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Government. While this document is believed to contain correct information, neither the
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assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
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process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
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Abstract

We consider SM predictions for a number of rare charm decays, distinguishing
between short-distance and long-distance contributions. For processes mediated
by the ¢ — uft{~ transitions we show that sensmvn:y to short distance physics
exists in kinematic regions away from the vector meson resonances that dominate
the total rate. In particular, we find that D — 7£t£~ and especially D — pf*¢~
are sensitive to non-universal soft-breaking effects in the Minimal Supersymmetric
Standard Model with R-parity conservation. We separately study the sensitivity
of these modes to R-parity violating effects and derive new bounds on R-parity
violating couplings. We also obtain predictions for other extensions of the Standard
Model, including extensions of the Higgs, gauge and fermion sectors, as well as
models of dynamlcal electroweak symmetry breaking.



1 Introduction

The remarkable success of the Standard Model (SM) in describing all experimental in-
formation currently available suggests that the quest for deviations from it should be
directed either at higher energy scales or at small effects in low energy observables. To
the last group belong the sub-percent level precision measurements of electroweak observ-
ables at LEPI and SLD as well as the Tevatron experiments [1]. Tests of the SM through
quantum corrections have proven to be a powerful tool to reach the high energy scales
possibly related to electroweak symmetry bréaking and the flavor problem. The absence
of flavor changing neutral currents (FCNC) at tree level in the SM implies that processes
involving these currents are a primary test of the quantum structure of the theory. Most
of the attention on FCNC has been focused on processes involving K and B mesons, such
as K° — K° and B} — BY mixings and also on rare decays involving transitions such as
s— dtte—, s —» dvi, b— sy, b — sbte, etc.

The analogous FCNC processes in the charm sector have received considerably less
scrutiny. This is perhaps due to the fact that, on general grounds, the SM expectations
are very small both for D° — D° mixing [2,3] as well as for FCNC decays [4,5]. For
instance, there are no large non-decoupling effects arising from a heavy fermion in the
leading one-loop contributions. This is in sharp contrast with K and B FCNC processes,
which are affected by the presence of the top quark in loops. In the SM, D meson FCNC
transitions involve the rather light down-quark sector which translates into an efficient
GIM cancellation. In many cases, extensions of the SM may upset this suppression and
give contributions sometimes orders of magnitude larger than the SM. In this paper we
wish to investigate this possibility. As a first step, and in order to establish the existence
of a clean window of observation for new physics in a given observable in rare charm
processes, we must compute the SM contribution to such quantities. This is of particular
importance in this case due to presence of potentially large long-distance contributions
which are non-perturbative in essence and therefore ndn-ca,lculab_le by analytical methods.
In general the flavor structure of charm FCNC favors the propagation of light-quark-states
as intermediate states which, if dominant, obscure the more interesting short distance
contributions that are the true test of the SM. This is the situation in D® — D° mixing [2,3]
and in the ¢ — wy transition [4]. In the case of mixing, although the long distance effects
seem to dominate over the SM short distance contributions, it is still possible that there is
a window of one or two orders of magnitude between these and the current experimental
limit [6]. On the other hand, charm radiative decays are completely dominated by non-
perturbative physics and do not constitute a suitable test of the short distance structure
of the SM or its extensions.

In what follows we investigate the potential of rare charm decays to constrain exten-
sions of the SM. With the exception of D® — 77, we shall concentrate on the non-radiative



FCNC transitions such as ¢ — uf*¢~, ¢ — uvv entering in decays like D® — utp~,
D — X 00, D — X,vv, etc. We extensively consider supersymmetry by studying the
Minimal Supersymmetric SM (MSSM) as well as supersymmetric scenarios allowing R-
parity violation. We find that rare charm decays are potentially good tests of the MSSM
and also serve to constrain R-parity violation couplings in kinematic regions away from
resonances. In charged dilepton modes, this mostly means at low dilepton mass. In gen-
eral, we find that this kinematic region, corresponding to large hadronic recoil, is the best
for new physics searches. :

The D — VIt~ decays were studied in Ref. [7] in the SM. More recently the D —
¢~ decays were studied in Ref. [8] in the SM and some of its extensions, including
the MSSM. We compare these predictions with ours. We find some discrepancies in the
SM calculation of the long distance contributions. We also emphasize the importance of
D — V£+¢~ in the MSSM due to its enhanced sensitivity to the electromagnetic dipole-
moment operator entering in ¢ — uy.

In the next section we calculate SM short distance contributions and estimate long.
distance effects for various decay modes. In Section 3 we study possible extensions of the
SM that might produce signals which fall below current experimental limits but above
SM results of Section 2. We summarize and conclude in Section 4.

As a final comment, we note the following convention and notation used througflo'ut the
paper. Many quantities relating to both SM and also NP are chiral, involving projection
operators for left-handed (LH) and right-handed (RH) massless fermions. We shall employ

the notation b1 % )
I'Lr = 5 LRE _7____2__'7i (1)

for scalar projection operators I', g and vector projection operators F’If,R. The chiral
projections of fermion field g are thus expressed as -

gr = I'brq - : (2)

2 The Standard Model Contributions

In this section we study Standard Model contributions to various charm meson rare decays.
At the time of this writing, there are almost no reported events of the type we are
considering. We group the decay modes by their common short distance structure. In
each case we address both the perturbative short distance amplitude and the effects
of the non-perturbative long-range propagation of intermediate hadronic states. Due
to non-perturbative nature of the underlying physics, the long distance effects cannot
be calculated with controlled uncertainties. Therefore we find it prudent to generate
estimates by using several distinct approaches, such as vector meson dominance (VMD)
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for processes with photon emission and/or calculable unitarity contributions. In this way,
we hope to obtain a reasonable measure of the uncertainty involved in the calculation,
and at the same time, obtain bounds on the importance of long-dlstance physics which
are not overly model dependent.

2.1 Meson Lepton-antilepton Transitions D — X/{t¢~

As we shall discuss, this mode is likely to be observed at forthcoming experiments to be
performed in B and Charm factory/accelerator experiments. We start with the calculation
of both short and long distance contributions to the inclusive rate. We then compute the
rates for various exclusive modes.

' 2.1.1 The Short Distance Contribution to D — X, ¢t¢~

The short distance contribution is induced at one loop in the SM. It is convenient to use
an effective description with the W boson integrated out,

V,Heff == _4G’_F ict(iu')Oz(.u) ’ | (3) |

with {O;} being the complete operator basis, {C;} the corresponding Wilson coefficients
and p the renormalization scale. In Eq. (3) the Wilson coefficients contain the dependence
on the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements. As was pointed out in
Ref. [4], the CKM structure of these transitions is drastically different from that of the
analogous B meson processes. The operators O; and O, are explicitly split into their
CKM components :

O = (a8, g8 ) (@ivel) | (4)

where ¢ = d, 5,b, and o, 8 are contracted color indices. The rest of the operator basis is
defined in the standard way. The QCD penguin operators are given by

O(q) (“L’YuQL) (QL’Y”CL)

O3 = (afyuct) qu(«ig’r"qg) , Oy = (afr]) Zq:(tiﬁv"q%) ,
Os = (agyuc) Zq:(riﬁfy“qﬁ) , Os = (afcf) Zq:(ciﬁv"Q%) : (5)
the electromagnetic and chromomagnetic dipole operators .are
O, = T6n ch(uLaﬂucR)F’“’ , Og = l—g%mc(ﬁLaﬂyT“cR)ij” , ' (6) '
and finally the four-fermion operators coupling directly to the charged leptons are
0y =L @ne)@0,  Oo=rog@me)Frnt . ()



The matching conditions at u = My for the Wilson coefficients of the operators O;_¢ are
Ci(Mw)=0, C36(Mw)=0, Ci(Mw)=-X; , (8)

with Ag = V3 V4, The corresponding conditions for the coefficients of the operators O7_10

Cr(My) = —%{/\SFQ(;’Es)-f-)\bFz(xb)} , (9)
Co(Mw) = —5 {MD(z,) + WD)} | | ()
Co(Mw) = ;,\[ (F1 ml)+20(xz)) —282—)] , (11)
Cio(Mw) = '"._z:b/\ic;(;i) . (12)

In Egs. (9)-(12) we define z; = m2/M%,, the functions Fj(z), Fz>(z) and C(z) are those
defined in Ref. [9] and the function D(z) was defined in Ref. [4].

