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Abstract 

We consider the Hald system of coupled oscillators and apply to 
it the optimal prediction algorithm with memory kernel. We consider 
three different constructions for the kernel and compare their rela­
tive performance. We also observe that the exact average solution to 
the Hald system depends on the initial conditions in a nearly linear 
fashion. 

1 The Hald System and a Brief Overview of 
Optimal Prediction Theory. 

1.1 The Hald System. 

The Hald system is a Hamiltonian system of four differential equations de­
fined below. It was introduced and considered in [1]. This system is a useful 
model because it is nonlinear and at the same time is simple enough for anal­
ysis. The Hald Hamiltonian is H( qI, PI, q2, P2) = H qf + pi + q~ + p~ + qfq~)· 
Here ql, PI and q2, P2 represent the positions and momenta of two coupled 
oscillators. This leads to the following equations of motion: 
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dql 
ql(O) = qlO (1) dt = Pl 

dPl 2 
dt = -ql - qlq2' Pl (0) = PlO (2) 

dq2 
q2(0) = q20 (3) . dt = P2 

dP2 2 
dt = -q2 - q2ql' P2(0) = P20 (4) 

In the rest of the article we assume that the initial conditions qlO, PlO for 
ql(t), and Pl(t) are given real numbers, while the initial conditions q20,P20 for 
q2( t), P2(t) are random. The joint probability distribution for (qlO, PlO, q20, P20) 
is assumed to have density 

1 
Pcanonical(qlO,plO, q20,P20) = Zexp( -H(qlO,PlO, q20,P20))' (5) 

Here Z is a normalization constant chosen to make the integral of the density 
function over the entire space R4 to be one. This measure on the space of 
initial conditions is known in physics as the canonical measure. The distribu­
tion of the initial data (qlO, PlO, q20, P20) defined by this measure is known as 
the canonical distribution. If qlO, PIO are fixed numbers then the probability 
distribution for q20, P20 has the conditional density 

. 1 
Pconditional(q2o,P20) = Zm exp( -H(qlO,PlO, q20,P20)) (6) 

where Zm = Zm(qlO,plO) is a constant chosen to make the integral of the 
conditional density over q20 and P20 equal to one. 

We are interested in computing the average time evolution of Pl(t), ql(t) 
where th~ average is taken over all possible values of q20, P20 with qlO, PlO 
fixed. In other words we want to compute 

(7) 

and 
(8) 

The conditional expectation here is computed with respect to the canonical 
measure defined above. The definition of conditional expectation can be 
found in the appendix or in [2]. 
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Informally, these quantities describe the result of the following experi­
ment. First we fix values of qlO, PlO. Second, we sample q20, P20 from the 
distribution defined by the conditional density Pconditional (q2o, P20). Third, 
now that we have the full set of initial conditions for the Hald system we 
compute time evolution of ql(t) and Pl(t) up to some time T. We repeat 
steps two and three many times. Finally for each time t E [0, T] we com­
pute the arithmetic average of the ql(t),Pl(t) over all the samples we took. 
One approach to estimating the average time evolution is reviewed in the 
following section. 

1.2 Non-Markovian Optimal Prediction Theory as it 
Applies to the Bald System. 

In [1] it was shown through the use of the Mori-Zwanzig formali~m and 
some approximations that under certain conditions the time evolution of 
Yl(t), Y2(t) can be approximated by the solutions of the following system of 
integrodifferential equations: 

dYl 
dt = Y2 

dY2 . Yl lot 
-d =-Yl- 2- K(t,S)Y2(S)ds, 

t 1 + Yl 0 . 
(9) 

Here K (t, s) is an appropriate mem<;>ry kernel which remains to be defined. 
Observe that these equations are non-Markovian since the right hand side 
depends on the entire history of Y2( t). 

The memory kernel K(t,s) is obtained as follows. Let R(ql,Pl,P2,q2) = 
-ql - qlq~ be the right hand side of equation (2). Define the function 

W(ql,Pl) = E [R(ql,Pl,P2, q2))lql,Pl] = 

kk R(PI,qI,P2,q2)Pcanonical(Pl,qllP2,q2)dp2dq2 = -qI - 1 !lqi(lO) 

Here the conditional expectation is taken with respect to the canonical mea­
sure. Observe that W(ql,Pl) only depends on qll for this reason from now on 
we will refer to it as w( qd. 

