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Abstract 

We present a fast, general computational technique for computing the phase-space solution of static Hamilton
Jacobi equations. Starting with the Liouville formulation of the characteristic equations, we derive "Escape 
Equations" which are static, time-independent. Eulerian PDEs. They represent all arrivals to the given boundary 
from all possible starting configurations. The solution may be parameterized as a family of hypersurfaces; which 
we numerically produce through a 'one-pass' formulation, building on ideas from semi-Lagragian methods and 
Fast Marching Methods. The· resulting technique is of computational order O(Nlog N), where N is the total 
number of points in the computational domain. Unlike a ray-tracing approach, which starts with a given source 
(or sources) on the boundary, and recomputes the entire solution each time these sources are changed, in this 
formulation the same result is achieved in postprocessing once the essential solution has been obtained. As an 
application, we apply the technique to the problem of computing first, multiple, and most energetic arrivals to 
the Eikonal equation. 

1 Introd uction 

We present a fast, general computational technique for computing phase space solutions of static Hamilton-Jacobi 
equations. We derive a set of "Escape equations" which are static, time-independent Eulerian partial differential 
equations which represent all arrivals to the given boundary from all possible starting configurations. The solution 
of the Escape Equations may be parameterized as a family of hypersurfaces. We follow the strategy proposed in 
[14] and solve these Escape Equations by systematically constructing these hypersurfaces in increasing order, using 
a 'one-pass' formulation. This means that the solution at each point in the computational mesh is computed only 
k times, where k does not depend on the number of points in the mesh. The algorithm combines ideas of semi
Lagrangian methods and Fast Marching Methods [27]. Unlike a ray-tracing approach, which starts with a given 
source (or sources) on the boundary, and recomputes the entire solution each time these sources are changed, in 
this formulation the same result is achieved in postprocessing once the essential solution has been obtained. We 
demonstrate the applicability of this technique by computing multiple arriv'als to the Eikonal equation in a variety 
of settings. 

'This work was supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research, u.s. Department 
of Energy, under Contract Number DE-AC03-76SF00098, and the Office of Naval Research under under grant FDN00014-96-1-0381. 
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2 Formulation of Problem 

Consider the static Hamilton-Jacobi equation 
H(x, V'u) = O. A nonlinear Hamiltonian H may not have a unique solution, even with smooth boundary data and 
smooth H. A particular, viscosity-type solution can be selected [8, 9], corresponding to the earliest arrival from the 
given boundary. Fast algorithms for computing these viscosity-satisfying first arrival solutions have been developed 
in recent years, in particular, the Fast Marching Method, developed by Sethian [27] for computing the solution to 
the Eikonal equation [27] and "Ordered Upwind Methods (OUM)", introduced by Sethian and Vladimirksy [30, 31] 
for computing the solution of convex static Hamilton-Jacobi equations which arise in anisotropic front propagation 
and optimal control. These first arrivals are of considerable importance in a large collection of problems such as 
computing seismic travel times [28]; see [29, 34] for reviews. 

However, later arrivals may carry additional valuable information, and it is often desirable to compute all possible 
solutions. For example, in geophysical simulations, first arrivals may not correspond to the most energetic arrivals, 
and this can cause problems in seismic imaging [1, 16]. 

There are two approaches to computing these multiple arrivals . 

• The Lagrangian (ray tracing) approach [5, 25] and its variations [26, 36]. Here, the phase space characteristic 
equations are integrated, often from a source point, resulting in a Lagrangian structure which fans out over the 
domain. This is a valuable and common approach, however it can face difficulties either in low ray density zones 
where there are ·very few rays or near caustics where rays cross; in addition, the use of irregular computational 
grid is often inconvenient . 

• Rather than work in phase space, the second approach is to work with the static Hamilton-Jacobi equation 
itself, and attempt to extract multiple arrivals. In recent yeacs, this has led to many fascinating and clever 
Eulerian PDE-based approaches to computing multiple arrivals, including slowness matching algorithms [33], 
dynamic surface extension algorithms [32] and its modification [24], segment projection methods [12], and 
"big-ray tracing" [2]; see also [3]. 