To compute the ¢ — uf*¢~ rate at leading order, operators in addition to O, Oy
and O;¢ must contribute. Even in the absence of the strong interactions, the insertion of
the operators qu) in a loop would give a contribution sometimes referred to as leading
order mixing of C, with Cy. When the strong interactions are considered, further mixing
of the four-quark operators with O;_;9 occurs. The effect of these QCD corrections in ‘
the renormalization gfoup (RG) running from My down to 4 = m, is of particular
importance in C¢f(m,), the coefficient determining the ¢ — u~y amplitude. As was shown
in Ref. [4], the QCD-induced mixing with 0% dominates C&(m,). The fact that the main

contribution to the ¢ — wy amplitude comes from the insertion of four-quark operators
| inducing light-quark loops signals the presence of large long distance effects. This was
confirmed in Ref. [4] where these non-perturbative contributions were estimated and found
to dominate the rate. Therefore, in the present calculation we will take into account effects
of the strong interactions in C¢f(m,). On the other hand (and as we mentioned above)
the operator Oy mixes with four-quark operators even in the absence of QCD corrections.
Finally, the RG running does not affect Oy, i.e. Cio(m.) = Cio(Mw). Thus, in order
to estimate the ¢ — wuvy amplitude it is a good approximation to consider the QCD
effects only where they are dominant, i.e. in C¢f(m,), whereas we expect these to be less
dramatic in C§¥ (m,).

The leading order mixing of Oé‘” with Oy results. in

2 m2 8 22 1 422\

eff i Z; i
=Co(Mw)+ > Ai|-=In +-o——= - 1-
C'g 9( ) o 9 M2 9 3 9 < 3 ) l

u T(zz-)} (1)



where we have defined
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2 arctan { } (for § < 42?)

T(2) =« (14)
1+1{1—% _
1-4/1-42

In —in  (for § > 42?) |

and 8§ = s/m2, z; = m;/m,. The logarithmic dependence on the internal quark mass m;
in the second term of Eq. (13) cancels against a similar term in the Inami-Lim function
Fi(z;) entering in Cy(Myw ), leaving no spurious divergences in the m; — 0 limit.

To compute the differential decay rate in terms of the Wilson coefficients, we use the
two-loop QCD corrected value of C¢¥(m,) as obtained in Ref. [10], compute C&¥(m,)
from Eq. (13), and Cio(m.) = C1o(Mw) from Eq. (12). The differential decay rate in the
approximation of massless leptons is given by

dl ey ote- G}oﬁmg R off 2 2 ,\
Cents oy TR (-7 (|G mo)[ + 1CwP) (1+29)
+12 CS(m,) Re [C5%(m.)] +4 (1 + -S-) O (m,) 2] . (15)

where 7p refers to the lifetime of either D* or D°. We estimate the inclusive branching
ratios for m, = 1.5 GeV, m, = 0.15 GeV, my = 4.8 GeV and my = 0,

Br&d ~2x1078 Brgg‘)_)xgm_ ~8x107% . ' (16)

DtoXtete—

It is interesting to point out that the dominant contributions to the rates in Eq. (16) come
from the leading order mixing of Oy with the four-quark operators qu), the second term in
Eq. (13). On the one hand and as noted above, the dominance of light-quark intermediate
states in the short distance contributions is a signal of the presence of large long distance
effects. On the other hand, when considering the contributions of various new physics
scenarios, it should be kept in mind that these must be compared to the mixing of these
operators. Shifts in the matching conditions for the Wilson coefficients C7, Cy and Ciy,
even when large, are not enough in most extensions of the SM. These considerations will
be helpful when we evaluate what type of new physics might be relevant in these decay
modes. :

2.1.2 The Long Distance Contributions to D — X, /¢~

As a first estimate of the contributions of long distance 'physiCS we will consider the
process D — XV — X¢+¢~, where V = ¢, p,w. We have isolated contributions from this



Table 1: Examples of D — PV® — P{*¢~ Mechanism.

Mode Br(pole) Br(expt)
Dt s rntg s ntete” | 1.8-107% | <5.2-107°
Dt s at¢ s> atuty= | 1.5-1076 | < 1.5- 1075
D} —sntg - atete | 1.1-107° | < 2.7-1074
Df 5 nt¢—»atputy= | 09-107° | <1.4-1074

paﬂ;icular mechanism by integrating dI"/dg? over each peak associated with an exchanged
VO = p% w,¢ and P° = n,n'. The branching ratios thus obtained (we refer to each such
branching ratio. as Br(P°®)) are in the O(107°) range. Modes experiencing the largest
effects are displayed in Table 1, where we compare our theoretically derived branching
ratios with existing experimental bounds [11]. Due to the small n — ¥4~ and ' — £+¢~
branching ratios, the dominant contributions arise from V? exchange.

-This result suggests that the long distance contributions overwhelm the short distance-
physics and possibly any new physics present in it. However, as we will see below this is
not always the case. A more thorough treatment requires looking at all the kinematically
available regions in D — X,¢*¢~, not just the resonance region. In order to do this
the effect of these states can be thought of as a shift in the short distance coefficient
Csf in Eq. (13), since V. — £+¢~ selects a vector coupling for the leptons. This follows -
from Ref. [12], which incorporates the resonant contributions to b — g¢t£~ decays via a
dispersion relation for £+ ¢~ — hadrons. This procedure is manifestly gauge invariant.
The new contribution can be written via the replacement [12]

my, I’ -

Re7 Ceff + = Z _V’S V_*Zf;i o | (17)
where the sum is over the various relevant resonances, my; and I'y, are the resonance mass
and width, and the factor k; ~ O(1) is a free parameter adjusted to fit the non-leptonic -
decays D — XV, when the V; are on shell. - We obtain K¢ =~ 3.6, k, = 0.7 and K, ~ 3.1.
The latter result comes from assuming Brp+_,.+, = 1073, since a direct measurement is
not -available yet.

As a first example we study the DT — n¥ete™ decay. The main long-distance contri-
butions come from the ¢, p and w resonances. The 7 and 7' effects are negligibly small
The dilepton mass distribution for this decay takes the form

2m,

dl'  G%a?

halal eff
ds ~ 19275 7" + G

viouf) A<18)

PO ([
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0.0 0.5 1.0 ’ 1.5
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Figure 1: The dilepton mass distribution for the D* — n*e*e™, normalized to I'p+. The
solid line shows the sum of the short and the long distance SM contributions. The dashed
line corresponds to the short distance contribution only. The dot-dash line includes the
allowed R-parity violating contribution from Supersymmetry (see Section 3.1.2)

where s = m2, is the squared of the dilepton mass. For the form-factor f,(s) we make
use of the prediction of Chiral Perturbation Theory for Heavy Hadrons [13] which at low
recoil gives : ’

v _ f_D 9D*Dx
A AT A R 1)

In Fig. 1 we plot this distribution as a function of the dilepton mass. The two narrow
peaks are the ¢ and the w, which sit on top of the broader p. The total rate results
in Brp+_yptete- =~ 2 % 1075, Although most of this branching ratio comes from the
intermediate 7t ¢ state, we can see from Figure 1 that new physics effects as low as 10~7
can be observed as long as such sensitivity is achieved in the regions away from the w and
¢ resonances, both at low and high dilepton mass squared.

Similarly, we can consider the decay Dt — pTete™. Since there is less data available
at the moment on the D — V'V’ modes, we will take the values of the «; in Eq. (17) from
the fits to the Dt — ntV case studied above. The total integrated branching ratio is
Brpo_ypete- = 2.5 X 107° (i.e. Brp+_ ptete- = 4.7 x 107°%). Again, as in the previous
case, most of this rate comes from the resonance contributions but there is a region -
in this case confined to the low m,, region—v where sensitive measurements could test
the SM short distance structure of these transitions. In addition, the p modes contain
angular information in the form of e.g. the forward-backward asymmetry for leptons.

7
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Figure 2: The dilepton mass distribution for the D® — p%e*e~, normalized to I'po. The
solid line shows the sum of the short and the long distance SM contributions. The dashed
line corresponds to the short distance contribution only. The dot-dash line includes the
allowed R-parity violating contribution from Supersymmetry (see Section 3.1.2)

Since this asymmetry arises as a consequence of the interference between the vector and
the axial-vector couplings of the leptons, it is negligible in the SM since vector couplings
due to vector mesons overwhelm axial-vector couplings. We expand on this point and
consider the possibility of large asymmetries from physics beyond the SM in Section 3.1.2.
For both 7w and p modes the sensitivity to new physics effects is reserved to large O(1)
enhancements since the long distance contributions are still important even when away
from the resonances.

We finally compare our results in Figs. 1 and 2 with those obtained in Refs. [7] and [8].
In-both cases we seem to numerically agree in the short distance SM prediction. However,
we differ in the long distance results, which are the dominant features. For D — 7ft{~
the authors of Ref. [7] make use of the factorization approximation, as well as heavy
hadron chiral perturbation theory for both pseudoscalars and vector mesons. It is far
from clear that the use of both this approximations in D decays is warranted. For the
case of D — pft¢~, the results of Ref. [8] show a large enhancement at low ¢? when
compared with Fig. 2. However, a 1/¢?> enhancement can only appear as a result of
non-factorizable contributions. This is clear from Ref.[14] and [15]: the factorization
amplitude for D — pV, when combined with a gauge invariant (y — V') mixing, leads
to a null contribution to D. — V£¢*¢~. This is due to the fact that the mixing of the




operator O, with O; is non-factorizable [15]. A resonant contribution to Oz, in turn
leading to a 1/¢* behavior, is then proportional to C£¥ (mostly given by the O, mixing).
In addition, when compared with the usual short distance matrix element of Oy, this
resonant contribution will be further suppressed by the factor gy (¢2) A™(¢?) , where gy (¢?)
is the (y— V') mixing form-factor, and A™(q?) parametrizes the non-factorizable amplitude
(pV'|07| D), which is of O(Aqcp/mec) [16]. Thus, even if we take the on-shell values for
these quantities, the resonant contribution to Oy is likely to be below 10% of the SM short
distance contribution. The actual off-shell values at low»q2 far from the resonances are
likely to be even smaller. We then conclude that the 1/¢* enhancement is mostly given by
the short distance contribution. This is only noticeable at extremely small values of the
dilepton mass, so that it is likely to be beyond the experimental senSitivity in the electron
modes (due to Dalitz conversion), whereas in the muon modes it lies beyond the physical
region. On the other hand, the factorizable pieces contribute to the matrix elements of
O, just as in eqn.(17), and give no enhancement at low values of ¢2.

