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Abstract 

In this dissertation we calculate the one loop quantum contributions to soft supersymmetry 
breaking terms in the scalar potential as well as gaugino masses in supergravity theories regulated 
a la Pauli-Villars. We find "universal" contributions, independent of the regulator masses and 
tree level soft supersymmetry breaking, that contribute gaugino masses and A-terms equal to 
the "anomaly mediated" contributions found in analyses using spurion techniques, as well as a 
scalar mass term not identified in those analyses. The universal terms are in general modified -
and in some cases canceled - by model-dependent terms. We emphasize the model dependence 
of loop-induced soft terms in the potential, which are much more sensitive to the details of 
Planck scale physics then are the one loop contributions to gaugino masses. 

Next, a systematic analysis of soft supersymmetry breaking terms at the one loop level 
is performed in a large class of string effective field theories. We show that the pattern of 
supersymmetry breaking depends on the detailed prescription of the regularization process which 
is assumed to represent the Planck scale physics of the underlying fundamental theory. The usual 
anomaly mediation case with vanishing scalar masses at one loop is not found to be generic. We 
also discuss the supersymmetric spectrum of 0-1 and O-II orbifold compactification models. 

Finally, we study the phenomenology of a class of models describing modular invariant gau­
gino condensation in the hidden sector of a low energy effective theory derived from the heterotic 
string. Placing simple demands on the resulting observable sector, such as a supersymmetry 
breaking scale of approximately 1 TeV, a vacuum with properly broken electroweak symmetry, 
superpartner masses above current direct search limits, etc., results in significant restrictions on 
the possible configurations of the hidden sector. We include in this analysis an investigation of 
the dark matter prospects of supersymmetric models such as these with nonuniversal gaugino 
masses. The cosmologically viable regions of parameter space are investigated, allowing very 
specific statements to be made about the content of the supersymmetry breaking hidden sector. 



Introduction 

\ Our ultimate goal is to study the phenomenology of string-inspired supergravity models. The 
low energy physics in such models is detenhined by the pattern of soft supersymmetry breaking 
parameters: scalar masses, gaugino mass and bilinear/trilinear couplings in the scalar potential 
referred to commonly as "B-terms" and "A-terms," respectively. When these soft supersymme­
try breaking patterns are taken to be universal- that is, a single common gaugino mass M 1/ 2 , 

a common scalar mass Mo and a common trilinear coupling Ao at the supersymmetry breaking. 
scale Asusy - the model is designated "minimal" supergravity or mSUGRA. The phenomenology 
of these types of unified models has been extensively studied in the past [19, 51, 106, 107]. 

We would like to instead consider here the case of nonuniversalities - in particular those 
that arise from loop corrections to tree level soft terms. In general these tree level terms are 
indeed universal, but if the loop corrections are significant, or at least competitive in size with 
these tree level pieces, then departures from the standard phenomenology may result. Our 
tool for addressing these loop computations in the context of a nonrenormalizable theory such ; 
as supergravity is the method of Pauli-Villars regularization. We will perform explicit loop . 
computations using component fields in this context in Section 2. 

A secondary motivation for this study is to understand recent results involving the super-Weyl 
anomaly of standard N = 1 supergravity referred to in Section 1. There has been considerable 
interest recently in soft supersymmetry breaking induced by quantum corrections, starting with 
the observation [93, 131] that there are several "anomaly mediated" contributions arising from 
the super-Weyl (or superconformal) anomaly: a gaugino mass term proportional to the fJ­
function, a trilinear A-term proportional to the chiral multiplet (matrix-valued) ,-function, and 
a scalar maSs term proportion to the derivative of the ,),-function, arising first at the two loop 
level. The claim in the literature is that these quantum corrections are independent in their 
details of the high energy physics represented by the underlying theory (namely, a string theory) 
~ thus they are claimed to be "universal" contributions to soft supersymmetry breaking. We 
will look closely at these claims in Section 2.2 

In any given supersymmetric theory, a consistent analysis of the soft terms is necessary in 
order to make reliable predictions. Such a systematic analysis was performed at tree level by 
Brignole, Ibanez and Munoz [35, 36] some time ago for a large class of four-dimensional string 
models. One of the nice features of this analysis was to make explicit the dependence of the 
soft terms on the auxiliary field vacuum expectation values (vevs) and thus to relate them 
directly to the supersymmetry breaking mechanism. In this respect, the auxiliary fields F S and 
Fa associated respectively with the string dilaton and the moduli fields are expected to playa 
central role in these superstring models. 



2 Introduction 

This analysis showed that, besides a universal contribution associated with the dilaton field, 
soft terms generically receive from moduli fields a nonuniversal contribution which may lead to 
a very different phenomenology from the standard one referred to as the minimal supergravity 
modeL In Section 2, new contributions to the soft supersymmetry breaking terms are exhibited 
that are truly supergravity contributions in the sense that they involve the auxiliary fields of 
the supergravity multiplet, more precisely the complex scalar auxiliary field M in the minimal 
formulation. In Section 3 we present the general form of these contributions, expressed in terms 
of the auxiliary fields, and we discuss them for several classes of superstring models. We stress 
that some of the contributions depend on the way the underlying theory regulates the low energy 
effective field theory. In particular we find a model of anomaly mediation where the scalar masses 
might be nonvanishing at one loop. 

Having found sources of nonuniversality - particularly in the important gaugino sector of the 
theory - we test supergravity models in the arena of thermal relic dark matter densities. Models 
of the sort we investigate in Section 3 tend to provide far too much or far too little neutralino 
relic density to account for cosmological observations. Supergravity models where anomaly 
contributions to gaugino masses are competitive with tree level contributions may provide the 
best solution to the problem of dark matter in the universe, as is demonstrated in Section 4. 

When considering the subject of effective field theories from strings, the notion of "phe­
nomenological viability" has in the past been a very loose standard. Indeed some of the 
well-known 'problems facing such low energy theories seemed quite intractable, depressing the 
prospects of ever being able to refer to a meaningful superstring phenomenology. The problems 
to which we refer include the need to generate a hierarchy between the supersymmetry breaking 
scale and the Planck scale, the cosmological dangers of moduli fields with Planck-suppressed in­
teractions, the desire for a weakly-coupled effective quantum field theory, and most significantly 
the need to stabilize the dilaton [16, 37, 58]. 

Recently, however, it was shown that by incorporating postulated nonperturbative string­
theoretical effects in a modular invariant low energy field theory the above problems can be 
addressed in a simple manner with tuning required only in the vanishing of the cosmological 
constant [27, 28, 29, 84]. Having passed these initial tests it now becomes possible to ask for a 
slightly higher standard in "viability." 

The philosophy behind the study presented' in Section 5 is to probe this class of m'?dels in a 
series of phenomenological arenas to uncover relations between the dynamics of the hidden sector 
and the nature of our observable world. After a review in Section 5.1 of the class of models we will 
consider we investigate in Section5.2 the initial challenge of setting the supersymmetry breaking 
scale that all effective field theories from strings must confront. In Section 5.3 we turn, to the 
pattern of soft supersymmetry breaking parameters and look for the implications of current mass 
bounds arising from searches at LEP and the Tevatron. We also investigate phenomenological 
challenges arising from gauge coupling unification and cosmological relic densities in an effort 
to further constrain these models. 



···Chapter 1 

"'. Supergravity Preliminaries 

This section collects some of the concepts that reappear throughout this study in the form of 
· a very brief introduction to supergravity effective theories that derive from models of weakly­
coupled heterotic string theory. 

1.1 Supergravity Model Parameters 

A supersymmetric model which is covariant under general coordinate transformations possesses· 
a local, or gauged, supersymmetry and becomes a supergravity theory. In this text we will 
consider a set of chiral superfields ZM (the associated scalar field will be denoted by zM with 
zM = Z MI IJ=8=O) which belong to two distinct classes: the first class Zi denotes observable 
superfields charged under the gauge symmetries of the Standard Model (SM) while the second 
class zn describes hidden sector fields. By "hidden sector" we will typically be referring to 

· either chiral matter multiplets charged under the gauge symmetries of the hidden sector gauge 
"'group(s) ghid and/or some set of moduli fields which parameterize the compactification of the 

· string theory. We will return to these moduli fields in Section 1.3. 

The interactions of the chiral multiplets and gauge fields of the observable sector in a generic 

supergravity model are described by three functions: the Kihler potential K (Z M, ZM), the 
superpotential w(zi,zn) and the gauge kinetic functions r(zn), one for each gauge group gao 

The auxiliary fields of the chiral multiplets are denoted FM and are obtained by solving their 
corr~sponding equations of motion. They read for the chiral superfields: 

(1.1) 

where, as is standard, W N = 8W /8Z.
N 

and KMN is the inverse of the Kahler metric KMN = 

82 K/8ZM 8Z
N

. The supergravity auxiliary field M simply reads: 

(1.2) 

As a sign of spontaneous breaking of supersymmetry, the gravitino mass is directly expressed in 



4 Supergravity Preliminaries 

terms of its vev (in reduced Planck scale units M pL/V8if = 1 which we use from now on): 

(1.3) 

In terms of these fields, the F-term part of the potential reads: 

~ I -J 1 - I -J 2 
V = F KIJF - 3MM = F KIJF - 3M3/ 2 . : (1.4) 

Since in what follows we will assume vanishing D-terms (to preserve the gauge invariance of the 
Standard Model after supersymmetry breaking) we will only be interested in this part of the 
scalar potential. Finally, the holomorphic function fa(zn) is the coefficient of the gauge kinetic 
term in superspace. Its vev yields the gauge coupling associated with the gauge group Qa: 

1 
< Refa >= 2". 

9a 

1.2 Kahler U(l) Superspace 

(1.5) 

In constructing supersymmetric Lagrangians, and extracting the component field expressions 
from the corresponding superfield operator expressions, we will use the Kahler U(l) formalism 
of [31, 32, 33] which differs from the formalism of Wess and Bagger [142]. In this section we 
present the key differences and features of this formulation of supergravity. 

The kinetic energy of the chiral superfields in the standard formulation for flat superspace 
involves the superspace volume integral 

(1.6) 

and thus possesses a classical symmetry under 'the transformation 

(1.7) 

When a'superpotential is included with Lagrangian density Lpot = I d20W(ZM) + h;c. , then 
this' symmetry can be preserved provided we simultane~usly .make the transformation 

(1.8) 

on the superpotential. This is a Kahler transformation and it manifests itself as a chiral phase 
rotation, with phase given by the function F(ZM) in (1.7), on the fields of the theory. As such 
it is vulnerable to a chiral anomaly when the theory is treated quantum mechanically. 

In curved superspace the kinetic term must be modified to include the effects of curvature 
by amending (1.6) to read 

LKE = -3 / d40 Ee-tK(ZM,ZM) (1.9) . 

where E is the superdeterminant of the vielbein superfield Etr. Note that (1.9) reduces to (1.6) 
to leading order in M pL when expanding the exporiential. Now the Kahler transformation (1.7) 
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must be accompanied by a compensating Weyl rescaling of the supervielbein E to preserve the 
classical symmetry, i.e. a "super-Weyl" transformation. In supergravity this symmetry can be 
incorporated into the structure of superspace in a natural way by including this chiral U(I) 
factor in the structure group of the superspace geometry and assigning each field in the theory 
a weight under the transformation (1.7) called its Kahler weight. The covariant derivatives are 
then modified to include a U(I) gauge connection corresponding to this transformation. In this 
formulation the kinetic action then becomes simply related to the volume of superspace. This 
is the essence of the Kahler U(I) superspace formalism [31]. 

As a practical matter, supersymmetric Lagrangians can be constructed in supergravity as 
-. either "D-terms" involving integration of a real function of the fields over all of superspace f d40 

or "F-terms" involving the integration of a holomorphic function over half of the superspace 
coordinates f d20. The former can be converted to the latter via superspace integration by 
parts as follows 

(1.10) 

where R is the chiral curvature superfield whose lowest component is the auxiliary field of 

supergravity M = -6RI0=ibo = (M)* and ('0
2 

- 8R) is the covariant chiral projection operator. 
Having made this transformation the component Lagrangian is obtained using the standard 
construction [31] 

L ~! d40 !r = v'9 (8 - rM) + h.c. + O('ljJ/1-)' 

r = rl . , 8 = -!'02rl . 
0=8=0 4 0=8=0 

(1.11) 

1.3 Superstring Effective Theories 

Our interests lie in a specific class of supergravity models which we can refer to as "string­
inspired," which is to say that the field content and couplings can be constrained - and in some 
cases completely determined - by imposing symmetries arising from the underlying string theory 
which gives rise to the low energy effective supergravity model. Throughout this work the string 
theories considered are of the weakly-coupled heterotic variety and we will restrict ourselves to 
orbifold compactifications of the six extra spacetime dimensions to obtain a low energy effective 
four-dimensional theory. 

Of central importance is the dilaton field which is universally present in all string theories. 
The vacuum expectation value of this field determines the value of the string coupling constant 
9STR at the scale of compactification, which we denote ASTR . Here we will assume that this scale 

'of compactification is somewhere between the Grand Unified scale AGUT ~ 2 X 1016 GeV or 
the Planck scale APL ~ 1 X 1018 Ge V. Taking the approximate unification of gauge couplings 
in the minimal supersymmetric standard model (MSSM) at AGUT as a guide we will assume 
9;TR = 1/2 ---7 Qs;.i ~ 24.7. 

The string dilaton can be represented as a chiral superfield S or as a linear superfield L [30, 
33, 38, 43, 55]. While the former is very prevalent in the literature, in the context of string 
theory the dilaton e is the lowest component of a vector superfield L which includes the degrees 
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of freedom of the dilaton and of the antisymmetric tensor present among the massless string 
modes, and which satisfies the modified linearity condition 

(1.12) 

where the superfield R is related to elements of the supervielbein as mentioned in Section 1.2, 
W a is a Yang-Mills superfield strength, and the summation over gauge indices is suppressed. 
The Bianchi identity 

(1.13) 

follows immediately from (1.12) - an important constraint when we eventually modify (1.12) 
to include the presence of gaugino condensates in Section 5. The chiral multiplet formulation 
can be recovered by a duality transformation, at least at the classical level. However the linear 
multiplet formulation provides a simpler implementation of the Green-Schwarz anomaly cancel­
lation mechanism and a better framework for constructing an effective Lagrangian for gaugino 
condensation, both of which will be addressed below. 

In the weak coupling regime, the models that we consider have a simple tree level gauge 
kinetic function when written in the chiral formulation: 

(1.14) 

where S is the string dilaton and ka is the affine level l . At tree level this chiral superfield is 
related to the string coupling constant at the string scale throug~ the relation 

1 
(Res) = 2 (A )' 

gSTR STR 
(LI5) 

where s = SIIJ='I=o, and has a tree level Kahler potential given by K(S, S) == k(S, S) = -In(S + 
S). We will employ this chiral formulation when we wish to make contact with results found in 
the literature. 

The calculation of various quantities in the Kahler U(1) formalism is facilitated by placing the 
dilaton in the linear multiplet. At tree level the two formalisms can be related by S + S = 1/ L 
so that the tree level dilaton Kahler potential can be written k(L) ~ In L. In the linear mutliplet 
formulation the string coupling constant is given by g;TR/2 = (£) = (Llo=l1=o).As the dilaton . 
determines the gauge coupling constants of the observable sector it is imperative that the field 
£ be stabilized at a finite field value. This is accomplished by appealing to nonperturbativ'e 
corrections [16, 135] to the Kahler potential of string-theoretic origin. We will parameterize these 
corrections in the linear multiplet case by modifying the kinetic energy term in the Lagrangian 
and the dilaton Kahler potential by a pair of functions: 

eKE = ! d4e E [-2 + f(L)] , k(L) = InL + g(L), (1.16) 

which satisfy the conditions 

Lg'(L) = f - L!'(L), g(O) = f(O) = 0, ( 1.17) 
-----------------------------

1From now on, we will only consider affine level one nonabelian gauge groups i.e. k = 1 (k = 5/3 for the 
abelian group U(l)y of the Standard Model). 
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which ensure that the" Einstein term of the gravity action has canonical form [27], and that 
they vanish in the weak coupling limit: g2/2 = (£) = (V/O=O=O) -+ O. In the presence of such 
corrections the string coupling constant is given by a modified relation 

2 .', 
gSTR(AsTR) = 2 (£) / (1 + J(£)). (1.18) 

'In Appendix A we give the correspondence between various terms in the component Lagrangian 
in the chiral and linear multiplet formalisms. 

In addition to the dilaton all of the orbifold compactification models we will consider here 
"cont'ain a set of moduli fields which parameterize the string compactification. The size of the 

compact dimensions are determined by the vacuum expectation values of a set of three complex 
,~ fields TO< with a = 1,2,3. The Kahler potential for these moduli is known at the tree level from 
:~;, the underlying string theory, and we can include the entire string moduli sector in the expression 

.• :c.;,. 

3 

K(S,T) = k(S + S) - LIn (TO< +r) = k(S + S) + LgO<, (1.19) 

Of central importance at the perturbative level are the diagonal modular transformations: 

T O< -+ aTO< - ib d b b d Z 
icTo< + d' a - c = 1, a, ,c, E , (1.20) 

that leave the classical effective supergravity theory invariant. This symmetry is known to 
remain a symmetry of the underlying string theory to all orders in string perturbation theory, 
so it must remain a perturbative symmetry in our low energy effective theory. This is one of the 
key constraints imposed on our supergravity models and we will refer to the symmetry with the 
words "modular invariance." Under the transformation (1.20) the fields of the theory transform 
as follows: 

e-~ ~'" ImF"'). 
" a, (1.21) 

'Thus a matter field which transforms as 

(1.22) 

'. under the modular transformations (1.20) is said to have a modular weight of n~. 

To preserve the classical modular invariance both the Kahler potential and superpotential 
for the matter terms must be modified to include functions of the moduli. We will assume for 
the simplicity of the expressions which follow that the Kahler metric for the matter fields Zi 
has the form: 

(1.23) 

and a matter field with modular weight ni has 

Ki = II(TO< +TO<tf. (1.24) 
0< 
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Because (1.20) has the form of a Kahler transformation (1.7) on (1.19), it is necessary to ensure 
that the superpotential transforms as . 

W(ZM) --t W(ZM) II (icr~ + d)-I, (1.25) 
O! 

so the moduli dependence ofthe superpotential for the matter 'fields can be determined. If we 
denote Wijk = (PW(zM)/8zi8zj 8zk then we must have 

W ·· = \.. II ['Tl(TO!)]2(1+nf+nj+nk) 
~Jk AtJk '.'/ . ' .. ' .". (1.26). 

O!. 

where 1J(T) is the classical Dedekind function: 

00 

1J(T) = e-7rTI12 II (1 - e-27rnT), (1.27) 
n=l 

which transforms as 

(1.28) 

under the modular transformation (1.20). We will also use in the following the Riemann zeta 
function: 

((T) = _1_d1J(T) 
1J(T) dT . 

Let us note that the non-holomorphicEisenstein function 
, ) 

(h(T, T) == -211" (2((T) + ~) == .:....211"G2(T, T), 
T+T 

vanishes at the self-dual points T = 1 and T = ei7r 16. 

(1.29) 

(1.30) 

From (1.21) we can see that the chiral superfields q,A receive a chiral phase rotation, so we 
would expect that this modular transformation would possess an anomaly. That is in fact the 
case at the quantum level [6, 39, 54, 59, 87, 110, 121], so modular invariance must be restored by 
an appropriate choice of local counterterms. There are two sources of such terms arising from 
string theory: the universal Green-Schwarz (GS) counterterm [39, 54] and model-dependent 
string threshold corrections [6, 59]. 

The Green-Schwarz counterterm has the following form 

c'GS == I d40 ELVGs , (1.31 ) 

in the linear multiplet formalism [38, 26] where the real function VGS reads: 

VGS = 2~~2 L In (TO! + TO!) + 2;:: Pi II (TO! + TO!) nf 14/12 + 0 (¢4) , (1.32) 
O! ~ O! 

The group-independent factor J"GS is simply equal to-3CEs' where CEs = 30 is the Casimir 
operator of the group Eg in the adjoint representation, if there are no Wilson lines. Otherwise, 
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it can be smaller in magnitude. The coefficients Pi represent the couplings of the observable 
sector fields to the Green-Schwarz counterterm. They are a priori unknown model-dependent 
variables, though they are (in principle) calculable in the underlying string theory. The string 
threshold corrections can be thought of as corrections to the string gauge coupling constant due 
to string states above the compactification scale and take the form 

(1.33) 

In the chiral multiplet formalism for the dilaton these terms can be thought of as corrections to 
the gauge kinetic functions fa in (1.14). The parameters b~ vanish for orb if old compactifications 
with no N = 2 supersymmetry sector [6]. 



I 

Chapter 2 

Soft Supersymmetry Breaking at 
One Loop 

2.1 Quantum-Induced Soft Supersymmetry Breaking 

The points we wish to emphasize in the Pauli-Villars (PV) calculation given here are (1) the 
presence in general of O(M3/2) contributions to the scalar masses that are proportional to the 
chiral supermultiplet 'Y-function (rather than its derivative, which is a two loop effect), and (2) 
the difference between gaugino masses and soft terms in the scalar potential with respect to 
dependence on the details of Planck scale physics. To this end we will present our calculations 
under the simplifying assumption that the Pauli-Villars squared-mass matrix commutes with 
other operators that are relevant to quantum corrections. We further restrict our analysis to 
one loop order and retain only terms oflowest order in M3/2/MpL , where M3/2 and MPL are the 
gravitino mass and the reduced Planck mass, respectively. We then use our results to address 
the issue of anomaly mediated supersymmetry breaking [7, 93, 95, 131]. 

2.1.1 General Corrections to the Scalar Potential 

The one loop logarithmic divergences of standard chiral supergravity were determined in [80, 
81, 82], and it was shown in [77, 78, 79] that they, can be regulated l by a set of Pauli-Villars 
chiral superfields <pA. As in these references we denote the light superfields by Zi, and introduce 
covaria~t derivatives of the superpotential W(Zi) as follows: 

A = eKW, Ai = DiA = oiA, Aij = DiDjA = oiojA -: rtAk' 
--.-?A- KimA- K!l !lK(Zi -=mZ ) !l 0 

m, etc., im = ViUffr , ,Vi = oZi' (2.1) 

where r~j is the affine connection associated with the Kahler metric Kim' and its inverse Kim. 
In the regulated theory, the one loop correction to the chiral multiplet Kiihler potential is given 
by [79] the superfield operator (up to a Weyl transformation necessary to put the Einstein term 

IThe full regulation of gravity loops requires the introduction of Abelian gauge superflelds as well; these play 
no role here and we ignore them. 
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in canonical form2 ) 

b..L = - 32~2 J d40 Ee-K L 1JAAAB AAB In(m~/J.t2) = J d40 E6K(Zi, Z"\ (2.2) 
AB 

where AAB(Zi, zm) is defined as in (2.1), with the light field indices i,j replaced by PV indices 
A, B, 1JA = ±1 is the PV signature, mA is the (supersymmetric) PV mass, and J.t is the (scheme­
dependent) normalization point. The wave function renormalization matrix is given by 

--d \ KinD,D, 8 1:p2IiK ) = 32~2 (IV D, ~ ~A(e-K AAB AAB)) 

= 32~2 (e-
K ~ ~AAjAB A'AB ) + ... , (2.3) 

where here and throughout ellipses represent terms of higher dimension. 

The regulation of matter. and Yang-Mills loop contributions to the matter wave function 
renormalization requires the introduction of PV chiral superfields cpA = cpi,~i and cpa which 
transform according to the chiral matter, anti-chiral matter and adjoint representations of the 
gauge group and have signatures 1JA = -1, +1, +1, respectively. These fields couple to the light 
fields through the superpotential3 

(2.4) 

where Ta is a generator of the gauge group, and their Kahler potential takes the schematic form 

K pv = LIl:A (ZN) IcpAI2, 
A 

(2.5) 

where the functions Il:A are functions of the hidden sector (moduli) fields as defined by (1.23). 