The approach presented in this paper computes the solution in phase space, but does so in a reduced Eulerian 
partial differential equations framework. Thus, we compute all the arrivals froIn all points. In applications 
such as tomography and seismic migration, one needs to solve multiple boundary problems with H(x, V'u) = 0 
and the point-source boundary condition u(x) = 0 for x = s with multiple sources s distributed on the surface of 
the observational domain. In this case, the solutions span (2n - I)-dimensional space, composed of x and s. The 
computational advantage of our approach is that by transforming the problem to a reduced Eulerian setting, we 
develop a linear, time-independent equation boundary value problem in (2n - 1) phase space, whose solution may 
be constructed using a very fast ordering scheme. One can use the output of such computation either for extracting 
multiple arrivals for a particular set of sources or directly, as in the method of angle-gather migration [35]. 

The regularity of the phase space has been utilized previously in theoretical studies on the asymptotic wave 
propagation [23, 11]. In this paper, we utilize it for developing an efficient computational technique. 

3 Formulation of Equations 

3.1 Lagrangian Formulation of Phase-Space Solution 

We begin with the static Hamilton-Jacobi equation: 

H(x, V'u) = O. (1) 

and write the well-known characteristic equations in phase space (x,p), where p corresponds to V'u (see, for example, 
[13]). Let u is a parameter varying along the trajectory. Differentiating Eqn. 1 with respect to u, we obtain 

dx dp 
V' x H . du + V' pH . du = 0, (2) 
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where the Hamiltonian H is assumed to be twice continuously differentiable. This equation is satisfied when the 
characteristics obey 

(3) 

Differentiating the function u(x(O')), we obtain an additional equation for transporting the function u along the 
characteristics: 

du dx 
dO' = V'u· dO' = p. V'pH (4) 

The system given by Eqns. 3,4 can be initialized at 0' = 0: x(O) = Xo, p(O) = Po, u(O) = O. 
In the Lagrangian approach, one computes the solution of the point-source Hamilton problem by starting at a 

source point Xo, scanning through different initial values of Po and filling the x space with trajectories that follow 
Eqns. 3. The strength of this approach is in the fact that the solution is uniquely defined in the phase space by 
following individual trajectories. However, when the trajectories collide, the solution in the physical space becomes 
multi-valued and interpolating it onto a regular x grid presents a difficult computational problem [21]. 

3.2 Liouville Formulation of Phase-Space Solution 

We now convert this into a set of Liouville equations; these have been used extensively by Chorin, Hald, and 
Kuperfman [6, 7]. Eqns. 3,4 form a system of coupled ordinary differential equations, starting with a particular 
set of initial conditions. The Liouville equation is a partial differential equation for the same solution with the 
differentiation performed with respect to the initial conditions; it describes the local change in the solution in 
response to changes in the initial conditions. 

To simplify notation, let denote the phase-space vector (x, p), by y, the right-hand side of system given in Eqn. 3 
by vector function R(y), and the right-hand side of Eqn. 4 by the function r(y). In this notation, the Hamilton-Jacobi 
system takes the form 

ou(Yo,O') _ () 
00' - r y , (5) 

and is initialized at 0' = 0 as y = Yo and u = 0.1 
In the Appendix, we show that the solution of system (5) as a function of both the trajectory parameter 0' and 

the initial condition Yo satisfies the Liouville partial differential equations 

oY(YO,O') _ V' R( ) 
00' - oY Yo, (6) 

and the transported function u satisfies the analogous equation 

ou(YO,O') 
00' = V' au R(yo) + r(yo) , (7) 

where V' 0 denotes the gradient with respect to Yo. These are the Liouville equations. 