2.2 Neutrino-antineutrino Emission D — Py,

In the Standard Model, decays such as
’ D*(p) = 77 (D) ve(k) De(k) and D°(p) — K°(p') ve(k) p,y(k) (20)

will have branching ratios which are generally (but, as we shall show, not always) too
small to measure. Such decays thus represent attractive modes for new physics searches.

2.2.1 The Short Distance Contribution ¢ — uv,7,

With the exception of the photon penguin, these decay modes are induced by diagrams
similar to those in Fig. 1 with the charged leptons replaced with a neutrino pair. The
corresponding effective hamiltonian takes the form
SOE S X w) + M X () (@ren) () (21)
\/§2W5%V b=e,u, 7 ’ ’ b ' PIRCLILT VL) ,
The functions in Eq. (21) are actually given by X%(z;) = D(z;, m,)/2, with the functions
D given in Ref. [9]. Although we have explicitly kept the dependence on the charged
lepton masses coming from the box diagrams, this is of significance only when considering
the strange quark contributions with an internal tau lepton. In any case, the branching
ratios in the SM are unobservably small. For instance, one has

V,Heff

Br&d) ~192x1071® , Brgg,d_'zxuw ~50x 10716 , (22)

Dt X, v

where the contributions of all neutrinos have been included.

9



Figure 3: Some long distance contributions.

2.2.2 Long Distance Contributions to D — Pu,7,

Lotig-distance contributions to the exclusive transition D — Py, (P is a pseudoscalar
meson) can have just hadrons, just leptons or both hadrons and leptons in the intermediate
state. Examples of the first two cases are depicted respectively in Fig. 3(a) and Fig. 3(b).

As a simple model of the purely hadronic intermediate state, we consider in detail
the nonleptonic weak process D(p) — w(p')V°(q) followed by the conversion V%(q) —
ve(k)ve(k), cf Fig. 3(a). We determine first the V° — v, (V° = ¢, p°, w) vertex, which
has invariant amplitude ' ' : ,

. ' go 2 ‘1 _ = '
Mysosu = (505-) 3z 50T OF S V) (23)

where J is the current coupling quark ¢ to the Z gauge boson. Only the vectof.part of
the current contributes and we find
, 2Gp .. _ . -
Moy, = —ﬁhvu(k)el(,rﬁv(k) . (24)
Using the measured electromagnetic transitions V0 — £+¢= (VO = p0 w, 4) as input, we
find for the coupling hy ' ' ’
(3/2 — 2s2)M3/ fs ~ 0.112 GeV? (V = ¢)
lhvl=1{ (9/8 —2s,)M}/f, — 3M}/8f, = 0.107 GeV*  (V = p) (25)
—(9/8 — 2s2) M2/ f. + 3M?/8f, ~ 0.008 GeV® (V =w) ,

where we adopt the nume_rical values of f4, f,, fu listed in Ref. [14].

The corresponding transition amplitude for the nonleptonic D decay process is then

2 _ (le; irv/z)QF(QQ)hv(@)fa(k)p/ ATpo(k) (26)

whereg=p—p =k + k is the four-momentum carried by the virtual vector meson and
F(q?) appears in the D — V°P amplitude. We find for the ¢?-distribution

dI‘D—)PV(ﬁl — G%Mé 'pll F2(q2)h%/(q2) . ( . 1)2 _ q2M‘2/ (27)
- dg? 19273 M3 (¢2 — MZ)2 + T3 M2 4 -

vo
Mg)*—))PVu_I( = G%‘M%q

10




We have used data from nonleptonic decays (D — P + V?) into pseudoscalar-vector final
states to serve as input for D* — 7wty (p° pole), D° — K%, (p° w, d poles) and
D} — 7ty (w, ¢ poles). Taking the largest contributor in each category, we obtain

Brpt et ~ 51x107° (V=%

Brpo_, zo,s 24x1078  (V=4¢)

Brpt ety = 78x107°  (V=4¢) , (28)

1

where we have summed over the three neutrino flavors. Although this analysis pertains
to just the amplitudes of Fig. 3(a), we believe our results reflect the order of magnitude
to be expected for other hadronic intermediate states as well. All such proceéses lead to
unmeasureably small branching ratios.

There will also be amplitudes with single lepton intermediate states, as in Fig. 3(b).
For electron and muon intermediate states, the amplitude for D(p) — P(p' )z(e(k)ﬂg(E) is
reducible to ' '

lept. ¥ — 7 .
MEPD, ey = —2G3VaaVa(k)p - A Trv(k) + O(m?, ) (29)

These lead to the branching ratios

):3.8x10‘15 ,  (30)

~ —16
Brptsmtupype = 18X 1070, Brog v,

which are again too small for detection.

There remains the case in which 7% propagates as the intermediate state. This differs
from the above cases involving e and g propagation in that for part of the v,-7,. phase
space, the intermediate 7% is on the mass shell. The mode Df — 7t + v, has been
observed" with Brpy_, +,, = (74 4)% whereas D* — 7% + v, has not (the predicted
branching ratio is Brp+_,r+4,. =~ 9.2 107*). Once the on-shell 77 has been produced, its
branching ratio to decay into a given meson can be appreciable, e.g. Br,_,+5 =~ 0.25,'
Br,_,;+5. =~ 0.11, etc. Such transitions, although involving production of a v¥ pair in the
final state, should be measurable at a B factory.

2.3 Two Photon Emission D% — vy

The amplitude for the transition D°(p) — (g1, A\1)7(gz, A3) can be expressed as
Mpoyy = GL(I)GT/(Q) [(‘11ng — @1 @2 9") Bpoyy + i€ q10q0p C’Dow] . (31)
The invariant amplitudes Bpo,, (Cpoyy) are CP-conserving (CP-violating) and carry the
unit of inverse energy. They contribute to the D° — v branching ratio as
M?)TDO
647

Mn this experiment, only the leptonic decay mode 7+ — £y, was detected. [17)

Brpo_yyy = [ 1Bpogyl® +Cpoyl? | (32)
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Figure 4: 1PR contributions to ¢ — uyy.

The amplitude in Eq. (31) is sometimes written in the equivalent form

BDO’Y’Y
2

v - .Cpo, ot '
Mooy = =2 FY By Fops + 1= 5 Fyyu By (33)

where F* = z(q“e —q e“) and F* = ¢#voBfF ;5 /2.

2.3.1 The Short Distance Contribution ci — vy

Consider the quark level transition ¢ — uvyy. This can arise via one-particle irreducible
(1PI) processes in which both photons arise from the interaction vertex or one-particle
reducible (1PR) processes in which at least one of the photons is radiated from the initial
state c-quark or final state u-quark.

To estimate the ¢ — wyy amplitude, we make use of known results on the related
process ¢ — uy. According to Ref. [10], the two-loop ¢ — wy vertex is

4Gra
d. F
MS:I."/) - \/5

where |A| ~ 0.0047. We shall use this as input to the 1PR graphs depicted in Fig. 4.
The dominant contribution to the ¢ — uy+y amplitude involves photon emission from the
u-quark. To ensure that the effect is indeed ’short-range’, we follow the locality procedure
employed in Ref. [18]. This yields for cu — 77y the amplitude

Ach'u,,FRF , v (34)

(sd) o) 4Gra  m, i - ,
| Do'y'yl | Do'yfyl 3\/_ Mp —m, fD lAl ’ (35)
resulting in the branching ratio
d. - ,
Brigt) o~ 4x1079 (36)

for the choice Mp — m, ~ 0.3 GeV.
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Figure 5: Vector dominance (VMD) contribution.

2.3.2 Long Distance Contributions to D° — vy

We shall model long-distance contributions to the D° — vy amplitude using the vector
meson dominance (VMD) mechanism and the unitarity constraint. The latter can only
be done in a limited context since there will be many unitarity contributions. We will
consider several one-particle intermediate states (as used in K — +y decays) as well as
the two-particle K+ K~ intermediate state.