We are interested here in string-derived models which are modular invariant and we wish 
the quantum corrected theory to be perturbatively invariant under the modular transforma­
tion (1.20) as well. This can be achieved if the couplings of the relevant PV fields are modular 
invariant. For the fields cpi, cpa , ~i that contribute to the renormalization of the Kahler potential 
we then know that their dependence on thedilaton and T-moduli must be identical in form 
to the light observable sector fields whose loops they regulate. Therefore we can separate the 
function Il:A into a piece dependent on the dilaton and a piece dependent on the moduli fields. 
Then we have [77, 78, 79] for typical orbifold models, 

(2.6) 

2This brings in terms with factors of lItree that we neglect since if (lltree) = 0, they can at most give small· 
corrections to the tree level soft terms. 

3Full regulation of the theory requires several copies of fields with the same gauge quantum numbers, and the 
coupling parameters and signatures given here actually represent weighted average values. 

I 
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With these choices, the ultraviolet divergences cancel, and, for the leading (lowest dimension) 
contribution, one obtains the standard result for the matter wave function' renormalization in 
the supersymmetric gauge {18] 

_J 1 K '" -jAB 1 [ j '" 2 2)i K", -jkl] 
'Yi = 327f2e L .. /7AWi ABW = 327f2 48i ~ga(Ta i - e ~ WiklW . 

AB a kl 

(2.7) 

The matrix (2.7) is diagonal in the approximation in which generatIon mixing is neglected in the 
Yukawa couplings; in practice Dnly the TCQ3Hu Yukawa coupling is important. We will make 
this approximation in the following, and set 

,i = 

,i =,r' +,f, ,r' = Lrl\ ,f = L,i, 
2 

ga (T2)i 
87f2 a i, 

jk a 

'k eK , If = - 327f2 (KiKjI'l'k)-1IWijkI2 . (2.8) 

The Lagrangian (2.2) generally contains soft supersymmetry breaking terms, displayed below, 
that are proportional to those of the tree level Lagrangian. What are usually referred to as 
"anomaly mediated" soft supersymmetry breaking terms are finite contributions that are not 
remnants, like (2.2)~ of the ultraviolet divergences. To evaluate such terms in the framework of 
PV regularization, we must retain all contributions that do not vanish in the limit m~ -+ 00. 

Here we are interested in the scalar potential, given by 

i! d
4
p STr",ln (p2 _ m2 _ H) 

2 (27f)4 

1 [( 2 1 2) 2 1 2 (m2) H3 H4] = ---STr", hm + -g In(m) + -h In - + - - --
327f2 2 2 J.t2 6m2 24m4 

+0 (~2)' (2.9) 

where H is the effective field-dependent squared mass with the supersymmetric PV mass matrix 
m2 separated out: 

H=h+g, 1 9 rv m .. (2.10) 

The terms in (2.9) proportional to In(m2 / J.t2) are the bosonic part of (2.2). The first term 
in (2.9) proportional to m2 is the remnant of the quadratically divergent contribution [77, 78]. 
It is completely controlled by Planck scale physics, and can be made to vanish with appropriate 
conditions on m 2

• If it is present it contains A-terms and scalar masses proportional to the tree 
potential soft terms with coefficients suppressed by 1/327f2 ; we neglect it in the following. 

The PV loops contribute soft supersymmetry breaking terms to the light field effective La­
grangian if the PV tree Lagrangian contains such terms. In the presence of supersymmetry 
breaking one generally expects the matrix 9 in (2.10) which is linear in m to contain "B­
terms" . Indeed it is these B-terms that generate the "anomaly mediated" contributions to 
the gaugino masses and the A-terms of the light theOl:y4 that have been discussed in the lit­
erature [93, 128, 131]. As we shall see below, there are two contributions to supersymmetry 

4There may also be B-terms generated at one loop in the light theory if there are quadratic holomorphic terms 
in its tree level superpotential or Kiihler potential. These contributions were considered in [79]; we ignore them 
and use the expression "B-term" to designate the B-term proportional to the PV mass. 
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breaking scalar masses that arise from a double B-term insertion in a Feynman diagram. These 
two contributions cancel, resulting in the assertion [128, 131] that there is no anomaly mediated 
contribution to scalar masses at one loop. However, there can in general be soft masses and 
A-terms in the matrix h in (2.10). In leading order in M't/2/J.L2, A-terms are present in the 
PV part of h only if there are dimension-three soft supersymmetry breaking operators in the 
tree Lagrangian. Soft PV mass terms, which in leading order contribute only to scalar masses, 
are not similarly restricted by the low energy theory. Specifically, if the regulator masses are 
constant there are always soft squared-mass terms in the PV sector. 

The PV mass for each superfield q,A is generated by coupling it to a field ITA in the repre­
sentation of the gauge.group conjugate to that of q,A through the superpotential term 

Wm = LJ.LA (ZN) q,AITA, 
A 

(2.11) 

. where J.LA (ZN) can in general be a holomorphic function of the light superfields. There is no 
constraint on the Kahler potential for the fields IT A similar to those of the q,A allowing us to 
determine the analogous expressions to (2.6). We will set, for ITA = (ITi,fii,ITa ), 

(2.12) 
a 

and then the functions J.LA(ZN), and therefore the PV masses, are fixed up to a constant by 
modular covariance. Note that the modular weights of the fields ITA which are given by q~ 
are not necessarily related to those of the fields of the observable sector and thus represent an 
undetermined set of parameters in the theory. Now with PV Kahler potential given by (2.5), (2.6) 
and (2.12) and the superpotential (2.11) we have explicitly 

(2.13) 

which we also have occasion to write in the form 

(2.14) 

The general field-dependent matrix H in (2.9) has been evaluated in [80, 81, 82]. Denoting 
by HX. and H4> the matrices H in (2.10) for fermions and bosons, respectively,we have, with 
constant background fields, 

hx .. r {hX)A - -KA AAC (hx)a 0 + 4' B - e BC , f3 = , 

K a13 J.LBKBC ACD = lD = e-K f AJ.LAaAAD' 
-AB A 4> ~ 2 
A J.LB = 9f3' H = hX + V + M3/ 2 + R, (2.15) 

where M't/2 == e~KIWI2, V = e-K AjA
j 
-3M't/2. The last term in (2.15) depends on the curvature 

of the PV metnc: . . 

R~ =R~mie-K AiiiJr = -OABFi78m{",-;/8i "'A) = -oABF i78m8i ln"'A, A =q,A,ITA, 
(2,16) 
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where pi = -e-K / 2A!. is the auxiliary field of the supennultiplet Zi. Terms involving the space­
time curvature r are replaced by terms proportional to the tree potential V after a Weyl transfor­

~, mation that restores the one loop corrected Einstein term to canonical form. We assume through­
. out a vanishing cosmological constant, (V) = 0, so we can drop them. Similarly, we can drop V 
.if D-terms vanish in the vacuum: V = V + 1), 1) == !g22:a D~, (Taz)i Ki, zi = Zil, (Da) = O . 

. ,:.Terms containing only powers of hX cancel in the supertrace, so we get contributions only 
., from scalar trace terms t,hat include the scalar mass term Ml/2 + R in (2.15) or factors of 

Hxy = KxxHp: 

HAB - hAB = e-K (T DiAAB -'- AABA) , haJJ = 0, 

HAP gAp = e-KT Di (eKWAP) - AWAp = -8Ap/-LAa (A - ::fBi lnfA) . (2.17) 

HAa is the B-term mentioned above, and the part of hAB linear in zi - (zi) is the A-term. 

2.1.2 Trilinear A-terms 

Neglecting B-terms in the tree Lagrangian, the leading contribution toWAB is linear in a gauge 
nonsinglet field Zi. Explicitly expanding HAB gives 

(2.18) 

The second term in (2.18) is the A-term where (pn) f- 0 with zn a gauge singlet in the' 
supersymmetry breaking sector. Assuming that the matter superpotential IS independent of 
zn, the tree-level A-terms are given by 

(2.19) 

and the tree level gaugino masses are given by 

(2.20) 

Using the couplings given in (2.4), we have 

(2.21) 

Then we obtain 

3 2 L 'flAhABhAB 3 _2e3K/2WjZi L 'flAWiABW
jAB pnan In(fi:jfi:Afi:Be- K ) + h.c. 

AB AB 

2 K/2 i ["" 'k"" i 1 -641f e WiZ ~ Tl Aijk + 2 ~ laMa + h.c. , 
Jk . a 

(2.22) 

for the leading contribution to the A-term from thesecond term in (2.9), i.e. the contribution 
from the shift in the potential due to the shift in the Kahler potential. The leading order 
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contribution to the "anomaly-induced" A-term arises from a PV loop diagram with one B-terni 
insertion: 

h9
2 

'" 'f/ A hA ( Ii "( Ii 'Y) h . :3 Tr'f/22":3 ~22 Ii 9"{9A +9'Y9A + .c. 
m AB mA 

:3 -327r2eK/2Wizi ['YiM3/2 + Fnon (t 'Yi lnlia + L -yfk InIik)] +,~.c. , 
Jk •. 

fAB = JfAfB' Iik = JfzJfzK, fia = Jfcpafyp (2.23) 

which reduces 'to the "anomaly mediated term" found in [93] provided that (Fnon lni A) = O. 
We discuss below the circumstances under which this is the case. The full leading-order A-term 
Lagrangian is 

CA = eK/2~WiZi['YiM3/2+ L'Yi(2Maln{m~a/JL2)+Fnonlnfia) 
z a 

+ Lrd
k 

(Aijkln{mJk/JL
2

) + FnOnlnjjk)] + h.c. + "', 
jk 

2 2 2 
mAB = mAmB, mjk = m<l>Jm<l>K, mia = m<l>amCj;I' 

2.1.3 Scalar Masses 

Scalar masses get a contribution from the term quartic in H: 

(2.24) 

which corresponds to two B-term insertions in the PV loop. The contribution from the cubic 
term is 
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(2.26) 

where we used the vacuum condition (1.4). The last term in (2.26) is a double B-term insertion; it 
cancels (2.25) in the Lagrangian (2.9). The first term on the right hand side of (2.26) corresponds 
to one B-term and one A-term insertion, and the second term corresponds to a PV soft squared­
mass insertion. Explicitly, 

(2.27) 

where 

(2.28) 

is the soft supersyinmetry breaking squared mass of the- field cpA or II A. For A -t cpA the masses 
are determined by the supersymmetry breaking masses of the tree Lagrangian 

22M2 2 J.L;J,I = 3/2 - J.Li , (2.29) 

so these terms give no contribution if J.Li = Ma = O. However, even if no soft supersymmetry 
breaking masses are present in the tree Lagrangian, one cannot a priori exclude such terms in 
the theory above the effective cut-off, that could be reflected in soft supersymmetry breaking 
masses J.L~A in the PV sector that parameterizes the underlying Planck scale physics. Finally 
we have 

Trh2. 3 2 L 1JA (H~H! + HABHAB) 
AB 

3 2e -K L 1JA [ 2J.L~ W AB 
WAB 

AB 

+zizlpnp (8n In(~i~A~Be-K)) (am In(~j~A~Be-K)) W1BWiAB] , (2.30) 

;i for the part of the renormalization of the Kahler potential that contributes to scalar masses. 
Using (2.21) and (2.27)-(2.29), the full scalar mass term is 

~ Izi l2 
(M'f/2/i +L Ii {(3M; - J.Ln In(mra/ J.L2) 

t a 

+ pnpam8n lnlia + Ma [(Pam + p n8n) lnlia + 2M3/2]} 

+ L 11k { (J.L] + J.L~ + Arjk) In( m]k/ J.L2) + pnp am8n In Ijk 
jk 

+~A;jk [(F"'8m+FnOn) In/;k+2M,/2]}) + .... (2.31) 
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In the absence of tree level soft supersymmetry breaking, this expression reduces to the first 

("universal") term if (FnronOmfA) = O. 

The soft supersymmetry breaking Lagrangian for the canonically normalized scalars <p R is 
1 

obtained by making the substitution <pi = g;"2 <pk in LA + Lm. For completeness and comparison 
we give the result for the one loop induced (left-handed) gaugino mass [13, 86] under the same 
assumptions used here to calculate LA + Lm: 

flM. ~ - 9f6~1 [(3C. - C,!'l)M3/ 2 + ~ ~xC'; Fa iln In IX] +... . 

-~6~1 [(3C. - C,!'l)M3/ 2 + C.p'" ilnK - ~ FaC!oa In Ii] + ... , 

Ii = (2.32) 

where Ca, C{ and C! are the quadratic Casimirs in the adjoint of the gauge subgroup Qa 
and in the representations of <I>x and Zi respectively, with cf:! = Ei C!. The second equality 
in (2.32) follows from the requirements of finiteness [77, 78] and supersymmetry [87] of the . . 

chiralj conformal anomaly proportional to the squared gauge field strength. 

2.2 Comparison to Anomaly Mediated Results 

In this section we wish to focus our attention on those parts of the one loop result found in 
Section 2.1 which are "universal" in their nature - that is, which depend only on the gravitino 
mass M 3/ 2 , anomalous dimensions and ,B-functioncoefficients. Since the super-Weyl anomaly 
is associated with the Kahler transformation (1.20), which is explicitly canceled in models that 
ensure modular invariance one might expect the mass terms found in [93, 131] that arise from 
the super-Weyl anomaly to be absent in this class of models. However, this term has its origin 
in the running of the couplings from the string scale to the scale of supersymmetry breaking, 
and is therefore independent of the string scale physics.' In addition, we found a contribution 
that depends on the unknown couplings of matter fields in the GS term. 

2.2.1 Gaugino Masses vs. Scalar Potential Quantities 

The one loop contributions to A-terms (and to scalar masses and B-terms discussed'below) are 
considerably more sensitive to the details of Planck scale physics than the gaugino masses. The 
most straightforward way to regulate an effective theory is by introducing heavy fields - such 
as the. Pauli-Villars fields - with masses of the order of the effective cut-off, and couplings to 
light fields chosen so as to cancel quadratic divergences. ThePV masses can be interpreted as 
parameterizing effects of the underlying theory. These masses are to some extent constrained by 
supersymmetry. These constraints are much more powerful in determining the loop-corrected 
gaugino masses than the other soft parameters, for the reasons that follow. 

All gauge-charged PV fields contribute to the vacuum polarization and to the gaugino masses. 
Their gauge-charge weighted masses are constrained by finiteness and supersymmetry to give 
the result in (2.32). The superfield operator that corresponds to these terms is the same one that 
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contains the field theory chiral and conformal anomalies under Kahler transformations of the 
type (L20), and is therefore completely determined by the chiral anomaly which is unambiguous. 
Specifically, the conformal and chiral anomalies are the real and imaginary part of an F-term 
operator; the former is governed by the field dependence of the PV masses that act as an effective 
cut-off. and are determined by supersymmetryfrom the latter [87J. 

On the other hand, only a subset of charged PV fields <I>A contribute to the renormalization 
of the Kahler potential, which determines the matter wave function renormalization and governs 
the loop corrections to soft parameters in the scalar potential. Their PV masses are determined ) 
by the product of the inverse metrics of these fields and of fields ITA to which they couple in 
the PV superpotential to generate Planck scale supersymmetric masses, as well as by a priori 
unknown holomorphic functions J.LA(ZN) ofthe light fields that appear in the PVsuperpotential. 
While the Kahler metrics of the <I>A are determined by finiteness requirements, the metrics 
of the ITA are arbitrary. In operator language, the conformal anomaly associated with the 
renormalization of the Kahler potential is a'D-term; it is supersymmetric by itself and there is 
no constraint, analogous to the conformal/chiral anomaly matching in the case of gauge field 
renormalization . with an F -term anomaly, . on' the effective cut-offs - or PV masses - for this 
term. As a consequence the soft terms in the scalar potential cannot be determined precisely in 
the absence of a detailed theory of Planck scale physics. 

Relating this to the results of the previous section, unlike the expressions in (2.24) and (2.31) 
the leading one loop contribution to the gaugino masses (2.32) is completely determined by the 
low energy theory. In this case all gauge-charged PV fields <I>x contribute, their mass matrix 
is block diagonal and commutes with the relevant operators, and the gauge-charge weighted 
masses are constrained to give the second equality in (2.32). Since the conformal anomaly 
associated with the renormalization Of the Kahler potential is a D-term, it is supersymmetric by 
itself and there is no constraint analogous to the conformal/ chiral anomaly matching in the case 
of gauge field renormalization with an F-term anomaly. As a consequence the "nonuniversal" 
terms appearing in £, A + £'m' cannot be determined precisely in the, absence of a detailed theory 
of Pl~nck s,cale physics. 

2.2.2 No-Scale Models 

As a check of our results, consider the "no-scale" model defined by 

. K = k(S) + G, G = -3In(T + T - L l<I>iI2), W = W(<I>i) + W(S), (2.33) 

which has no soft supersymmetry breaking in the observable sector <I>i at tree level. If we regulate 
the theory so as to preserve the no-scale structure, we have Kcf>A = KrrA, and 

. G/3 fA=Ji=hi(s)e. 

Then 

Vanishing vacuum energy at tree level requires F S = 0, so if (ifi) 
no-scale Kahler potential satisfies 

= 0, ifi 

-FnGn = eK/2WGfKftCt '= 3M3/ 2, F n=F - G - K/2IWI2G-KftG - 3M2 
nih - e . t t - 3/2' 

, (2.34) . 

(2.35) 

(2.36) 
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and all the soft supersymmetry breaking terms, (2.24), (2.31) and (2.32), cancel, in agreem~nt . 
with explicit calculations [22] and nonrenormalization theorems [24] in the context of this' type 
of model. . . . 

In one of the earlier papers related to "anomaly mediated"supersymmetry breaking, Randall 
and Sundrum [131] considered a class of models qefined by a Kahlerpotential .' . " ", . . 

K = -31n [1-~ 1<1>'1' - f(Z", Z"')] , (2.37) 

where the <pi represent gauge-charged ma:tter,ap.d the zn are in a hidden sector where sllp~r:;" ' ' 
symmetry ,is broken: (<pi) = (pi) = 0, :(pn) =1= 0. For. these models .' .. ' ' 

, 
'2 
I:'i = Aijk = 0, (2.38) • 

from the definitions (2.19) and (2.28) and the vacuum condition (1.4). In addition there is 
no dilaton: 9a = constant, Ma= 0, so,there is no soft supersymmetry breaking in the tree 
Lagrangian. Ifwe assume KcJ>A = KrrA, there are also nosoft s':!persymmetry breaking parameters 
in the PV, Lagrangian. Then the scalar masses indeed vanish at one loop, and we obtain: 

To determine the model-dependent contribution proportional to (pn Kn), we study the vacuum 
conditions (V) = (Vz ) == ° for the potential V(z = ZI) derived from W(Z) and K(Z) = 
-3In[1-J (Z)], with the gauge-charged fields <p set to zero. This potential is classically invariant 
under the Kahler transformation 

If one imposes a "separability" condition [131] on the superpotential 

(2.41) 

the redefinition (2.40) is not a classical invariance of the full theory with <p =1= 0, but rather 
defines. a one-parameter family of models of the general form defined by (2.37) and (2.41), with 
the same vacuum, but with different couplings ~f the hidden sector to gauge-charged matter. 

If J(Z, Z) = J(IZI 2 ) and (z) = (ZI) = 0, then (Kz ) = (3J'(z)z) = 0, and the "anomaly 
mediated" results are recovered in the dimension-three soft operators (2.39). An example of this 
type is given in [131] for the case of a single hidden sector field Z. For the family of models 
generated from that one by the redefinitions (2.40), we obtain for the coefficient ofthe soft terms 
in (2.39):' . 

(2.42) 

I 
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since (FZ F'iKz'i) = - (FZ(KzW + Wz)) = 3Mi/2 is invariant under (2.40). 

Fo~(z) = e = 0, we have (F Z K z ) = 0, giving the standard result [93, 128, 131] Bt; =M3/ 2 • 

In the literature the point e = 0 is referred to as "minimal anomaly mediated supersymmetry 
'breaking:;' For e =: 1, this model is precisely the one defined by (2.33), with Bt; = 0: Quite gen­
erally,' if (Fnwn) = 0 in the class of models defined by the separability conditions (2.37), (2.41) 
and i'b<I>A ~ i'brrA for the PV fields, the soft supersymmetry breaking terms all vanish,~ince in 
this case (F~ Kn) = (Fnpm Kim) jM3/2 = -3M3/2 by the vacuum conditi~n (1.4). " " 

In the context" of string theory however, the "llfr-scale" regularization is unacceptable; be­
caus~ it leads to a loop-corrected Lagrangian that is anomalous under modular transforrhations, 
which 'are known to be perturbatively unbroken in string theory.' Therefore one must rest6~e 
modular inva~ia~ce by including, for exa~ple, a modular covariant field dependenceln;the PV 
mass parameters in (2.13) /-LA = /-LA (T), which might reflectistring l~opthreshold corrections; 
since these necessarily break the no-scale structure of the theory soft'supersymmetry breaking 
parameter~ would be generated si!lcepT¥= 0 in this toy' model.' Alternatively,'ru, shown'in{79], 
this theory can be regulated withHeld-independent masses for the PV fields'that contribute to 
the renormalization of the Kahler p6tential: an! A = constant, in which case the A-term's:are 
precisely those found above for this no-scale case, but scalar masses are also generated at one 
loop: b../-L; = Ii Mi/2 . Gauginos remain massless since their masses are insensitive to the specific 
choice'of PV regulator masses. 

2.2.3 'Spurion Techniques 

To summarize, we have found that the "anomaly mediated" results for soft supersymmetry 
breaking rest on the separability assumptions stated above, but also on more specific assump­
tions on the form of the hidden sector potential and PV sector couplings. We now address 
the question as to why these same results were obtained by spurionanalyses.5 In its original', 
incarnation [7, 92, 95], these techniques of deriving o1;>se~vable sector soft supersymmetry break-:, 
ing terms were applied solely to models in flat superspace (such as models of gaugemediat~d 
supersymmetry breaking). In these cases the Kahler potential alld superpotential obeyed the 

I r , • 

. ; separability conditions between observable and hidden sectors ;' 

Ktot = Kobs (<p, ~ + Khid (Z, Z), Wtot = Wobs (<p)+ Whid (Z). (2.43) 

Furthermore, the observable sector Kahler potential was of a minimal variety: Kobs (<p, <p) = 
L:i l<piI2. 

The key properties of models in which th~ leading contributions to soft terms arise from the 
confo~mal anomaly were enumerat~'d by Randall and'Sundrum ~nd are encapsulated in the form 

'''ofthe Kahler potential (2.37). This Kahler potential was the result of demanding separability 
in the fun~tion n = _3e-K / 3:: , ' '. . , " 

ntot = -3 + nobs (<p, ~ + nhid (z, z), Wtot = Wobs (<p) +Whid(Z), (2.44) 

where the factors -3 ensure the canonical normalization ofthe Einstein term in the supergravity 
,Lagrangian. The separability condition (2.44) and the requirement that nobs ex Lil<pil2 (nec­
essary to ensure vanishing tree level soft supersymmetry breaking in the visible sector as stated 

. , . ' I' , , 

5The authors of(128] also pointed out that these results are correct .only if {Fn Kn} can be neglected. 
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in Section 2.2.2) give rise to (2~37). Of course in the flat space limit Kahler separability (2:43) 
and separability in n (2.44) are equivalent statements. Thus the Kahler potential assumed 
in (2.37) is of precisely the limited class of,potentials for which the flat-space spurion techniques 
can be imported into a ~upergravity context, as in Refs. [131] and [128], without complicatIon. 
This intimate connection between (2.37) and the canonical flat space of the spurion techn'i~ue 
is not surprising as the ansatz of (2.44) represents a set of models with very special confo~mal ' 
properties, as we will elucidate below.' . . . '. 

