Micro-Grids: Practical Applications of Grid Technology to
Small Distributed Collaborations

Jason Russell Lee

Lawrence Berkeley National Laboratory
Berkeley, CA,
JRLee@lbl.gov

Abstract. Recently there has been a great deal excitement about using both
Computational and Data Grids [1,9], for large-scale scientific computing. However,
the utility of Grid tools, ideas, and technologies to solve smaller-scale problems is
often overlooked. In this paper, it will be shown not only that grids work very well
for these smaller problems, but that the techniques developed for use in large scale
grid computing can be applied equally as well to smaller problems and used in a
effective and productive manner. This paper focuses on what Grid technology can be
used to address a specific problem, particularly the aspects of monitoring a Grid and
the associated problems and solutions. This will be described in the context of a
scientific collaboration between six geographically distinct sites that spanned both
the East and West coasts of the United States.

Introduction

In the research field of Micro-Electro-Mechanical Systems (MEMS), there are two
major practical obstacles to experimental progress. The first is that fabrication and testing
facilities are a scarce resource: only a handful of well-funded academic and government
research programs have the equipment necessary to fabricate and perform experiments on-
site, and commercial facilities are very expensive. The second obstacle is that scientists
have difficulty sharing the results of their experiments with the rest of the community
because the datasets are large, there is no common format for experimental results, and
there is no uniform way of describing the experiment that produced the data. The solution
to these problems is coordinated and transparent remote access to MEMS instruments and
the resulting data from of MEMS experiments. This includes interactive control of test
instruments, and a shared system for documenting experimental results so that they can
later be retrieved with automated tools. The following sections will describe how Grid
concepts, tools, and technologies were used to implement this solution in a DARPA-
funded collaboration called Matisse [12] that involved (from West to East) the University
of California at Berkeley (UCB), Lawrence Berkeley National Laboratory (LBNL),

Carnegie-Mellon University (CMU), the Information Science Institute (ISI-E), Sarnoff
Laboratories, and Massachusetts Institute of Technology (MIT).

In this paper we show how Grid technology can be applied to help a small
collaboration of researchers work together. We describe the distributed collaboration
problem being solved, and describe how Grid data caches, monitoring systems, meta-data
servers, and portals are used to facilitate the development cycle of MEMs devices. The
primary aim of this work was to enable researchers to fully utilize all the available
resources in a clear and simple manner. This was accomplished through the careful
forecasting of available resources. This work is not complete by itself, and needs to be
explained in the context of the entire Grid system that was used in the Matisse project.

MEMS Technology

Micro-Electro-Mechanical Systems (MEMS) are the integration of mechanical
elements, sensors, actuators, and electronics on a common silicon substrate through the
utilization of microfabrication technology. While the electronics are fabricated using
integrated circuit (IC) process sequences (e.g., CMOS, Bipolar, or BICMOS processes),
the micromechanical components are fabricated using compatible "micromachining"
processes that selectively etch away parts of the silicon wafer or add new structural layers
to form the mechanical and electromechanical devices.

Designer [%

@ Bim. results Test results
Design_|—Gimulation)
Test results

Faratmetric
testing

Vifafers

Figure 1. Simplified MEMS workflow

The workflow for creating MEMS devices, a simplified version of which is shown in

Figure 1, is complex. The basic idea is that the MEMS designer will generate a design
in a Computer-Assisted Design (CAD) package, send that design to a fabrication site, then
test the product (possibly comparing test results with simulation results), and use the
images and computations from testing as feedback to the next round of designing. This
process takes as input a design, test parameters, and test instrument settings, and produces
as output large (many megabyte) files of test results.

Coordinating and storing the input and output datafiles, as well as providing remote
access to and storing live images and instrument paramaters, is a time-consuming and
error-prone task with simple tools such as remote login and FTP. Using grid technology to
assist in this process greatly increases the productivity of the researcher. The particular
aspect of grid technology that we are incorporating here is the ability to access and control
all of resources associated with a project in a simple, but powerful manner. The end result
of which will allow the researcher a powerful paradigm that provides a common interface
to all the resources, thus allowing the designer to get real-time feedback during the
fabrication of the devices. This architecture also allows for the exchange of designs, along
with associated experimental results, among a larger community, thus creating a "virtual
research space" for multiple institutions and researchers.