Vector Meson Dominance

One can view (c.f. Fig. 5) the D° — 4~ amplitude as the single VMD process

D'y + Y V¥ = y+9 . (37)
—~

We have previously used the VMD mechanism to model the general single-photon emission
D — M+ (M is some noncharm meson). [4] It is straightforward to extend our analysis
to the D® — vy mode, as long as care is taken in the D — 4y amplitude to ensure gauge
invariance and Bose-Einstein statistics. The amplitudes used in the D%(p) — V°(k)+(q)
transition are defined as ‘

Mbyy = éf (k, \v)est (g, \y) [By (kg — & - 49) + iCv €uask®a”] (38)

The VMD amplitude that we calculate is therefore of the form

vmd 2e d 2e » .

Bioyy =3 7, B Choy =3 7w (39)
: i JV i JV

where fy is the coupling for the V° —+ conversion amplitude and the index i’ refers to the

specific vector meson (p°,w®, ¢°) and 7; is a factor accounting for the VMD extrapolation

made in ¢?. We take 7; ~ 1/2 as a reasonable choice. '

The values in Table 2 are somewhat lower than those which would be obtained from
the Vy amplitudes in Ref. [4]. The main reason for this is the central value for Brpo_,40,
which is a numerically significant input to the VMD calculation, cited in the Particle

13



Table 2: VMD Amplitudes (107® GeV~1).

DoV Bmi | Cp,

D% — p% 10.036 (1 £0.7) | 0.045 (1£0.3)
D% — w% | 0.011 (1£0.5) | 0.012 (1 40.5)
" D° — ¢% | 0.047 (1£0.7) | 0.036 (1 +0.4)

Data Group compilation has decreased by a factor of about three between 1994 and 2000;
Using the central values in Table 2 and assuming positive interference between the various
amplitudes to provide the maximal VMD signal gives the branching ratio

Brigd = (35742) 107 . (40)

DOy —

Single-particle Unitarity Contribution

In this category of amplitudes (cf. Fig. 6) the D° mixes with a spinless meson (either
a pseudoscalar P, or a scalar S;) and finally decays into a photon pair,

1

mix) €)1y ’

B(DO’Y’Y - %_; <PN|,Hu?kc 1D0> M_%' — Mp; Bp,
mx  _ g u@py 1o (41)
DOy - w M% _ MS,% nYY

Let us consider two distinct kinds of contributions, BE(",’,‘W = ng‘jg + ngs,’y),y: }

1. If the spinless meson is a ground-state particle (7%, 7 or 7'),2 we have

Grayfpa | &4 M 28 — &a M?
ped = T k () , 42
B = ar |VaMg - " s X, om0 o @)
where ay ~ —0.55, 8 =~ —20°, f,(8) = cos?0 — 21/2sinfcos § and f,,)(O) = sin? 0 +
21/2sin @ cos §. The above parameterization for the two-photon vertices agrees with
the values determined experimentally,

0.0249 GeV~! (%)
Bp,y =14 0.0275 GeV™! (p) - (43)
0.0334 GeV™! (%) . '

2The kaon intermediate state is disfavored due to the small K — v branching ratio.
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DO

Y

Figure 6: Weak mixing contribution.

ngiﬂ is seen to vanish, as it must, in the limit of SU(3) flavor symmetry (there
(n’l’}{flf’,;c')wo) ='0 and the 7°, 7 contributions cancel). From Eq. (32), we obtain
the branching ratio , ,
BrEy o~ 3x1071 (44)

DO~y

2. If the intermediate meson is a spinless resonance R°, the decay chain becomes D° —
R® — . Since little is yet known about meson excitations, both the weak mixing
amplitudes and the two-photon emission amplitudes must be modeled theoretically.
The DO—_to-resonance weak matrix element will depend upon the flavor structure of

RY e.g.

Eafr/ 3 (R = (@ — dd)/V/3) |
& (R° = 3s) (45)
V2 Vaife (B9 =sd)

<R0|H(pkc)lD0> — _M

where the flavor content of R is given in parentheses and estimates for resonance
decay constants fr are given in Ref. [3]. The R® — vy mode has been observed
for a number of resonances and has typical branching ratios Brgo_,,, = O(107) for
Mg ~ 1 — 1.3.GeV, decreasing to Brgo_,,, = O(107°) for Mg > 1.5 GeV.

For a concrete example of the resonance mechanism, we choose R° = 7(1800) and
assume Br(1s00)yy = 1078, The resulting D° — vy branching ratio is

DO~y

Bri=raso0) | jp-10 (46)

Two-particle Unitarity Contribution

In a factorization approach, the D® — K+ K~ amplitude is

GrM? . M2 M2 o
Mosere- = Sy vor | (1- 35 oy + 0| L o
' D D
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(a) (b)

Figure 7: Unitarity contributions: (a) K*K~, (b) K**K*~.

where fy are form factors and f is a constant containing information about QCD cor-
rections and the kaon decay constant. A fit to the measured D° — K+K~ decay rate

yields
- M? M2 .
D D _
The K*K~ intermediate state contributes via' unitarity to only the amplitude B of
Eq. (31) and is proportional to precisely the same combination of form factors appearing

in Eq. (48),

_ M2 ' ‘ :
Im By <) = zaM—{f 1—4MZ /M2 Mpog+k- (49)
) D
from which we obtain .
KYK- . -
Brio ) ~0.7x1078 : (50)

Summary of D® — vy

Considered together, the above examples lead us to anticipate a branching ratio in the
neighborhood of 1078, Our maximal (i.e. constructive interference) VMD signal has a

central value Brgén_f,)w ~ 3.5-1078. The recent work of Ref. [19] provides an independent

estimate of the D° — -y transition and obtains a similar order-of-magnitude result.

2.4 Lepton-antilepton Emission D% — ¢+¢~
The general form for the amplitude for the transition D%(p) — £+ (ky, s, )¢ (k-,s_) is
Mpoyere- = Uk, 5-) [Apogre- + ¥5 Bpogre-]v(ks, 51 (51)

and the associated decay rate is

M m?2 . m2
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Figure 8: Unitarity contributions: (a) One-particle, (b) Two-particle vy.

2.4.1 Short Distance Contributions ci — ¢T¢~

The short distance one-loop (but QCD unéorrected) transition amplitude is known to give
AL > BSL), [9] with ASL) _ given by

G%M2, fpm
where ol | 2 |
* Z; 1 T z; x;
= z‘?b V¥ [ —ay 1-z 41 —'a:,-)] ’ (54)

with z; = m?/MZ,. The explicit dependence on lepton mass in the decay amplitude

overwhelmingly favors the p*u~ final state over that of ete™ and we compute for the

branching ratio,

G+ My,
3275

Upon adopting the numerical values m, = 0.2 GeV, |[Vi] ~ 0.004, |V ~ 0.04, and

fp = 0.2 GeV, we obtain the branching fraction Brpo_,,+,- = 1.3 x 10719,

Y fom Mpotpo| F*(1 — 4m? /M})'/2. (55)

. BTDO—)p."'u‘ =

2.4.2 Long Distance Contributions to D° — ¢t¢-

In the following, we consider two long distance unitarity contributions which lead to
D% — ¢*¢~ transitions. In each case, the decay amplitude is dependent on the lepton
mass, and thus we shall provide numerical branching ratios only for the case D° — p*pu~.

Single-particle Unitarity Contribution

The single-particle. ‘weak—fnixing’ contribution to D° — £*¢~ can be estimated in a
manner like that considered for the D° — v transition (cf Eq. (41)). For definiteness,
— ¢4~ parity-conserving amplitude Bpoy+o- (see Eq. (51)),

1
M}, — Mp

we consider the D°

B, = 3 (P.JHES DY)
Py

Bp g+~ (56)
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and we write B, = B& 4 BU),,_ for the ground state (7%, 7, 7') and resonance
contributions. '

There is little known regarding vertices governing the P,u*p~ (P, = 7% n,7') ver-
tices. In the following, we assume these quantities have the same flavor structure as the
corresponding P,7yy vertices described earlier,® and obtain the the overall P,ut ™ normal-
ization from the measured 7 — ¢~ mode. From this we predict for the ' (960) — u*p~
mode a branching ratio Bryy,+,- =~ 5.6 x 1077, well below the current bound Broyu+,- <
10~%. The ground state contribution is then

B(gnd) : _GFa2fDBP;L+,u- ﬁ M72|-
Biere i vag-

M2
+ 53 \/_f'd M~ 1 (cos 0 — 2v/2sin f cos 9)

28— & M2
3vV2 M} —

with Bp,+,~ = 3.47 x 1075, This leads to the branching ratio

+ (sm 0+2\/§sm0cos(9)] , (87

Bri&, . ~ 25x107% . (58)

There can also, in principle be intermediate state contributionsb from J¥ = 0% neutral
resonances {R°}. Using the D%to-R° mixing amplitude already obtained in Eq. (45) and
again identifying the resonance R° as 7(1800), we find

'Br(w(woo)) ~ 1.8 X 10_3F1r(1800)£+£—

DO ¢t+¢-

= 1.8 X 107 Bry(1300)—¢+¢- (59)
#(1800)

Upon assuming Brr(1500)—s¢+e- = 10712 as our default branching ratio, we obtain

T —_ B kis - .
Brim18%)  ~ 50x 10 17T—‘;83%;‘l . (60)

Although possibly enhanced relative to the light;meson pole contributions, the result is
still tiny.