For dimension-three soft tenus the distinction between curved and flat superspac~;'is irr~le­
vant, and the dependence of the. anomaly.,. induced soft terms (2.39) on the auxiliary rii~ltipl~t o'f 
supergravity is fixed by 'the conformal pr~perties of the operators involved [93]: The ~omplete . i 

anomaJy contribution for the dimension-two soft terms given in.(2.31) not proportiona1 to the' , 
normal logarithmic running can in fact he obtained from the spur ion technique by use of th~' 
followIng construction. We promote the wave function renormali~ation coefficient Z· to' a 'spur­
ion superfield Z as in [92]. Ho~ever, this field is' ~ot only dependent on the chiral c~mpensator 
'TJ = :( + F~(P and its Herp1!tian conjugate', but also on'a real supeifield. Using the :PV soft terl!l 
definiti~ns 'in (2.21) we can see that this' sp~ion is given schematically by , 

(2.45) 

where here a and 2ma generically represent the tree-level A-terms of the Pauli-Villars sector 
that correspond, respectively, to the tree-level A-terms A and gaugino masses Ma of the light 
field sector, and /1-a represents the soft scalar masses of the Pauli-Villars sector. The functional 
dependence of the superfield Z on these spurions is given by 

", 

z = Z ( /1-V )' 
'. ('TJij)1/2' 

(2.46), 

with /1- the renormalization point. as before, in analogy with Ref. [7,95,131]. 
, 

We can now 'perform a Taylor series expansion of this expression about () = 0 to obtain 

lnZ = 

(2.47) 

Now the chiral field redefinition 

"I_·Z"( )1/2 (-C.!8InZ(/1-)v(j2) 
'TJ -t 'TJ - /1-, exp 2 81n/1- I'1/, 'TJ (2.48) 

can be performed as usual in th~ spurion derivation to eliminate the one loop contribution to' 
soft masses arising from the supergravity auxiliary field and generate the one loop contribution 
to the A-terms. This process is equivalent to the cancellation of the double B-term insertions 
mentioned above (2.27). Note the importance of the assumptions of (2.37), in particular the 
fact that the 'Kahler potential for·the observable sector is minimal to lowest order in l/MPL , for 
the rotation (2.48) to be performed. 

This same chiral rotation cannot be performed on the real superfield contributions of the 
Pauli-Villars soft supersymmetry breaking terms. This real superfield is not itself the product of 
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a chiral and anti-chiral superfield. The terms proportional to (p are thus irrelevant provided that 
there is no supersymmetry breaking in the observable sector. This is a result of the celeb~ated 
holomorphy that underlies the spurion technique. The scalar masses are then read off from the 
02112 component of (2.47). Use of (2.27) and the equation of motion for the auxiliary field FfJ 
then leads to identification with (2.31). 

The question remains, why do flat-space spurion techniques imply the vanishing of the Pauli­
Villars tree level soft supersymmetry breaking parameters independent of the specific nature of 
the Kahler potential and st!perpotential? The answer can again be found in the special class 
of supergravity theories for 'which these tech~iques can be applied. < Specifically, as mentioned 
above, a "sequestered" sector model is really nothing more than a model on an Einstein-Kahler 
manifold, of which the no-scale models are a particular subset [114]. These spaces are defined 
by the fact that the curvature is proportional to the metric. The constant of proportionality 
determines the normalization of the Einstein term in the supergravity Lagrangian. In flat space 
these are empty statements, but in curved space a properly normalized Einstein term in an 
Einstein-Kahler manifold Will cause the scalar mass term R +Ml/2 in (2.15) to be proportio~al 

to V. Hence in a space with vanishing cosmological constant and Kahler potential given by (2.37) 
(which is equivalent to using the spurion technique in flat space) the PV tree level soft masses 
are identically zero. It follows that no one loop scalar masses will be generated in these theories 
by the conformal anomaly. 

2.3 Explicit Form of the One Loop Soft Terms 

In this section we imagine spontaneous supersymmetry breaking in the hidden sector as mani­
fested by nonvanishingvevs for some set of chiral auxiliary fields F n , as well as the supergravity 
auxiliary field M. We translate the results of Section 2.1 into a more useful form for phe- < 
nomenological surveys, in which we assume the supersymmetry breaking is occurring in <the 
moduli sector: Fn -+ FS, FC!. This procedure was laid out in the pioneering work of Brignole, 
Ibanez and Munoz (ElM) [35, 36]. . 

2.3.1 Gaugino Masses 

The tree level expressions for the soft supersymmetty breaking terms are well known. The tree 
level contribution to the masses of canonically normalized gaugino fields simply reads:6 

(2.49) 

The full one loop anomaly-induced contribution was obtained in (2.32) and is transcribed here: 

(2.50) 

where Ca, C! are the quadratic Casimir operators for the gauge group Qa in the adjoint repre­
sentation and in, the representation of Zi, respectively and b~ is the one loop coefficient of the , 

6In this subsection we will suppress the brackets ( ... ) indicating vacuum expectation values. All expressions 
are to be understood to be in terms of vevs of the fields. 



24 Soft Supersymmetry Breaking at One Loop' 

corresponding (3-function: 

(2.51) 

and the functions Ki(zn) have been defined in (1.23). The first term is the one generally quoted 
as the universal anomaly mediated piece [93, 131]: -b~g~M3/2 using (1.3). 

String threshold corrections may be Interpreted as one loop corrections to the gauge klIletiC 
functions. They read: ' " (, ,,' , 

, (2.52) 

Combining contributions from the Green-Schwarz' counterterm and string threshold corrections 
with the light loop contribution (2.50) yields a total one loop contribution: '!' 

"" 

(2.53) 

2.3.2 ~-teruas 

A-terms are cubic terms in the scalar potential that generally arise whensupersYII}.metry is ' 
broken: ., ' ~ f. 

V 1"'A K/2W i j k h 1"'A K/2( )_lW AiAjAk h '('2'5'4) 
A = 6' L....J ijk e ijkZ Z Z + .c. = 6' L....J ijke KiKjKk 2 ijk Z Z Z + .c.,., . 

ijk ijk 

1 

where zi = K~ 2 zi is a normalized scalar field. At tree level we have 

,:..l' (2.55) 

The leading order A-term Lagrangian was given in (2.24); from the definition (2.54) we obtain 
for the one loop contribution: 

A~}k -~'iM + L ,i [2M~0) In(lmimaI/Jt~) + Fnonln(lmimaD] 
a 

'" l [ (0) 2 ' , ], '+ L....J,r A ilm In(lmlmmI/JtR) + Fnon In(lmlmml) 
1m 

+ (i -+ j) + (j -+ k), (2.56) 

where mi and ma are the PV masses of the supermultiplets ~i and ~a that regulate loop " 
contributions of the light supermultiplets Zi and W:, respectively, and mi is the PV mass 
of a field ~i, in the gauge group representation conjugate to that of ~i (and of Zi) needed 

I 
,-
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to complete the regularization of the gauge-dependent contribution to the one loop Kahler 
potential renormalization (2.2). The parameters,{ determine the chiral multiplet wave function 
renormalization and were given in (2.7) and (2.8). Using (2.6) and (2.12) we obtain for the full 
A-term, 

k'k lJ ~ A~Jk - ~/iM\ - 2: FQ [tQ : tQ + 2( tQ)] (2: Ifp~ + 2: limphn) 
Q a lm 

+F
S ! (2: If In{jL;a) + 2: lim In{jLfm)) 

a lm 

- 2: In [(tQ + [Q)I7J(tQ)14] (2 2: IfpiaM~O) + 2: l!mphnA~~~) 
Q a lm 

+22: If M~O) In(jL;a/ fl~) + 2: lim A~~~ In(jLfm/ fl~) + cyclic (ijk), (2.57) 
a lm 

with the unknown dilaton dependence folded into the mass variables jLA and the modular weight 
expressions pQ given by 

(2.58) 

where fliflj, fli/-La are constants. The tree level A-terms and gaugino masses are given from (2.55) 
and (2.49), using (1.26), by 

A~Ok) "'" FQ (n~ + nQ + nQ + 1) [ 1 + 21"(tQ)] - k F S 
lJ D Z J, k tQ + tQ " s, 

Q 

(2.59) 

2.3.3 B-terms 

B-terms are quadratic terms in zi and in z"i that appear in the scalar potential after supersym­
metry breaking if there are such quadratic terms in the superpotential and/or Kahler potential: 

~ 2: Vij{Zn)Zi zj + O[(Zi)3], 
ij 

2: ~ilZil2 + ~ 2: [aij(zn, zn)Zi zj + h.c. ] + O(IZiI3 ). 

i ij 

These terms give rise to masses for the chiral supermultiplets Zi: 

LM = - ~[~eK/2 (t/iflij'lj? + h.c.) + eKlziI2~jlflijI2] , 
lJ 

flij = Vij - e-K/2 (~Maij - ranaij) . 

(2.60) 

(2.61) 

(2.62) 
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The Lagrangian (2.62) is globally supersymmetric although the mass term arising from O'.ij 
appears [94] only after local supersymmetry breaking: M3/ 2 i= o. The B-term potential takes 
the form 

IT 1~B K/2 ij+h 1~B K/2( )_1 AiAj h 
vB = 2 L.J ije J-LijZ Z .c. = 2 L.J ije "'i"'j 2 J-LijZ Z + .c .. 

ij ij 
(2.63) 

At tree level we have 

(2.64) 

The one loop contribution is easily extracted from the result for the leading order A-term 
Lagrangian given in Section 2.1.2; we obtain 

Bg) -~'"YiM + L 'Yi [2MlO) In(lmimall J-L~) + Fnon In(lmimal)] 
a 

+ L 'Yim [A~?~ In(lmlmmllJ-L~) + Fnon In(lmlmmD] + (i -+ j). (2.65) 
1m 

Using the assumptions and results of Section 2.3.2 we obtain for the full B-term in string-derived 
orb if old models 

Bij = ~B~) - ~'YiM - L FO [to: to + 2({tO)] (L 'YiPia + L 'Y!mpfm) 
° a 1m 

+F
S :8 (L 'Yi In(~Ia) + L 'Y!m In{jLfm)) 

, a lm 

-L In [{to + [O)I1J{tO)14
] (2 L 'YipiaMlO) + L 'Y!mphnA~?~) 

Q a 1m 

+ 2 L 'Yi MlO) In{jLIal J-L~) + L 'Y!m A~?~ In{jLfml J-L~) + (i +-+ j), (2.66) 
a 1m 

with the various parameters defined in (2.58). Because we have assumed modular covariance for 
trilinear terms in the superpotential,7 Eqs. (2.59) assure that the one loop contribution to the 
B-term reduces to the anomaly mediated term 

B anom 1M ( + ) ij = -3" 'Yi 'Yj (2.67) 

if supersymmetry breaking is moduli mediated ((FS) = 0) with the moduli stabilized at self-dual 
points. 

However tree level B-terms may not vanish in this case; they are sensitive to the origin of the 
"J-L-term" (2.62). A modular invariant Kahler potential of the form (2.61) was constructed [5] for 
(2,2) orb if old compactifications of the heterotic string with both T-moduli and U-moduli. Here 

7In fact we need only assume this for the dominant T~Q3Hu term; in making the approximation (2.8) we 
implicitly neglect the small Yukawa couplings that may themselves arise from higher dimension operators and/or 
loop corrections. 
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we restrict. the moduli to T-moduli in which case modular invariance of the Kahler potential 
.~ . 

K (z~ , z ) requires 

aij(Zn, zn) = aij(S, S) II (rl: + Ta)qij [1](Ta)fkij [1]* {Ta)]2qij , kij = qij +ni + ni, (2.68) 
a 

and modular covariance of the superpotential (2.60) requires 

Vij{Zn) = nij II [1](Ta)]2wij , wij = 1 + ni + nj. (2.69) . 
a 

Bilinear terms in matter fields do not appear in the tree level superpotential in superstring­
derived models, but they can be generated from higher dimension terms when some fields acquire 
vev's. Bilinear terms in the Kahler potential could similarly be generated from higher dimension 
terms. These will be modular invariant if only modular invariant fields acquire vev's. For 
example D-term induced breaking of an anomalous U{I) above the scale of supersymmetry 
breaking preserves modular invariance. On the other hand if VHuHd i- 0, it is of the order of 
the electroweak scale: it presumably originates from the vev (N) of an eledroweak singlet field 
N and there is no reason that modular invariance should still be operative at such low energy 
scales. In any case, the corresponding B-term is generated by an A-term in this instance. 

To consider the case in which the JL-term is already present at the supersymmetry breaking 
scale, we can parameterize aij, Vij as in (2.68) and (2.69), but with the exponents kij, qij, wij 
left a priori arbitrary; the case of modularinvariance is recovered when the last equalities in 
those equations are imposed. We also assume that Standard Model singlets N whose vev's 
may generate quadratic terms in the superpotential or Kahler potential do not contribute to 
supersymmetry breaking: FN = O. . . 

If the JL-term (2.62) is generated by a superpotential term (2.60), we obtain for the tree level 
B-term 

[B~?)] = "" Fa [(1 + n~ + n~) 1 + 2/"{ta)W~.] - ksFS + ! M. 
~J W ~ 1 J ta + ta ., ZJ 3 

a 

(2.70) 

The coefficients of the moduli auxiliary fields vanish at the moduli self-dual points when modular 
invariance (2.69) is imposed, but the B-term does not vanish: B(O) = 1M for F S = O. Although 
it seems rather implausible that a hierarchically small value of Vij ~Te V would be generated 
at the supersymmetry breaking scale Asusy ~ 1011 Ge V, it could conceivably arise as a product 
of vevs in a superpotential term of very high dimension [91]. ~ 

A more natural origin for a f-t-term of the order of a TeVis a quadratic term in the Kahler po­
tential as in (2.61). The expression for B(O) obtained from the general parameterization (2.68) is 
rather complicated and does not in general vanish when (FS) = 0 and modular invariance (2.68) 
is imposed. As an example, consider the simplifying assumptions that aij{S, S) = constant and 
qij = (8Wj8ta) = 0, then for Vij = 0 

f-tij 

[
B(O)] 

1J K 

aijW[1](ta)]2kij, Fa = -~ (ta + ta), 

= "" Fa [(1 + na + nO:) 1 + 2/"{ta)k~.] ~ ~ . J to: + ta ., 1J 
0: 

S 1-
-{ks+8slnW)F +3M. (2.71) 
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In this case even the coefficients of the moduli auxiliary fields do not vanish at the moduli 
self-dual points when modular invariance is imposed, and under the above conditions we get 
B~) = -~M. It is possible that a comparison of BHuHd with A-terms might shed some light 
on the origin of the j.t-term (2.62). 

2.3.4 Scalar Masses 

The expression "soft scalar masses" refers to mass terms in the scalar potential 

(2.72) 

with no supersymmetric counterpart in the chiral fermion Lagrangian. The tree level soft scalar 
masses are given by 

(2.73) 

Here and throughout the discussion of scalar masses, we drop terms proportional to the vacuum 
. energy (1.4). 

Denoting by NAthe soft mass of ?fA, the one loop scalar masses can be written in the form 

(M;(1»2 = _~ [~Ii (N; + Nt - (M~O»2 - (M;(O»2) 

+ ~ 71' (NJ + Nf + (MJ"l' + (Ml"l') 1 
- 2>i [3(M~O»2 _(Mi(O»2 + M~O) (rom + FnOn)] In(lm;maIIJL1) 

a 

_ ~,{k [(MjO»2 + (~~O»2 + (Am)2 + ~A~n (rom + Fn On )] In(lmjmkIlJL~) 

+f{M+M) [LliM~O)+~L,{kA~nl· 
a .}k .... 

(2.74) 

, ,., 

For orbifold compactifications of string theory, with the Kahler metrics given in (1.24), we 
obtain for the tree level scalar masseS 

(Mi(O))2 = ~MM + LFaFaniW~ + [a)-2. (2.75) 
a 

Note that if (8Wj8t) = 0, then Fa ~ -!M{ta + [a) and Mi(O) = 0 in the no-scale case with 
" nC!- = -1, as for the untwisted sector of orbifold models. The soft masses NA are given by LJa t . 

the standard formula (2.73) by just replacing K,i by K,A. The one loop contribution is then given 
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by 

(MP))2 = ~M M,i - F S pS 8sas (L ,i Inp;a + ~,fk In PJk ) 

a Jk 

- L pcl: FQ:(tQ: + [Q:)-2 (L lip~i + ~ ,fkpik) 
Q: a Jk 

+~ (M + Xl) [L Ii MiO) + ~ ~ ,fk A~Jkl 
aJk 

+ {LFQ: [tQ:'~tQ: +2((tQ:)] (L'YiPiaMiO) + ~ ~,fkPikA)~) + h.C.} 
Q:. a Jk 

{ F
s ~ ('" aM(O) 1 (-2) ~ '" ~jkA(O) (-2)) } + as ~ Ii a n /-Lia + 2 7: . Ti ijk In /-Ljk + h.c. 

- LIn [(tQ: + lQ:)I1J(tQ:) 14] {L 'YiPia [3(MiO))2 - (Mi(O))2] 
Q: a 

+ ~ --b'J> [(Mj'l)' + (MkO)), + (Al~k)'l } 

+ L Ii [3(MiO))2 - (Mi(O))2] In(P;a//-L~) 
a 

+ L,fk [(MjO))2 + (MkO))2 + (A~Jk)2] In(PJk//-L~). 
jk 

(2.76) 



Chapter 3 

Orbifold Models 

Following [35, 36], we will consider models where the supersymmetry breaking arises through 
non-vanishing expectation values of the auxiliary fields FS, F o. and M and we write: 

~MK-1/2 . () -hs 
y'3 ss sm e , (3.1) 

1 - -1/2 . 
y'3M Ko.o: cos (}8o.e-~'Y", (3.2) 

with 2:0. 8; = 1. In the case where one considers a single common modulus T (the overall 
radius of compactification), (3.2) simply reads: 

T 1 - -'-1/2 .. 
F = y'3MKTT cos(}e-~'YT. (3.3) 

Recall that the veil of M is related to the gravitino mass through (1.3) and that these auxiliary 
fields automatically satisfy the constraint that the potential V in (1.4) vanishes at the ground 
state. 

In the orb if old models that we consider, i.e. with gauge kinetic function (1.14) and Kahler 
potential given by (1.19) and (1.24), the tree level soft terms have simple expressions: 

2 
9a Mk-1/2 . 0 -irs 

2v'3 '8 sm e 

~ {coso L(t" + l")G~eor(nf + nj + n'k + l)e-
i
,a - 7{2 sinoe- irs } 

or ~s 

M {I sin 0 [k '" I .] -irs· 0'" e [( or or ) '" ] -i,a} v'3 v'3 - kl{2 • + Vs n/L.j e + cos 6 - or ni + nj + 1 - Vta In/Lij e 
s. or 

MM { '" 2 2} -9- 1 +3 ~nfeorcos 0 (3.4) 

The one loop contributions to (3.4) are decidedly more cumbersome and the complete expres­
sions are given in Appendix B. Below we consider the phenomenological implications of some 
specific cases in which the soft supersymmetry breaking terms are simpler. In all of the following 
G~ = (2((To. ) + l/(To. + T o.

)), which is proportional to the Eisenstein function (1.30). 

The expressions in Section 2.1 require some further assumptions regarding the Pauli-Villars 
sector if we are to extract predictions from the models. We will choose two possible scenarios 
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for the PV masses and modular weights in what follows. First, if the PV masses mi, m a , and 
rhi in (2.13) are constant (as well as JLA)l we have from (2.13) 

ni+qi -1, 

(A) a Aa ni - qi 1, (3.5) 

q~ 0, 

and thus pij = Pia = 0, from (2.58) with PTj and j1,~i constants. 

A commonly (though often implicitly) made assumption in the literature is instead that II A 

has the same Kahler metric as <pA, as was discussed in Section 2.2: 

qi ni, 

(B) <jia -ni, (3.6) 

q~ -1; 

th O • -2 t t -2 2 a 1 a a d a a n·· . h· h IS gIVes JLij cons an , JLia = ga' Pij = + ni + nj an Pai = -ni .. IstmgUls mgamong t e 
possibilities from the theoretical point of view requires string loop calculations similar to those 
used to fix the moduli dependence of the gauge kinetic function [6, 59]. We now apply these 
relations to a range of orbifold models 

3.1 Anomaly Dominated Scenarios 

The analysis of the preceding sections indicates a very sPE;cific situation which turns out to 
give quasi-model independent contributions. It is the case of moduli mediated supersymmetry 
breaking (ps = 0 or () = 0) where the moduli fi~lds lie at a self-dual point (ta = 1 or ei1r / 6 , and 
thus G~ = 0). Assuming (1.14), we have vanishing tree level gaugino masses and A-terms and 
from (2.53), (2.57) and (2.67) we obtain: 

k'k ~] 

bO 
ga(JL)2 ; M, 

1-
-3M (ri + 'Yj + 'Yk). 

1-
-3M (ri + 'Yj) 

(3.7) 

Further assuming that e~ = ~ (as in the case of a single modulus T, see (3.3)), 'Ya = 0 and 
L:a ni = -1 (as in the untwisted sector), we have vanishing tree level scalar masses and 

Ml = ~MM ['Yi - L'Yfp~i - ~'Y!kpjk]. 
a,a a,]k 

(3.8) 

For the choice (A) of PV weights (3.5), one finds Ml = MM'Yi/9 whereas for the choice (B) 
in (3.6), one obtains Ml = O. This shows very dearly how dependent the scalar masses are on 

lIt was shown in [77, 78, 79) that the Kahler potential for the untwisted sector from orbifold compactification 
can be made modular invariant with the relevant masses constant. Since the tree level Kahler potential for the 
twisted sector is not known beyond quadratic order in twisted sector fields, the one loop corrections to it cannot 
be calculated, 
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Scalar Mass Auv = Ix 1011 GeV Auv = 2 X 1O!1l GeV 

M~3 1.4 ::; tan f3 ::; 45 1. 7 ::; tan f3 ::; 44 

MU3 1.8 ::; tan f3 ::; 48 1.9 ::; tan f3 ::; 44 
M2 1.3 ::; tan f3 ::; 42 1.6 ::; tan f3 ::; 41 D3 
M2 1. 3 ::; tan f3 ::; 46 1.6 ::; tan f3 ::; 44 L3 
M~3 1.3 ::; tan f3 ::; 39 1.6 ::; tan f3 ::; 41 
M2 always negative 3.6 ::; tan f3 ::; 33 Hu 
M'k 1.3 ::; tan f3 ::; 33 1.6 ::; tan f3 :S 37 

Table 3.1: Regions of Positive Squared-Mass in the Anomaly Dominated Scenario. Range of 
tanf3 for ~hich scalar squared-masses are positive at the boundary scale Auv using the PV scenario (A). 
The value of tanf3 was varied over the range for which the third generation Yukawa couplings remain 
perturbative up to the scale Auv. This corresponds to the range 1.3 ::; tanf3 ::; 44 for Auv = 1 X 1011 GeV 
and 1.6 ::; tanf3 ::; 48 for Auv = 2 X 1016 GeV. 
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the regularization scheme forced upon us by the underlying theory. Case (B) corresponds to the 
anomaly mediated scenario, as in Section 2.2, in which scalar squared-masses arise at two loops 
but are negative for sleptons, thus implying an unacceptable phenomenology without further 
ad hoc assumptions. As discussed in Section 2.3.3, if the JL-term (2.62) has a low energy origin 
through the vev of a standard model singlet in a superpotential term, we would expect that in this 
scenario the B-term would also be dominated by the anomaly mediated contribution (2.67). On 
the other hand if it arises from Planck scale physics, we do not expect the tree level contribution 
to vanish. 

Let us note moreover that any departure from our hypothesis (i. e. a small value for F S or a 
departure from the self-dual point in moduli space) generates tree level values for the soft terms 
which tend to overcome the one loop anomaly-induced contributions considered here, as we 
will see in the next subsection .. Therefore if gaugino masses and/or A-terms are measured to be 
significantly larger than the "anomaly mediated" values in the string context of assumed modular 
invariance this would quite generally suggest dilaton dominated supersymmetry breaking and/or 
moduli vevs far from the self-dual points. 