3.3 Formulation of the Stationary "Escape" Equations 

Assume that there exists a closed boundary (1) in the y space that is crossed by every characteristic trajectory that 
originates in Yo E 1). This defines for every Yo the function 0' = iT(yo) of the first crossing of the corresponding 
characteristic with (1). 

Let us now introduce a differentiable function f(y) that identifies the boundary, that is, f(y) = O. In particular, 
we then have that f (Y(Yo, iT(yo)) = O. We can differentiate with respect to the initial condition Yo to obtain 

f'(y) [V'OY+ ~~ V'oiT] = O. (8) 
--~-------------------------------

IThe full y space has 2n variables. However, by using the Hamilton equation H(y) = 0 as an additional constraint, we can often 
reduce the Hamilton-Jacobi system (5) to 2n - 1 equations of the same form. Therefore, we can assume that y has 2n - 1 independent 
components. 
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Multiplyirig equation (8) by R(yo) and using the Liouville equation (6), we obtain 

f'(y) ;~ [1 + \1ou· R(yo)] = O. (9) 

Eqn. 9 will be satisfied if the function u(yo) satisfies the differential equation 

1 + \1 Ou . R(yo) = 0 . (10) 

We can also define the escape location Y(yo) = y (Yo, u(yo)). Differentiating with respect to Yo yields 

~ n ay n ~ 
\1 oY = v oY + au v Ou . (11) 

Multiplying both sides of equation (11) by R(yo) and applying equations (6) and (10) leads to the homogeneous 
differential equation 

(12) 

Using a similar argument and equations (7) and (10) the escape value u(yo) = u (Yo, u(yo)) can be shown to satisfy 
the equation 

(13) 

Eqns. 12-13 have the following boundary conditions: yCYo) = Yo and u(yo) = 0 if Yo lies on aD, and the corresponding 
characteristic flows out of D. 

These are the static "escape" equations (12-13) that we will numerically approximate to solve the multiple arrival 
problem. We note that the functions u(Yo), y(Yo), and u(yo) provide values for u, y, and u respectively obtained at 
the boundary for a trajectory starting at the point in phase 'space Yo. The equations that describe these functions 
are linear and possess unique solutions. 

Escape Equations 

1 + \1ou· R(yo) = 0 

\1 oY R(yo) = 0 

\1ou· R(yo) + r(yo) = 0 

(14) 

To summarize, rather than compute in physical space x, we have transformed the problem to phase-space y = 
(x,p). However, there are two distinct differences between our approach and the typical characteristic ray-tracing 
approach to computing in phase space: 

• First, we have transformed the problem into a linear partial differential equations with the differentiation with 
respect to the initial conditions. In the next section, we present a fast technique for computing the solution to 
these equations . 

• Second, and equally importantly, the solution to these equations can be constructed without regards to any 
particular boundary conditions and/or placement of sources. Unlike a ray-tracing approach, which starts with 
a given source (or sources) on the boundary, and must recompute the entire solution each time these sources are 
changed, in this formulation this may be done in postprocessing once the essential solution has been obtained. 
As an example, once the {u(yo), y(yo) , u(yo)} field has been computed, we are then free to extract first arrivals, 
later arrivals, arrivals at a particular source on the boundary, etc. 

4 



3.4 Example: The Eikonal equation 

As an example, which will serve as our computational test, the Hamiltonian for the Eikonal equation can be written 
in the form 

1 1 2 
H(x,p) = -p. P - -n (x) = 0 , 

2 2 
(15) 

where n(x) corresponds to the wave slowness (refraction index). In accordance with equations 3, the functions R(y) 
and r(y) are specified in this case to be 

R(y) 

r(y) 

( -~:H ) = ( n(~\ln ) 

p.\lpH=p.p=n2(x) . 

Correspondingly, the escape equations transform to 

\l xoYPo + n(xo) 'Y poy\l xon = 0 

\l xou· Po + n(xo) \lpou. \l xon + n 2 (xo) = o. 

