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A Particle Method for the KdV Equation 

Alina Chertock* Doran Levyt 

Abstract 

We extend the dispersion-velocity particle method that we re
cently introduced to advection models in which the velocity does 
not depend linearly on the solution or its derivatives. An example is 
the Korteweg de Vries (KdV) equation for which we derive a particle 
method and demonstrate numerically how it captures soliton-soliton 
interactions. 

Key words. Particle methods, dispersion-velocity method, KdV equation. 

AMS(MOS) subject classification. Primary 65M99; secondary 35Q53, 
35Q51. 

1 Introduction 

Particle methods have been used in recent years for approximating solutions 
for a variety of partial differential equations (PDEs). In these methods, the 
initial data are represented as a collection of particles, located at points Xi 

and carrying masses Wi. At later times, the locations of the particles and! or 
their weights are allowed to change. The solution is then found by following 
the time evolution of the locations and of the weights of the particles. Due 
to the Lagrangian nature of the method, small scales that might develop 
in the solution can be easily captured with a small number of particles. 

-In a recent work [2] we have introduced the dispersion-velocity parti
cle method for approximating solutions of linear and nonlinear dispersive 
equations. This was the first time that particle methods were used for ap
proximating this type of equations. Our method was based on the difJusion
velocity particle method [6] for approximating solutions of parabolic equa
tions. In the difJusion-velocity method, one defines a convective field asso
ciated with the heat operator which then allows the particles to convect in a 
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standard way. For example, the one-dimensional heat equation, Ut = U xx , 
is rewritten as Ut + (a(u)u)x = 0, where the velocity a(u) is given by 
-ux/u. Particles carrying fixed masses will then be convected with speed 
a( u). Issues of existence and uniqueness of solutions to the diffusion veloc
ity transport equations were investigated in [11, 12}, Convergence results 
for a porous-media equation were recently obtained in [13]. 

We note in passing that there exist other methods for treating diffusion 
terms with particles, such as the random vortex method introduced by 
Chorin in [3] .. The theory of particle methods as well as their applications 
to various fields are reviewed in [4, 5, S, 15, 16]. 

In [2] we have developed a particle method for linear and non-linear 
dispersive equations. In the nonlinear setup we were interested in ap
proximating solutions to equations which generate compactly supported 
solutions with non-smooth fronts. The prototype of such equations is the 
K(m, n) equation Ut + (um)x + (un)xxx = 0, m > 0, 1 < n ::; 3, in
troduced by Rosenau and Hyman in [17]. The fundamental solutions of 
the K(m, n) equation are compactly supported solitons, the so-called com
pactons. The nonlinear compacton equation we considered in [2] was of the 
form Ut + (u 2 )x + (u( u )xx)x = O. Since it is already written in an advective 
form, the velocity a = u + U xx depends linearly on u and its derivatives. 

In the present work the goal is to show that our method can be applied 
to nonlinear dispersive equations that when written in a convective form, 
do not have a linear dependence on the solution and its derivatives. In this 
context, our model problem is the KdV equation introduced by Korteweg 
and de Vries in [10], 

Ut + 3( u2 )x + U xxx = O. 

This equation which was developed for modeling shallow water waves, has 
been found relevant in other physical models such as, e.g., ion acoustic 
waves in a plasma [9] and acoustic waves in an anharmonic crystal [IS]. 
For a comprehensive overview of the analysis and applications of the KdV 
equation we refer the reader to [7, 9] and the references therein. 

The structure of the paper is as follows: we start in §2 by introducing the 
dispersion-velocity method for the KdV equation. A short time existence 
and uniqueness Theorem for a solution of the resulting dispersion-velocity 
transport equation is stated in Theorem 2.1. We then demonstrate in §3 
the implementation of our method in several test cases: a single translating 
soliton, a two-soliton problem, and a soliton-soliton interaction. 