Consider the set of solutions {( ql (t), PI (t), P2(t), q2(t))} of the Hald system 
for all possible initial conditions (ql(0),Pl(0),P2(0),q2(0)). We assume that 
initial conditions are distributed in accordance with the canonical measure.-
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This set of all solutions can be view as a stochastic process {S(t)} which is 
completely defined by the canonical measure and the Hald system of differ­
ential equations. For convenience of notation we introduce three stochastic 
processes. The stochastic process {A( t)} is the right hand side of (2) when 
initial data are sampled from the canonical distribution: 

(11) 

The stochastic process {B(t)} can be interpreted as an average of {A(t)}: 

{B(t)} = {W(Ql(t))}. (12) 

Finally, {GCt)} is the difference of {A(t)} and {B(t)}: 

The memory kernel I«t, s) is chosen to be equal to the autocorrelation 
-of the stochastic process G (t): 

I«t,s) = E[G(t)G(s)] = E[(A(t) - B(t))(A(s) - B(s))] (14) 

The authors of [1] then go on to suggest the following approximation to the 
kernel: 

I«t,s) ~ I<l(t,S) = E[A(t)A(s)] - W(Yl(t))W(Yl(S)) = 

E[A(t - s)A(O)] - W(Yl(t))W(Yl(S)) (15) 

This approximate kernel I<°(t, s) is to be inserted into the equation (9) in 
place of I«t, s). 

This approximation is based on two observations. First, we note that if 
{ X (t)} is a stochastic process then 

E [(X(t) - EX(t))(X(s) - EX(s))] = 

E [X(t)X(s)] - E[X(t)]E[X(s)] (16) 

From definitions (10)-(12) one can conclude that B(t) can be interpreted as 
an average of A(t). Thus by analogy with (16) we expect that: 

I«t,s) = E[(A(t) - B(t))(A(s) - B(s))] ~ E[(A(t)A(s)] - B(t)B(s) (17) 
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Unfortunately, B(t)B(s) is a random variable for any fixed t, s and we would 
need a scalar value of K(t,s) so we additionally approximate B(t)B(s) = 

W(ql(t))W(ql(S)) ~ W(Yl(t))W(Yl(S)). This gives us 

K(t,s) ~ E[A(t)A(s)] - W(Yl(t))W(Yl(S)) (18) 

The second observation is that A(t) is a stationary process, therefore 
E[A(t)A(s)] = E[A(t - s)A(O)]. Thus we arrive at (15). In the discus­
sion of the numerical results given in the following section we will always 
refer to the approximation (15) as type 1 approximation. 

Another approximation for the memory kernel K(t, s) can be found in an 
unpublished FORTRAN program of Chorin. Let R2(ql,Pl,P2,q2) = -qlq~ 
and define 

W2 ( ql , PI) = E [R2 ( ql , PI, P2 , q2) ) I qI, PI] = 

k k R2 (PI, ql, P2, q2) pcanonical (PI, qI, P2, q2 )dP2 dq2 = - 1 :1 qt (19) 

As before the conditional expectation is taken with respect to canonical dis­
tribution. 

Additionally, we define two stochastic processes. The stochastic process 
{A2(t)} is equal to R2(ql,Pi,P2,q2) when the initial data are sampled from 
the canonical distribution: 

(20) 

The stochastic process {B2(t)} can. be interpreted as average of {A2(t)}: 

(21) 

Let stochastic process {C (t)} be defined as before, observe that C (t) = 
A2(t) - B2(t). By the same same argument as was used to arrive at approx­
imation (15) we arrive at: 

(22) 

The only new feature here is the the normalization factor E[q; + pi] which 
divides E[A2(t-s)A2(0)]. E[q;+pi] is computed with respect to the canonical 
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measure. The approximate kernel f{2 (t, s) is to be inserted in the right hand 
side of equation (9) in place of f{(t,s). We will from now on refer to this 
approximation as type 2 approximation. In the next section we discuss the 
comparative performance of the two approximation as well as the results 
obtained by using the memory kernel f{ (t, s) directly without making further 
approximations. . 

2 Numerical Results and Interpretations. 

2.1 Numerical Results Obtained for Type 1 Approxi­
mation. 

As was discussed in the previous section type 1 approximation of the memory 
kernel leads to the following system of equations for the time evolution of 
Yl(t), Y2(t): 

dYl 
dt 

Yl(O) 
dY2 
dt 

Y2(0) 

qlO 

-Yl - Yl 2 - rt (I<O(t - s) - W(Yl(t))W(Yl(S))) Y2(s)ds 
1 + Yl Jo 

PlO (23) 

Here f{O(t) = E [A(t)A(O)], with {A(t)} defined by (11). We compute 
f{O(t) using Markov chain Monte-Carlo sampling. In our computations we 
used 50,000 samples of initial conditions (qlO, PlO, q20, P20). For each par­
ticular set of initial conditions we then computed the time evolution of 
(ql(t),Pl(t),P2(t), q2(t)) using the fourth order Runge-Kutta method. Fi­
nally for each t we computed the value ofE [A(t)A(O)]. The results are show 
in Figure 1. 