The Two-photon Unitarity Contribution

In the K; — e*e™ transition, the two-photon intermediaté state is known to play an
important role. Let us consider the contribution of this intermediate state for D® — ¢+¢—,

1 d*q, dqa
T = = / |
m Mposere 2! AZ; 2w1(2m)3 2w (27)3 _ (61)
X Mposgy MYy pte- (27T)45(4) -1 —q) - (62)

3This ensures that our expression will vanish in the limit of SU(3) flavor symmetry.
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- Upon inserting the general form of the D° — v appearing in Eq.(33), we obtain

- ME : o M?
Im Aggzﬁ_ = amyBpo,, lnﬁ ,  Im B.%?H— = zamgC'DqW ln# - (63)

In view of the explicit dependence on lepton mass, this mechanism strongly favors the
D% — ptu~ transition to that of D° — e*e™, and we find

BriY ~ 2.7 X 10”537“130_,17 . - (64)

DO—pty—

Summary of D® — ¢+¢-

The largest of our estimates, the two-photon unitarity component, for the long distance
contribution to D° — ¢+¢~ favors a branching ratio somewhere in excess of 10713, More
generally, it scales as 2.7 x 1075 times the branching ratio for D° — yy. With the estimate
Brpo_,,, > -107® arrived at in the previous section, we therefore anticipate a branching
ratio for D% — £¥¢~ of at least 3 x 10713,

3 Potential for New Physics Contributions

3.1 Supersymmetry and Rare Charm DecayS'
3.1.1 Minimal Supersymmetric Standard Model

Weak scale Supersymmetry is a possible solution to the hierarchy problem. The Minimal
Supersymmetric Standard Model (MSSM) is the simplest supersymmetric extension of
the SM and involves a doubling of the particle spectrum by putting all SM" fermions
in chiral supermultiplets, as well as the SM gauge bosons in vector supermultiplets. A
large number of new parameters is introduced. The soft supersymmetry breaking sector
generally includes three gaugino masses, as well as trilinear scalar interactions, Higgs
and sfermion masses. In general, sfermion masses are not related to fermion masses. In
particular, if we choose to rotate the squark fields by the same matrices that diagonalize
the quark mass matrices, squark mass matrices are not diagonal [20]. In this “super-
CKM?” basis, squark propagators can be expanded so that non-diagonal mass terms result
in mass insertions that change the squark flavor. Thus the exchange of squarks in loops
leads to FCNCs through diagrams such as the one in Fig. 9. This effect can be avoided
in specific SUSY breaking scenarios such as gauge-mediation or anomaly mediation, but
are present in general. This is the case, for instance if SUSY breaking is mediated by
gravity. The MSSM contributions are: gluino-squark, chargino-squark and charged Higgs-
quarks. This last. contribution carries the same CKM structure as the SM loop diagram
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Figure 9: A typical contrlbutlon to ¢ — u FCONC transitions in the MSSM. The Cross
denotes one mass insertion (6'%)yy, with A, \' = L, R.

and shall be neglected for this analysis. Furthermore, the gluino-squark diagram gives the
dominant contribution, so we drop the chargino diagram for the purposes of this estimate.
Within the context of this Mass Insertion Approximation (MIA) and allowing for only
one insertion, the contributions to the relevant Wilson coefficients from the gluino-squark

diagrams are given by [21,22]

. .16 v2 Pi3(u) | cu M,
C? = 9 ML Ms2 {(512 LLT( + (012) LR Pr2a(u) mil x (65)
for the contribution to the operator O; defined in Eq. (6); and
16 2 |
Cg‘;’ = _ﬁ Mz ——1ats (013) L1 Posa(u) . 7 (66)

with the contribution to Cyy vanishing to this order. If we allow for two mass msertmns
there is a contribution to Cjg given by

1as
"9 a

In Egs. (65), (66) and (67), u = M2 /M_, and the functions P;j(u) are defined as

o (022) Lr(012) LR Poaz(u) - | (67)

(1 — z)’

1

Pyr() = [ da

In addition, the operator basis can be extended by the “wrong chirality” operators O%, Of

and Oy, obtained by switching the quark chiralities in Egs. (6) and (7). The gluino-squark
contributions to the corresponding Wilson coefficients are ’

16 02 uy  Pisa(u

CF = -5 Msz;was {'(51 )RR 132( )+(5 2) LrP122(u) c} (69)
1 16 'U | :

ng = 27 M2 — MO (511‘2)RRP042(U) s ‘ o (70)
Ig 1 Ofs . |

Cl = *5—(522)“2( )Lk Posa () (71)

where the expression for CI’(’, is also obtained with two mass insertions.
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As was noted in Refs. [21,22], in both C{ and C”f’ the term in which squark chirality
labels are mixed introduces the enhancement factor Mz/m,. In the SM the chirality flip
needed in O; has to be brought about by a flip of one external quark line, bringing a
factor of m, included in the operator’s definition*. On the other hand, in the gluino-
squark diagram the insertion of (d},) g forces the chirality flip to take place in the gluino

line, thus introducing the Mj factor which replaces m..

The most stringent bounds that apply to the non-universal soft breaking terms (6%)x
come from the experimental searches for D — D mixing®. The current CLEO bound [6]

1 AmD 2 . AFD 2 .
5{( T )‘cosd—i—(ﬂ‘m) sind p < 0.04% , - (72)

where § is a strong relative phase between the Cabibbo-allowed and the doubly Cabibbo-
suppressed D° — K7 decays. Neglecting this phase, results in the bounds obtained in
Ref. [22], which we collect in Table 3. The bounds of Table 3 were obtained assuming

implies [22]

MZ/MZ | (0%)ce | (8)Lr
0.3 0.03 0.04
1.0 0.06 0.02
4.0 0.14 0.02

Table 3: Bounds on (6%)zz, (6%)Lr from D°— D° mixing [6] (neglectmg the strong phase)
All bounds should be multiplied by (M;/500 GeV).

that (6}%,)rr = 0 and (512) e = (6%)rr. These assumptions have virtually no impact
on the size of the effect. In order to estimate the effects in ¢ — uf*¢~ transitions we
need to specify Mz and M;. We consider four cases: (I): Mz = M; = 250 GeV; (II):
M; = 2 M; = 500 GeV; (III): Mz = Mg = 1000 GeV and (IV): M = (1/2) Mz = 250 GeV.
We first look at Dt — ntete™. In Fig. 10 we plot the dilepton mass distribution vs the
dilepton mass. 'Although the net effect is relatively small in the total rate (?: 20% or
smaller), the enhancement due to the SUSY contributions is most conspiéuous away from
the vector resonances, particularly for low dilepton masses. Sensitivities of the order of
1077 — 10~® will be necessary to see these effects. On the other hand, the decays to a
vector meson, just as D — peTe™ are even more sensitive, as it can be seen from Fig. 11.
Almost the entire effect lies in the low m,, region. This is due mostly to the contributions
of (81,) re to C7 and C7 in Egs. (65) and (69), enhanced by the ratio Mz/m, as discussed

4The m, term is neglected.
SBounds obtained from charge and color breaking (CCB) and bounding the potential from below
(UFB) [23] apply to the trilinear terms but not to the squark mass terms. Thus, unless the squark mass
" matrices are kept didgonal, CCB and UFB arguments cannot be used to constrain the non-universal mass
insertions. -
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above. These terms get lifted at low ¢> = m2, due to the photon propagator (see for
instance Eq. (15) for the inclusive decays). This low ¢? enhancement of the O; contribution
is present in exclusive modes with vector mesons such as D — pft¢~, but not in modes
with pseudoscalars, such as D — wf*¢~, since gauge invariance forces a cancellation of
the 1/¢2 factor (e.g. see Eq. (18)). This is apparent from a comparison of the low dilepton
mass region between Figs. (10) and (11). Thus, the D — p€*¢~ decays are considerably
more sensitive to non-universal soft breaking in the MSSM. The case with the largest
effect (case (IV) dashed line in Fig. (11)) gives Brpo_pe+e- =~ 1.3 X 107°, about a factor
of five times larger than the SM prediction given in Sect. 2.1.2. The current experimental
bound on this mode is [24] Brig, o.+.- < 1.2 x 107%. The somewhat more stringent
bound Bris, o,+,- < 2.2 X 1075 should be compared to Brpo_,0,+,- ~ 1.3 x 1078, also
obtained in case (IV). Thus, data from rare charm decays with sensitivities of 1076 and
better will soon constrain the MSSM parameter space.