3.4.1 Constant slowness 

(16) 

(17) 

(18) 

(19) 

In the case when the refraction index n does not depend on the position, the escape equations take a simpler form 

\l xoYPo = 0; (20) 

For a more specific example, let us consider the case of the region 1) defined by z > 0 and P~ < 0, where z is the 
first component of Xo, and pz is the first component of Po. The escape surface z = 0 corresponds to the Earth surface 
in Geophysics, while the condition pz < 0 selects the up-going waves. Eqn. 20 is then supplied with the boundary 
conditions 

ylz=o = Yo; (21) 

The analytical solution of the problem 20-21 then takes the form z = 0, Xi = xi - Ei. z, P = Po, and U = _ n 2 
z , 

where Xi is the ith component of Xo with i > I, and Pi is the corresponding componen{~f Po. p. 

3.4.2 One-dimensional slowness 

Another specific example of the eikonal equation is the case of a one-dimensional slowness function. If the boundary 
conditions take the form of Eqn.21, while the slowness n(x) only depends on the first component of x, then Eqn. 19 
simplifies to 

au au 
-;:;-pz + n'(z) n(z) -;:;- + n2 (z) = 0 . 
uz Upz 

(22) 

Letting Ph = Jn 2 (z) - P;, Eqn. 22 becomes 

(23) 

. whose analytical solution is 

(24) 

. z 

Using similar transformations, the escape equations (18) resolve to z = 0, Xi= Xi + f V Pi de , pz = -Jn2 (0) - p~, 
o n2(O-p~ 

and Pi = Pi· 
There formulas are well-known in the theory of Lagrangian ray tracing in one-dimensional inedia [5]. We obtained 

them here as the solution of the escape PDEs for the Eulerian formulation of the same problem. 
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3.4.3 Amplitude computation 

A common use of the eikonal equation is for describing the wave propagation in the high-frequency asymptotics [5]. 
Here, the eikonal equation is often supplemented with the amplitude transport equation for computing not only the 
wavefront position but also the corresponding wave amplitude. 

In the high-frequency asymptotics, the leading order amplitude contribution comes from the geometrical spread
ing: a measure of the ray tube focusing effect. We can extract the geometrical spreading information directly from 
the phase-space solution of the escape PDEs. Indeed, according to the known formula [17, 18], the squared amplitude 
is inversely proportional to 

(25) 

where pz and pz are the components of Po and p, normal to the observational boundary, and Pi and Xi correspond 
to the remaining components. 

In the case of multiple arrivals, we can use the simple access to the amplitude information, provided by formula (25) 
to select the most energetic arrival from all the branches of the solution. 

4 Numerical Algorithm 

The numerical algorithm proposed in [14] is to solve Eqns. 18,19 for a numerical computations of traveltimes on a 
fixed x, Z grid. 2 Although both u(yo) and y(yo) are strictly single-valued, we later can extract from them the possibly 
multi-valued traveltimes from every grid point x, z to a point on the boundary. 

4.1 The Geometry of the Solution 

We illustrate the geometry behind the algorithm through an instructive example. Consider a square, and suppose 
we wish to find the time u( x, z, B) at which a ray leaving the initial point (x, z) inside the square, initially moving in 
direction B, hits the boundary. We assume that the slowness field n(x, z) is given. First, note that the level surface 
u(x, z, B) = T, drawn in x, z, B space, gives the set of all initial positions and directions which reach the boundary 
of the square at time T. By the uniqueness of characteristics, the family of hypersurfaces parameterized by T and 
given by 

D(T) = {x, z, B I u(x, z, B) = T} (26) 

sweep out the solution space. In Figure la, we show the level surface u(x, z, B) = .3 for the collapsing square. 
Eqn. 19 is a linear equation for the arrival field u and thus we know the characteristic direction at every point 

of the phase space x, p. We introduce an algorithm designed in the spirit of Fast Marching Methods [27]; we march 
the solution surface outwards from the boundary, using the characteristic direction to update grid values. We note 
that the ordering is considerably easier to achieve than the one for optimal control developed in [30], since there the 
characteristic direction is not known. 