Matisse Project Resources

In the Matisse environment, all the resources were distributed across a wide
geographical area. The six sites described above (UCB, LBNL, CMU, ISI-E, Sarnoff, and
MIT) were heterogeneous in hardware, operating systems, and application software.
Different sites contributed to the collaboration in different ways. Some sites had facilities
for fabricating the chips for MEMS devices (UCB); some sites have testing facilities for
the devices (UCB, MIT and CMU), and yet other sites (LBNL, ISI-E) have compute and
storage resources. The sites and their respective facilities are shown in Figure 2.

MEMS Device
T e Operator

i Interfer || User i e
| 'y

DARPA PMs
Team Reps

MEMS Device
K Operator

MEMS Device
Operator

MEMS Device
Operator

Figure 2 Matisse Grid

The collaborating sites were all connected by the SuperNet [2], a high-speed cross
country network which is funded by DARPA[10]. The slowest network links in this
environment are the single gigabit Ethernet connections into the end host machines. The
Supernet cross-country trunk is an OC-48 (2.4 gigabits/sec), which is then sub-divided
into single gigabit connections that connect into the various end sites. In addition to host
computers, some of the MEMS testing devices such as interferometers were connected to
the network.

The Matisse Grid

In order to allow transparent access to remote experiments, and to allow researchers to
exchange their designs, the Matisse project used a data location and metadata service to
both locate and add experiments to the system. A high-speed network cache held the large
data files of streaming video and measurements. A Java-based portal client provided a
unified metaphor for authenticating and accessing the system. Finally, real-time
performance of the system was accessible through a monitoring service. These
components are described in more detail in this section.

Data Location and Metadata Service

The Matisse system has a global data location and metadata service that is built on a
CORBA[16] Object Request Broker (ORB) that interfaces to a back-end relational
database. The interface allows registration of experiments, and all experiment-associated
data, including CAD data, experimental runs, meta-data about the parameters used during
fabrication. Much of the information stored is meta-data or handles, which in turn point to
the real data locations through the use of URLs. This centralized name service scheme
allows the designer the ability to login and check the status of the experiments from
anywhere. It also provides for a dynamic method for the different fabrication sites to
register the results of tests, and allows for changes during fabrication.

High-Speed Network Cache

This environment generates huge amounts of data, whether it is the ‘movies’ generated
from the testing of a MEMS device or the volume data generated by the computation of
the phase shift in a device during a run. High-speed access to this data is provided by the
Distributed Parallel Storage System (DPSS)[8], a high-speed network cache. In the
Matisse grid there are two DPSS’s -- one on each coast of the United States -- to allow
low-latency reading and writing of data from compute nodes and test facilities. A much
more common method of transferring data, the File Transfer Protocol (FTP), was rejected
because readily-available implementations of FTP have low (~8Mb/s) transfer rates on
high bandwidth-delay product networks such as the SuperNet. The DPSS, on the other
hand, can adjust its network performance based on the current network conditions, and
has been shown to provide speeds in excess of 1.5 G/sec[17], which is well above the
project's requirements.

Java Portal

Sarnoff designed a Java portal that provides integrated single sign-on access to the
entire system. Users can login through this portal and check the status of their different
projects. The portal provides the ability to share and compare the data from experiments
with other researchers. A designer can take the data from one of their experiments and
compare it against previous runs, or grant access to the data to other researchers who are
doing similar work. Manufacturers can login to the system and see if there are new
designs to waiting to be created, and the fabrication facilities have an easy way to now
upload the data from the tests that they perform. One of the more important and key
features of the portal is that it provides transparent access to all the resources through the
use of a single sign-on. Once a user logs onto the portal, they now have access to all of

their resources through the portal. These resources can take the form of compute or
storage resources, or the ability to upload new test data or designs to the system.

Grid Monitoring Service

In any network work environment it is vital to have information about the status of the
network links. In a Grid environment it is imperative to also monitor all the resources that
are attached to the network (i.e. the entire Grid), including physical resources such as free
disk space and CPU load, and middleware resources such as storage servers and directory
services. Then all the relevant information should be combined and used to make
predictions about the future performance of the Grid. Being able to predict what is about
to happen and answer questions such as; will a job finish shortly on the compute nodes, so
they will be available? Will a network transfer finish shortly, so that the data from testing
at a experiment can be streamed real-time back to the designer? These kinds of questions
are very important and hard to answer, and need to be answered if one is to improve the
performance of a ‘grid’ over that of simply a collection of loosely coupled machines. In
the grid environment for the MEMS project we are using a program lblnettest[3] as a
‘host-monitor” on each of the end hosts to provide a number of monitoring functions in
the hopes of answering these questions.