We want to compare the values of Yl(t), Y2(t) given by (23) to the exact 
time evolution of Yi(t) = E [Pl(t)lpl(O), ql(O)] (0)- (0)- and Y2(t) = PI -PIO ,qI -ql0 

E[ql(t)lpl(O),ql(O)] (0)- q (O)-q . In order to do this we compute the exact 
PI -PI0, 1 - 10 

averages Yi(t), Y2(t) by Monte-Carlo sampling. For this computation we also 
used 50,000 samples. In Figure 2 we show the exact averages Yi(t), Y;(t) and 
the averages given by type 1 approximation for initial data qlO = 1, PlO = O. 
One can see that the approximations Yl (t), Y2 (t) follow the true evolution 
for a short time ( 0 ::; t ::; 1). For later times there is no agreement in 
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values between the approximations and the true evolution. Additionally, 
the approximations are out of phase with the exact evolution and even have 
different period. These results are very representative of the experiments we 
have done with different initial data. 

Another interesting feature of type 1 approximation can be observed by 
looking at the behavior of the approximation for bigger initial data. Figure 
3 shows the results for initial data qIO -10,PlO = -10. Here we see 
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that the approximations YI (t), t2( t) blow up. On the other hand the exact. 
averages Yi(t), Y2(t) can be shown to tend to zero as t ~ 00. Thus the 
approximation gives bad results for these initial conditions. To understand 
the reasons for blow up we look more closely at the behavior of the solution 
for shorter times. Figure 4 shows the results for the same initial conditions 
qlO = -10,PlO = -10 but for t :::; 0.2. One observes that the first component 
of the approximation YI(t) is always decreasing while the second component 
Y2( t) increases for very small times and decreases for all later times. 

This behavior can be easily explained. Indeed, the derivative of YI(t) is 
Y2(t). Since Y2(t) is initially a negative number YI (t) will be decreasing as long 
as Y2(t) remains n.egative. Thus YI(t) remains negative and its absolute value 
is increasing, given that we always have Y2(t) :::; 0. On the other hand the 
derivative of Y2( t) is -YI - I+YI 2 - f~ (I{O( t - s) - W(YI (t) )W(YI (s))) Y2( s )ds. 

YI 

Since YI (t) is initially large, we can approximate -YI - I+YI2 by -VI. Addi-
. YI 

tionally we can approximate W(YI(t)) = -YI(t) - 1;~;~~)2 by -YI(t). Observe 
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that both Yl (t) and Yl ( S ), are big com pared to values of f{o. Therefore 
]{O(t - s) - (-Yl(S))(-Yl(t)) ~ -Yl(S)Yl(t). Thus we have arrived at the 
following approximation whIch is valid as long as Yl(t) is bounded away from 
zero by some number which is much bigger than 1 and much bigger than 
maximum of f{O(t): 

(24) 

If Yl(t),Yl(S) and Y2(S) are large in absolute value and t is not very small 
then (24) can be additionally approximated by. 

dY2 rt 

dt ~ 10 Yl(t)Yl(S)Y2(S)ds (25) 

Thus the right hand side will be a negative number. Therefore Y2(t) will 
remain negative and will increase in absolute value. The only exception 
occurs for very small times t. In this case the right hand side of (24) will be 
dominated by -Yl and therefore .for small times Y2 (t) will be an increasing 
function. However if Y2(O) is big enough, Y2(t) will not reach zero or become 
too small in absolute value before the approximation (25) becomes valid. 
The above analysis shows that if the initial conditions for Yl (t), Y2 (t) are 
big negative numbers then Yl(t), Y2(t) will be decreasing functions for all 
sufficiently large times. Thus they cannot be decaying to zero, as the exact 
average solutions Yi(t), Y;(t) do. 
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2.2 Numerical Results Obtained For Type 2 Approxi­
mation. 

In section 1.2 we discussed a type 2 approximation for the average time 
evolution of the Hald system. 

dYl 
dt 

qlO Yl(O) 

dY2 
dt 

Y2(0) 

-Yl- Yl 2 - ft (J{°(t-S)-W2(Yl(t))W2(Yl(S)))Y2(S)ds 
1 + Yl io. 

