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Abstract: In the boundary layers around the edges of images, basic nonlinear parabolic equa

tions for image intensity used in image processing assume a special degenerate asymptotic 

form. An asymptotic self-similar solution to this degenerate equation is obtained in an ex

plicit form. The solution reveals a substantially nonlinear effect ---.: the formation of sharp 

steps at the edges of the images, leading to edge enhancement; Positions of the steps and the 

time shift parameter cannot be determined by direct construction of a self-similar solution: 

they depend upon the initial condition of the pre-self-similar solution. The free boundary 

problem is formulated describing the image intensity evolution in the boundary layer. 

1. Introduction 

Modern computer vision studies are based on a differential-geometric approach having 

roots in ideas presented in the inaugural lecture of B. Riemann at the Philosophical Faculty 

of Gottingen University in 1854. This lecture was earmarked in fact for a single listener, 

K. F. Gauss, who selected the topic from three which were proposed by Riemann and whose 

ideas concerning geometric theory of surfaces received in this lecture far reaching develop

ment. 
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In an illuminating essay by B. Kagan (1) a review of the development of Riemann's 

geometric ideas in an active period up to the mid-thirties is presented most comprehensively 

together with a detailed bibliography. We want to mention here an instructive moment. 

Riemann's lecture was published by a German mathematician, R. Dedekind, long .after 

Riemann's death. The title of the lecture was: "Ueber die Hypothesen welche der Geometrie 

zu Grunde liegen"l. Soon after publication of Riemann's lecture there appeared a paper by 

H. von Helmholtz having a title practically coinciding with the title of Riemann's lecture 

except for a single word: "Ueber die Tatsachen welche der Geometrie zu Grunde liegen,,2. 

Helmholtz claimed in this paper that he came to the ideas presented in Riemann's lecture 

independently, and what is most interesting now, by a completely different motivation, trying 

to construct a physiological model of vision (Helmholtz's basic profession was physiology and 

medicine). It is instructive to see how these ideas are resurrected in computer vision science! 

Rather early it was recognized in computer vision studies (see especially the paper by 

P. Perona and J. Malik (2)) that the technique of image processing leads to solving nonlinear 

parabolic partial differential equations. What is important (it was emphasized in (2)), that 

a properly selected nonlinearity, i.e., the image intensity flux, can lead to an enhancement of 

image edges even if the flux is as usually directed opposite to the image intensity gradient. A 

different approach to the edge enhancement problem was proposed by L. Alvarez, P.-L. Lions 

and J.-M. Morel (3) They selected the image flux direction orthogonal to the image intensity 

gradient. The basic partial differential equation for the image intensity obtained in (3) is 

also a nonlinear parabolic one, but it does not belong to the class outlined in (2). 

In the present note the appearance of the edge enhancement in the technique proposed by 

J. A. Sethian, R. Malladi and their colleagues is investigated. In papers (4),(5) these authors 

arrived at the following equations for image intensity ¢ using the differential-geometric 

approach and various assumptions concerning the image intensity flux: 

(1 + (8y¢)2)8;x¢ - 28x¢8y¢8;y¢ + (1 + (8x¢)2)8;y¢ 
8t¢ = 1 + (8x¢)2 + (8y¢)2 ,. 

1 "On the hypotheses which lie at the foundation of the geometry." 
2 "On the facts which lie at the foundation of the geometry." 
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(mean curvature flow (4)), and 

(1 + (Oy<p)2)O;X¢> - 2ox<poy<po;y<P + (1 + (OX<p)2)O;y<p 
Ot<P =. [1 + (ox<p)2 + (Oy<p )2]2 . [2] 

(Beltrami flow (5)). Here x and yare the Cartesian coordinates in the image plane, t is 

time. Thus, according to (4),(5) image processing is reduced to the solution of the chosen 

equation under an initial condition <p( x, y, to) = <Po (x, y) corresponding to a grey level of the 

image being processed. We note that later the equation [2] was also published by Yezzi (6) 

who used a different model for the image processing. 

Due to a certain degeneracy of the asymptotic forms of [1] and [2] it is appropriate to 

consider a more general class of equations 

[3] 

where a :2: 0, and /3,"( are positive constants. Both equations (1) and (2) belong to this 

class. 

2. Boundary Layer Effect in Image Processing and the Asymptotic 
Form of the Basic Equation 

An analysis of images presented in papers (4),(5) showed that near the edges of the 

images always exists a boundary layer (see Figure 1), where the normal component of the 

image intensity gradient is large. We use the local Cartesian coordinates in the boundary 

layer: x, along the normal to its midline, and y, along the midline. It can be assumed that 

( ox<p) 2 rv 1/ h 2 in the boundary layer is, generally speaking, much larger than /32. It can be 

assumed also that in the boundary layer (Oy<p)2 < < 1/ H2 is much less than /32 • Therefore 

we can neglect. (Oy<p)2 in comparison with /32 . Equation [3] in the boundary layer is reduced 

to the one-dimensional form 

[4] 
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Here"" = "({32. Equation [4] belongs to a general class of equations considered in the paper 

by M. Bertsch and R. Dal Passo (7). If (ox<p)2 is much larger than {32, we can neglect {32 in 

the denominator of [4], and an asymptotic form of equation [3] is obtained 

[5] 

governing the evolution of the image intensity in the boundary layer. 

