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Potentials of mean force between nonunifonnly charged colloids or globular proteins are 

often estimated as a pairwise sum of distinct orientation averages for charge-dipole, and 

dipole-dipole interaotions. In systems with dipole-related interactions comparable to or exceed

ing the thermal energy, however, correlations between charge-dipole and dipole-dipole terms 

can render the additivity assumption highly inaccurate. Based on the third-order cumulant ex

pansion of intercolloidal interact. ions, we derive an asymptotically exact relation for the poten

tial of mean force that includes the correlation between distinct contributions. Using a simple 

discrete-orientation model, we obtain an approximate expression for the nonadditivity correc

tion that reproduces correct behavior in weak and strong coupling limits and is sufficiently ac

curate for practical calculations over a wide range of interaction strengths including those char

acteristic of aqueous protein solutions. 
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I. Introduction 

Prediction of solution properties and phase behavior of ionic colloids depends on a reliable description 

of effective potentials between dispersed particles. These potentials comprise several distinct contributions, 

the most important being Van der Waals forces, Coulombic interactions, and forces from hydrophobic and 

osmotic effects l -3. In most theories, individual contributions are considered as pairwise additive potentials 

of mean force obtained upon integration over microscopic variables such as the translational and orienta

tional degrees of freedom of solvent molecules and simple solutes surrounding the colloids. The Derjaguin

Verwey-Landau-Overbeek (DLVO) theory of colloid stability, arguably the most widely accepted theory 

of colloidal solutions, considers the intercolloidal potential between approximately spherical macropar

ticles as a sum of dispersion attraction and screened Coulomb repulsion described by the linearized 

Poisson-Boltzmann approximation4. Despite its many simplifications, the DLVO theory has provided 

qualitative explanations of a variety of observed phenomena such as the roles of pH, ion adsorption, and 

screening by simple salts, all controlling the stability of the dispersion2•5•6. Applications of DLVO theory 

have often been proposed for approximate descriptions of Coulombic effects in solutions of globular pro

teins. The usefulness of these applications is, however, limited by the nonuniform distribution of ionized 

groups on protein molecules resulting in strong dipole, quadrupole, and higher multipole interactions 7-21. 

These interactions render pair potentials orientation-dependent and lead to notable deviations from the pre

dictions of the Poisson-Boltzmann equation for spherically symmetric particles. Given a detailed charge 

distribution on the macroions, the electrostatic problem can be solved by numerical methods like finite 

difference23, multipole expansion8,I5, or boundary e1ement10,17.21 solution of the Poisson and Poisson

Boltzmann equations for the interior of the particles, and for the surrounding liquid phase, respectively. In 

systems with moderate interaction strengths, the procedure can be facilitated by adopting the superposition 

approximation20 that presumes additivity of field perturbations due to distinct macroparticles. A useful al

ternative avoiding approximations of the theory is provided by essentially exact computer simulations for 

models with realistic configuration of colloid or pr~tein charges24. While detailed numerical calculations or 

computer simulations provide the most accurate description of intercolloidal electrostatics, for practical ap

plication, it is also desirable to examine approximate analytic methods that would provide semi

quantitative estimates of essential contributions in the form of compact analytic expressions. Besides the 

general insights they can provide, approximate analytic expressions for the potential of mean force are of 

interest as input information for various liquid-state theories such as integral equations25•26, and for calcu

lations of phase equilibria in protein or colloidal solutions27. Most often, approximate analytic methods for 

colloids with anisotropic charges consider only the leading contributions, i.e. the charge-charge, charge

dipole, and dipole-dipole interactions. Calculations of the potential of mean force between dipolar particles 
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requires orientation averaging that can be performed analytically only under simplifying assumptions. 