3.1.2 R Parity Violation

The assumption of R-parity conservation in the MSSM is not the only way of avoiding
baryon and lepton number violating terms in the super-potential.Other symmetries can
be invoked to prohibit rapid proton decay (e.g. baryon-parity, lepton-parity) that would
allow R parity violation. The R-parity violating super-potential can be written as®

Wh, = €a {%AijkLngEk + X L° Q4 Dy, + %eaﬂvA;;kU'gD;?Dg} : (73)
where L, Q, E, U and D are the chiral super-fields in the MSSM. The SU(3) color indices
are denoted by o, 8,7 = 1,2,3, the SU(2); indices by a,b = 1,2 and the generation
indices are 7,7,k = 1,2,3. The fields in Eq. (73) are in the weak basis. Relevant for
the rare charm decays we consider here is the Aijx term, which can give rise to tree-level
contributions through the exchange of squarks to decay modes such as D — X/¢+{,
D — ¢+4~, as well as the lepton-flavor violating D — Xpu*te  and D — pte~. Before
considering the FCNC effects in D decays, we need to rotate the fields to the mass basis.

This leads to :
WRp = )\Iijk [Ni‘/ﬂDl - EZUJ] Dy +--- (74)

where V is ithe CKM matrix and we define

Nijk = N Upi Dot ' (75)

Here, UL and D are the matrices used to rotate the left-handed up and right-handed down
quark fields to the mass basis. As written in terms of component fields, this interaction

6We ignore bilinear terms, not relevant to our discussion of FCNC effects.
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now reads
Wy = Ny {Valohdids, + dydsyl + (dy)*(vh)°dy]
—&y diu], — @ diel, — (df)"(eh) ul} . (76)

The last term in Eq. (76) can give rise to the processes ¢ — uff' at tree level via the
exchange of a down squark. This leads to effects that are proportional to Xy, Xy, with
i = 1,2. Constraints on these coefficients exist already in the literature. For instance,
tight bounds aré obtained in Ref. [25] from K+ — 7w by assuming that only one R-
parity violating coupling satisfies Z\;jk # 0. We update this bound by using the latest
experimental result [26] Brg+ yq+vs = (1.5332) x 107, which turns into S\ij < 0.005.
However, this bound can be avoided altogether if the assumptions are changed. For
instance, if instead of only one 5\;]-,9 # 0 we have only one no-null term in the overall
factor ,\;jkv;l, then there is only one term involving down quark fields and there is no
possible FCNC in the down sector [25]. In this particular case, large effects are possible
in the up sector for observables such as D°-D9 mixing and rare decays. In Ref. [25] a
rather loose bound on the remaining coupling is obtained from D° mixing. This could
result in very large effects in ¢ — uff’ decays. Here, we will take a more conservative
approach and make use of more model-independent bounds. The necessary bounds for

processes of interest are collected in Table 4.

Illlc )‘Il2k ] I21k 122k
0.02@ | 0.04@ | 0.06® | 0.21©)

Table 4: Most stringent (20') bounds for the R-parity violation couplings entering in rare
D decays, from (a) charged current universality; (b) R, and (c) D — K{v. See Ref. [27]
for details. All numbers should be multiplied by (m‘plc{ /100 GeV).

The bounds in Table 4 are collected most recently in Ref. [27]. The charged current
universality bounds assume three generations. The 7 decay bound is given by the quantity
Re =Trse/ Ty The D — K{lv bounds were first obtained in Ref. [28].

We consider first the contributions to ¢ — uft¢~. The tree level exchange of down
squarks results, from Eq. (76), in the effective interaction

Mo M _
O He = — 2 HE (01 )ecr, 6r(€r)° (77)
mé,
R
which after Fierzing results in
_ _:\;ZZk:\glk _ 7o '
THer = —— 5 (@ryuer) (bey™le) - (78)
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This corresponds to shifts in the Wilson coeflicients Cy and Cjg at the high energy scale
given by

20?2 \ ma
df,

. L,
20 M
5Cy = —8C10 = ot (l) Nige M - ‘ (79)

The content of Eq. (79) translates into bounds on §Cy and 6Cjy. Notice that they are
independent of the squark mass, which cancels the one appearing in the denominator
coming from the propagator.

If we now specify £ = e and use the bounds from Table 4 ‘we get

Y/ 7
§C¢ = —5C¢. =1.1 12k 11k )
G o = 1.10 (0.04 0.02 (80)
This modification of the Wilson coefficients results in the dot-dashed lines of Figs. 1 and 2
corresponding to Dt — ntete™ and D® — plete™ respectively. The effect in these rates

is small, of order 10% at most, whereas the experimental bounds are a factor of 20 above
this level in the best case (the pion mode). ' |

On the other hand, for ¢ = y1 we obtain

Y/ ;\/ :
6CH = —6Ct, =174 [ 2E | (22 (81)
C Cio (0.21 0.06 (81)
But these values violate the experimental bounds of Refs. [24,29] Brp? , 1 v, < 1.5 x
1075 and Brjs, ot < 2.2 % 1075. Thus we derive the following new bound on the

product of R-parity violating couplings,
2ok Ao < 0.004 | : (82)

which arises from the D — 7yt~ mode. This translates into potentlally large effects
in both these modes as is shown in Figs. 12 and 13.

In: Figure 12 we plot the dimuon mass distribution vs the dimuon mass for DJr —
7tutp~. The solid line, corresponding to the SM prediction and including both the short
and long distance pieces, is clearly dominated by the latter through the presence of the
vector meson resonances (see the discussion in Section 2.1.2). The dashed line includes
the contribution of R parity violation given by Eq. (77), with the R-parity violating
coefficients bounded by the experimental value of the branching fraction in Ref. [24]. It
can be seen that away from the resonances there is an important window for the discovery
of new phenomena, and in particular R parity violation in SUSY' theories.

The situation is similar to the D® — p°u*u~ distribution, plottéd in Figure 13. Here,
the dashed line is obtained by making use of the bound in Eq. (82) coming from the
ntutp” mode as explained above. This results in an upper bound for the R parity
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Figure 12: The dilepton mass distribution for D¥ — 7 u*u~ (normalized to I'p+),. The
solid line shows the sum of the short and the long distance SM contributions. The dashed
line includes the allowed R-parity violating contribution from Supersymmetry (see text
for details) ' '
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Figure 13: The dilepton mass distribution for D® — p°u*u~ normalized to I'po. The
- solid line shows the sum of the short and the long distance SM contributions. . The dashed
line includes the allowed R-parity violating contribution from Supersymmetry (see text
for details.)
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violating effect given by Brg{,’ Lt < 87X 10~%, which is still below the experimental
bound [29] Brog, o4, < 2.2 x107°.

DO pluty
In addition to the dilepton mass distribution, this decay mode also contains angular
information. For instance, we can define the forward-backward asymmetry for leptons as

fl d’r d:v—f 121“ T
Arp(q®) = " dedg’ ~dedg” ) h (83)

dq

where z = cos6, 0 is the angle between the ¢+ and the decaying D meson in the ¢+¢~
rest frame. Expressions for the angular distribution 6I'/dzdg?® can be found in Ref. [30]
for the inclusive case and in Ref. [31] for the exclusive modes. In the SM, Arp(g?) in
D% — p%*¢~ is negligibly small. The reason for this can be seen by inspecting the
numerator of the asymmetry [31]

Me o '
AFB(q2) ~4mD k ClO {Cgﬁgf+?07ff (fG'—gF)} y (84)

where k is the V three-momentum in the D rest frame, and f, g, F' and G are various
~ form-factors. Since the SM amplitude is dominated by the long distance vector interme-
diate states, we have C’S“ > Cho. New physics contributions that make Cyo ~ CeT will
generate a sizeable asymmetry. This is the case with R parity violating supersymmetry.
For instance, taking again the values given in Eq. (82) we plot the forward-backward asym-
metry for D° — p®u*p~ in Figure 14. In order to compute the asymmetry, we make use
of D° — K*{v form-factors, together with SU(3) symmetry and heavy quark spin sym-
metry”. This gives a bound on the integrated asymmetry, I ~ 0.15. For D° — plete™,
we get I§5 ~ 0.08. Thus supersymmetry could produce very sizeable asymmetries. In
general, any non-zero value of Arp(g®) that is measured should be interpreted as coming
from new physics. : _

The effective interactions of Eq. (77) also lead to a contribution to the two body decay
D® — pu*p~. The R parity violating contribution to the branching ratio then reads
4m2 (Alzzk)"mk)Q

2

4
mp 647dek

Brg?;_mm_ = 7po fpmimp 4|1 — (85)

Applying the bound in Eq. (82) gives the constraint
SN2 5, A2
-6 [ M2k 11k :
BTDQ_)M+u <3.5x10 (m) <a)—2—) . (86)
The current experimental limit {24] Brpo_,,+,~ < 5.2 X 107% is just above this value,

implying that future measurements of this decay mode w111 be constraining on the product
of these R parity violating couplings. '

"See the first reference cited in Ref. [31]
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Figure 14: The lepton forward-backvs)ard asymmetry for D® — p%u*p~, for the bound of
Eq. (82). (see text for details)

Finally, we consider the products of R parlty v1olat1ng couplings in Eq. (77) that lead to
lepton flavor violation. The products M o Mooi and Ay Xoo, will give rise to Dt — wtpte,
for instance. This leads to :

1r I N 3 v '
ne _ _sOke — 11k 22k 21k 12k
0Cs Cio {(0.02) (0.21) + (0.06) (0.04)} ' (87)
This results in Brﬁf} Drtptes < 3 X 107°, to be contrasted with [24] Brp} Drtptes <

3.4 x 1075. Again here, the experiments are on the verge of being sensitive to R parity
violating effects in supersymmetry. Similarly, for the corresponding two body decay we

7 0 Y] 37
—6 A1k N2k 21k 2k
Bris_, ve- <0.5x107% x {(0_02> (0.21> + (0‘0(),) (0'04)} : (88)

exp
DO pute—

have

whereas the current bound is {24] Br < 8.1 x 1078, We summarize the results of

this section in Table 5.