We note a certain connection between the equation [5] and Bertsch-Dal Passo-Ughi equa

tion (see (8)) 

(c is a constant). Indeed, assuming <p = 7jI(1+2o)/2(I+a) , we reduce [5] it to a similar form 

This form is also more convenient for numerical computations. 

3. Intermediate-Asymptotic Solution 

For a useful comparison we present at first briefly a derivation based on the dimensional 

analysis of the classic intermediate-asymptotic solution to the linear equation Ot<P = ""o;x<P 

(formally corresponding to [5] for a = -1) for a "smoothed step" initial-boundary value 

problem 

t' -00 < x:S -a 
<p(x, -to) <Po(x) , -a:S x :S b [6] 

<P2 , b:Sx<oo 
<p( -00, t) - <PI , <p(oo,t) = <P2 

Here <PI > <P2 ~ 0, and a, b > 0 are constant parameters of the problem, and the function 

<Po(x) is assumed to be smooth at -a:S x:S b, so that <po(-a) = <Po, <Po(b) = <P2: Also it is 

assumed that <p~(-a), <p~(b) are :S o. Without loss of generality <P2 can be assumed to be 

equal to zero. 
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A priori an intermediate-asymptotic solution to the problem [6] can depend only on the 

quantities ;;" t+to, cf>1 and X-Xo only. The constant Xo which enters due to the invariance of 

the equation to shift x' = x+const; it remains however undetermined in a direct construction 

of the self-similar intermediate asymptotics. The dimensions of the involved quantities are: 

[cf>] = [cf>I] = CP, [x - xo] = L, [t + to] = T, and for the linear case under consideration, [;;,] = 
L 2T- 1

• (Maxwell's notation [z] is used for the dimension of z.) . Here cP is the independent 

dimension of cf>, Land T are dimensions of length and time. Dimensional analysis shows 

that the intermediate-asymptotic solution can be represented in the fbrm cf> = cf>d(~) where 

for the linear case under consideration, a dimensionless independent variable is inversely 

proportional tovt + to : ~ = (x - xo)/ V;;,(t + to). Substituting cf> = cf>d(~) to the linear 

equation (equation [5] for a = -1) we obtain a linear ordinary differential equation for the 

function f. Easy integration under boundary conditions f( -00) = 1, f( 00) = 0 allows 

us to obtain the function f in an explicit form, and the intermediate-asymptotic solution 

appears in the classic form 

A. A. 1 Joo _z2 
'+' = '+'1 - e dz 

y7r (x-xo)/2V KO(Hto) 
[7] 

. Solution [7] demonstrates that for a linear case (a = -1) the smoothed stepwise initial 

distribution extends with time: its properly defined width increases with time proportionally 

to Vt + to, and the maximum of the derivative modulus 18x cf>1 decreases with time as l/(t+ 

to)~ . 

We repeat now the above argument for the case of nonlinear asymptotic equation [5] 

corresponding to a = 1 (the Beltrami flow, Malladi and his colleagues (5)). The essential 

difference is that in this case the dimension of coefficient ;;, is different: 

;;, = cp4 L -2 T- 1 . [8] 

This difference leads to a dramatic change in the solution. As before, the solution is repre

sented in the form cf> = cf>d(~), however in this case (a = 1), . 

[9] 
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so that the dimensionless argument of the function f is directly proportional, not inversely 

proportional, to Vt + to. Equation [5] assumes for the case a = 1 the form 

Substituting to [10] ¢ = ¢d(O, we obtain for f(O the ordinary differential equation: 

where ~ is determined by [9]. Easy integration gives 

df 

d~ 

1 
1 1 

~J [1 - ~;p 

[10] 

[11] 

[12] 

Here ~f is an integration constant. Further integration and the boundary conditions f( -~f) = 

1, f(~f) = a give 
11£'/£'/ d( 

f = 1 - ~} -1 (1 _ (2) t ' [13] 

The integration constant ~f is obtained from the condition f (~f) = 0, so that 

[1.4] 

. Thus the intermediate-asymptotic solution assumes the form (see Figure 2): 

[15] 

for x f- = Xo - ~f ~ ~ x ~ x+f = Xo + ~f ~. It is seen that, contrary to the 
K(Hto) K(Hto) 

. linear case presented above, this solution is a local solution. At free boundaries x = xf and 

x = xi, the image intensity is continuous but the derivative ox¢ suffers an infinite jump. 