When (3.8) represents the leading contribution to scalar masses we can see from {2.8} that 
the positivity of scalar squared masses depends on the size of the Yukawa couplings (which 
themselves are a function of the value of tan f3 and of the scale Auv at which the soft terms are 
determined) and the values of the high-scale parameters Pia and P0 of (2.58). In the simple 
case of scenario {A} {3.5} mentioned above, the sign of the scalar squared mass depends on 
the sign of the anomalous dimensions. Keeping all third generation Yukawa couplings and 
taking the running masses of the third generation fermions at the Z-mass to be {mt, mb, m T } = 
{165 GeV,4.1 GeV,1.78 GeV}, we investigated the range in tanf3 for which the scalar masses 
are positive for a GUT-inspired boundary scale of Auv = 2 X 1016 GeV as well as an intermediate 
scale of Auv = 1 X 1011 Ge V. As can be seen from Table 3.1 the problem of tachyonic scalar 
masses for the matter fields is eased considerably in this scenario relative to the previously 
studied anomaly mediated scenario represented by case {B} {3.6}. 

Let us now investigate the pattern of soft terms as the parameters p~ and P0 are varied by.· 
assuming that p~ = P0 =P with p a constant. If the scale at which the soft terms emerge is 
taken to be Auv = 1 X 1011 GeV then the spectrum of soft terms as a function of p is displayed 
in Figure 3.1. In general gaugino masses are an order of magnitude smaller than scalar masses, 
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Scenario A 
I 

tan~=3 

0.10 
Auv= 1 x1~ llGeV 

0.05 

-0.05 

Figure 3.1: Soft Term Spectrum for Anomaly Dominated Scenario. Soft term magnitudes for 
third generation scalars, Higgs fields and gaugino masses are given as a function of universal PV parameter 
p as a fraction of gravitino mass M 3 / 2 . Scalar particles are generally much heavier than gauginos except 
for the limiting case of p -t 1. 

except for values of p approaching the limiting case of p = 1 (which is equivalent to scenario 
(B) given by (3.6)) where scalar masses go through zero. It is important to note that all of 
the possibilitie~ of Figure 3.1 represent "anomaly mediated" scenarios. However, it is only the 
extreme case of p 1 that was studied previously in the particular model of Randall and 
Sundrum [131]. 

One final aspect of these soft term patterns relevant to low energy phenomenology is the 
relative size of the scalar masses and A-terms. It is well known that for any generation of 
matter with non-negligible Yukawa couplings the relation 

(3.9) 

evaluated at the scale of supersymmetry breaking, is a good indicator that the minimum of 
the scalar potential will yield proper electroweak symmetry breaking: when the bound is not 
satisfied it is typical to develop minima away from the electroweaksymmetry breaking point in 
a direction in which one of the scalars masses of a field carrying electric or color charge becomes 
negative. Since the. "anomaly mediated" A-term and the scalar squared mass both have a single 
loop factor of 1/161f2 the condition (3.9) is generally satisfied.· For example, in scenario (A) 
discussed above 

(3.10) 

and since A ijk islooJrsuppressed relative to the gravitino mass, as seen from (3.7), this scenario 
is phenomenologically acceptable. Scenario (B) with its vanishing scalar masses at one loop is 
problematic, however; and the two loop contributions are relevant to the determination of its 
viability. 
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3.2 BIM 0-11 Models 

This class of orbifold models discussed in [35, 36] has matter fields in the untwisted sector with 
weights (nLn;,nf) = (-1,0,0) (0,-1,0) or (0,0,-1). Then, taking for simplicity the same 
common value T for the TO fields2,one obtains from (B.l): 

M~ot = g;~ M { ~ cosB(t +i)G2 [l
d
6O:2 + b~] + ~ + :;~ [1 + 1:~2 (ca - ~ C!)]}. (3.11) 

The above form suggests a closer investigation of the relative magnitude of the contributions 
to gaugino masses arising from the dilaton sector (proportional to sin 0), the moduli sector 
(proportional to cos B) and the anomaly-induced piece (independent of the Goldstino angle). 
As mentioned in the previous section, any tree level contribution (from the dilaton sector) will 
likely dominate the gaugino mass, particularly when the Green-Schwarz coefficient is smaller 
than -3CEs' The anomaly-induced piece is typically quite small and will only be relevant in 
the case of moduli domination (sinO = 0) with moduli stabilized very near their self-dual points 
and/or very small Green-Schwarz coefficient. This behavior is demonstrated for the case of the 
U(I)y gaugino mass Ml in Figure 3.2. We have taken k = -In(S + S) and set g; = g;TR = 1/2 
here. 

In Figure 3.3 we look at the relative sizes of the three gaugino mass terms for the case of 
moduli domination (B = 0) and a mixed case (0 = 1f/3) for real moduli vacuum values (Re t) 
at a bounda~y scale of Auv = 2 X 1016 GeV. Note that there is always a particular value of the 
moduli vev such that a nearly degenerate gaugino mass spectrum is recovered. As cos 0 -t 0 
this value gets ever larger as we approach the limiting case in which the gaugino masses are 
independent of the value of (Re t). At the GUT scale where gi :::::; gr :::::; 1/2 the difference in 
SU(2) and U{I) gaugino masses is given by 

M2 - Ml :::::; - 70;~ { 7 [1 + cos 0 ( 1 - iRe t)] + 2V3 sin B} , (3.12) 

where we have used the fact that for Re t > 1, ((t) :::::; -1f/12. For B = 0 equation (3.12) indicates 
that MI = M2 atRe t:::::; 6/1f while for 0 = 1f/3 this occurs when Re t:::::; 3.7. 

When B =J 0 (3.12) implies that IM21 ~ IMII (the gaugino masses in this regime are negative) 
whenever 

3 {2V3 } Re t ~ ;-7- tan~ + secB + 1 . (3.13) 

In the case where 0 = 0 so that there is no tree level contribution to gaugino masses we see 
from Figure 3.3 that IMd ~ IM21 in nearly all of the (Re t) parameter space. This relation­
ship between the boundary values of the SU(2) and U{I) gaugino masses is crucial to the low 
energy phenomenology of the model in that it determines whether the lightest neutralino is 
predominantly bino-like, predominantly wino-like or a mixed state. Thus a lightest 'neutralino 
with a significant wino content need not necessarily imply that supersymmetry breaking is due 
to pure anomaly mediation. We will return to this point when we investigate sample spectra in 
Section 3.4. 

2 All the expressions given in this and the following sections will assunie zero phases 'Ys = 'YT = 0 



36 

-1.0 
-1.5 

M 
M3/2 

-1 

-2 

·3 

-5 

8 =-90 GS 

"" e 
21t 

(a) 1.5 

1.0 

(b) 

(c) 

-1.0 
-1.5 

-0.5 
-1.0 
-1.5 

1.5 
1.0 
0.5 

8 =-10 GS 

Orbifold Models 

31t 
2" 

0 ...... ---...... 1t...::: ... ~--I-:--..,..--.::'----+- e - 31t' , _ 
-0.5 '.-: - 2" 2" 
-1.0 
-1.5 

(d) 

Figure 3.2: U(l)y Gaugino Mass in the BIM 0-11 ModeL Contributions to the value of Ml from 
FT (dashed) and F S (dotted) as well as total Ml (solid) are given as a function of Goldstino angle for two 
values of oGS and four T-modulus vevs: (Re t) = 0.5 (a), (Re t) = 0.9 (b), (Re t) = 5 (c), and (Re t) = 20 
(d) . .1\.11 values are given as a frac,tion of the gravitino mass M 3/ 2 . 

The scale at which the soft masses emerge is particularly important: the largest contributions 
to gaugino masses generically arise from the tree level piece and the piece proportional to the 
Green-Schwarz coefficient 0Gs, These terms cancel in (3.12), however, when the difference is 
evaluated at the GUT scale. Thus the location of the crossover point is independent of the 
choice of oGS in Figure 3.3. 

An immediate consequence of the above is that measurement of the properties of the lightest 
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Figure 3.3: Relative Gaugino Masses vs. (Re t) in the HIM 0-11 Model with Auv= 2 x 1016 GeV. 
Relative sizes of the three gaugino masses M1 (dashed), M2 (dotted) and M3 (solid) are displayed as a 
function of (Re t) for two values ofthe Goldstino angle () and three representative values of bGs • The vertical 
dotted line at (Re t) = 1 indicates the moduli self-dual point where gaugino masses become independent of 
bGs • When sin () = 0 this point represents the case of leading anomaly contributions discussed in Section 3.1. 

\ All masses are relative to the gravitino mass M 3 / 2 . 
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neutralinos may reveal information on the nature of the scale of ultraviolet physics. In partic­
ular the region of parameter space for which the lightest neutralino is predominantly wino-like 
becomes increasingly small as the scale of supersymmetry breaking is lowered. This is illustrated 
in Figure 3.4 where we plot the ratio of gaugino masses Md M2 for two different boundary scales: 
Auv = 2 X 1016 GeV and Auv = 1 X 1011 GeV, for which gi ~ (7/5)gi. As the gauge couplings 
run farther apart the shaded areas in which MdM2 ~ 1 (and hence where a wino-like lightest 
neutralino is possible) grow steadily smaller. When i5GS = o the ratio MdM2 diminishes as the 
Goldstino angle () increases until M2 begins to approach its vanishing value and the ratio passes 
through a discontinuity before increasing rapidly as () -+ 1['. When the Green-Schwarz coefficient 
i5GS is increased the location of this discontinuity, as indicated in Figure 3.4 by a heavy arrow, 
moves to smaller values o{(). 

The trilinear A-terms for these orbifold models are given by (B.3); for scenario (A) as defined 
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Figure 3.4: Ratio MdM2 in HIM 0-11 Model. Contours of the absolute value of the ratio of U(l) 
to SU(2) gaugino masses are given for boundary scales of Auv T' 2 X 1016 GeV for panels (a) and (b), 
and Auv = 1 X 1011 GeV for panels (c) and (d). The shaded area is the region of parameter space for 
which IMd ~ IM21. The arrow indicates the direction of smallest ratios as 'the discontinuity M2 = 0 is 
approached. The contour M1 = M2 is given by the heavy solid line. 

by (3,5), this expression is particularly simple 

A' tot M {sine [ks "'" ag~l (-2/ 2)] Ii} . ( ... ) 
ijk = J3 .. 112 -""i + ~ Ii "2 n,J.Lia J.LR - J3 + cyclIc IJk. 
. kss ' a . 

(3.14) 

It is worth noting that, with such a scenario for the PV metrics, this pattern for A-terms goes 
beyond the BIM O-II model. Any of the following conditions: (i) Lo:(n? + nj + nk' + 1) = 0 
with identical vacuum values for all T-moduli (as in the BIM O-II model), (ii) cosO = 0 {dilaton 
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domination) or (iii) G~ = 0 (moduli stabilized at self-dual point), yields the A-terms given 
by (3.14) above. 

By contrast, for scenario (B) defined by (3.6) the A-terms take the form 

A tot _ 
ijk -

- { . [ 2 M Ii - sm 0 ks ga a 2 
- -- [1 + cosO(t + t)G2J + - -- + " -T (In(g ) -1) V3 V3 kl12 3 6 2 z a 

ss a 

-In [( t + l) I~(t) 14] (~9~'Yf - ~ k''Ylm) ]} + cyclic (ijk). (3.15) 

This scenario also allows for the recovery of an "anomaly mediated-like" result of A-terms pro­
portional to anomalous dimensions in the moduli dominated limit (sinO = 0). Expression (3.15) 
differs from the situation in Section 3.1 in that for moduli domination this scenario can accom­
modate proper electroweak symmetry breaking provided the moduli are stabilized away from 
their self-dual points: in particular, using the fact that for Re t > 1, ((t) :::= -7r/12 we have 
((t + I)G2 ) :::= -1 for (t) :::= 6/7r:::= 2 leading to A:::= 0 from (3.15)~ 

The expressions for the bilinear B-terms are similar, but with added model dependence at 
the tree level involving the origin of bilinear terms in the Kahler potential or superpotential. 
For the case of scenario (A) the general form given in (BA) yields 

Btot = M sinO [k a lnll + "",a (g~) In(-2') 
t) V3 k!~2 - 8 - 8 rij ~ Ii "2 Pia 

+ ~ 0080[1- ~a,.Inl"J] + ~ G -'Yi)] + (i H j), 
while for case (B) the corresponding expression is 

B~ot = 
tJ 

(3.16) 

(3.17) 

Finally, the scalar masses in the BIM 0-11 model are found from equation (B.7) of Ap­
pendix B. Under the assumptions of scenario (A) this reduces to 

(3.18) 
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and for scenario (B) the scalar masses are given by 

IMI2 { 1;;;- Si~~ [1 + cos(}(t + I)G2] [L9~/i - ~ L Tik (ks + ks)] 
3v3 k - Ok ss a J 

+ Si~2 8 [1+ 'Yi + In [(1+ t)I~(t)14l ( ~>i ~ 2 ~ J.k) 

-L Ii In(9~) + 2 L Tik In(JtJk)] 
a jk 

sin
2

(} [~ a (9!) (. 2 5) 1 ~~jk 2 -~ L...J Ii 4 In(ga) +"3 +"3 L...J' Ti (ksks + 2kss ) In(Jtjk) 
ss a· jk 

+ In [(t + t)I~(t)14l (~'1f (~) + ~ ~ J.kk'kF) ] } . (3.19) 

The pattern of soft supersymmetry breaking terms that arise in this orb if old model with 
uniform modular weights ni = -1 and with the same Kahler metric for the ITA and the <pA, as 
in scenario (3.6), will produce a low energy phenomenology very similar to that of the recently 
proposed "gaugino mediation" scenario [108, 134] if the Green-Schwarz coefficient is sufficiently 
large, the supersymmetry breaking is moduli dominated and the moduli are stabilized at (Re t) ~ 
2. Such a situation gives rise to exactly vanishing scalar masses and nearly vanishing A-terms 
and the gaugino masses in such a regime are very nearly universal, as can be seen from the 
lower panels of Figure 3.3. However, as the Green-Schwarz coefficient is reduced the gaugino 
masses become negligible at the point (Re t) ~ 2, eventually coming into conflict with direct 
search results at LEP and the Tevatron. Specific spectra for the 0-11 model will be presented 
with spectra for orbifold models with large threshold corrections in Section 3.4. 

3.3 BIM 0-1 Models 

Models of this type were proposed with the goal of obtaining coupling constant unification at 
the string scale, as opposed to the extrapolated unification scale of AGUT ~ 2 X 1016 GeV which 
is typically a factor of twenty or so lower than the string scale. This is achieved through large 
string threshold corrections and the requirement of both particular sets of modular weights for 
the massless fields and relatively large values of (Re t) far from the self-dual points. Other 
solutions to this discrepancy of scales have been proposed since but because the 0-1 models 
have often been discussed in the literature we include them in the present discussion. 

To investigate the phenomenological consequences of such models we will assume a common 
vacuum value for all three moduli and take ea = 1/.../3 as before. We shall investigate two 
scenarios: (A) the original "0-1" scenario of Brignole et al. [35, 36] with modular weights 
nQ = nD = -1, nu = "';2, nL = nE = -3, nHd, nHu = -4 and (B) a Z3 x Z6 compactification 
studied by Love and Stadler [116] with modular weights nQ = nD = 0, nu = -2, nL = -4, 
nE = -1, nHd = nHu = -1. In what follows let us assume that the soft terms emerge at a 
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Figure 3.5: Relative Gaugino Masses in the HIM 0-11 and HIM 0-1 Models with B = O. 
Relative sizes of the three gaugino masses Ml (dashed), M2 (dotted) and M3 (solid) are displayed as a 
function of (Re t) for two values of the Green-Schwarz coefficient §GS and Auv = 2 X 1016 GeV. The top 
panels (a) represent the BIM O-II model from Section 3.2, the middle panels (b) represent the BIM 0-1 
model and the bottom panels (c) represent the Love & Stadler case from [116). All masses are relative to 
the gravitino massM3 / 2 . 
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scale for which logarithms such as In(ji;a) and In(ji]k) are negligible and assume PV case (A) for 
simplicity. In this approximation the general expressions of Appendix B take a simplified form. 
The gaugino masses, given by 

(3.20) 

are displayed in Figure 3.5 with the value () = 0 (where the impact of the differing modular' 
weights is the greatest) for three models: the BIM 0-11 case of Section 3.2, the original BIM 
0-1 case and the Love & Stadler case. The boundary scale is taken to be Auv = 2 X 1016 GeV.3 

3Though these models are designed to allow for unification of gauge couplings at the string scale ASTR ~ 
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the Love & Stadler model (dashed) at Auv = 2 X 1016 GeV. All masses are relative to the gravitino mass 
M 3 / 2 • 

It is clear from Figure 3.5 that the modular weights of the matter fields playa crucial role in 
determining the gaugino mass spectrum provided the Green-Schwarz coefficient is sufficiently 
small. As this parameter is increased it will quickly come to dominate the other terms in (3.20). 

However, looking at the tree level expressions for the scalar masses (3.4) it is apparent that 
when cos () = 1 any field with a modular weight such that ni < -1 will have a negative tree 
level squared scalar mass, as was noted in [35, 36]. Thus, to accommodate these large threshold 
models proper electroweak symmetry breaking ( i. e. positive squared scalar masses) will generally 
require a Goldstino angle such that sin () is large and the tree level terms in (3.20) are dominant. 
Models with a viable low energy vacuum will therefore be models for which the impact of the 
matter fields' modular weights on the gaugino spectrum is considerably muted. This is displayed 
in Figure 3.6 where gaugino masses in the BIM 0-1 model and the Love & Stadler model are 
displayed for () = 1f /3 and 6GS =0. We see that in these realistic cases the differences in gaugino 
mass spectra between these models is small, making them hard to distinguish experimentally. 

The trilinear A-terms for scenario (A) are 

tot M { cos(} - ) sin(} ks } ... 
A ijk ="3 -,i + -3-(t + t)G2(ni + nj + nk + 3 - :.j3 k!i2 + CyclIC (IJk), (3.21) 

5 X 1017 GeV, we will investigate the pattern of soft supersymmetry breaking terms at the GUT scale to allow 
for comparison with other models. 
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Model Anomaly (3.1) 0-11 (3.2). 0-1 (3.3) L&S (3.3) 
(J 0 0 0 0 0 Tr/3 Tr/3 Tr/3 
6GS N/A 0 0 0 -90 -90 -90 -90 
(Re t) 1 6/Tr 5 20 6/Tr 6/Tr 16 '14.5 
M3/2 1.9 x 10q 1.9 x lOQ 1.6 x 10 4500 1600 450 150 150 
m NI 51.81 0.32 152.53 248.97 332' 313 287 297 
m -_N2 168 3.7 462 759 615 599 557 581 
B% 0.01 80.9 0.001 0.001 99.9 99.9 99.9 99.9 
W3% 99.7 19.1 99.7 99.7 0.001 0.001 0.001 0.001 
m x-I ± 51.83 3.1 152.55 249.00 615 599 557 581 
mg 623 3.6 1468 2245 2156 2164 2106 2128 
mh. 114 114 114 114 114 114 114 114 
mA 2237 2217 1992 1357 1447 1387 1810 1568 
miR 860 796 1142 1597 1521 1610 1373 1532 
miL 1842 1810 1818 1820 1804 1866 1709 1793 

mbR 1805 1765 1802 1769 1782 1847 1701 ,1773 
m-bL 1810 1770 1824 1908 1883 1945 1881 1871 
mfR 1191 1180 1076 514 329 302 198 290 

. m-fL 1193 1182 1078 515 330 303 281 301 
Atop 391 71 -815 -1423 1696 1541 560 1607 
Abot 973 463 -999 -1827 2819 2200 -405 4650 
Atau 220 273 376 305 466 -184 -7417 -2734 
/.L 1617 1592 1501 1281 1341 1302 1577 1297 

Table 3.2: Sample Spectra (in GeV) for Typical Models of Sections 3.1, 3.2 and 3.3. All cases 
are for PV scenario (A), tan,B = 3 and Auv = 2 X 1016 GeV (B % and W3 % represent the content of the 
lightest neutralino in per cents). The first 0-11 case considered, while clearly ruled out experimentally, is 
presented as an illustrative example. 

and the scalar masses are determined from 
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(3.22) 

With these expressions we are now in a position to compare the typical spectra of these O~I 
large threshold models with the models of Section 3.1 and Section 3.2. 

3.4 Comparisons 

In Tables 3.2 and 3.3 we give some representative sample spectra for Pauli-Villars scenario (A) 
defined by (3.5) and tan/3 = 3 and tan/3 = 10, respectively. The spectra for scenario (B) are 
very similar and these values vary only minimally when Auv is varied; To obtain these spectra at 
the electroweak scale the renormalization group equations (RG Es) were -run from the boundary 
scale to the electroweak scale. All gauge and Yukawa couplings as well as gauginomasses and 
A-terms were run with one loop RGEs while scalar masses were run at two loops to capture 
the possible effects of heavy scalars on the evolution of third generation squarks and sleptons. 
We chose to keep only the top, bottom and tau Yukawas and the corresponding A-terms. The 
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gravitino mass has been scaled in each case to obtain a Higgs mass of 114 GeV, which can 
be considered either as a limiting case or as an experimental requirement, depending on what 
happens next at LEP. 

At the electroweak scale the one loop corrected effective potential VI-loop = Viree + .6. v;.ad is 
computed and the effective J.L-term fl is calculated 

-2 (m1d + om1d) - (m1u + om1J tan2 {3 1 2 

J.L = tan2 (3 - 1 - 2Mz· (3.23) 

In equation (3.23) the quantities omHu. and omHd are the second derivatives of the radiative 
corrections .6. Vrad with respect to the up-type and down-type Higgs scalar fields, respectively. 
These corrections include the effects of all third generation particles. If the right hand side of 
equation (3.23) is positive then there exists some initial value of J.L at the condensation scale 
which results in correct electroweak symmetry breaking with Mz = 91.187 GeV.4 

Note that the gravitino mass varies greatly over the models considered in Tables 3.2 and 3.3. 
For the anomaly case (which is equivalent to the HIM 0-11 model with sinO = 0 and (Re t) = 1) 
there is a large hierarchy between scalars and gauginos, as noted in Section 3.1, which necessitates 
a large value of the gravitino mass to yield neutralinos with masses near the current LEP 
limits. Having normalized our scales to yield Higgs masses of 114 Ge V we find chargino masses 
(for PV scenario (A) and thus p = 0 in Figure 3.1) below the recently reported bounds of 
mx± 2:: 86.1 GeV for the case of a chargino which is nearly degenerate with a wino-like lightest 
neutralino [113]. As the PV scenario assumed is modified, however, this relation between the 
chargino mass and Higgs mass varies. In particular as the value of p approaches larger, positive 
values the gauginos steadily become heavier for a fixed Higgs mass, eventually satisfying the 
experimental constraints. For the large threshold models, by contrast, the large values of (Re t) 
necessary to ensure gauge coupling unification at the string scale make the gauginos typically 
heavier than the gravitino at the boundary scale Auv , due to the large value of (t + I)G2 , and 
have a smaller degree of hierarchy between gauginos and scalars. 

The 0-11 models can interpolate between these two extremes. When 0 = 0 and oGS = 
o the pattern of physical masses shows the anomaly mediated feature of a wino-like lightest 
supersymmetric particle (LSP). As the value of (Re t) increases from (Re t) = 1 (the pure 
anomaly mediated case) it first passes through the experimentally excluded values where (Re t) :::::: 
6/1r and the gaugino masses are nearly zero. Thereafter the hierarchy between gauginos and 
scalars steadily decreases until the spectra of masses is very similar to that of the more typical 
supergravity spectra to the right of Table 3.2. However, as mentioned at the end of the previous 
section the feature of a wino-like LSP persists. Once 0 i= 0 and/or oGS i= 0 the pattern of soft 
terms immediately becomes relatively insensitive to the value of (Re t) and the LSP once again 
becomes predominantly bino-like. The properties of the LSP are of paramount importance to 
the question of neutralino dark matter, as we will see in Section 4. 