Finally, we point out that similar effects to those considered in this section are gen-
erated by lepto-quarks. Their exchange lead in general to effective inteactions similar to
those in Eq. (77).
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Decay Mode SM y i Exptal Limit
Dt s wtete™ | 20x107% | 23x107% | 52 x 107°
D® s plete” | 47x107% | 51x107% | 1.0x 10™*
Dt - wtutp= | 1.9%x107% | 1.5x107% | 1.5x107°
D = pPutpy~ | 45x107% | 8.7x107% | 23 x107* -

D% — putu 3.0x 1071 | 35x107% | 4.1x10°°
D% — ete” few 1072 | 1.0x 1071° | 6.2 x 10~
D% — pte~ 0 1.0x107% | 81x107°
Dt - ntute 0 3.0x107% | 3.4x10°°
D® — Oute 0 1.4x107° | 4.9x107°

Table 5: Comparison of various decay modes between the SM and R parity violation.
The third column shows how large the R parity violating effect can be. The experimental
limits are from Refs. [11],[24],[29].

3.2 Extensions of Standard Model with Extra Higgses, Gauge
Bosons or Fermions

In this section we summarize the results from classes of models which have additional

" Higgs scalar doublets, or family gauge symmetry or extra leptons. All of these give rise to
Flavor Changing Couplings at tree level and potentially large rates for rare decay modes
of D mesons.

3.2.1 Multiple H'iggs Doublets

Many extensions of the Standard Model contain more than one Higgs scalar doublet.
As is well known,; this leads in general to FCNC couplings and thus to dééayssuch as
D% » utp~,ete , ute¥, etc at rates larger than SM expectations. In the down quark
sector, there are severe constraints on such couplings from kaon decay modes. This does
not necessarily lead to equally strong constraints on the up-quark sector. For example,
as was shown long ago [32], it is possible that simple symmetries forbid AS = 1 FCNC
without affecting the AC =1 sector. '

Let us write the general effective AC' = 1 interaction as
Gp - :
— uysc b(a+ bys)ls 89
p 75 U 1(a+ bys)ls (89)

where § is a model dependent dimensionless number and ¢, ¢, refer to the pairs (u, ),
(e,€) or (u,e). Comparing to the mode Dt — u*wv,, one can write

3 S & m%  a?+6 TP r
Tposgd; = : ’ "o PTDtouty
172 [Uea 2 memy, 2 79
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a? + b?
_ 2 i

The branching ratio for the three body modes ¢ — ul;l; is given by 0.34352 (a® + b?%) /2.
| We have evaluated the parameters 8, a and b in several models with multiple Higgs

scalar doublets and evaluated the branching ratios for rare decay modes of D° [32],[33].
We find that the branching ratios for these modes can be as large as:

~ 11.35 82- (90)

Brposutu- ~ 81070 | Brpoie ~ 4107, Brposer ~7.107° | (91)

with the corresponding three body modes having branching ratios smaller than these by
about a factor of 30. '

3.2.2 FCNC in Horizontal Gauge Models

The Gauge sector in the Standard Model has a large global symmetry which is broken
by the Higgs interaction. By enlarging the Higgs sector some subgroup of this symmetry
group can be imposed on the full lagrangian to be broken spontaneously. This family
syrhmetry can be global as well as gauged [34]. If the new gauge couplings are very
weak or the gauge boson masses are very large, the difference between gauge and global
symmetry is rather difficult to distinguish in practice. In general there would be FCNC
effects from both gauge and scalar sectors. Here we consider the gauge contributions.

Let us construct a simple toy model as an example. Consider a family symmetry
SU(2)g under which the LH quarks '

(£, (3),

and the corresponding LH leptons

(%), ()
60 . 'uO L’

transform as members of an Iy = 1/2 family doublet. The third family is assumed to
have Iy = 0. In this model, the SU(3)x breaks down to SU(2)y x U(1)x. If {G}} are
o _ 0 0
the gauge fields generating SU(2)y and we denote 9, = ( ;lo ) , Yo = ( ZO > , etc,
L L
then the gauge interactions are:

9 [Paor MG + (& = u°) + (& = )] . (92)

After the symmetry is broken, the mass eigenstate basis is given by

(4, 8), (), (0), ), o
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The matrices Uy, U; and Uy each need one angle and three phases. After the symmetry
is broken, the three gauge bosons acquire dlfferent masses. If the phases are ignored, the
matrlx elements for the processes of interest are:

1, sin 20, cosf, = cos 20,sin26,| _

Mposutu= = 59°fp my [ 2 - 2 } Bl +ys)p (94)
1, cos 20, cos 20, 1  sin20,sin26,| _

MDO—)e"u"' = Zg fD my ': m% + m_% + T] .u/(l + 75)6 ;

and similar expressions for K° decay modes, with 6, replacing 6,. To proceed further,
let us make the simplifying assumption that m; ~ my < m3 and that the mixing angles
are small. Then, using the constraints from the kaon system, namely the bounds on
K, — ep and the known rate for Ky — uji, we find that the branchmg ratios for charm
decay modes can be as large as: -

Brpo_utu- ~3.1071°  and Brpo_tex ~ 21078 | (95)

3.2.3 Extra Fermions

Additional fermions beyond those in the three families of the SM can contribute to a
variety of rare decays. Let us first consider the effect of an SU(2) singlet down-type (Q=-
1/3) quark of the kind that occurs in E(6) models (an additional fourth family down-type
quark belonging to a doublet would have an identical effect). This &' quark will appear in
loop diagrams [35] for decays such as D® — p*u~. For a mass my ~ 250 GeV, the mixing
with u and ¢ quarks Ay = V,yV}, is constrained by the contribution to Amp. With the
current bound on zp (zp = Amp/I'p) of about 3% [6], Ay has to satisfy Ay < 0.003.
Then the contribution to D° — ptp is

Brpo - (0) ~ 1071 T (96)

which is two orders of magnitude above the SM value. There will be similar enhancements
for modes such as D — w¢f, D — X £/, etc.

When the SM is extended by adding extra lepton doublets or extra neutral singlets, the
decay mode D° — pé (like K — pé) can be generated only if there are non-degenerate |
neutrinos and nonzero neutrino mixings [36]. We display the relevant box-diagram in
Fig. 15. The associated matrix element can be written as
GEMyy

Mpo_y,z =
He 22

fDmuB ul'rv : (97)

where B is given by [9]

1
(1= z4)(1 — )

B = z UpUoe Vo VakToTr | —
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Figure 15: Box diagram in D° — pe.

1 In z;, Inz, o
+ - . ' 98
o (e )| )
In the above, the greek and latin indices run respectively over the neutral léptons and
negatively-charged quarks, U,s and Vj; are respectively mixing-matrix elements for lep-

tons and quarks, and z; = mi/M3,. In the excellent approximation that z, ~ 0 for
Q= Ve, Yy, vy and z; = 0 for ¢ = d, the expression for B becomes [37]

B = UuNU;N[VJ;%u( LN —lnxs+ﬂ’i—)

1-— N (1 — :L'N)2
* TpTN In N
ViV —1 _—
*Valh (l—wN nzb+(1—$1v)2)]
~ 4.2x107° Uy, Un, (99)

for a fburth generation neutral lepton maés mpy =~ 50 GeV. This varies rather slowly as
~ my goes to larger values up to and beyond My,. Then the decay rate for D° — peé is
given by

FDO—-mé =

G% Mg, fom,B]* M )
[ £ 2"7{5 : } T (UneUn,)” (100)

The mixing (UNeUN,L)2 for my > 50 GeV is bounded by the limit on Br,_., to be [38,11]
5.6 x 108 and hence we infer '

< 8.62x 10727 GeV |

Tpoosye = { < 1.3 x 1020 gec~! . (101)
The branching ratio for D° — pé is thus bounded by
Brpo_su-et <52x 107 or  Brpou-etyute- <1.0x 107 (102)

If the heavy neutral lepton N° is an SU(2) singlet rather than a member of a doublet,
the same result is obtained, even though the GIM suppression is absent [37,39]. Hence
any observation of D° — pe with Brpo_,,; > 107! cannot be explained by mixing with
a heavy neutrino. '
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3.3 Strong Dynamics

The possibility that new strong interactions are responsible for electroweak symmetry
breaking (EWSB) and/or fermion masses has important consequences for flavor physics.
The SM with one Higgs doublet already requires the presence of new dynamics at a scale
A in order to avoid triviality bounds. The physics above the cutoff scale generates the
scalar sector as bound states and has to be connected in some fashion to the the generation
of flavor. For instance, technicolor theories require extended technicolor, whereas the
generation of the (large) top quark mass may require a top-condensation mechanism. In
general the generation of fermion mass textures leads, in one way or another, to FCNCs.
Here we examine some of the potential effects in rare charm decays and their relation
with other phenomenological constraints. '

3.3.1 Extended Technicolor

In standard technicolor theories both fermions and techni-fermions transform under a
new gauge interaction, Extended Technicolor (ETC). The condensation of techni-fermions
leading to EWSB leads to fermion mass terms of the form

2
mq ~ ]gM_EZ,I‘C <TT>ETC . (103)
ETC _

The ETC interactions connect ordinary fermions with techni-fermions, as well as
fermions and techni-fermions among themselves. The relevant sources of FCNC in tech-
nicolor models divide into two groups: those associated with the technicolor sector and
those where the diagonal ETC gauge bosons acting on ordinary fermions give rise to
FCNC through dimension-six operators.