PlO (26) 

H }(O(t) - E[A2(t-s)A2(O)] d ((t)) - Yl(t) A before we c'om-ere - E[qi+pil an W2 Yl - -l+Yl (tf· s 
pute the memory kernel J{O(t) and the true average solutions Y1(t), Y2(t) by 
Markov chain Monte-Carlo sampling with 50,000 samples. Figure 5 shows 
the results of a computation with initial conditions qlO = 1,PlO = O. 
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Figure 5 

This represents a dramatic improvement compared to results obtained 
for type 1 approximation. The approximate averages Yl (t), Y2( t) follow the 
true average solution Y1(t), Y2(t) for much longer times, t E [0,5]. Addition­
ally for later times the approximation is roughly in phase with the correct 
average solution. Also Yl(t), Y2(t) decay at a rate approximating that of the 
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correct solution. We have done a number of experiments with various initial 
conditions and results were generally similar. 

One of the feature of type 2 approximation is that it involves a nor­
malization factor E[qi + pi]. If we do not normalize the memory kernel by 
this factor and choose f{O(t) = E[A2(t - S)A2(O)] we will get, for the same 
initial conditions, different results shown in Figure 6. The approximations 
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Yl(t), Y2(t) obtained in this way do not follow exact solution as closely as 
in Figure 5. The approximations also fall out of phase after t = 10 and do 
not decay fast enoug}.1. Thus the normalization factor E[qi + pi] seems to 
improve the approximations significantly. 

2.3 The Numerical Results Obtained By Using the Ex­
act Kernel. 

Finally we look at the results obtained by using the exact memory kernel 
f{(t,s).defined by (14). It is known that {C(tH is a stationary stochastic 
process. Therefore f{(t,s) = E[C(t)C(s)] = E[C(t - s)C(O)]. We define 

f{O(t) = E[C(t)C(O)] (27) 

Then the system (9) becomes: 

dYl 
dt 

11 



Yl(O) 
dY2 
dt 

Y2(0) PlO (28) 

Just as we did before we compute the memory kernel J(O(t) and the true 
average solutions Yi(t), Y;(t) using Markov chain Monte-Carlo sampling with 
50,000 samples. Figure 7 shows the results obtained for initial conditions 
qlO = 6,PlO = 6. We observe that up to time t ~ 9 the results obtained for 
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exact kernel agree very well with the results given by type 2 approximation. 
On this time interval both approximation also agree fairly well with the exact 
average solution. After t = 9 both approximations fail to follow the correct 
solution. The exact kernel approximation decays too fast but follows the 
phase of the true solution better. The type 2 approximation falls out of phase 
and decays too slowly. However the rate of decay for type 2 approximation 
is closer to the rate of decay for true solution This kind of behavior is typical 
for the case of relatively big initial data. 

We now look at the results obtained for relatively small initial data qlO = 
O.l,PlO = -0.1 (Figure 8). For t :; 5 both approximation agree very closely 
with each other and do a good job of following the correct solution. After t ~ 
5 both exact kernel approximation and type 2 approximation fail completely 
to follow either the phase or the general shape of the true average solution. 
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This was typical for the experiments that we did with different small initial 
data. Experiment with mixed initial data (for example qlO big, PIO small) 
gave hybrid results, which do not add much to our understanding. 

One advantage of using the exact kernel is that it does not require any 
normalization factors, like E[qi + pil. On the other hand type 2 approxima­
tion seems to predict the rate of decay of the true soluti6n better, at least in 
the case of large initial conditions. This is surprising, since type 2 approx­
imation is after all only an approximation to the procedure which uses the 
exact kernel (27). 

2.4 Conclusions. 

Our experiments have shown that type 1 approximation fails to predict cor­
rectly the behavior of the exact average solution. Type 2 approximation gives 
better results, but decays to slowly for large initial conditions. The procedure 
with the ex~ct kernel performs better than type 1 approximation, but decays 
too fast, at least, in the case of large initial conditions. It is hard to say 
whether type 2 approximation is better than the procedure with the exact 
kernel or whether it is the other way around. Both approximations follow 

. the exact solution well for roughly the same length of time. However, one 
of the advantages of the procedure with the exact kernel is that it does not 
require any normalization factors. Such normalization factors my be hard to 
find when we try to apply optimal prediction techniques to a different system 
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of differential equations. 
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Appendix. 

A Expectation and Conditional Expectation. 

Let (PI, ql, P2, q2) denote a vector from four dimensional real space R4. Let a 
measure on this space be defined by its density p(Pl, ql,P2, q2). Let 
X(Pl' ql,P2, q2) be a random variable on this probability space. 

Definition 1 The expectation of X(PI' ql,P2, q2) is defined by the formula: 

Definition 2 The conditional expectation of X(PI' ql, P2, q2) given PI and ql 
is defi~ed by the formula: 

More general definitions of the expectation and the conditional expectation 
can be found in [2]. 
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