Acknowledgment. We would like to thank Prof. A. Chorin for his valuable 
comments. The work of A.C. was supported in part by the Applied Math
ematical Sciences Subprogram of the Office of Energy Research the U.S. 
Department of Energy, under Contract No. DE-AC03-76-SF0009S, and in 
part by the National Science Foundation under Grant DMS9S-14631. 
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2 The Dispersion-Velocity Method 

In this section we present the dispersion-velocity method for approximating 
solutions of the KdV equation. The dispersion-velocity method is based on 
the diffusion-velocity method introduced by Degond and Mustieles in [6]. 
Our model problem is the KdV equation 

(2.1) 

which we augment with the initial data u(x, t = 0) = uo(x). Boundary 
conditions will be specified below. We rewrite (2.1) as a convection equation 

Ut + (a(x, t)u)x = 0, 

where the coefficient a(x, t) in (2.2) is 

uxx(x, t) 
a(x,t)=3u(x,t)+ ( ). 

U x, t 

(2.2) 

(2.3) 

A "standard" particle method for approximating solutions for (2.3) 
when a(x, t) is known is based on introducing a distribution of the form 

N 

UN(X, t) = L w iO'(x - Xi(t)), 
;=1 

where the initial data is approximated by 

N 

UN(X, 0) = L wi O'(x - Xi(O)) ::: uo(x). 
;=1 

Here Xi(t) is the characteristic curve associated with a(x, t), which starts 
at the point x?, i.e. 

(2.4) 

According to (2.3), a(x, t) depends on u and on its second derivative, 
U xx , and, therefore, it can not be considered as a given function. Moreover, 
since the product of 5 functions is not well defined, the standard particle 
method has to be modified. Consequently, we introduce a smoothed ap
proximation, uN(x,t), 

N 

uN(x, t) = (UN * (,)(x, t) = L Wi(,(X - x;(t)). (2.5) 
i=l 

3 



The function (",(x) (which is also called the "cutoff function") is taken as 
a smooth approximation of the 8 function and satisfies 

and J (x)dx = 1. (2.6) 

Given an appropriate smoothing function (,(x), we can approximate 
a(x, t) in (2.3) by 

U * (" 
a«x, t) = 3 (u * (,) + -(' , 

U * , 
resulting with the dispersion-velocity transport equation 

(2.7) 

(2.8) 

The dispersion-velocity method is then obtained by considering a parti
cle approximation as a distribution of the form (2.5), where Xi(t) are the 
solutions of . 

dXi _ 3 '( . ) (uN(xi, t))" 
d - UN x" t + ( ) t UN Xi,t 

(2.9) 

Local existence and uniqueness of a solution for the system of ODEs, 
(2.9), can be obtained from standard ODE theorems if the initial data is 
smooth. For non smooth initial data a theorem similar to Theorem. 2,1 in 
[2] reads: 

Theorem 2.1 (Local Existence and Uniqueness) Assume (" E C 4 (ffi), 
Uo E W1,OO(llR), and that there exist constants cr, [3 > 0 such that cr :::; 
Uo :::; [3. Then there exists To such that (2.8) has a unique solution in 
Wl,oo(llR x (0, To». 

The proof of Theorem 2.1 is similar to the proof of Theorem 2.1 in [2]. 
We would like to remark that the regularity of the solution is the same 
regularity of the initial data. Also, a similar Theorem can be formulated for 
periodic boundary conditions. Finally, we would like to stress that Theorem 
2.1 does not imply the stability or the convergence ofthe numerical scheme, 
(2.9), as the existence time vanishes with L 
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Remarks. 

1. In order to approximate the initial data, we would like to choose 
constants {w;} such that UN{X, 0) = Li WiO{X - Xi(O» approximates 
uo{x). This is done in the sense of measures on lPL Given a test 
function <P E cg(l~.), the inner product 

(UoO, <PO) = h uo{x)<p(x)dx 

should then be approximated by 

(UNO, <PO) == L Wi<P(Xi). 
i 

The constants {Wi} can then be determined by solving the standard 
numerical quadrature problem 

J uo{x)<p{x)dx ~ ~ Wi<p(Xi)' 
, 

One way of solving the last equation can be, e.g., to cover lR with a 
uniform mesh of spacing h > 0 and set 

Wi = huo{x;). 