Our algorithm is quite similar to ordering process ·for transport equations which have a considerably history, see 
[22] for an early work and [19] for a recent parallel implementation. We refer the reader to a large collection of early 
work on characteristic methods for ordering update sequences for linear transport problems. 

4.2 Algorithm 

Consider a discretization of phase space; in two space dimensions, this can be written as Uijk, where the indices i,j, k 
run over x, z, and p respectively. Following the terminology of Fast Marching Methods [27] and Ordered Upwind 
Methods [30, 31], the nodes are divided into three classes: Far (no information about the correct value of Uijk is 
known), Accepted (the correct value of Uijk has been computed), and Considered (adjacent to Accepted), for which 
Uijk has already been computed, but may be corrected by a later computation. 

2For ease of explanation in this section, we switch to the notation in which a physical domain is given by x, z, and we let (J be the 
angle between the vertical and the vector p. 
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x 

Phase Space x, z, () Level Surface fJ(T = .3) 

Level Surface fJ(T = 1.0) Level Surface fJ(T = 2.0) 

Figure 1: Geometry of Solution Surface 

We note that standing at any grid point, we can compute the value Uijk using a discrete cell characteristic method, 
which traces back along the characteristic to the initial boundary (see, for example, [4, 20].) If we were to use this 
algorithm to compute Uijk at each grid point, we would have a cell-based Lagrangian ray-trace method. Instead, we 
use this technique to build the hypersurfaces in an outwards fashion. 

Start with all nodes in Far. Put the boundary nodes in Accepted, and put all nodes adjacent to Accepted in 
Considered. Each Considered node is given a value by using a discrete cell characteristic method. If the characteristic 
at that node does not point back to the boundary, we assign it a large value. Then the algorithm is as follows (see 
Figure 2). 

x 

z 

o Far 
o Considered 
• Accepted 

Figure 2: Point A has just been Accepted: Considered point B is updated by tracing characteristic back to point C 
and interpolating from Accepted values. 

Algorithm 

1. Take the Considered node with the smallest value for Uijk and make it accepted. 

2. Find the octant that the characteristic direction going through that grid point points toward 

3. For each neighboring grid point in that octant which is not Accepted, use the discrete cell characteristic update 
to compute a (possibly new) value for Uijk as follows (and, convert any such point which is Far to Considered): 
Trace backwards along the characteristic to intersect a cell face: 

(a) If all four values of that cell face are Accepted, use the interpolated value of Uijk at the intersection point, 
plus the update of Uijk along the drawn characteristic to produce the tentative value at ijk. 
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(b) If no points on that cell face are Accepted, do not update the value 

(c) If more than one value of that cell face is Accepted, continue tracing along the characteristic by returning 
to (a). 

4. Loop to (1) until all points are Accepted. 

For higher accuracy, more than four points are used if available as accepted. Further details about the algorithm 
may be found in [15]. 

5 Results 

5.1 Computation of Escape Solution 

We begin in Figure 3 with a calculation of the full phase-space arrival field in a rectangular region. The slowness field 
corresponds to a Gaussian distribution around the center with peak slower than the surroundings (see Figure 5). On 
the upper left, we show the arrival position x along the top wall (z = 0) of arrivals starting at a fixed slice z = 0.9 
through the phase-space x, z, p cube. The vertical axis is the starting value Po (actually, sin B), and the horizontal 
axis is the starting value Xo; the color scale (shown in the bar on the right) is the arrival position x. On the upper 
right, we show the value of the arrival time U. 

On the lower left, again limited to a fixed z slice, we show the x (horizontal axis) and p positions (vertical axis) of 
all trajectories that exit at the point x = .5, z = O. Finally, in the figure on the lower right, again for a fixed z slice, 
we show the travel times it required to reach the source exit point x = .5, z = 0, plotted against the physical space 
x (horizontal axis). Here, one sees the multiple arrival structure as expected, bending around the central slowness 
field and crossing over itself. 