The first group gives rise to operators mediated by ETC gauge bosons. These, in turn,
have been shown [40] to give rise to FCNC involving the Z-boson,

£ ULUL Z¥ (apyuer) ,  (104)

where U” is the unitary matrix rotating left-handed up-type quark fields into their mass
basis and £ is a model-dependent quantity of O(1). The induced flavor-conserving Z
coupling was first studied in Ref. [40] and flavor-changing effects in B decays have been
studied in Refs. [41,42]. The flavor-changing vertices in Eq. (104) induce contributions to
¢ — ult¢~. These appear mostly as a shift in the Wilson coefficient Cyo(My ),

aMe € my e

UL z» (@ry.cr) and £2

8mvsin 20y 87v sin 20y

302 O ]
§C ~ UL T 2L TW 02, (105)
2v o

where we make the assumption UL ~ A ~ 0.22 (i.e. one power of the Cabibbo angle) and
we take m, = 1.4 GeV. Although this represents a very large enhancement with respect
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to the SM value of Cjo(Mw ), it does not translate into a large deviation in the branch-iﬁg
ratios. As mentioned previously, these are dominated by the mixing of the operator O,
with Oy, leading to a very large value of C§T. The contribution in Eq. (105) represents
only a few percent effect in the branching ratio with respect to the SM. On the other
hand, the interaction in Eq. (104) can also mediate D° — u*u~. The corresponding

amplitude is G .
me F .

ADOM"‘;F jand Ucl;‘ onv E SlIl2 ewa my , (106)

to be compared to Eq. (53). This results in the branching ratio Brg’r{‘_iw u- = 0.6x10719,

which although still small, is not only several orders of magnitude larger than the SM

short distance contribution but also more than two orders of magnitude larger than the

long distance estimates.

Finally, the FCNC vertices of the Z boson in Eq. (104) also give large contributions
to ¢ — uvv. The enhancement is considerable and results in the branching ratio

UL\’ | |
BriiC, .o = & (O—Cg) 2x1077 . - (107)

The second group of contributions from technicolor' models comes from the diagonal
ETC gauge bosons. These generate four-quark interactions which refer to a mass scale
constrained by D°-D° mixing to be approximately M > 100 TeV [40], thus making such
effects very small in rare charm decays.

3.3.2 Top-condensation Models

Top-condensation models postulate a new gauge interaction that is strong enough to
break the top-quark chiral symmetry and give rise to the large top mass. The various
realizations of this basic idea have one common feature: flavor violation. Since the new
interaction must be non-universal, it must mediate FCNC at tree level. This arises because
the mass matrix generated between the top-condensate and whatever other flavor physics
gives rise to the lighter fermion masses (e.g. ETC in topcolor-assisted technicolor [43])
is not aligned with the weak basis. Diagonalization of the mass matrix will then leave
FCNC vertices of the so-called ‘topcolor interactions’ since they couple preferentially to
the third generation. The exchange of top-gluons, the topcolor gauge bosons, will generate
four-fermion couplings of the form

47ras cot ‘02 £ TT* [ ‘ Qi /T

M2 Uy (@, Tt) (Ey*Tc)
4T tan 62
M2
4o

SV Uey (w7, T%)(E4*T€) (108)

Uey (v, T*c)(ey*T*c)
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where (T = (t b), Uy = UL + Uf and M is the mass of the exchanged color-octet
gauge boson. The first term comes from rotating two top-quark fields and is due to a
strongly coupled topgluon, reflected in the factor cot? @ ~ 22. The second corresponds to
a topgluon which is weakly coupled to the first and second generations. In the third term,
which gives the largest' contribution, the topgluon couples strongly to the third generation
quark current but weakly to the (@c) current, giving rise to a giuon—like coupling. The
one-loop insertion of the first and/or third terms in Eq. (108) would result in contributions
to the operators Oy and O,q. However, a term analogous to the second term in Eq. (108)
but with the ¢, quark rotated to a @y would contribute to D°-Do mixing. The current
experimental bound on Amp taken from Eq. (72) implies that

M |
— > 140 TeV . |
o] > 10 TeV (109)

In the standard Topcolor Assisted Techni-color models, this constraint is not binding on
the top-gluon mass since the up-sector rotation matrices are taken to be nearly diago-
nal [44]. In any case, however it is satisfied, the bound of Eq. (109) implies that all effects
in rare charm decays are negligible. Similarly, this also applies to the topcolor Z’ ari‘sing
from the strongly coupled U(1)y.

4 Conclusions

We have extensively evaluated the potential of rare charm decays as probes of physics
beyond the SM. In Section 2 we computed the SM rates for a variety of decay modes.
This complements our earlier work in Ref. [4], where we concentrated on radiative decays.
We have shown that although, just as in the radiative modes, it is still true that long
distance contributions dominate rates, there are decay modes where it is possible to access
the short distance physics. This is particularly the case in D — X, £t¢~ decay modes
such as D — wf*¢~ and D — pf*£~, where it is possible to stay away from resonance
contributions in the low dilepton mass region. This can be seen in Figs. 1 and 2, where
we see for low dilepton mass that the sum of long and short distance effects leaves a
large window where physics beyond the SM could be seen. Although the uncertainties in
our calculation of the long distance contributions to this mode are still sizeable (roughly
of O(1)) it is clear that at low dilepton masses new physics effects that are order of
magnitude or more larger than the short distance SM signal can be seen. This is not the
case in the resonance region where the ¢, w and p contributions take the rates to values
just below current experimental bounds, in a situation analogous with radiative decays
such as D — pry.

In Section 3 we explicitly explored the potential of these decays to constrain new
physics. In the case of the MSSM we studied in Section 3.1.1 the sensitivity of rare
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charm decays to non-universal soft breaking in the squark mass matrices. We found that
large effects are possible in D — 7¢*¢~ and especially in D — pf*{~, as can be seen in
Figures 10 and 11. The effect in the vector mode is amplified by the heightened sensitivity
of this decay channel to the photonic penguin, which carries the largest enhancement due
to the fact that a gluino helicity flip replaces the usual charm quark mass insertion. We
conclude that an important fraction of parameter space in the MSSM with non-universal
- soft breaking can be explored if sensitivities of the order of 1076 to 10~7 in the kinematic
region of interest are reached.

- In Section 3.1.2 we considered the effects of R-parity violating couplings in supersymmetry.
We found that the current upper limit on the decay D — wutp™ is the most constraining
bound on the product Ay, Apy (see Eq. (82)). Thus rare charm decays already constrain
R-parity violation! In Table 5 we summarized the results for the prediction of R-parity
violation assuming the couplings are at their current bounds. We have also shown that
the forward-backward asymmetry for leptons App in D° — p®2*¢~ is very sensitive to
" these effects (c¢f Figure 14). More generally, Arp is negligibly small in the SM due to
the fact that the vector coupling of leptons is enormously enhanced with respect to the
axial-vector coupling by the presence of vector mesons. Thus, any observation of App
would point to new physics.

We also considered the effects of other non-supersymmetric extensions of the SM
including multi-Higgs models, horizontal gauge models, a fourth generation, as well as
strong dynamics such as extended technicolor and topcolor. None of these scenarios gives
sizeable signals, either because the effects are intrinsically small or (as in the case of
strong dynamics) because other FCNC data have already established tighter bounds on
the parameter space.

We conclude that these rare charm decay modes are most sensitive to the effects of
non-universal supersymmetry breaking as well as to R-parity violation couplings. It is
- then very important to push for increased sensitivity of the experiments, preferably to
below 1076 in order to highly constrain these effects. This is in stark contrast with the
situation in the radiative modes, where sensitivity below 107> — 107% may not illuminate
short distance physics. The dilepton modes should be pursued by all facilities to their
highest possible sensitivity. -
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