The models with large threshold corrections also tend to have very light staus. In fact, as the 
value of tan (3 increases the stau mass miR eventually becomes negative. The limiting value of 
tan (3 for which these models are phenomenologically viable depends slightly on the value of oGs: 
for 0 = 1r/3 the model of Love & Stadler requires tan(3 < 9.1 when oGS = -90 and tan(3 < 4.8 

4Note that for these tables we do not try to specify the o~igin of this JL-term (nor its associated B-term) and 
merely leave them as free parameters in the theory - ultimately determined by the requirement that the Z-boson 
receive the correct mass. 
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Model Anomaly (3.1) O-II (3.2) 0-1 (3.3) L&S (3.3) 
8 0 0 0 0 0 7f/3 7f/3 7f/3 
8GS N/A 0 0 0 -90 -90 -90 -90 
(Re t) 1 6/7f 5 20 6/7f 6/7f 16 14.5 
M3/2 8000 8000 6500 1800 1200 200 N/A N/A 
m -N, 20.20 0.17 62.11 98.72 139 129 
m - 70 3.11 187 301 260 244 _ N2 

1.9 X 10- 7 B% 0.08 79.2 0.002 99.3 99.1 
W3 % 98.0 20.8 97.8 97.4 0.001 0.002 
m x,± 20.21 2.5 62.14 98.75 260 244 
mg 280 1.85. 644 978 1020 979 
mh 114 114 114 114 114 114 
mA 797 790 689 485 560 497 
miR 449 427 527 658 663 667 
miL 797 782 774 806 849 819 
m-bR 739 720 727 737 792 771 
m-bL 763 744 753 799 838 812 
mfR 493 490 431 206 147 121 
mfL 503 499 440 211 156 132 
Atop 190 47 -336 -596 796 668 
Abot 398 187 -403 -858 1223 893 
A tau 83 108 153 130 190 100 
Jl. 578 565 529 495 559 499 

Table 3.3: Sample Spectra (in GeV) for Typical Models of Sections 3.1, 3.2 and 3.3. The same 
as in Table 3.2 but for tan (3 = 10. Neither of the large threshold models are viable at this value of tan (3. 
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when i5GS = 0, while the original BIM 0-1 model requires tanf3 < 3.1 when i5GS = -90 and is not 
allowed at all for i5GS = O. This is reflected in the empty columns in Table 3 .. 3. This problem 
is slightly ameliorated when the Goldstino angle is increased. For () = 21r /5, for example, the 
model of Love & Stadler requires tanf3 < 12.7 when i5GS = -90 and tanf3 < 9.6 when i5GS = 0, 
while the original BIM 0-1 model requires tanf3 < 4.9 when i5GS = -90 and tanf3 < 2.1 when 
i5GS = O. 

The pattern of masses exhibited in Tables 3.2 and 3.3 suggests that the hierarchy between 
gauginos and scalars in any potential observation of supersymmetry will be a key to understand­
ing the nature of the underlying physics giving rise to supersymmetry breaking. The observation 
of a lightest neutralino with significant wino content will not be enough to distinguish between 
the pure anomaly mediated cases and the BIM O-II type models but will indicate that super­
symmetry breaking is moduli dominated within this class of models. The presence of a large 
hierarchy between scalars and gauginos and large mixing in the stop sector will point towards 
moduli stabilized at or near their self-dual values, while the absence of such effects would suggest 
the moduli are stabilized far from these values. 



Chapter 4 

Dark Matter Constraints 

It has long been held that one of the prime virtues of supersymmetry as an explanation of the 
hierarchy problem is that it tends to also provide a solution to the dark matter problem as a 
nearly automatic consequence of R-parity conservation. The lightest supersymmetric particle 
(LSP) is then stable and, as it tends to be a neutral gaugino, it will typically have the right mass 
and annihilation rate in the early universe to provide sufficient mass density today to account 
for observations suggesting Ptot ::= Pcrit [69, 96, 141]. 

This section initially investigates the dark matter implications of the most widely studied 
benchmark in supersymmetric phenomenology, the constrained Minimal Supersymmetric Stan­
dard Model (cMSSM). As we are primarily interested in a gaugino-like LSP we will restrict 
ourselves to low values of tan (3 for which the Higgsino content of the lightest neutralino is negli­
gibly small. We emphasize that the cMSSM in this context typically fails to solve the dark matter 
problem over most of its parameter space, with the exception of certain very special patterns of 
soft supersymmetry breaking terms. These patterns must constrain the neutralino (a fermion) 
to have a very specific mass relationship to an unrelated boson such as the lightest Higgs or the 
stau. Barring these relationships, the cMSSM tends to predict too much dark matter - thus 
bringing it into conflict with direct measurements of the age of the universe [50, 60, 104, 126]. 
We find this failure to be due, in part, to the cMSSM constraint on the gaugino mass ratio 
M2/ MI' Eliminating this assumption of universal gaugino masses uncovers new regions of pa­
rameter space that allow for cosmologically allowed, and often experimentally preferred, values 
of the neutralino relic density. 

This chapter is organized as follow~: in Section 4.1 we present our methodology in the context 
of the cMSSM with its standard minimal supergravity (mSUGRA) universal soft supersymmetry 
breaking terms. Subsequently, in Section 4.2, we relax our assumption of universal gaugino 
masses. While the relic density implications of nonuniversal gaugino masses, and in particular 
the role of M2/ MI in dark matter phenomenology, have been explored previously these past 
studies have either focused on specific models or have not included the important effects of 
coannihilation between the LSP and the lightest chargino [44, 49, 99].1 

Later, in Section 5.4 we consider a specific class of supergravity models derived from heterotic 
string theory which implement supersymmetry breaking through gaugino condensation in a 

1 A noteworthy exception is Ref. [122] though it focuses primarily on a purely wino-like LSP scenario with LSP 
masses below Mw. 
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hidden sector [27, 28, 29, 84] as an example of how the general results of Section 4.2 can be 
applied on a model-by-model basis. Requiring a cosmologically relevant thermal LSP relic 
density will imply very specific conclusions about the content of the hidden sector of these 
models. 

4.1 Universal Gaugino Masses 

The phenomenological consequences of the cMSSM have been studied extensively [19, 51, 106, 
107], including the cosmological implications of its (presumed stable) LSP [10, 20, 63, 70, 98, 115, 
132, 133]. In such a regime the entire low energy phenomenology is specified by five parameters: 
a common gaugino mass M 1/ 2 , a common scalar mass Mo, a common trilinear scalar A-term 
Ao, the value of tanfJ and the sign of the J.L-parameter in the scalar potential. These values are 
defined at some high energy scale, which we will take here to be the scale of gauge coupling 
unification Auv ,....., 2 X 1016 GeV. 

To obtain the superpartner spectrum at the electroweak scale the renormalization· group 
equations are run in the manner described in 3.4 from the boundary scale to the electroweak 
scale. The neutralino states and their masses are calculated using the neutralino mass matrix 

( 

M1 

- sinOwOcosfJMz 
sinOw sinfJMz 

o 
M2 

cos Ow cos fJMz 
- cos Ow sinfJMz 

- sin Ow cos fJMz 
cos Ow cos (3Mz 

o 
-J.L 

sin Ow sin(3Mz ) 
- cos Ow sin(3Mz 

-J.L ' 
o 

(4.1) 

where M1 is the mass of the hypercharge U{l) gaugino at the electroweak scale and M2 is 
the mass of the SU(2) gauginos at the electroweak scale. The matrix (4.1) is given in the 
(B, Mr3, iI~, iI2) basis, where B represents the bino, Mr3 represents the neutral wino and iI~ and 
iI~ are the down-type and up-type Higgsinos, respectively.2 More generally the content of the 
LSP can be parametrized by writing the lightest neutralino as: 

(4.2) 

which is normalized to Nfl + Nf2 + lYf3 + Nf4 = 1. Thus by saying that the bino content of the 
lightest neutralino is high, we mean Nn ~ l. 

The lightest eigenvalue of this matrix is then typically the LSP and it is overwhelmingly bino­
like in content over most of the parameter space when tan (3 is low. This is because the cMSSM 
universality constraint on gaugino masses at the high scale of the theory implies M1 ~ ~M2 
when the masses are evolved to the electroweak scale via the RGEs. Provided IM11,IM21 « IJ.LI; 
which is the case for low tan (3, the LSP mass is then dominated by M1 and has a typical bino 
content of ;G 99%. We will restrict ourselves to this low tan(3 regime and adopt a value of 
tan (3 = 3 for the remainder of the chapter. The· dark matter prospects of the high tan (3 limit, 
and in particular the possibility of heavy scalars in such a regime, have been studied recently 
by Feng et al. [73]. 

Given the particle spectrum we compute the thermal relicLSP density with a modified version 
of th~ software package neutdriver [105]. This program includes all of the armihilation processes 

2Loop corrections at next-to-leading order [90] to this mass matrix have been incorporated and found to have 
little effect on the results that follow. 
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computed by Drees and Nojiri [61] which are used to compute a thermally averaged cross section 
(crv)ann and freeze-out temperature XF = TF/mx~· From knowledge of the mass of the lightest 
neutralino mx~ (assumed to be the LSP), (crv)ann and TF, a relic abundance can be computed 
using the standard approximation [105] 

° h2 = 1.07 X 10
9
XF GeV-1, 

x 9!/2 Mpl (aeff + 3 (beff - aeff/4) /XF) 
(4.3) 

where we have expressed the thermally averaged annihilation cross section as an expansion in \, 
powers of the relative velocity: 

(4.4) 

A proper determination of relic LSP densities requires that the above computation be amended 
to include the possible effects of coannihilation [97, 100, 123]. This occurs when another particle 
is only slightly heavier than the lightest neutralino so that both particles freeze out of equilibrium 
at approximately the same temperature. The neutralino can now not only deplete its relic abun­
dance through annihilation processes such as X~X~ -+ e+ e-, but also through interactions with 
the coannihilator such·as XfX~ -+ e±ve. The extreme importance of including relevant coanni­
hilation channels has recently been emphasized for the case of the cMSSM [64, 65, 66, 67, 68], 
and in that spirit we have added a number of coannihilation channels which are relevant for 
both the universal gaugino mass case [64, 66, 67] as well as the case of nonuniversal gaugino 
masses to be con,sidered in Section 4.2. ' 

The program neutdriver includes X±X~ coannihilation to W±1' [44] and two (massless) fermi­
ons f l' which we recalculated to account for non-zero fermion masses. We have also included a 
calculation of the process X±X~ -+ W±Z, and found this channel to often dominate when kine­
maticallyaccessible. Additionally, we have inserted the results of [65, 68] for X~T co annihilation 
to Z 7, 1'7, h7, and H 7 final states. 

The region of cMSSM parameter space that gives rise to acceptable levels of bino-like LSP 
relic density is given in Figure 4.1 where we have plotted contours of 0xh2 = 0.1, 0.3 and 
0xh2 = 1. Here Ox is the fractional LSP matter density relative to the critical density and h is 
the reduced Hubble parameter: h ~ 0.65 [130]. We h~ve chosen Ml/2 and Mo as free parameters 
in the manner of Ellis, Falk & Olive [64, 66, 67] with tanf3 = 3, Ao = 0 and positive IL-term.3 

This plot is similar to the ones presented in [64, 66, 67] and we reproduce it here to draw 
attention to two important facts. First, observations suggest that the preferred values for cold 
dark matter densities are in the range 0.1 ':::; 0xh2 :::; 0.3 [15, 76]' though including the latest 
evidence of a cosmological constant [126] may shift this to 0.06 ~ 0xh2 ~ 0.2. This experimental 
data points to a region of the cMSSM parameter space in which both the universal scalar mass 
and the universal gaugino mass are small, on the order of 200 GeV for each (see, for example, 
the region around point A in Figure 4.1). In fact, heavy scalars can only be accommodated 
cosmologically if nature was kind enough to arrange the soft-supersymmetry breaking parameters 
so that the mass of the LSP is about half of the, mass of the lightest Higgs boson. In that case, 
though t-channel scalar fermion exchange may be suppressed and the annihilation rate into 
two fermions is not sufficient to deplete the LSP density adequately, the annihilation through 

3In our conventions this is the sign of J.t'least constrained by the measurement of the branching ratio for b ~ S'y 

events. This is the opposite convention used by the neutdriver package. 
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Figure 4.1: Preferred Dark Matter Region fpr the cMSSM. Contours of nxh2 of 0.1 (bottom-most 
contour), 0.3 and 1.0 (top-most contour) are given. The shaded region is ruled out by virtue of having the 
stau as the LSP. The Higgs pole region and stau coannihilation tail are clearly discernible. We have also 
added con:tours of constant Higgs mass for mh= 100 GeV and mh = 115 GeV. The four labeled points 
are examined in Figure 4.2. 

resonant s-channel exchange of the lightest Higgs is efficient enough to provide an acceptable 
dark matter region insensitive to the scalar mass. 

Once we begin to impose constraints arising from Higgs searches at LEP, the preferred low 
mass region in Figure 4.1 begins to be ruled out .. The only region which then remains in the 
{Mo,M1j2} plane for tan,B = 3is that which is due to coannihilation between the LSP and the 
lightest stau. Being in this region requires a very specific relationship between the gaugino mass 
parameter and the unrelated scalar mass parameter. We have allowed ouiMo value to range to 
as much as a TeV, in contrast to [64, 66, 67], to accentuate the point that most of the cMSSM 
parameter space with moderate to heavy scalar masses predicts far too much neutralino relic 
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Figure 4.2: Annihilation Cross Sections for Selected Points from Figure 4.1. These graphs 
detail the composition of the neutralino depletion cross section. The total depletion cross section is on the 
far left. The next two columns divide the normal annihilation channels by final state into two fermions or 
all other annihilation channels. The final column is the sum of all coannihilation channels. The total relic 
density is given at the top of each plot and the dashed horizontal line illustrates the ideal total depletion 
cross section for a Qxh2 = 0.2. 
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density. Every point in Figure 4.1 above the nxh2 = 0.3 line is already excluded by astrophysical 
measurements of the dark matter density. 

To better illustrate the physics behind Figure 4.1 and to serve as a comparison for our 
subsequent analysis we have chosen four representative points from the parameter space for 
deeper investigation. Both points A and B fall within the cosmologically preferred region. Point 
B is in the coannihilation "tail," so we would expect most of the annihilation cross section to 
come from coannihilation. As we can see in Figure 4.2 the aimihilation cross section of point 
B is indeed dominated by coannihilation. We can also see the importance of t-channel scalar 
fermion exchange to XOXO -+ f J in points A and B, which is due to the universal scalar mass 
being relatively light so that this channel is open. Referring back to Figure 4.1, both points C 
and D are in regions where there is too much relic density. Figure 4.2 shows that, indeed, the 
annihilation is too inefficient to eliminate enough dark matter. The annihilation channels to two 
fermions still dominate but now scalar fermion exchange is too suppressed to provide the critical 
annihilation rate (indicated by the dashed line). As with points C and D, most of the parameter 
space of the cMSSM is experimentally excluded since there is no efficient way of depleting the 
relic density. 

It is a generic result of the low tan fJ cMSSM scenario that, excluding stau coannihilation,· 
cosmological viability depends almost solely on the t-channel exchange of scalar fermions. This 
strict dependence causes most of the presumed parameter space with heavy scalars to be ex-
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peri mentally excluded, leaving the dark matter prospects of the cMSSM at low tan{3 in serious 
jeopardy.4 

4.2 Nonuniversal GauginoMasses 

The reason for the failure of the low ta.n{3 cMSSM with heavy scalars to solve the dark matter 
problem is the low annihilation cross section for the ne,utralino. The only channel capable of 
providing a suitable cross section is the aforementioned t-channel scalar fermion exchange which 
is only efficient in a small region of parameter space. If we relax the GUT relationship between 
the gaugino masses but still remain in the large IMI limit (low tan {3) then we will continue to 
have a predominantly gaugino-like LSP (Nfl + Nf2 ~ 1) with the relative values of Nll and Nl2 
governed by the relative values of MI and M 2. Decreasing M2 relative to MI at the electroweak 
scale increases the wino content of the LSP until ultimately MI » M2 and Nu ~ 0, Nl2 ~ 1. 

The bino component of the neutralino couples with a U(l) gauge strength whereas the wino 
component couples with the larger SU(2) gauge strength, thus enhancing its annihilation cross 
section and thereby lowering its relic density. As Nl2 is increased more parameter space should 
open up for dark matter until annihilation becomes too efficient in the pure wino-like limit 
and we are left with no neutralino dark matter at all [122]. This is evident in Figure 4.3 
where we plot contours of f2xh2 as a function of scalar mass and the ratio (M2/Mt} at the 
boundary condition scale AGUT. Allowing the gaugino masses to vary independently introduces 
two new degrees of freedom. We have chosen to vary the ratio (M2/Mt} while fixing the value 
of M1/ 2 == min (Ml' M 2 ) and M3 at the high scale. In practice we use our choice of MI/2 to 
determine the value of the smaller of the pair (MI' M2 ) at the high scale and then use the ratio 
(M2/Mt} to determine the larger of (MI' M2). In Figure 4.3 we have set MI/2 = 200 GeV and 
M3 = MI / 2 . 

Particular values of (M2/Mt) which deviate from the universal cMSSM case allow for cos­
mologically interesting relic densities which are almost independent of the scalar mass. To see 
how dark matter physics changes as one departs from the cMSSM we have analyzed the six 
labelled points from Figure 4.3 in Figure 4.4. Starting with the two cMSSM points, E and F, 
the importance of the process X~X~ -+ 11 is again demonstrated. Point F has scalars that are 
too heavy for the two fermion final state to sufficently deplete the LSP relic density while point 
E has much lighter scalars, allowing efficient annihilation to two fermions and resulting in an 
appropriate amount of dark matter. Given the value of MI/2 = 200 GeV for this plot point E 
would lie a little to the left of point A in Figure 4.1. 

Points C and D sit at much lower values of (M2/Mt), resulting in a lightest chargino that is 
much more degenerate with the lightest neutralino. This enhances the importance of coannihi­
lation channels, leading them to dominate the annihilation cross section. The main channels for 
coannihilation are X±X~ -+ f 1', making up the left..:hand coannihilation column in Figure 4.4, 
and X±X~ -+ w± Z, which is the main contributor to the right-hand coannihilation column. 
Chargino-neutralino coannihilation has become so efficient here that the relic density is now not 
enough to account for observations. It should be noted that point D gives almost the cosmo­
l~gically preferred relic density - its relic density is higher than that of point C for two reasons. 

4 At high values of tan f3 in the cMSSM, for which the LSP has a significant Higgsino component, heavy scalars 
can be accommodated and may even be preferred [73]. 
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Figure 4.3: Preferred Dark Matter Region for Nonuniversal Gaugino Masses. Contours of 
Qxh2 of 0.01, 0.1, 0.3, 1.0 and 10.0 from left to right, respectively, are given as a function of the ratio of 
SU(2) to U(l) gaugino masses M2/Ml at the high scale. The cMSSM is recovered where the two masses 
are equal at the high scale, as has been indicated by the dashed line. The six labeled points are examined 
in Figure 4.4. 
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First, the mass of the lightest neutralino drops slightly in going from point D ("-' 122 GeV) to· 
point C ('" 112 GeV). Second, the lower scalar mass at point C allows t-channel exchange of 
scalar fermions to go unsuppressed. This is important in one of the diagrams contributing to 
X±X~ -7 f/'. The wino content of the lightest neutralino is also increased by lowering (M2/Mt}, 
causing the standard annihilation channel to two fermions to become relatively unimportant. 
This increase in efficiency continues through points A and B, now making the neutralino relic 
depsity cosmologically irrelevant. 

The irrelevance of scalar masses above 1 TeV can be simply understood. Above 1 TeV the 
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Figure 4.4: Annihilation Cross Sections for Selected Points from Figure 4.3. These graphs 
are identical in layout to those of Figure 4.2, except now the coannihilation channels are split into two 
columns: two-fermion final states and everything else. 

t-channel scalar exchange contribution to X~X~ -+ f f is suppressed due to the scalar mass. 
With enhanced wino content, however, channels that were previously suppressed are now more 
efficient, such as X~X~ -+ W+W-. More importantly, we can also see from Figure 4.3 that much 
of the parameter space in the {Mo, (M2/Mr)} plane is not ruled out: an 0xh2 :::; 0.1 is not 
experimentally excluded,it just does not completely explain all of the needed dark matter. 

Figure 4.5 examines the effect of changing the boundary scale value of M3 on the cosmologi­
cally preferred parameter space of Figure 4.3. In Figure 4.5 and subsequent plots we impose the 
constraint that the LSP be electrically neutral and that the resulting spectrum at the electroweak 
scale satisfies the search limits of Table 4.1. The shaded region in panel (A) of Figure 4.5 is 
excluded by the gluino mass bound while the shaded region in panels (C) and (D) are excluded 
by the constraint on the stau mass. As the value of the gluino mass M3 is increased relative 
to the other gaugino masses the cosmologically preferred range of the ratio (M2/Mr) moves to' 
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Figure 4.5: Preferred Dark Matter Region with Nonuniversal Gaugino Masses for Various 
M3 Values [I]. Contours of constant relic density are given by the solid lines for Qxh2 = 0.01, 0.1, 0.3, 1, 
and 10 from left to right. The dotted lines are curves of constant wino content for Nr2 = 0.25, 0.04, 0.01 
and 0.025 from left to right. The value of the high-scale gluino mass M3 is given in terms of the universal 
gaugino mass Ml/2 at the top of each plot. This plot uses a value of Ml/2 = 200 GeV except for panel 
(A) where Ml/2 = 250 GeV. The shaded region is excluded by the constraints of Table 4.1. 

slightly higher values. 
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It is apparent from Figure 4.6 that the crucial variable in the determination of the LSP 
relic density is the value of the ratio {M2/Md at the electroweak scale. The region of pre­
ferred relic density 0.1 :::; nxh2 :::; 0.3 consistently asymptotes to the region between the values 
{M2/Md1ow = 1.15 and {M2/Mdlow = 1.25 independent of the value of M31 with the influence 
of the universal scalar mass Mo most pronounced for small values of M3 • Most of the reason for 
this behavior is the composition of the low-scale squark masses. For large values of M3 the RG 
evolution of the squark masses is dominated by M3 which drives scalar masses to higher values 
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Gluino Mass m-9 > 190 GeV 
Lightest Neutralino Mass mx? > 32.5 GeV 
Lightest Chargino Mass mxt > 75 GeV 

Lightest Squark Masses mij > 90 GeV 
Lightest Slepton Masses m-I > 87 GeV 
Light Higgs Mass mh > 95.3 GeV 
Pseudoscalar Higgs Mass mA > 84.1 GeV 
Charged Higgs Mass mH± > 69.0 GeV 

Table 4.1: Superpartner and Higgs mass constraints imposed [125, 53]. 

and further suppresses the t-channel slepton and squark exchange diagrams. This causes the 
asymptotic approach to scalar-mass-independence to saturate for much lower values of Mo than 
in the low M3 case, where the value of squark and slepton masses is largely independent of M3 
and merely a function of the boundary value Mo at the high scale. • 

These results are robust under changes in the relative sign between the soft supersymmetry 
breaking values of MI,2 and M3, as well as changes in the overall gaugino mass scale MI/2, 
as is demonstrated in Figure 4.7. 5 For low values of M3 there is little difference between the 
positive and negative values, though for high values of M3 the entire plot moves from right to 
left when the sign is reversed. Nonetheless, the cosmologically preferred region falls between 
the same values of (M2/Mdlow (denoted by dashed lines), regardless of the sign of M3: it is 
only the preferred region of (M2/ MI)high that changes with the sign flip. Both the effects of the 
magnitude of M3 as well as its relati~e sign can be understood from the effect M3 has on the 
running of M2 and MI, starting at two loops. The two loop running of the gaugino masses, in 
the conventions of [120], is partially given by 

2 3 
d M 29a "" B(2) 2 (M M ) 
dt a 3 (167r2 )2 t::. ab gb a + b, 

(4.5) 

where B~~) is a matrix of positive entries. Therefore the higher the value of 1M 3 I the greater 
the impact on the gaugino masses MI and M2. Furthermore, this effect is felt more strongly by 
the SU(2) gaugino mass than the U(l) gaugino mass. Thus for a given value of (M2/Mdhigh 
changing the sign of M3 drives the value of M2 higher at the electroweak scale to a greater degree 
than it does MI, resulting in a higher value of (M2/Mdlow' This in turn leads to an increased 
relic density as can be seen by comparing the right and left sets of panels in Figure 4;7. 