1. End host conditions (cpu load, disk space avail, memory avail, etc)

2. Endwise network testing. (current network routes, latency, bandwidths)

3. Ability to add/trigger tests to obtain new data

4. Ability to monitor resources that can’t run ‘Iblnettest’ (switches,routers,etc)

Flat file

Web
client

Figure 3. Matisse Monitoring

The program Iblnettest provides a secure way to control sensors, allowing sensors to be
manipulated and all their output to be captured and redirected. Lblnetest uses a public key
infrastructure (PKI)[4] to control access to the sensors. In the Matisse grid environment
we setup a public/private key pair assigned to a program, so that the program would have
the ability to monitor all the resources on the grid.

Iblnettest was able to perform continuous all-pairs (full mesh) testing of the network.
This ensured that not only that connectivity was being maintained (using a udp ping
equivalent), but also that an acceptable level bandwidth was available to the applications.
The bandwidth testing was accomplished by doing measurements with a non-intrusive
tool called “pipechar”[9] which is able measure the available (dynamic) bandwidth on a
link without congesting the link. This technique, unlike the one used in ttcp[13], iperf[15]
and nettest[3] which inundate a link with traffic to discover the available bandwidth,
sends out small number udp packets and measures the inter-arrival delay of the return
packets to estimate the bandwidth. [bltest is also used to control the various host
measuring tools such as vmstat, uptime, netstat or scripts that examine at the values in
/proc (ie: /proc/loadavg on linux), and capture their output. This same method is utilized
to execute programs that in turn monitor the status of the various resources that are
connected to the grid.

Finally, all the output from the various sensors, both host and network alike, is parsed
into a common logging format, called Universal Logging Format (ULM)[9] which is then
sent via NetLogger [11] to a central logging server located at LBL. This logging server
potentially now has enough information to make informed decisions about the future
performance of the network and resources. And based on this information can
recommended where computation jobs should be run and the data from these jobs stored.

Usage of the Matisse Grid

This section will provide an example of the normal use of the micro-grid we have been
describing. A designer at MIT finishes the design of a new chip, and sends the design
information off to the fabrication site located at UCB. UCB then starts the process of
creating the chip, and at predefined intervals during the fabrication process, tests are run
on the chip to verify that it stays within the design specifications. The data from each of
these tests is stored locally, and then registered in a global namespace for later lookup by
the designer. The designer at MIT can then peruse these tests at any time during the
fabrication of the chip, and verify that they are within the design limits and possibly
compare them to previous fabrication efforts to ensure that past mistakes aren’t creeping
in. This comparison process can take several different approaches: view the images from
testing, view ‘movies’ of the testing of the device, or take all the data collected at the time
of the test and run it through a compute farm extrapolating the phase, z-axis, deflection
and any other fundamental data for the particular device being designed [7].

This last option is the one that the designer would most often like to perform,
unfortunately it is computationally expensive and data intensive. However, with

transparent high-performance provided by the components described above, the designer
does not need to optimize the process "by hand". Instead, the MEMS designer picks the
tests of interest from a list gleaned from the global registry service of tests, selects
analyses to perform, then presses the "go" button on the portal. This sets in motion several
events, including verification that the necessary network, storage and computational
resources are available for the desired analysis. After the analysis is complete, the data is
either fed back to the designer, saved in a file for later review, or both.

The optimization that occurs under the hood will depend upon how the designer wants
to see the results. If the data is fed back to the designer in real time, the entire process is
optimized to start as early as possible, with continued progress until completion. With a
small number of compute nodes and small number of high-speed caches on the network
and the delay of the network either being very high or very low, this is a fairly
straightforward optimization problem. The test data is transferred from the local test
repository to the DPSS cache [9] (located closest to the greatest number of computational
cycles). Then all the nodes on the network that have any amount of computation available
(measured by not less then the RTT latency to the node from the cache) are utilized. The
resulting data is streamed directly back to the DPSS cache that is closest to the designer,
and from there onto the screen so that the results can be viewed.