We emphasize that computing the solutions to the escape equations for different placement of sources as well as 
extracting multiple arrivals are all done as postprocessing of the computed solution . 

.. 
D.I! 0.4 0.8 11.11 

Figure 3: Computation of Escape Solutions 

5.2 Extracting Multiple Arrivals 

As a different and perhaps more geometrically familiar example, in Figure 4 we show the equiarrivals curves, which 
are the set of all points in physical space whose trajectories reach the boundary normal to the source distribution at 
the same time. In this case, the source distribution is the boundary ofthe entire square, thus we produce non-viscosity 
multiply-sheeted solution of a square propagating inward with unit speed. Again, we stress that the calculation need 
rrot be repeated to obtain equiarrivals from a different set of sources. 

These'multiple arrivals are extracted as follows: the front emanating from the boundary passes through the point 
Xo, Zo at time u = Tcrit if Tcrit is a critical point of T(xo, zo,p), where differentiation is taken with respect to p. 
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Thus, we merely locate the critical points of 11 with respect to the variable p to determine the arrival front in the 
domain space. 

Figure 4: Multiple Arrivals from Square 

5.3 Extracting Most Energetic Arrivals 

As the last example, we show how to compute the most energetic arrival of the Eikonal equation from among all the 
potential arrivals using the amplitude computation discussed earlier. First, in Figure 5, the left pair shows all the 
arrivals starting from a source at the center of the top wall, together with the slowness field on the right (darker is 
slower). The right pair shows the first arrival and on the amplitude of the displayed arrival (the lighter the tone, the 
more amplitude). 

-

·:11 t '~, 

All arrivals First arrival 

Figure 5: All vs. First arrivals 

In contrast, in Figure 6 we show the most energetic arrival and the corresponding amplitude field. 

Figure 6: Most Energetic Arrival 

More details about the numerical algorithms and further calculations may be found in [15]. 
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6 Appendix: Liouville PDE 

We wish to der.i ve Eqns. 6, 7 3. First, we will consider the function 

(27) 

and prove that it is identically zero. 
We note that at (J' = 0, y = Yo (the initial condition), \loY = 1, and therefore F(yo,O) = O. Next, differentiating 

F with respect to (J', we obtain . 

, ay ay 
R (y) -. - \lo- R(yo) a(J' a(J' 
R'(y) R(y) - \loR(y) R(yo) 

R'(y) [R(y) - \loY R(yo)] 
R'(y)F(yo, (J') (28) 

As a function that satisfies a linear differential equation (28) and has the zero initial condition, F(yo, (J') must be 
zero for all (J', thus F(yo, (J') = O. According to the definition (27), this is equivalent to (6). 

Equation (7) can be proved in an analogous way. Consider the function 

au . 
G(yO, (J') = a(J' - \lou· R(yo) - r(yo) = r(y) - r(yo) - \lou· R(yo) . 

At (J' = 0, G(yO, 0) is zero due to the zero initial conditions on u. 
Additionally, at any (J', 

I ay au 
r (y) . - - \lo- . R(yo) 

a(J' a(J' 
r'(y) ·R(y) -\lor(y) ·R(yo) 

r'(y). [R(y) - \loyR(yo)] 

r'(y) . F(yo, (J') = 0 , 

Hence, G(yO, (J') is identically equal to zero, which is equivalent to equation (7). 

(29) 

Finally, we point out that solutions of the Liouville equations are transported along the same characteristics as 
solutions of the Hamilton Eqn. 1, only with the trajectory parameter running backward. This reflects the reciprocity 
of the Hamiltonian system: initial conditions are restored by backward ray tracing. 

Acknowledgements: We thank A. Chorin, O. Hald, and M. Popovici for many valuable discussions concerning 
Liouville equations and multiple arrivals. 
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