We have seen that relaxing the GUT constraint on the gaugino masses allows for significant 
improvement in the dark matter arena. This relaxation only requires a slight increase in the wino 
content of the LSP on the order of 0.1 % to 5% (see Figure 4.5): the LSP is still predominantly 
bino-like and is not in the unappealling wino-dominated scenario which must rely. on other 
mechanisms to generate supersymmetric dark matter [124]. The observations made in this 
section indicate that models which allow control over (M2/M1 ) at the boundary scale may be 
more suitable to providing supersymmetric dark matter than the unified cMSSM paradigm. In 
fact, requiring a cosmologically relevant relic LSP density may in turn shed light on the nature of 
physics at the GUT scale in models of supersymmetry breaking. We will carry out an example of 

5For .the effect of changing the relative sign between Ml and M2 see [122]. 
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Figure 4.6: Preferred Dark Matter Region with Nonuniversal Gaugino Masses for Various 
M3 Values [II]. Contours of constant relic density are given by the solid lines for f!xh2 = 0.01, 0.1, 0.3, 
and 1.0 from left to right. The value of the ratio (M2/Md 1ow is indicated by the dashed lines for the values 
(M2/Md1ow = 1.15, 1.25 and 1.50 from left to right. The shaded regions are ruled out because of a stau 
LSP. 
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just such an investigation in Section 5.4 on a class of supergravity models derived from heterotic 
string theory. 
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Chapter 5 

Phenomenology of Gaugino 
Condensation Models 

Section 5.1 is a condensation of theoretical material more fully presented in [27, 28, 84J and aims 
to bring together the key points necessary for the subsequent discussion in Sections 5.2- 5.4 of 
the phenomenological consequences of a large class of string-derived models in which gaugino 
condensation [26, 38J occurs in a hidden sector with modular invariant couplings. The Kahler 

. U(l) superspace formalism of Section 1.2 is used throughout. 

5.1 Models of Gaugino Condensation 

Supersymmetry breaking is implemented via condensation of gauginos charged under the hidden 
sector gauge group ghid = ITa ga, which is taken to be a subgroup of E8 . For each gaugino 
condensate a vector superfield Va is introduced and the gaugino condensate superfields Ua ~ 
(WO:Wo:)a are then identified as the (anti-}chiral projections of the vector superfields: 

(-2 ) - (2-) Ua = - V - 8R Va, Ua = - V - 8R Va. (5.1) 

The components of V = 2:: a Va include those of the linear multiplet L from Section 1.3, and 
the dilaton field is the lowest component of the vector superfield f = Vlo=l1=o' Note that none 
of the individual lowest components Valo=/bo will appear in the effective theory component 
Lagrangian. With this construction the superfield Ua has the correct Kahler U(l} weight as well 
as the correct constraint, that is, the counterpart of the Bianchi identity (1.13). When both the 
condensate and the weakly coupled, unconfined Yang-Mills sectors are included, the linearity 

" condition (1.12) takes the modified form 

-2 -(V - 8R)V 
a 

(5.2) 
a 

Note that we will not introduce kinetic terms for the condensate superfield; that is, we are 
treating the condensate as static. A dynamical condensate has been studied [144J in the case of 
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an Es gauge group, and it was found that the bound state masses are above the condensation 
scale; when these states are integrated out the theory reduces to the static case considered here. 

We consider the class of orbifold compactifications with three untwisted moduli chiral super­
fields described in Section 1.3. We will now label the three moduli by the superscript I (TI) and 
we reserve the label 0: for matter condensates to be introduced below. The kinetic energy terms 
for the dilaton, chiral moduli, chiral matter, gravity fields and Yang-Mills fields are contained 
in the Lagrangian term (1.16) with L replaced by V: 

LKE = / d40 E [-2 + j(V)], k(V) = In V + g(V), (5.3)· 

with 

Vg'(V) = j - Vj'(V), g(O) = j(O) = 0, (5.4) 

as before (1.17). The relevant part of the complete effective Lagrangian is then 

Leff = LKE + Lvy + Lpot + I::La + Les, (5.5), 
a 

with Kahler potential for the moduli sector and chiral matter superfields q>A: 

K = k(V) + I::l + I:: eqflq>Af + 0(q>4), l = -In(TI + T\ (5.6) 
I A 

where the parameters qf are the modular weights of q>A. 

The second term in (5.5) is a generalization to supergravity [23,138] of the original Veneziano­
Yankielowicz superpotential term [140], 

£~ = ~~f d'O !Ua [b~ln(e-K/2Ua) + p~ln[(II")P·l] + h.c., (5.7) 

which involves the gauge condensates Ua as well as possible gauge-invariant matter condensates 
·A 

described by chiral superfields ITa '" nA (q>A to [117, 139]. The coeffecients b~, b~ and Pa are 
determined by demanding the correct transformation properties of the expression in (5.7) under 
chiral and conformal transformations [28, 87] and yield the following relations: 

The final condition amounts to choosing the value of Pa so that the effective operator (ITa)Po has 
mass dimension three. Given the above relations it is also convenient to define the combination 

(5.9) 

which is proportional to the one-loop ,B-function coefficient for the condensing gauge group gao 
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The third term in (5.5) is a superpotential term for the matter condensates consistent with 
the symmetries of the underlying theory 

(5.1O) 

We will adopt the same set of simplifying assumptions taken up in [28] for this superpotential, 
namely that for fixed a, b~ I: 0 for only one value of a. Then U a = 0 unless Wa I: 0 for every value 
of a for which b~ I: O. We next .assume that there are no unconfined matter fields charged under 
the hidden sector gauge group and ignore possible dimension-two matter condensates involving 
vector-like pairs of matter fields. This allows a simple factorization of the superpotential of the 
form 

(5.11) 

where the form of the functions Wa are partially dictated by the requirement of modular invari­
ance and are given by 

Wa (T) = Call [1] (T1 )]2{paQI- l
) . (5.12) 

I 

Here qf = EAn~qf and the Yukawa coefficients Ca, while a priori unknown variables, are taken 
to be of 0 (1). 

The remaining terms in (5.5) include the quantum corrections from light field loops to the un­
confined Yang-Mills couplings and the Green-Schwarz counterterm introduced to ensure modular 
invariance.1 The latter is given by (1.32) with the notation change Pi -+ PA here. The operators 
La in (5.5) are the quantum corrections from the light field loops to the unconfined Yang-Mills 
couplings that give rise to the loop corrections found in Section 2.3.1. They are given by 

(5.13) 

where Dx l is the chiral superfield propagator [89]: 

(5.14) 

in our notation,2 and Px is the chiral projection operator: pxwa = W a, that reduces in the 

fiat space limit to {16D)-lV
2
V2. The function [87] 

Ba = cLl + (Ca - CJ.t)k(V) + 2 L C~ln{l +PAV) (5.15) 
I A 

INot included in this section are the string loop corrections (£th) of (1.33) which vanish for orbifold compacti­
fications with no .N = 2 supersymmetry sector [6J. We tacitly assume such orbifold compactifications for the rest 
of this section. 

2We set the background space-time curvature scalar r to zero throughout this paper. A term proportional to 
r..\..\ would result in a contribution to the gaugino mass through a Weyl rescaling, but we find that such terms are 
suppressed by powers of p-2 or m-2 where m is the Pauli-Villars mass. 
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determines the renormalized co~pling constant [29, 138, 110] ga (ASTR) at the string scale ASTR: 

g~2(A"'R) ~ \ 1 ~f _ b~k(i) + ~ ~;, In(l HPA)), (5.16) 

ASTR = (et(k-l)) , (5.17) 

and the functions 

, (5.18) 

govern the running of the gauge couplings from the string scale to the normalization scale. 

5.2 Preliminary Issues 

5.2.1 Condensation and Dilaton Stabilization 

The Lagrangian in (5.5) can be expanded into component form using the standard techniques 
of the Kahler superspace formalism of supergravity from Section 1.2. In reference [28] the 
bosonic part of the Lagrangian relevant' to dilaton stabilization and gaugino condensation was 
presented and the equations of motion for the nonpropagating fields were solved. In particular, 
the equations of motion for the auxiliary fields of the condensates Fa give 

(5.19) 

where tf == Tflo=t'i=o and Ua = Ualo=o=o == Pa eiwa . 

Upon substituting for the gauge coupling via the relation (1.18) we recognize the expected 
one-instanton form for gaugino condensation. Expression (5.19) encodes more information, 
however, than simply the one loop running of the gauge coupling. In [87] the loop corrections 
to the gauge coupling constants were computed using a manifestly supersymmetric Pauli-Villars 
regularization. The (moduli independent) corrections were identified with the renormalization 
group invariant [136] 

Using the above expression it is possible to solve for the scale at which the 1/g2(f..L) term becomes 
negligible relative to the Ing2 (/-l) term - effectively looking for the "all loop" Landau pole for 
the coupling constant. This scale is related to the string scale by the relation 

2 c A 

/-lL2 "" f..LSTR2e-3bag~(/L) II [Z: (/-lSTR)/Z: {/-ld] 127r~ba • (5.21) 
A 

Now comparing the effective Lagrangiangiven in Section 5.1 with the field theory loop calculation 
given in [87] shows that the two agree provided we identify the wave function renormalization 
coefficients Z~ with the quantity 14Wo:/b~12. This is precisely what is needed to produce the 
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final product in the condensate expression given in (5.19), indicating that the condensation 
scale represents the scale at which the coupling becomes strong as would be computed using the 
so-called "exact" /3-function. 

Note that this final factor introduces the unknown Yukawa coefficients Co into the scale 
of supersymmetry breaking. Such dependence of the gaugino condensate on the parameters 
of the superpotential is not unexpected, and has in fact been demonstrated in the case of 
supersymmetric QeD as well as certain models of supersymmetric Yang-Mills theories coupled 
to chiral matter [4]. This last Yukawa-related factor has the virtue of allowing two different 
hidden sector configurations which result in the same /3-function to condense at widely different 
scales. 

In order to go further and make quantitative statements about the scale of gaugino con­
densation (and hence supersymmetry breaking) it is necessary to specify some form for the 
nonperturbative effects represented by the functions f and g. The parameterization adopted 
in [29] was originally motivated by Shenker [135] and was of the form exp(-I/gsTR ) where gSTR 
is the string coupling constant. A consensus seems to be forming [16, 127, 137, 143] around this 
characterization for string nonperturbative effects and the function f (V) in (5.3) will be taken 
to be of the form 

(5.22) 

which was shown [29] to allow dilaton stabilization at weak to moderate string coupling with 
parameters that are all of 0 (1). The benefits of invoking string-inspired nonperturbative effects 
of the form of (5.22) have recently been explored by others in the literature [21, 41]. 

The scalar potential for the moduli tI is minirnzed at the self-dual points (tI) = 1 or (tI) = 

exp (ill-j6), where the corresponding F-components pI of the chiral superfields TI vanish. At 
these points the dilaton potential is given by 

2 

V,(/!) = _1_ (1 + /!d9 ) '"' (1 + b /!) u 16/!2 d/! ~ a a 
a 

2 

(5.23) 
a 

As an example, the potential (5.23) can be minimized with vanishing cosmological constant and 
O!STR = 0.04 for Ao ~ 3.25, Al = -1.70 and B = 0.4 in expression (5.22). 

5.2.2 Scale of Supersymmetry Breaking 

With the adoption of (5.22) the scale of gaugino condensation can be obtained once the following 
are specified: 

(1) the condensing subgroup(s) of the original hidden sector gauge group Es; 

(2) the representations of the matter fields charged under the condensing subgroup(s); 

(3) the Yukawa coefficients in the superpotential for the hidden sector matter fields; 

(4) the value of the string coupling constant at the compactification scale, which in turn deter­
mines the coefficients in (5.22) necessary to minimize the scalar potential (5.23). 

\ 



64 Phenomenology of Gaugino Condensation Models 

A great deal of simplification in the above parameter space can be obtained by making the ansatz 
that all of the matter in the hidden sector which transforms under a given subgroup ga is of the 
same representation, such as the fundamental representation. Then the sum of the coefficients 
b~ over the number of condensate fields labeled by a (a = 1, ... ,Ne), can be replaced by one 
effective variable 

:~:)~-+ (b~)eff (b~)eff = Neb~ep. (5.24) 
a 

In the above equation b~ep is proportional to the quadratic Casimir operator for the matter 
fields in the common representation and the number of condensates, N e , can range from zero to 
a maximum value determined by the condition that the gauge group presumed to be condensing 
must remain asymptotically free. The redefinition in (5.24) essentially takes the coefficients b~, 
which we are free to choose in our effective Lagrangian up to the conditions given in (5.8), and 
assigns the same value to each condensate. 

The variable b~ can then be eliminated in (5.19) in favor of (b~)eff provided the simultaneous 
redefinition Ca -+ (ca)eff is made so as to keep the product in (5.19) invariant: 

(5.25) 

With the assumption of universal representations for the matter fields, this implies 

(5.26) 

which we assume to be an 0 (I) number, if not slightly smaller. 

From a determination of the condensate value p using (5.19) the supersymmetry-breaking 
scale can be found by solving for the gravitino mass, given by 

(5.27) 

In [28] it was shown that in the case of multiple gaugino condensates the scale of supersymmetry 
breaking was governed by the condensate with the largest one loop ,B-function coefficient. Hence 
in the following it is sufficient to consider the case with just one condensate with ,B-function 
coefficient denoted b+ for gauge group ga = g+: 

(5.28) 

As an illustration of this point, the gravitino mass for the case of pure supersymmetric Yang­
Mills SU(5) condensation (no hidden sector matter fields) would be 4000 GeV. The addition of 
an additional condensation of pure supersymmetric Yang-Mills SU(4) gauginos would only add 
an additional 0.004 GeV to the mass. . 

Now for given values of (ca)eff and 9STR the condensation scale 

(5.29) 
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Figure 5.1: Condensation Scale as a Function of Hidden Sector Gauge Configuration. Contours 
give the scale of gaugino condensation in Ge V for (c,,) elf = 3. 
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and gravitino mass (5.28) can be plotted in the {b+, Wt-)eff} plane. The sharp variation of 
the condensate value with the parameters of the theory, as anticipated by the functional form 
in (5.19), is apparent in the contour plot of Figure 5.1. The dependence of the gravitino mass on 
the group theory parameters is even more profound. Figure 5.2 gives contours for the gravitino 
mass between 100 GeV and 100 TeV. Clearly, the region of parameter space for which a phe­
nomenologically preferred value of the supersymmetry breaking scale occurs is a rather limited 
slice of the entire space available. 

The variation of the gravitino mass as a function of the Yukawa parameters Co: is shown 
in Figure 5.3. On the horizontal axis there are no matter condensates (b~ = 0, \fa) so there 
is no dependence on the variable (co:)eff' For values of (cO:)eff ~ 0.1 the contours of gravitino 
mass in the TeV region lie beyond the limiting value of b+ ~ 0.09 and are thus in a region of 
parameter space which is inaccessible to a model in which the unified coupling at the string scale 
is aSTR = 0.04 or larger. For very large values of the effective Yukawa parameter the gravitlno 
maSs contours approach an asymptotic value very close to the case shown here for (co:)eff = 50. 
We might therefore consider the shaded region between the two sets of contours as roughly the 
maximal region of viable parameter space for a given value of the unified coupling at the string 
scale. 
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Figure 5.2: Gravitino Mass as a Function of Hidden Sector Gauge Configuration. Contours of 
gravitino mass for 102 GeV through 105 GeV are given for (ca)eff = 3. 

5.2.3 Implications for the Hidden Sector 

Having examined some of the universal constraints placed on any string-derived model proposing 
to describe low energy physics it is natural to ask whether the region of phenomenological 
viability (roughly the shaded area in Figure 5.3) can be used to constrain the matter content of 
the hidden seCtor. 

Upon orbifold compactification the Es gauge group of the hidden sector is presumed to break 
to some subgroup(s) of Es and the set of all such possible breakings has been computed for 
ZN orbifolds [111]. Under the working assumption that only the subgroup with the largest 
j3-function coefficient enters into the low energy phenomenology, there are then a finite number 
of possible groups to consider: 

{ 

E7, E6 
SO (16) , SO (14) , SO (12) , SO (10) , SO (8) 
SU (9), SU (8), SU (7), SU (6), SU (5), SU (4), SU (3) 

(5.30) 

For each of the above gauge groups equations (5.8) and (5.9) define a line in the {b+, (b+')eff} 
plane. These lines will all be parallel to one another with horizontal intercepts at the j3-function 
coefficient for a pure Yang-Mills theory. The vertical intercept will then indicate the amount of 
matter required to prevent the group from being asymptotically free, thereby eliminating it as 
a candidate source for the supersymmetry breaking described in Section 5.2.2. 
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Figure 5.3: Gravitino Mass Regions as a Function of Yukawa Parameter. Gravitino mass 
contours for (a) 100 GeV and (b) 10 TeV are shown for (c"')eff = 50 and (c"')eff = 0.1 with QSTR = 0.04. 
The region between the two sets of curves can be considered roughly· the region of phenomenological 
viability. 
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\ 

In Figure 5.4 we have overlaid these gauge lines on a plot similar to Figure 5.3. We restrict 
the Yukawa couplings of the hidden sector to the more reasonable range of 1 ~ (coJeff ~ 10 
and give three different values of. the string coupling at the string scale. The choice of string 
coupling constant is made when specifying the boundary conditions for solving thedilaton scalar 
potential, as described in Section 5.2.1. Changing this boundary condition will a~ect the scale of 
gaugino condensation through equation (5.19), altering the supersymmetry breaking scale for a 
fixed point in the {b+, (b+')eff} plane. Demanding larger values of 9STR will result in the shifting 
of the contours of fixed gravitino mass towards the origin, as in Figure 5.4. Such large values of 
C¥STR have recently been invoked as part of a mechanism for stabilizing the dilaton and/or as a 
consequence of reconciling the apparent scale of gauge unification in the MSSM with the scale 
predicted by string theory [16, 112]. We will return to such issues in Section 5.3.3. 

A typical matter configuration would be represented in Figure 5.4 by a point on one of the 
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Figure 5.4: Constraints on the Hidden Sector. The shaded regions give three different "viable" 
regions depending on the value of the unified coupling strength at the string scale. The upper limit in 
each case represents a 10 TeV gravitino mass contour with (c"')eff = 1, while the lower bound represents a 
100 GeV gravitino mass contour with (c"')eff = 10. 

gauge group lines. As each field adds a discrete amount to (b~)eff and the fields must come irl. 
gauge-invariant multiples, the set of all such possible hidden sector configurations is necessarily a 
finite one.3 The number of possible configurations consistent with a given choice of {O:STR' (caJeff} 
and supersymmetry breaking scale M 3/ 2 is quite restricted. For example, Figure 5.4 immediately 
rules out hidden sector gauge groups smaller than SU(6) for weak coupling at the string scale 
(g;TR ~ 0.5). Furthermore, even moderately larger values of the string coupling at unification 
become increasingly difficult to obtain as it is necessary to postulate a hidden sector with very 
small gauge group and particular combinations of matter to force the beta-function coefficient 
to small values. 

3For example, one cannot obtain values of b+ arbitrarily close to zero in practical model building. 
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5.3 Lo'Y" Energy Physics Signatures 

5.3.1 Soft Supersymmetry Breaking Terms 

Simply requiring that the scale of supersymmetry breaking be in a reasonable range of energy 
values (i. e. within an order of magnitude of 1 Te V) can put significant constraints on the 
dynamics of the hidden sector. Requiring further that the pattern of supersymmetry breaking 
be consistent with observed electroweak symmetry breaking and direct experimental bounds on 
superpartner masses can restrict the parameter space even more. This pattern of supersymmetry 
breaking is determined by the appearance of soft scalar masses, gaugino masses and trilinear 
couplings at the condensation scale. In order to investigate nonuniversal soft terms we would 
like to make use of the one loop results for soft terms f<:mnd in Section 2 where supersymmetry 
breaking was confined' to the (chiral) dilaton and/or the chiral moduli fields. 

As was mentioned at the end of Section 5.2.1, modular-invariant gaugino condensation models 
are "dilaton-dominated" in that the T-moduli are stabilized at self-dual points where their F­
.term auxiliary fields vanish identically. We are thus led to consider models with an effective 
nonzero F S and sinO = 1, but we must develop a lexicon for converting results obtained in 
the linear multiplet formalism of gaugino condensation to those of Section 2. As was noted in 
Appendix A the scalar potential can be written as in,(A.3) 

v = 

F = (5.31) 

where comparison with (5.23) gives 

(5.32) 
a 

Now our lexicon can be completed by identifying the expressions in (A.13), to give the following 

Vanishing of the vacuum energy (1.4) now requires 

K-]. = (2b~)2 
ss 3(1 + 192 bO )2' 3 STR + 

(5.33) 

I
F

S I 2bO 
M = 3(1 + !~TRb~) , (5.34) 

Using the expressions in Appendix B, together with (5.33) and (5.34) the pattern of soft su­
persymmetry breaking terms can be obtained as a function of the condensing group ,B-function 
coefficient b+ and the modular weights of the fields with (Re t) = 1 or (Re t) = ei7r/ 6 and 
sinO = 1. From Figure 5.1 the condensation scale in these models is typically of the order of 
1 x 1014 Ge V and we take this to be the boundary condition scale Auy in what follows. 

The gaugino masses in the one-condensate approximation, including the contribution from 
the quantum effects of light fields arising at one loop from the superconformal anomaly, are 
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Figure 5.5: Gaugino Masses in the Model of Section 5.1. Gaugino masses Ml (dashed), M2 
(dotted) and M3 (solid) are given at a scale Auv = 1 X 1014 GeVas a function of the condensing group /3-
function coefficient b~. The vertical dotted line in the left panel is the benchmark case of E6 condensation 
in the hidden sector with 9 27s of hidden sector matter studied in [84]. The right panel focuses on the 
region where the three masses are approximately unified. 

given by 

(5.35) 

In Figure 5.5 the gaugino masses are displayed as a function b+ relative to the gravitino mass. 
In reference to Figure 5.4 in Section 5.2 we noted that a reasonable scale of supersymmetry 
breaking (i. e. gra~itino masses less than 10 Te V) generally requires b+ ;::; 0.085. The region 
with gravitino mass larger than 10 TeV is shaded in Figure 5.5. Also indicated in Figure 5.5 is a 
benchmark scenario consisting of an E6 gaugino condensate in the hidden sector together with 
9 27s of matter and having a beta function coefficient of b+ = 0.038. The spectrum of gaugino 
masses will typically be similar to that of the "anomaly mediated" cases with Ml ;G M2 and a 
lightest neutralino with substantial wino-like content provided b+ ;::; 0.19. The location of the 
approximate unification of gaugino masses near this value of b+ is expanded in the right panel 
of Figure 5.5. 

We next turn our attention to the entire set of soft supersymmetry breaking parameters at 
one loop in the gaugino condensate models. In Figure 5.6 we plot the relative sizes of all third 
generation scalar masses and A-terms, Higgs masses and gaugino masses as a fraction of the 
gravitino mass for tan (3 = 3, assuming ni = -1 for all fields. As was the case in Sections 3.1 -
3.3, the gauginos are typically an order of magnitude smaller than scalars (note the change in 
vertical scale in Figure 5.6). Figure 5.6 displays an important feature of the always-present one 
loop contributions arising from the conformal anomaly: when tree level scalar masses are present 
and universal the nonuniversality arising from the anomaly pieces is negligible (here averaging 
less than a 1% correction). However, the corrections to the gaugino masses may significantly 
alter the gaugino spectrum provided the tree level contributions are absent or suppressed, as in 
the models considered here. Neglecting these one loop anomaly-induced contributions to soft 
terms is an approximation whose validity needs to be assessed on a model-by-model basis. For 
the remainder of this section we will neglect the loop corrections to the soft scalar masses and 
trilinear A-terms. This will allow us to use exact expressions for the soft terms as derived in the 
linear multiplet formulation. 
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Figure 5.6: Spectrum of Soft Supersymmetry Breaking Terms in the Model ofSection'5.1. 
All values are given relative to the gravitino mass M3/2 at a scale Auv = 1 X 1014 GeV as a function of the 
condensing group ,B-function coefficient b+. 
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Adoptingthe Kahler potential assumed in (5.6) and the co(mterterm of (1.32) with 8GS = -90 
for simplicity, the scalar masses are given in the one-condensate approximation by 

(5.36) 

and the trilinear "A-terms" in the scalar potential are given by 

(5.37) 
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As noted in [29], the fact that (5.36) and (5.37) are independent of the modular weights qf 
of the individual observable sector fields is the result of the vanishing of the auxiliary fields FI 
in the vacuum. This is a manifestation of the dilaton-dominated scenario of supersymmetry 
breaking [35, 36, 109] for which flavor-changing neutral currents might be naturally suppressed. 
For this to indeed occur, however, it is also necessary to make the assumption that the couplings 
PA are the same for the first and second generations of matter. 

