(\ref{eq:xl}-\ref{eq:thetal}) are 
$\{x,z,\theta\} = \{x_O,z_O,\theta_O\}$ at $t=O$. 

Let us denote by $T(x,z,\theta)$ the time at which the ray that starts 
at point $\{x,z\}$ with the take-off angle $\theta$ first reaches the 
surface $z=O$. Correspondingly, the emergence point and the emergence 
angle of this Fay at the surface will be defined by functions 
$X(x,z,\theta)$ and $\Theta(x,z,\theta)$. Differentiating the 
condition 
\begin{equation} 

\label{eq:zsurface} 
z(T(x_O,z_O,\theta_O) ,x_O,z_O,\theta_O) = 0\;, . 

\end{equation} 
where $z(t,x_O,z_O,\theta_O)$ is the solution of 
equation-(\ref{eq:zl}), we find that, in the region where 
$\frac{\partial z}{\partial t}$ is different {rom zero, the function 
$T$ has to satisfy the partial differential equation 
\begin{equation} 

\label{eq:tmarch} 
v(x,z)\,\sin{\theta}\, 

\frac{\partial T}{\partial x} + v(x,z)\,\cos{\theta}\, 
\frac{\partial T}{\partial z} + \left( 

\frac{\partial v} {\partial z}\,\sin{\theta} -
\frac{\partial v} {\partial x}\,\cos{\theta}\right).\, 

\frac{\partial T}{\partial \theta} = 1\;. 
\end{equation} 
with the boundary condition $\left.T\rightl_{z=O} 0$. As follows 
from.equations-(\ref{eq:tmarch}), (\ref{eq:xl}), 
and-(\ref{eq:thetal}), and the conditions 
\begin{eqnarray} 

\label{eq:xsurface} 
x(T(x_O,z_O,\theta_O) ,x~O,z_O,\theta_O) & & 
X(x_O,z-.:O,\theta_O)\;; \\ 
\label{eq:thetasurface} 
\theta(T(x_O,z_O,\theta_O) ,x_O,z_O,\theta_O) & & 
\Theta(x_O,z_O,\theta_O)\;, 

\end{eqnarray} 
the functions$X(x,z,\theta)$ and $\Theta(x,z,\theta)$ additionally 
satisfy the orthogonal equations 
\begin{eqnarray} 

\label{eq:xmarch} 
v(x,z)\,\sin{\theta}\, 
\frac{\partial X} {\partial x} + v(x,z)\, \cos{\theta}\, 
\frac{\partial X} {\partial z} + \left( 

\frac{\partial v} {\partial z}\,\sin{\theta} -
\frac{\partial v} {\partial x}\,\cos{\theta}\right)\, 

\frac{\partial X} {\partial \theta} & = & 0\;. \\ 
\label{eq:thetamarch} 
v(x,z)\,\sin{\theta}\, 
\frac{\partial \Theta} {\partial x} + v(x,z)\,\cos{\theta}\, 
\frac{\partial \Theta}{\partial z} + \left( 

\frac{\partial v} {\partial z}\,\sin{\theta} -
\frac{\partial v} {\partial x}\,\cos{\theta}\right)\, 

\frac{\partial \Theta}{\partial \theta} & = & 0\;. 
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\end{eqnarray} 
with the boundary conditions $\left.X\rightl_{z=O} 
$\left.\Theta\rightl_{z=O} = \theta$. 

x$ and 

We propose to apply equations-(\ref{eq:tmarch}), (\ref{eq:xmarch}) and 
(\ref{eq:thetamarch}) for a numerical computations of traveltimes on a 
fixed ${x,z}$ grid. Although both $T(x,z,\theta)$ and $X(x,z, \theta)$ 
functions are strictly single-valued, we can extract from them the 
possibly multi-valued traveltimes from every grid point ${x,z}$ to a 
surface point $y$ at $z=O$. The extraction would simply amount to 
evaluating $T(x,z,\theta)$ at the level set of $X(x,z,\theta) = y$. 
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