If, instead, the results are stored for later review, the entire process is scheduled much
the same as a batch processing job. The job is streamlined to store the end results back to
persistent storage at the nearest cache to the computational nodes, and all computational
cycles are considered for use with this run, as latency is no longer a factor.

If the designer wants to both store and review the results, then the optimizations must
be made for real time viewing as in the first case, with the exception that the data is also
streamed back to a network cache at the same time that it being viewed by the designer.

It should be apparent that at every juncture in the above process it is necessary to have
information about the status of some resource. Questions such as; Is there enough space to
store the results? Is there enough bandwidth for the user to view the results in real-time?
Are there enough free cycles to do the analysis of X in Y amount of time? Not only need
to be answered, but need to be answered in a timely fashion. Though the use of Iblnettest
we were successful at accomplishing this.

Future Work

The infrastructure for the Matisse project was successful in integrating diverse
resources into a high-performance Grid, however we found that there were holes in the
current set of tools available, and areas that we had not fully explored. One such area was
the ability to show ‘correctness’ of previous runs/predictions by feeding previous data
back into the analysis module and using the results to help predict the future with more
accuracy.

Conclusions

In this paper we have shown some of the various problems facing Grid developers and
some of the solutions that we have used to solve these problems. We have stressed the
importance of monitoring all the resources in the network, which is in turn an important
part of achieving transparent high-performance. Also necessary to good performance are
high-speed caches that use monitoring information to ‘tune’ their behavior. Other ideas
that we found to useful were the two modes of operation: near real-time, and a batch
queue mode.

We have shown how Grid technology can be applied to many of today’s problems,
which appear to be more of an integration problem then a technology problem. Grids with
transparent access show applicability towards a wide range of problems.

Acknowledgements

This work was supported by the Director, Office of Science, Office of Advanced
Scientific Computing Research. Mathematical, Information, and Computational Sciences
Division under U.S. Department of Energy Contract No,. DE-AC03-76F00098. This is
report number LBNL-49216. See declaimer at http://www-library.lbl.gov/disclaimer.

References

1. “The Grid: Blueprint for a New Computing Infrastructure”, edited by Ian Foster and Carl
Kesselman. Morgan Kaufmann, Pub. August 1998. ISBN 1-55860-475-8.

2. SuperNet Network Testbed Projects: http://www.ngi-supernet.org/

3. Netest homepage http://www-itg.lbl.gov/nettest/download/download_info.html

4. Internet X.509 Public Key Infrastructure Certificate and CRL Profile (RFC 2459)
http://www.ietf.org/rfc/rfc2459.txt

5. G. Jin, G. Yang, B. Crowley, D. Agarwal, "Network Characterization Service (NCS)”,
Proceedings of the 10th IEEE Symposium on High Performance Distributed Computing
HPDC-10, August 2001, LBNL-47892.

6. J. Abela, T. Debeaupuis. Universal Format for Logger Messages, IETF Internet Draft,
http://www .ietf.org/internet-drafts/draft-abela-ulm-05.txt

7. G. K. Fedder, S. Santhanam, M. L. Reed, S. C. Eagle, D. F. Guillou, M. S.-C. Lu, and L.
R. Carley, “Laminated High-Aspect-Ratio Microstructures In A Conventional CMOS
Process,” Sensors & Actuators A, vol. A57, no. 2, pp. 103-110, March 1997.

8. Lee, Jason, "Design and Implementation of a Image Server System", Thesis submitted to
San Francisco State University, Fall 1995, http://www-itg.lbl.gov/~jason/thesis/

9. The DataGrid Project: http://www.cern.ch/grid/

10. DARPA http://www.darpa.mil/

11. NetLogger Toolkit http://www-didc.1bl.gov/NetLogger/

12. The Matisse Project Homepage: http://www.mattise.org

13.
14.
15.
16.

17.

TTCP src code: http://ftp.arl. mil/ftp/pub/ttcp/

NeTest home page: http://www-didc.1bl.gov/~jin/network/net-tools.html

Iperf home page: http://dast.nlanr.net/Projects/Iperf/

CORBA Reference Guide, The: Understanding the Common Object Request Broker
Architecture, Alan Pope, Addison Wesley, Pub 1998 ISBN 0-201-63386-8

SC2000: http://www-didc.Ibl.gov/presentations/SCO0.LBNL .netchallenge.pdf