To analyze the low energy particle spectrum it is necessary to choose a value of PA for each 
generation of matter fields. If the Green-Schwarz term (1.32) is independent of the <1>A so that 
PA = 0, then from (5.36) mA = M3/ 2 . We will call such a generation "light." On the other 
hand, it is possible that the Green-Schwarz term may well depend only on the combination 

TI + TI - LA 1<1>11 2
, where <1>1 represents untwisted matter fields. Then for these multiplets 

PA = b and the scalar masses for these fields .are in general an order of magnitude greater than 
the gravitino mass. We will call these generations "heavy." 

Before giving the results of a numerical analysis using the renormalization group equations 
with the boundary conditions determined by equations (5.35), (5.36) and (5.37), it is worthwhile 
looking at what patterns of symmetry breaking are expected for various choices of the parameter 
PA in the context of the MSSM. As mentioned in Section 3.1 for any generation with non­
negligible Yukawa couplings a good indicator that the stable minimum of the scalar potential 
will yield correct electroweak symmetry breaking is the relation (3.i0). For any heavy matter 
generation with a non-negligible coupling to a heavy Higgs field (PA = b) equation (5.37) yields 
A ~ 3MA and so (3.9) is already nearly saturated at the condensation scale. 

Another key factor in preventing dangerous color and charge-breaking minima is the ratio of 
scalar masses to gaugino masses and the degree of splitting between any light and heavy matter 
generations. In this model, both of the hierarchies, M~ght / MAa and M~eavy / M~ght, will turn 
out to be "(10). This pattern of soft supersymmetry breaking masses has been shown[2, 8] 
to lie on the boundary of the region in MSSM parameter space for which light squark masses 
tend to be driven negative by two loop effects arising from the heavier squarks. All of the above 
considerations suggest that compactification scenarios in which the observable sector matter 
fields couple universally to the Green-Schwarz counterterm with PA = b may have trouble 
reproducing the correct pattern of low-energy symmetry breaking. 

5.3.2 RGE Viability Analysis Within the MSSM 

To determine what region of parameter space in the {b+, (b+.) eff} plane is consistent with current 
experimental data it is necessary to run the soft supersymmetry breaking parameters from the 
condensation scale to the electroweak scale using the renormalization group equations with the 
procedure described in 3.4. The RGE analysis was performed on four different scenarios: 

• Scenario A: All three generations light. 

• Scenario B: Third generation light, first and second generations heavy. 

• Scenario C: All three generations heavy. 

• Scenario D: All matter heavy except for the 'two Higgs doublets which remain light 
(PA = 0). 
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Figure 5.1: Region with Correct Symmetry Breaking for Scenario A. The maximum value of 
tanJ1 consistent with electroweak symmetry breaking and positive squark masses is displayed as a function 
of the gravitino mass. The plot is shown with b+ = 0.08 but the values are extremely insensitive to the 
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The scenarios with a heavy t,hird generation have become popular in the literature recently [48, 
62, 129] as a means of suppressing flavor-changing neutral current processes and CP-violating 

... observables. The Higgs fields will be taken to couple to the Green-Schwarz counterterm identi­
cally to the third generation of matter, as we keep only the third generation Yukawa couplings 
in the MSSM superpotential. In scenario D we relax this assumption. 

In the boundary values of (5.35), (5.36) and (5.37) the values of {caJeff and {b~)eff appear only 
indirectly through the determination of the value of the condensate (p!). It is thus convenient 
to cast all soft supersymmetry breaking parameters in terms of the values of b+ and M 3/ 2 . While 
the gravitino mass itself is not strictly independent of b+, it is clear from Figure 5.3 that we 
are guaranteed of finding a reasonable set of values for {(ca)eff' (b+')eff} consistent with the 
choice of b+ and M 3/ 2 provided we scan only over values b+ ::s 0.1 for weak string coupling. 
This transformation of variables allows the slice of parameter space represented by the contours 
of Figure 5.4 to be'recast as a two-dimensional plane for a given value of tan/3 and sgn{J-l). 
The condensation scale (the scale at which the renormalization group running begins) is also a 
function of the gravitino mass in this framework, found by inverting equation (5.27). 

Having chosen a set of input parameters {b+, M 3/ 2 , tan /3, sgn(J-l)} for a particular scenario, 
the model parameters are run from the condensation scale ACOND given by (5.29) to the elec­
troweak scale A EW = Mz, decoupling the scalar particles at a scale approximated by Ascalar = 
MA. While treating all superpartners with a common scale sacrifices precision for expediency, 
the results presented below are meant to be a first survey of the phenomenology of this class of 
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Figure 5.8: Region with Correct Symmetry Breaking for Scenario D. Three pairs of curves are 
shown for b+ = 0.084,0.087,0.090. For values of tan,B between the curves the heavy scalar contribution at 
two loops to the running of m~3 drives its value negative. 

models. 

A set of input parameters will then be considered viable if at the electroweak scale the one:..loop 
corrected mu-term p,2 is positive, the Higgs potential is bounded from below, all matter fields 
have positive scalar mass-squareds and the spectrum of physical masses for the superpartners 
and Higgs fields satisfy the selection criteria given in Table 4.1.4 

The first condition to be imposed on the scenarios considered here is correct electroweak 
symmetry breaking, defined by (3.23), with no additional scalar masses negative. This criterion 
alone rules out scenario C, with all three generations coupling universally to the GS counterterm 
and having large scalar masses. For the opposite case of no coupling to the GS counterterm 
(scenario A) the allowed region is displayed in Figure 5.7. In this scenario electroweak symmetry 
breaking requires 1.65 ;S tan /3 ;S 4.5, the lower bound being the value for which the top quark 
Yukawa coupling develops a Landau pole below the condensation scale. This restricted region of 
the tan /3 parameter space is a result of the large hierarchy between gaugino masses and scalar 
masses in these models and has been observed in more general studies of the MSSM parameter 
space [106]. 

4Though the inclusive branching ratio for b -+. s/ decays was not used as a criterion, an a posteriori check 
of the region of the parameter space where this class of models wants to live - namely relatively low tan,B and 
gaugino masses with high scalar masses - indicates tloreason to fear a conflict with the bounds from CLEO except 
possibly in the case sgn(JL) = -1 for Scenario D [11, 52). 
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Scenario B with its split generations can exist only for 0.08 ~ b+ ~ 0.09, where the hierarchy 
between the generations is small enough to prevent the two loop effects of the heavy generations 
from driving the right-handed top squark to negative squared-mass values. Furthermore, proper 
electroweak symmetry breaking in this model requires the value of tan f3 to be in the uncom­
fortably narrow range 1.65 ~ tan f3 ~ 1.75, making this pattern of Green-Schwarz couplings 
phenomenologically unattractive. 

As for scenario D, the large third generation masses give an additional downward pressure on 
the Higgs squared masses in the running of the RGEs, allowing for a much wider allowed range 
of tanf3. In fact, electroweak symmetry is radiatively broken in the entire range of parameter 
space. However, as the value of b+ is raised past the critical range b+ ~ 0.08, the scalar mass 
boundary values at the condensation scale start to become light enough that the right-handed 
stop is again driven to negative squared-mass values. This is shown in Figure 5.8 where the 
region between the upper and lower curves is excluded. While this region expands rapidly as 
the f3.:.function coefficient is increased, the values of the f3-function coefficient consistent with 
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Figure 5.10: Wino-like and Bino-Like LSPs in Scenario A. The difference in mass between the 
two lightest neutralinos Nz and NI is given. Note that a level crossing occurs and there exists a region in 
which the W3 becomes the LSP, as is to be expected when the anomaly contribution to gaugino masses 
dominates. 

CtSTR .<: 0.04 are nearly saturated when this effect arises. 

The direct experimental constraints are most binding for the gaugino sector as they are by 
far the lightest superpartners in this class of models. Typical bounds reported from collider 
experiments are derived in the context of universal gaugino masses with a relatively large mass 
difference between the lightest chargino and the lightest neutralino. For most choices of pa­
rameters in the models studied here this is a valid assumption, but when the condensing group 
,a-function coefficient b+ becomes relatively small (i.e. similar in size to the MSSM hypercharge 
value of-bU(l) = 0.028) the pieces of the gaugino mass arising from the superconformal anomaly, 
the second term in (5.35), can become equal in magnitude to the first tree level term. Here 
there is a level crossing in the neutral gaugino sector. The lightest supersymmetric particle 
(LSP) becomes predominately wino-like and the mass difference between the lightest chargino 
and lightest neutralino becomes negligible. This effect is displayed in Figure 5.10. The phe­
nomenology of such a gaugino sector has been studied recently in [74, 90, 101J. Note that when 
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any scalar fields couple to the GS counterterm (as in scenario D) there is a large additional, 
universal contribution to the gaugino masses at the condensation scale in (5.35). This eliminates 
any region with a non-standard gaugino sector in these cases. 

Figure 5.11 gives the binding constraints from Table 4.1 for scenario A with tan {3 = 3 
and positive J.L (the most restrictive case)_ The most critical constraints are for the lightest 
chargino and gluino.5 The effect of varying tan {3 on these bounds is negligible over the range 
1.65 :s- tan{3 :s 4.5, ~ its effect is solely in the variation in the Yukawa couplings appearing at two 
loops in the gaugino mass evolution_ The region for which the anomaly-induced contributions 
to the gaugino masses are significant is represented by the shaded region in the upper left of the 
figure. In general, the light gaugino masses at the condensation scale require a large gravitino 
mass (and hence, a large set of universal soft scalar masses since MA = Mo = M3/2 in this 
scenario) in order to evade the observational bounds coming from LEP and the Tevatron. While 
current theoretical prejudice would disfavor such large soft scalar masses, this pattern of soft 

5The gluino mass determination takes into account the difference between the running mass (M3) and the 
physical gluino mass [119]- This difference is neglected for the other mass parameters_ 
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Figure 5.12: Constraints from Table 4.1 for Scenario D. Exclusion curves for lightest chargino 
(thick solid), gluino (dashed), lightest neutralino (dotted), lightest Higgs (dashed-dotted) and lightest stop 
(thin solid) mass. Curves are for weak coupling at the string scale. The region below the curveS fails to 
meet the corresponding conStraint from Table 4.1. 

parameters may not necessarily be a sign of excessive fine-tuning [71, 72]. Nevertheless, we 
refrain from making any statements about the "naturalness" of this class of models as we have 
not specified any mechanism for generating the J.t-term. 

Figure 5.12 gives the binding constraints from Table 4.1 for scenario D with tan {3 = 3 and 
positive J.t. Note the change of scale in both axes for these plots relative to those of scenario A. 
As in Figure 5.11, varying tan{3 over the range 1.65 ;S tan{3;S 40 has a negligible effect on the· 
gaugino constraint contours and only a very small effect on the contours of constant stop mass. 
Here the gaugino· masses start at· mu~h larger v~lues so ~ lower supersymmetry breaking scale 
is sufficient to evade the bounds from LEP and the Tevatron. Though the gravitino mass can 
now be much smaller, recall that the scalars in this scenario have masses at the condensation 
scale roughly an order of magnitude larger than the gravitino. Thus the typical size of scalar 
masses at theelectroweak scale continues to be about 1 TeV for the first two generations and a 
few hundred Ge V for the third generation scalars. As opposed to the case where all the matter 
fields of the observable sector decouple from the GS counterterm, here smaller values of the 
condensing group {3-function coefficient enhance the gaugino masses via the last term in {5.35}. 
We end this section by giving mass contours for the lightest Higgs, chargino, neutralino and top 
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Figure 5.13: Mass Contours for Scenario A. Panel A: Contours for the lightest neutralino mass of 
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400 GeV. Panel C: Contours of lightest Higgs mass of 90, 100, 110, 120 and 130 GeV. Panel D: Contours 
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squark for tan{3 = 3 and positive J..L for scenarios A and D in Figures 5.13 and 5.14, respectively. 

5.3.3 Gauge Coupling Unification 

• In Section 5;2.3 the possibility of larger values of the unified coupling constant g;TR at the string 
scale was considered in a very general way. It is. well known [56] that the apparent unification 
of coupling constants at a scale AMSSM ~ 2 X 1016 GeV, assuming only the MSSMfield content, 
is at odds with the string prediction that unifica,tion must occur at a scale given by 

(5.38) 

where). represents the (scheme-dependent) one loop correction from heavy string modes. In [28] 
this factor was computed for the MS scheme and it is given by 

). = ~ (J + 1) eg
-

1
, (5.39) 
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Figure 5.14: Mass Contours for Scenario D. Panel A: Contours for the lightest neutralino mass of 
40, 80, 120, 160, 240 and 400 GeV. Panel B: Contours of lightest chargino mass of 40, 80, 120, 160, 240 
and 400 GeV. PanelC: Contours of lightest Higgs mass of 80,90, 100, 110, 120, 130 and 140 GeV. Panel 
D: Contours of lightest stop mass of 200, 500, 1000, 2000 and 4000 GeV. All contours increase from the 
bottom to the top of each panel. 

where f and 9 are the vacuum values of the nonperturbative corrections in (5.4) and (5.22). For 
the vacua considered in this work this parameter is typically ,\ f'oJ 0.19. 

Even after taking into account one loop string corrections there is still an order of magnitude 
discrepancy between the scale of unification predicted by string theory and the apparent scale 
of unification as extrapolated from low energy 'ineasurements under the MSSM framework. Oile 
possible solution to the problem is the inclusion of additional matter fields in incomplete multi­
plets ofSU(5) at some intermediate scale which will alter the running of the coupling constants, 
causing them to converge at some value higher than AMSSM [88, 118]. These solutions tend to 
involve slightly larger values of the coupling constant at the string scale than that of the MSSM 
(a;:;;SM ~ 24.7). 

In the model in question here, the intermediate scale (ACOND) at which this additional matter 
might appear is not independent of the scale of the superpartner spectrum (Asusy f'oJ M 3/ 2 ), but 
the two are in fact related by equation (5.28). Thus if we assume this additional matter has 
a typical mass of the condensation scale, each point in the {b+, M3/ 2 } plane can be tested for 
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potential compatibility with string unification given a certain set of additional matter fields. We 
will not specify the origin of these fields (though such incomplete multiplets are not uncommon 
in string theory compactifications [91]), but merely posit their existence with masses on the 
order of the condensation scale. 

Our procedure for carrying out this investigation is similar to that used in the literature 
by a number of authors [3, 12, 102]. The standard model coupling constants Ct3, Ct2and Ct1 
are determined from CtEM (Mz) = 1/127.9, Ct3 (Mz) = 0.119 and sin2 (JEW (Mz ) = .23124 and 
these MS values are converted to the DR scheme. As we will not be concerned with performing a 
precision survey, these coupling constants are run at one loop from their values at the electroweak 
scale using only the standard model field content up to the scale A = M 3/ 2 • At this scale the 
entire supersymmetric spectrum is added to the equations until the scale A = ACOND is reached. 
Here incomplete multiplets of SU(5) are added and the couplings are run to the scale at which 
the SU(2) and U{l) fine structure constants coincide. This scale will be defined as the string 
scale. 

We now require Ct3 = Ct2 = Ctl at this scale and invert equation (5.38) to find the implied 
Planck scale. Consistency requires that this value be the reduced Planck mass of 2.4 x 1018 GeV 
and that the QCD gauge coupling, when the renormalization group equations are solved in the 
reverse direction, give a value for Ct3 at A = Mz within two standard deviations of the measured 
value.6 

The results of the analysis for a typical choice of extra matter fields are shown in Figure 5.15, 
where a pair of vector like (Q,Q) and two pairs of vector-like (D,D)'s are introduced at the 
condensation scale with quantum numbers identical to their MSSM counterparts. The two sigma 
window about the current best-fit value of Ct3 can indeed accomodate a consistent Planck mass 
while allowing for perturbative unification of gauge couplings. From this base configuration 
additional 5s and lOs of SU(5) can be added at will to increase the value of the unified coupling 
at the string scale, but the contours of constant implied Planck mass shown in Figure 5.15 will 
not move significantly. While these combinations of matter fields have been known to allow for 
gauge coupling unification for some time [88, 118], the relationships (5.28) and (5.38) between 
the various scales involved makes this a nontrivial accomplishment for this class of models. 

5.4 Dark Matter in Condensation Models 

As a supergravity'model with a unification scale, many of the typical results of mSUGRA 
continue to hold in the models of gaugino condensation considered in Section 5.1, in particular 
the few number of parameters necessary to determine the low energy spectrum. However the 
contribution to thegaugino masses resulting from the superconformal anomaly (2.32) gives a 
correction to the standard gaugino mass unification that was demonstrated in Figure 5.5. Thus 
in this model one is able to determine the ratio (M2/Md as a function of the parameters of the 
hidden sector. 

6It is worth remarking th'at even the celebrated supersymmetric SU(5) unification of couplings fails to predict 
the strong coupling at 'the electroweak scale at the level of two sigma and calls for a rather large value of 
03 (Mz) [3, 12, 102j.This is usually taken as an indication of the size of model-dependent threshold corrections. 
We therfore demand no mor:e from the models considered here. 
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Figure 5.15: Gauge Coupling Unification. Results of adding one pair of (Q, Q) and two pairs of 
(D,15) at the condensation scale. Contours of constant implied Planck mass are overlaid on the region 
for which II = a~GE - a~BS is within the two-sigma experimental liinit of oa = ±0.004. The dotted line 
represents the maximum value of 6+ consistent with M3/2 ~ 10 TeV and the RGE determined string 
coupling. The values of aSTR here range from 0.044 at the II = +0.004 contour to 0.050 at the II = -0.004 
contour. 

From (5.35) is is clear that the key variable (M2 /Mt} depends on the value of b+ whenpA = 0: 

M2 (ACONO) g~ (ACONO) (1 + b~£)-'(b2/b+) (1 + b+£) 
Ml (ACONO) - gr (ACONO) (1 +b~£) - (bdb+) (1+ b+£) 

(5AO) 

Figure 5.16 shows contours of constant LSP (Xo) relic density for the model of Section 5.1 
in the {b+, Mo} plane, where Mo is the usual universal s'calar mass whose value is givenby 
Mo = M3/ 2 in the model we will consider here. While the axes of Figure 5.16 are very similar 
to those of Figures 4.3, 4.5 and 4.6 there are some notable differences in this model. The gluino 
mass parameter M3 relates to M2 and Ml through an identical relationship to Equation (5AO) 
and therefore changes with b+. In the previous figures M3 was held .constant at the high scale 
within a single plot, but in Figure 5.16 the ratio M3/Ml at the condensation scale varies from 
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Figure 5.16: Cosmologically Preferred Region in Gaugino Condensation Models. Contours of 
constant relic density are given as a function of Mo and b+ by the solid lines while the Higgs resonance 
andW± resonance are indicated by the upper and lower dotted lines, respectively. Moving outward from 
the lower dotted line are contours of Qxh2 = 0.01, 0.1, 0.3, 1.0 and 10. The labeled points are examined 
in detail in Figure 5.18. 

83 

0.2 at b+ = 0.02 to 0.8 at b+ = 0.09. Nevertheless, there is still a region of viable dark matter 
largely independent of the universal scalar mass, as in the general nonuniversal cases studied 
in Section 4.2, for the same reasons: a smaller value of (M2/ Md for lower b+ results in higher 
wino content as well as more degeneracy between the lightest neutralino and chargino, resulting 
in conannihilation. 

In Figure 5.16 it is evident that this is not a result of the masses being tuned to sit on a 
pole. The Higgs pole, given by the locus of points for which 2mx~ = mh, is indicated by the 
uppermost dotted line. More important is the W-pole, denoted by the second lower dotted line 
in the left plot, where a neutralino and chargino go to an on-shell W-boson, severely warping 
the lower part of the plot. However, both of these resonant regions are excluded experimentally 
by the criteria of Table 4.1 as indicated in Figure 5.17 by the shaded region. The key constraints 

/' include the gluino mass (given by the dashed line) and the chargino mass (given by two parallel 
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Figure 5.11: Cosmologically Preferred Region and Experimental Constraints. Contours of 
!1xh2 = 0.01, 0.1,0.3, 1.0 and 10 are again shown along with the experimental constraints from Table 4.1. 
The shaded region is excluded: the dashed curve represents a 190 GeV gluino mass while the two parallel 
solid curves represent a 75 Ge V and a 90 Ge V chargino mass from bottom to top. 

solid curves representing a chargino mass of 75 and 90 Ge V from bottom to top). 

As with the previous cases the additonal physics contained in this plot is easily seen through 
a few representative points given in more detail in Figure 5.18. Starting from the top right 
in Figure 5.16, point F sits at far too high a value of Mo for the normal cMSSM annihilation 
channels to be effective. Its high value of b+ also gives a high value of (M2/Md 1ow (between 1.3 
and 1.4), so the wino content ofthe LSP is low. The dominant channels are neutralino-chargino 
coannihilation but this is not sufficient to deplete the relic density to acceptable levels. Point E 
lies exactly on the pole for two neutralinos going to an on-shell Higgs which then naturally 
decays to two fermioils, making this the dominant final state. A lowered scalar mass scale also 
allows coannihilation to two fermions to increase. Nevertheless, the net effect is still too small 
to b~ing the relic density down far enough. 

Point Dis in the region where one would not expect much annihilation to fermions, but for this 



5.4 Dark Matter in Condensation Models 

10-8 

10-9 

10-10 

10-11 

10-12 

10-13 

10-14 

10-9 

10-10 

10-11 

10-12 

10-13 

10-14 

10-6 

10-8 . 

nh2= 0.511 (D) 

10-9 -------------------------------

10-14 

10-9 

10-10 

10-11 

10-12 

10-13 

<OV>total <oV>co 
oth 

Figure 5.18: Annihilation Cross Sections for Selected Points From Figure 5.16. These graphs 
are identical in nature to those of Figure 4.4. 
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b+ value the neutralino and chargino are becoming more degenerate, increasing coannihilation 
and bringing the relic density down towards the cosmologically preferred region. Additionally, 
points D and F are the only two points which kinematically allow x± XO -'-+ W± Z. Once this 
channel is open it is the main determining factor in the relic density. 

Points Band G both lie near the region where the masses of the lightest chargino and the 
LSP add up to exactly the mass of the charged W-boson. This enhances the efficiency of most 
channels of chargino-neutralino coannihilation, resulting in a relic density that is now a little 
too low to account for astrophysical observations. For point A, by contrast, the particles are 
off-shell so these processes are too inefficient and the relic density is too high. Note that for 
points A, Band C the value of the lightest chargino mass is below the experimental limit so 
these points are excluded. 

Figure 5.19 shows how the parameters of this model determine wino content and the ratio 
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Figure 5.19: Relic Densities vs. Wino Content in Gaugino Condensation Models. Contours 
of constant relic density are given as in Figure 5,16 by the solid lines for nxh2 = 0.1, 0.3, and 1.0 only. 
Dotted lines are contours of constant wino content of 25%,4%, 1%,0.25% from left to right, 

(M2/Md1ow' As in the case of Figures 4.5 and 4.6 from Section 4.2, cosmological observations 
favor a mild wino content of 0.1% to 5% and single out the region 1.15 ~ (M2 /M1how ~ 1.25. 
The correspondence between the value ofb+ and (M2/Mdhigh is clear from the compar~son of 
Figure 5.20 with Figures 4.5 and 4.6, in particular panels (.A) for lower values of b+ and (B) for 
higher values. 