The condition ox¢ = -00 can be interpreted as the zero flux condition. 

Relation [15] reveals important asymptotic properties of the image evolu~ion in the bound

ary layer at the image edge. First of all, the width of the transition region xi - xf equal to 
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2ef ¢HK(t + to)]-! decreases with time; the step forms from an initially noisy image (rela

tion [6j) and the edge enhancement takes place. Furthermore, the value of ¢(xo, t) remains 

constant and equal to ¢Ii2. (We emphasize that the position Xo cannot be obtained in 

the presented construction and requires a matching with pre-self-similar solution, e.g. by a 
1 

numerical computation.) Finally, the value of 18x ¢1 at x = Xo equal to VK(t + to)/¢l e] 
which is the minimum of 18x ¢1 is growing with time, therefore the validity of the asymptotic 

equation [5] improves with time. 

The solution [15] suggests the following free-boundary problem for determination o(the 

image intensity evolution in the boundary layer. At the initial moment the points xf(tO) = 

-a and xj(to) = b - the boundaries of the uncertainty belt - are prescribed, so that 

¢ ¢1 for x ~ xf(tO) and ¢ - 0 for x 2: xj(to) (relation [6]). At t > to the image intensity 

¢(x, t) and the free boundaries xf(t) , xj(t) should be determined so that equation [4], 

initial condition [6], and the conditions at free boundaries 

¢-¢1, 8x ¢=-00 at x=xf(t); ¢=O, 8x ¢=-00 at x=xj(t) [16] 

should be satisfied. The condition 8x ¢ = -00 at x = xf(t) and x = xj(t) can be interpreted 

as zero flux condition. This one-dimensional free-boundary problem can be implemented to 

two-dimensional problems. 

4. Intermediate-Asymptotic Solution for Arbitrary a > 0 

We return to the general equations [4] and [5]. In this case [K] = <1>2(1+0 ) L -2°T-1, so 

that 

[17] 

and the equation for the function f(O takes the form 

.~ dl = d21 (dl ) -2(1+0) 

2a e de de2 de [18] 

Integrating and using the boundary condition f( -ef) = 1, we obtain 

1 ..t. 

( 
2a ) 2(1+a} --!Ljef d( 

1(0 = 1 - 1 + a eta -1 (1 _ (2)1/2(1+0) [19] 

7 



for -ef :s; e < ef· Using the boundary condition f(ef) = 0, the relation for ef can be 

obtained: 

ef = [2 (~) 2(1~0<) 11 d( 1 l-~ 
1 + a 0 (1 _ (2) 2(1+0<) 

[20] 

The function ef(a) is non-monotonic (see Figure 3), ef(O) is equal to infinity. At first 

ef (a) decreases with growing a, reaches a minimum, and then starts to grow. 

The intermediate-asymptotic solution takes for arbitrary positive a the form: ¢ = ¢1 
.!.:b! 

for x < xi = xo - ef¢1 0< (K(t + to))-1/2o:, 

[21] 

, ' .!.:b! 1 

for xi < x < xi, xi = xo + ef¢1 0< (K(t + to))-20< , and ¢ 0 for x > xi. For the width of 

the transition region the relation [21] suggests the expression 

[22J 

So, qualitatively the situation for any a > 0 is the same as in the case of the Beltrami How 

a = 1: the edge enhancement will take place if any equation of this class will be used. 

Dr. A. E. Chertock performed a series of numerical computations of the solutions to the 

suggested free-boundary problem for the equation [4]. The function ¢o(x) in some runs 

was non-monotonic. Parameter a assumed the values a = 1 and other values including 

small positive ones. Computations demonstrated that the self-similar solution [21J was an 

intermediate asymptotics of the solutions computed numerically (the paper by Dr. Chertock 

is now in preparation). On Figure 4 the evolution of the image intensity distribution in time 

is presented for a non-monotonic initial condition in the case a = 1 (Beltrami How). 

The case of the mean curvature How (equation [1]) corresponding to a = 0 requires 

additional analysis. 

5. 'Conel usion 
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A free-boundary problem is formulated for the image intensity evolution in the boundary 

layer around the edge of the image. Analysis of intermediate-asymptotic solutions for the 

image evolution in the boundary layer of an image demonstrated that the edge enhancement 

takes place for the class of flows under consideration. The rate of enhancement depends on 

the parameter, i.e. upon the hypotheses concerning the image intensity flow. 
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Figure Captions 

Figure 1. The boundary layer at the image edge. 

Figure 2. The self-similar solutions for different values of the parameter a. 

Figure 3. The dependence of the dimensionless width of the transition region ~f on a. 

Figure 4. The evolution of the image intensity distribution for a = 1 (Beltrami flow). 
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