2. Clearly, the accuracy of the dispersion-velocity method will depend 
on the choice of the cutoff function «(x) and on its width c. For a 
discussion on the role of the cutoff function we refer the reader to our 
previous work [2] and the references therein. 

3. Since we are dealing with dispersive equations, we do not expect 
any bounds on the distance between particles (both lower and upper 
bounds). The natural way to overcome this difficulty is to redistribute 
the particles in fixed times, which sould be selected in such a way as 
to prevent the particles from spreading too far from each other. It is 
well known in particle applications that redistribution of the particles 
might be crucial for a successful implementation of the method, e.g. 
see [1, 14]. Without redistribution one might fail to capture the long 
time behavior of the solution. 
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3 Numerical Simulations 

In this. section we present several examples in which we test our particle 
method for equation (2.1). The kernel we used in all the examples is in the 
form 

1 (3 2) _x
2 

~(x) = - - - x e . -.fi2 
(3.1) 

The time integration was done using a standard fourth-order Runge-Kutta 
method with a fixed time step that was chosen small enough to ensure 
the local stability of the Runge-Kutta method. For simplicity periodic 
boundary conditions were used in all simulations. 

We start by considering the KdV equation (2.1) subject to the initial 
data 

u(X,O) = 0.5sech2(0.5x), (3.2) 

in the interval [-12,12]. In this case, the solution is a fundamental soliton, 
which is a traveling wave of the form 

u(x, t) = 0.5sech2 (0.5(x - t». (3.3) 

The exact and numerical solutions at times t 1,2,3 are presented in 
Figure 3.1. The number of particles was taken as N = 128 and they were 
equally spaced at time t = 0, with spacing h = 24/ N. The width of the 
kernel was set as ( = -/h. 

In the second example we present a two-soliton prQblem. Here we solve 
(2.1), subject to the initial data 

u(x,O) = 6 sech2 x. (3.4) 

For such initial data, the solution can be expressed as (see [7]) 

( ) 
2 3 + 4 cosh(2x - 8t) + cosh( 4x - 64t) 

u x,t = 1 (3cosh(x-28t)+cosh(3x-36t»)2. (3.5) 

In Figure 3.2 we plot the exact and the numerical solutions at = 0.1, 0.4. 
The number of particles was taken N = 500. The width of the kernel 
was taken as I; = -/h, where h is the initial spacing between particles. As 
expected, two solitons split from the initial data. 

Finally, we compute the double soliton collision. Here the initial condi
tion is taken as a sum of two solitons: 

u(x, 0) = 2sech2(x) + 0.5sech2(0.5(x - 411"» (3.6) 

in the interval [-311",1011"]. The results are presented in Figure 3.3. Once 
again, the width of the kernel was taken as I; = Ih, where h = 1311"/ Nand 
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Figure 3.1: The solution of (2.1) with initial data (3.2) on [-12,12]. N = 128, 
f = Vh. The points represent the location of the particles. The solid lines 
represent exact solution (3.3). 
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Figure 3.2: The solution of(2.1) with initial data (3.4) on [-15,12]. N = 500, 
f = Vh. The points represent the location of the particles. The solid lines 
represent exact solution (3.5). 
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N = 400. As one can see, the higher soliton(t.o the left) that travels with 
a higher velocity (A == 2), passes t.hrough the lower soliton which travels 
slower (A = 1) after going through a nonlinear interaction. Evidently, the 
particles are capable of capturing the non-linear interaction. The solitons 
emerge from the interaction in the canonical soliton shape. It is important 
to mention, however, that redistribution of particles was essential in this 
case; without such a process the soliton-soliton interaction can not be cap
tured. Redistribution was applied in fixed time intervals of !),.t = 0.4 using 
third-order splines. 
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