To see the discriminatory power that cosmological considerations can have on model building, 
consider Figure 5.21. We sampled 25,000 combinations of {b+, (b~)eff' (co,)eff} which give rise to 
gravitino masses between 100 GeV and 10 TeV and which yield a particle spectrum consistent 
with the bounds in Table 4.1 [34]. In Figure 5.21 we display those combinations which implied 
a relic density in the range 0.1 ~ 0xh2 ~ 0.3 (fine points), as well as the slightly higher range 
0.3 < Oxh2 ~ 1.0 (coarse points). 

Figure 5.21 clearly favors a very specific region of hidden sector parameter space with a 
preferred value of b+ in the neighborhood of b+ = 0.036 and a corresponding range in (b~)eff 
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Figure 5.20: Relic Densities vs. Gaugino Mass Ratios in Gaugino Condensation Models. 
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of 0.2 ~ (b~)eff ~ 0.6, which points towards a large condensing group such as 80(12), 80(14), 
80(16), E6 or E7 . A typical matter configuration for the hidden sector would be represented in 
Figure 5.21 by a point on one of the gauge group lines. The number of possible configurations 
consistent with a given choice of { <l'stn (co,) eff} and supersymmetry breaking scale M 3/ 2 is quite 
restricted. For example, if we ask for a hidden sector configuration charged under the E6 gauge 
group' for which CE6"= 12 and Ci!!6nd = 3, and require that our matter condensates be gauge 
invariant so that fundamentals must come in groups of three, then from. (5.8) and (5.9) the only 
combination that falls in. the preferred region of Figure 5.21 is Nfund = 9. This combination is 
notable in that it was shown in [84] to possess many desirable phenomenological features. A 
similar analysis for .the other allowed gauge groups leaves only a handful of possible hidden sector 
configurations, summarized in Table 5.1, where we have included some examples with various 
hidden sector effective Yukawa couplings (co,)eff and the implied values of M 3/ 2 and f2xh2. As 
is evident from the table and from Figure 5.21, using the dark matter constraint on LSP relic 
densities is a very powerful tool in restricting the high energy physics of the underlying theory. 
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Figure 5.21: Preferred Dark Matter Region in Hidden Sector Configuration Space. This plot 
illustrates the dark matter parameter space in terms of the gauge group and matter content parameters 
of the hidden sector. The fine points on the left have the preferred value 0.1 ::; Oxh2 ::; 0.3 and the 
coarse points have 0.3 < Oxh2 ::; 1.0. The swath bounded by lines (a) and (b) is the region in which 
the 0.1 ::; (c")eff ::; 10 and the gravitino mass is between 100 GeV and 10 TeV. The dotted lines are the 
possible combination of gauge parameters for different hidden sector gauge groups. 

In summary, the prospects for' cMSSM dark matter at low tan /3 are rapidly diminshing, 
barring a curious conspiracy between Mo and M3/ 2 . This is due to the inefficient annihilation of 
a dominantly bino-like LSP. Departure from the standard cMSSM GUT relation allows values 
of (M2/Ml) that accomodate small admixtures of wino content fbr the LSP. Lowering this ratio 
at the electroweak scale increases the LSP annihilation efficiency by virtue of its higher wino 
content and the tightening degeneracy between the lightest chargino and the LSP, resulting in 
increased coannihilation. Ranges of (M2/Md,ow exist with 0.1 ~ Oh2 ~ 0.3 and where the value 
of Mo is restricted to be anything above 1 Te V - quite in contrast to the light scalars required 
at low tan /3 in the standard cMSSM case. 

The requirement of cosmologically interesting relic densities, or at least the demand that 
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Gauge group Ca 
ctUnd 

a ba (b~)eff Nfund (CoJeff M3j2 (GeV) Dxh2 

E6 12 3 0.038 0.23 9 3.8 5967 0.633 
SO (16) 14 . 1 0.034 0.29 34 2.7 7011 0.194 
SO (14) 12 1 0.034 0.24 28 4.4 3383 0.069 
SO (12) 10 1 0.034 0.19 22 6.3 1438 0.076 

Table 5.1: Gauge group Casimirs and allowed condensate numbers. Possible hidden sector gauge 
group configurations that might give rise to thermal relic neutralino densities compatible with observations. 
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0xh2 ::; 1, can be a powerful constraint on models with nonuniversal gaugino masses which is 
Qften quite complementary to the constraints arising from direct search limits for superpartners. 
For example, in the model of gaugino condensation considered here, the number of possible 
hidden sector gauge groups and matter configurations could be restricted to a very small number. 
Similar analyses on models with small deviations from universality should prove equally fruitfuL 
While relic densities of supersymmetric particles that were once, in thermal equilibrium need 

. not be the explanation for the missing nonbaryonic mass in the universe/ it is nevertheless one 
of the most compelling aspects of low energy supersymmetric phenomenology and promises to 
remain so even in scenarios with heavy squarks and sleptons. 

7In [124], for example, nonthermal mechanisms are used to provide adequate relic densities in the case of the 
highly wino-like LSP characteristic of the standard anomaly mediated supersymmetry breaking scenario. 
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Conclusions 

In conclusion, we have shown in Section 2 that even in the absence of soft supersymmetry 
breaking at tree level, the loop-induced soft supersymmetry breaking operators are not uniquely 
determined by anomalies. In particular, the hidden sector Kahler potential and superpotential 
must be separately specified. This is closely related to the well-known fact8 that Kahler invari­
ance of supergravity is broken at the quantum level, as is manifest in the expressions (2.39); pn 
is Kahler covariant while Kn is not. Once the full low energy Lagrangian is specified, including 
any hidden sector, the one loop gaugino masses are completely determined by the requirements 
of finiteness and supersymmetry of the Kahler anomaly. However the soft terms in the scalar 
potential depend on the details of Planck scale physics, since the corresponding PV couplings are 
not sufficiently constrained. In particular, scalars can acquire masses at one loop in the absence 
of tree level soft supersymmetry breaking. This is the case in the no-scale model when the PV 
couplings are chosen so that the renormalized Kahler potential does not break Kahler invari­
ance. Kahler invariance is necessarily broken by gauge coupling renormalization (unless specific 
constraints are imposed on the low energy theory) b~cause there is no similar freedom to adjust 
the relevant PV couplings. In the context of string-derived supergravity, field theory anomalies 
for Kahler transformations associated with the exact perturbative symmetries of string theory 
must be canceled, for example by the introduction of a Green-Schwarz counterterm in the case 
of gauge coupling renormalization. This breaks the no-scale structure of the untwisted matter 
'sector, and there are generally soft supersymmetry terms at tree level, with supersymmetry 
broken in the dilaton (S) sector. One loop effects can nevertheless be important, especially for 
gaugino masses. 

Let us stress that even though we have been studying specific classes of superstring models, 
the types of spectra that we obtained and discussed in Section 3 appear to be quite generic. For 
example, scenarios from models with extra dimensions tend to give spectra which can be related 
to one or another type considered here, whether it is the model of Randall and Sundrum [131], 
or models of gaugino mediation [108, 134]. In particular, soft terms that are proportional 
to ,B-function coefficients and anomalous dimensions can be realized in a variety of ways in 
string-derived supergravity. The case that is generally referred to as "anomaly mediation" is 
just one limiting value in a continuum of such models; The importance of these anomaly­
induced terms depends on the absence or suppression of tree level contributions to the soft 
supersymmetry breaking parameters and on the assumptions made regarding the underlying 
theory when regulating the effective supergravity theory. 

Once supersymmetry is discovered, the central issue will be to unravel the mechanism of 
supersymmetry breaking. The search strategy will be of the most value if it is based on large 

8For a recent discussion of this and related issues, see [14]. 
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classes of different models, not just on a single "minimal" model. The models studied above 
tend to show that a possible strategy could be based on three steps: 

(1) identifying gaugino masses (the least model dependent aspect of these theories) and the 
nature of the LSP; 

(2) identifying where (approximately) the bulk of the scalar masses lie and whether there is an 
order of magnitude between gaugino and scalar masses; 

(3) then using the details of the scalar masses, in particular the mixing in the stop sector and 
the degree of nonuniversality, to disentangle the possible scenarios. 

Observation of nonuniversal supersymmetric parameters obeying the relations'described in Sec­
tions 3.1 - 3.3 will likely shed light on the scale of supersymmetry breaking, the nature of the 
fields responsible for this breaking and the origin of the J,L-term, if not the properties of the 
underlying superstring theory itself. 

The preceding pages·should be cause for guarded optimism with regard to string phenomenol­
ogy. As we saw in Section 5, the initial challenge of dilaton stabilization has been met without 
resorting to strong coupling in the effective field theory nor requiring delicate cancellations. Rea­
sonable values.of the supersymmetry breaking scale can be achieved over a fairly large region 
of the parameter space, but a given combination of coupling strength at the string scale and 
hidden sector matter content will single out a tantalizingly small slice of this space. These suc­
cessful combinations do not destroy the potential solutions to the coupling constant unification 
problem by the introduction of additional matter at the condensation scale. Tighter restriction 
on the hidden sector will require more precise knowledge of the size of Yukawa couplings in the 
corresponding superpotential. 

Requiring a vacuum configuration which gives rise to successful electroweak symmetry break­
ing seems to qemand that either the Green-Schwarz counterterm be independent of the matter 
fields or that all matter fields couple in a universal way but that the Higgs fields are distinct. 
The pattern of soft supersymmetry breaking parameters in the former case pushes the theory 
towards large gravitino masses and very low values of tan,8. The low gaugino masses relative to 
scalar masses favors larger ,8-function coefficients for the condensing group of the hidden sector, 
while smaller values may result in phenomenology in the gaugino sector similar to that of the 
"anomaly dominated" scenarios. These same values tend to lie in the region of the parameter 
space for which relic neutralinos could accomlt for the majority of the "dark" matter in the 
universe. 

A ,more realistic model may alter these results to some degree and uncertainty remains in 
the general size and nature of the Yukawa couplings of the hidden sector Of these theories. 
Nevertheless this survey suggests that eventual measurement of the size and pattern of super­
symmetry breaking in our observable world may well point towards a very limited choice of 
hidden sector configurations (and hence string theory compactifications) compatible with low 
energy phenomena. 



Appendix A 

Chiral vs. Linear Multiplet 
Formulation for the Dilaton 

In this appendix we show the correspondence between various terms in the component La­
grangian of the linear formalism and of the expressi~ns given in Section 2. In the presence of a 
nonperturbatively induced potential for the dilaton, the tree level scalar Lagrangian takes the 
form (dropping gauge charged matter) 

{) ta omto. k' (P) P 
Lscalar = -2::= (~ + tap - ~OmPomp - k'(P) Omaoma - V, (A.l) 

0. 

where the axion a is related to the two-form bmn of the linear multiplet by a duality transfor­
mation: 

! mnpqa b - _~!:Im 
2 € n pq - k' (P) U a. (A.2) 

The potential V can be written in the form 

" 1 a-=CY. P 2 1 _. 
V = L..J (to. +ta )2 F F + k,(p)F - 3MM, 

a 

F = k'(P)f(P a i) ~ ,t ,Z, (A.3) 

where f(P, t a , zi) is a complex but nonholomorphic function of the scalar fields. 

To cast this result in a form resembling the standard chiral formulation we introduce the 
variable x(P) = 2g-2 (AsTR), which is twice the inverse squared gauge coupling (1.18). It is 
related to the dilaton Kahler potential k by the differential equation [31] 

P 
k'(P) = -Px'(P), oP = - k'(P) ax, (A.4) 

giving 

ok(x) = k'(P) OP = _P, o2k(x) oP _ P 
ax ax ox2 ax k' (P) , 

k'(P)a o!:lmo P a !:1m 1 o2k(x)a !:1m 

~ m{.U {. = - 4k'(P) mXU X = 4 ox2 mXU X. (A.5) 



94 Chiral vs. Linear Multiplet Formulation for the Dilaton 

Then setting 

x=s+S, a=Ims, (A.6) 

(A.l) and (A.3) take the standard form (now including gauge-charged chiral matter) 

L -~ K ~ (0 zNamzN +pNpN) + !MM scalar L..t NN m 3 ' 
N 

K = k (s + s) + K(ta
) + L ~ilzi12, (A.7) 

provided we identify F = pS and Kss = £jk'(£). When the fermion part of the Lagrangian is 
included, one obtains for the gaugino masses 

2 
M(O) = 9a F 

a 2' 

in agreement with (2.49) for fa = sand F = F S . 

(A.8) 

The replacements (A.6) amount to a duality transformation to the chiral formulation for 
the dilaton. When the GS term is included, after a two~formjscalar duality transformation, 
Eqs. (A.l)-(A.7) are modified by the replacements 

We may make a full superfield duality transformation by the additional replacements 

x = s + s = 3 + S + b'L In(ta + la), k(s + s) -+ k [3 + s - bK(ta)], 
a 

(A.9) 

(A.I0) 

where 3 is the complex scalar component (1m3 = a) of the dilaton chiral superfield. This 
introduces mixing of the moduli with the dilaton in the Kihler metriC [35, 36]. Working in the 
linear multiplet formalism for the dilaton, there is no mixing of the dilaton with chiral fields;l in 
this case (A.I) and (A.3) are modified only by (A.9). With this modification (A.3) is completely 
general; it includes the effects of the GS term on the potential for £ and t in the presence of a 
source of supersymmetry breaking such as gaugino condensation. In fact the GS term coupling 
to the confined hidden gauge sector, as in the model of Section 5, must be included to make the 
effective supersymmetry breaking "tree" Lagrangian perturbatively modular invariant. 

In the linear multiplet formulation for the dilaton, the tree level scalar potential takes the 
form 

~ ...... N-NI-
vtree = L..tKNNF F - 3MM, 

N. . 

M = -3eK/2w, FN = _w-1e-K/2 j(NN Orr (eKww) , (A.ll) 

where the effective metric j( N N is defined by 

...... 9s 
KMN -+ KMN = KMN + 2aMOrrVGS, (A.I2) 

lSee for example the discussion of Eq. (4.20) in [87]. 
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and j(ss = Kss = £/k'(£). If Pi = 0, the effect of (A.12) is to multiply the vev of FQ by 
the numerical factor 1 ~ 1 - g~TRdGs/487f2 ~ 1.1 if g~TR = 1/2. Additional corrections are 
unimportant if dGs(tQ + tQ)-1IFQWs/WI/487f2 «: IM/31: for example when supersymmetry 
breaking is dilaton dominated or if the superpotential is independent of the dilaton. 

The expression in (A.ll) reduces to the standard form if W is holomorphic. If a duality 
transformation to the chiral formulation for the dilaton is always possible [38] in the effective 
theory below the supersymmetry breaking scale, we must have 

(
- Q i) W = w s,t ,Z , 

x . 
s= "2+W' - IV; 

s = s +"2 GS' 

For example, in the gaugino condensation model of Section 5 we have 

W(tQ zi) + v(s- tQ) V = -e-K / 2b

4
+u, u = ceK / 2e-s/b+ II'I'l(tQ )2(b-b+)/b+, W= , " '/ 

where c isa constant. In this case we have 

~ ~ws8wVGS' Ws = 0, F S = _e
K

/
2j(SS ['Ills + Ks'!ll] 

FN = _eK
/
2 j(NN [WN+K"j\Tlll+~(8wVGs)aslnw]. 

(A.13) 

(A.14) 

(A.15) , 

Inserting these expressions in the potential (A.ll) we obtain the following expressions for the 
soft supersymmetry breaking terms at tree level: 

Atree 
ijk 

(0) b Q _ 

Aijk - 2(tQ + tQ) (F as In w + h.c. ) , 

[B~r:ee] [BiJ?)] - ( b ) (FQas In 'Ill + h.c, ) , 
ZJ superpotential superpotential 2 tQ + tQ 

[B~r:ee] = [B~?)] - b FQas In 'Ill (A.16) 
ZJ Kahler potential ZJ Kahler potential 2 (tQ + tQ) , 

where the expressions with index 0 are the tree level expressions given in the text with W(ZN) --+ 
w(ZN, VGs ) and 

Q K/2 ~tafa [_ _ b ] F = -e K WEa + Kfaw - ( ) as In W . 
2 tQ +tQ 

(A.17) 

The scalar masses depend on the curvature of the effective scalar IIletric j( N N" If Pi 1= 0 they 
are complicated expressions in the general case but if Pi = 0, they reduce to the result given in 
Section 2, with the substitutions W --+ wand (A.17). 

If Pi = 0 the expressions receive no corrections if supersymmetry breaking is dilaton mediated, 
FQ = O. If there is no dilaton "superpotential", Ws = 0, the only correction is the rescaling 
FQ --+ (1 + b£)FQ. If a dilaton "superpotential" v is generated by a single dominant gaugino 
condensate (and the associated matter condensates), the dilaton dependence of v in (A.14) 
follows quite generally from anomaly matching, giving 

(A.I8) 
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Since b+ .:::; b, the corrections in (A.16) can be significant if Iv/wl,cosB and l/ta are all order 
one. The moduli dependence of v in (A.14) follows from perturbative modular invariance.2 'To 
the extent that modular invariant condensation dominates supersymmetry breaking, one gets 
essentially the expressions in the text with negligible contributions from Fa. On the other hand 
if (W) is dominant, the corrections foun4 in (A.14) again become negligible. They are significant 
only if there are two comparable sources of supersymmetry breaking. Even in this case they 
are unimportant in the large T limit if as In w is not too large. Note that the correction to the 
A-term does not vanish at the self-dual points for the moduli, so in this case we would not get an 
"anomaly mediated" scenario at these points when FS = O. In the chiral formulation [35, 36], 
there is mixing between dilaton and moduli F ':terms. In that language, the corrections to the 
results of Section 2, aside from the rescaling of Fa, arise from terms proportional to FS Fa K sf'''' + 
h.c. in the potential. 

2Modular invariance could be broken in v if corrections to k(l'.) from string nonperturbative effects are moduli 
dependent [137). We have ignored this possibility throughout. 



Appendix B 

Complete One Loop Expressions 
Orbifold Models 

• 
In 

In this appendix we collect the complete expressions (tree plus one loop correction) for the 
soft supersymmetry breaking terms in orb if old models defined by (1.14), (1.19) and (1.24) with 
supersymmetry breaking vevs parameterized by (3.1) and (3.2). 

The gaugino mass is determined from (2.59) and (2.53): 

The trilinear A-terms are obtained from (2.57). The expression is simplified by utilizing (2.~) 
to obtain the identities 

F S 8 'Vl!- = -'Vl!- M(O). a 'VIm = k 'VIm s I~ It a' S IZ S I~ , 

where the last relation is true if K.i i= K.i(S). This yields A-terms of the form: 

Atot 
_ 

ijk - ~ { - ~ + cosO [~(tet + t")G~eet (~(nf + n'J + n'k + 1) 

- Ll'lm (pfm - (nf +nf +n~ +1)ln(~;m») - Ll'fPfa) 
1m a 

- Lin [Ct{3 + [f3)111(t{3)1 4
] L I'!m p fm L(tet + t")G~eet(nf + nf + n~ + 1)] 

{3 . 1m ~ 

sinO [k. '"' a (~ I (-2) g~ I (-2») '"' Im~ (-2) + 1(2 -3 + L I'i u. n /Lia + 2" n /Lia + L I'i u.ln /LIm 
k.. a 1m 

- ~ In [(tet + t")ll1(tet ) 14] (~;>~l'iPfa - k. ~ I'!mpfm ) ] e-hS
} + cyclic (ijk). 

(B.2) 

(B.3) 
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The bilinear B-terms have a .similar form 

Bir = ~ (~-li) + ~ {COSO [~~ea {(ni +nj + 1) - at" InJLii) 

- L(t" +t")G~ea (LI'tPia + LI:mplm) 
Q a 1m 

'- LIn [(tf3 + tf1)I1J(t f3 )14
] L I~mp~m L(ta + t")G~ea(ni + n/' + n~ + 1) 

f3 1m a 

+ L lim L(ta + t")G~ea(ni + nl + n~ + 1) In(i1?m)] e-i-r" 
1m a 

sinO [~ a (9! 1(-2) 'a I (~2)) ~ Ima 1(-2 ) + 1~2 ~ Ii 2' n JLia + 8 n JLia + ~ Ii s n JLlm 
kss a 1m 

- ~In [(t'" + t")I1J(ta)1 4
] (~1't9~Pia - ~ IfmksPlm ) - (ks + as InJLii )] e-i~. } 

+(i f-t j) (B.4) 

The scalar masses arise from (2.75) and (2.76). Some degree of consolidation can be obtained 
by employing the relation (B.2) as well as 

jF SI2a a-Ing2 - IM(O)1 2 
ss a- a , 

to allow the following identifications: 

-Sa ~ ImA(O) I (-2 ) F S ~ Ii ilm n JLlm 
1m 

-Sa ~ a (0) (-2) F § ~ Ii Ma In JLia 
a 

~ 1m {A(O) -FSa I (-2) k -FSA(O) (-2) 1 51 2 (-2)} ~ Ii ilm s n JLlm + S ilm In JLlm - ks§ F In JLlm 
1m 

a 

(B.5) 

(B.6) 
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With these, the complete expression for the tree level plus one loop scalar masses is given by 

(Mtot)2 = JMI2 {~(1 + I;) + ~ Lin [eta + P)I17(ta )1 4
] (L Ifpfa - 2 L TlkP'!k) 

a a Jk 

-~ L If In(Ma) + ~ L Tlk In(il;k)+ 
a jk 

Si~~ [ \, (Llf9~COSIS - ~ LTlk (k.e-i-rS +k..-ei-rS))] 
k • ..- 3v3 a jk 

+ cos~ [L(ta + p)G~ea,L J1k(nf + nj + nk + 1)] COS ,a 
3v3 a jk 

+COs
2

(} [~Lnfe~ - ~ Le~ (LlfPfa + LTlkP'!k) 
0: Q a Jk 

- ~ L If L nfe~ In(il;a) + ~ L Tlk L(n'! + nk)e~ In(il;k) 
a 0: jk 0: 

- Lin [eta + [a)I17(t")14
] (-~ L Ifpfa L nfe~ + ~ L Tlkpjk L(n1 + n~)e~ 

a a /3 jk f3 

+~ L J1kP'!k L L(t
f3 

+ f3)(t' + [Y)G~G;ef3e-y(nf + n1 + n~ + 1}{n7 + nJ + nZ + 1») 
jk f3-y 

+~ L J1kpjk L L(t" + P)(tf3 
+ f3)G~G~e",ef3(nf + n1 + n~ + 1) cosbf3 -,,,,)] 

jk '" f3 

+ sin(}cos(} [_.! ~(t" + p)G"'e ~ ~jk '" (k -ihS--Ya) +' k- ihs--Ya») 
1/2 6 L...J 2 '" L...J Ti PJk se .e 

k.s " jk 

+~ L(t" +p)G~ea L9~,fPfaCOSbS -,,,) 
a a 

+~ L Tlk L(ta + p)G~e",(nf + nj + nk + 1) (o..-ln(il;k) + k..-ln(il;k)) eihS--Ya) 
jk '" 

+~ L Tlk L(t" + p)G~ea(nf + n'j + nJ: + 1) (o.ln(ilJk) + k.ln(ilJk») e-ihs--ya)] 
jk '" 

sin
2

(} [ 1~ 4 al (-2) 1~ aool (-2) 1~ a 2('" (-2) (-2») + k
s

..- -4 L...J9ali n ILia - 3' L...J Ii • ..- n ILia + 3' L...J l.i 9" Us In ILia + o..-ln ILia 
a a " 

- ~ J1k (~(k.k"- + 2k • ..-) In(il;k) + ~o.os In(il;k) + ~(k.o..-ln(il;k) + k..-o.ln(il;k») 

- ~In [(," + l")I"('")I'J (i ~ 9!,7p;. + ~ ~>!'P)"k.k') ]} . (B. 7) 
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