Typical simplifications include: a) the assumption of pairwise additivity of orientation-averaged charge

dipole and dipole-dipole terms, and b) truncated cumulant expansion of the Boltzmann factor associated 

with the angle-dependent interaction. Both simplifications restrict applicability of the model to interactions 

small in comparison to thermal energy, kBT 8. Because many ionized proteins carry charges, q, of the 

order of 10 eo (eo is the elementary charge), and dipole moments J..I., reaching several hundred Debye (D), 

the charge-dipole and the dipole-dipole energies can be comparable to kB1)endering the expansion method 

unreliable8,13. Further, the orientation probabilities of these terms can be strongly correlated with increas

ing strength of interactions. As a consequence, pairwise additivity of distinct angle-averaged terms remains 

limited to weak and moderate interaction strengths. In the present article, we describe a generalization of 

the cumulant-expansion method to the case of simultaneous charge-dipole and dipole-dipole interactions 

which takes into account correlations between the two coupled contributions. In addition, we propose an 

approximate, discrete-orientation analytic model that avoids the truncated expansion step and is applicable 

to systems with arbitrarily strong interactions. The model provides a reasonably accurate estimate of the 

nonadditivity correction when interactions are too strong for direct application of the third-order cumulant 

expansion. We test the approximate formulae by comparison with rigorous results for weak coupling (high 

temperature) and strong coupling (low T) limits, and with exact numerical results for the orientational part 

of the configuration integral for a pair of dipolar primitive-model colloids. Electrostatic screening due to 

the simple ions, typically present in biological systems and in many chemical processing environments, is 

described within the Debye-Hueckel approximation (characteristic of the DLVO theory) as adapted8 to po

lar particles and dielectrically heterogeneous systems. 

II. I Analysis 

The pair potential between nonuniformly charged colloidal particles, such as proteins includes interac- . 

tions between net charges, charge-dipole, dipole-dipole and higher multipole contributions. In the first ap

proximation, we consider only dominant terms arising from net charge and dipole interactions, while we 

ignore quadrupolar and higher order effects. When calculating thermodynamic properties of the solution, 

the orientation dependence of dipole energies prevents a direct application of standard liquid theories that 

are designed for fluids with isotropic interparticle forces25,26. The difficulty can be overcome by 

integrating-out the orientational degrees of freedom of interacting dipoles, a procedure leading to the po

tential of mean force which depends solely on interparticle separation7,8,13,I4. Within the primitive model, 

whereby the solvent effects are considered only through the dielectric constant of the medium, the relevant 

interactions entering the problem are: 
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(1) 

(2) 

(3) 

Here, ~=l/kBT, E is the relative permittivity of the medium, and Eo the permittivity of vacuum, q and f1 de

note the charge and dipole moment on interacting particles i and j, separated by the distance rij' 9i is the 

angle between the directions of dipole i and vector rij' <I>=(<I>i-<I», and <l>i describes the rotation of dipole i 

around rij (see Figure 1). Electrostatic, screening due to the presence of a simple electrolyte is absorbed in 

functions Sk(rij, K) which are, at ~e Debye-Hueckellevel, approximately described8 by the following ex

pressions: 

SoCr .. K)"= 
I)' Ka .. 

[1 +(-=.JL)f 
2 

( 4) 

(5) 
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(6) 

(7) 

Above, 11K is the Debye screening length, Ep the relative pennittivity of the colloid particle's interior, and 

aij the contact distance for particles i andj 8_ 

If we represent the Hamiltonian of the system, H, as a sum of two tenns, H=Ho+ V, with Ho comprising 

isotropic interactions, and perturbation V the dipole-related tenns, the angle-averaged potential of mean 

force, w(rij), can be written as 

1t 1t 21t 

fff 
Il; = a Ilj = a «I> = a 

(8) 

Here, the angular brackets < >Ho denote the average with respect to the unperturbed Hamiltonian (devoid 

of angle-dependent interactions)_ The particular case of an interacting charge and dipole, eq 2, with v q~ 

depending on a single angle, 9j , results in an analytic solution14 for the above integral: 

(9) 
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n.2 Truncated-expansion method 

For systems with dipole-dipole interactions, the standard procedure, applicable at weak coupling energies 

(v~~ small compared to 1IJ3), requiresexpansi~n of the Boltzmann factor in eq 8 leading to . 

(10) 

For particular interactions (charge-dipole, or dipole-dipole), it is easy to show that odd-order cumulants 

vanish; the series is usually truncated beyond the third-order teim giving 

2 
~ (rij) 

J3wq/rij) = - 6 (11 ) 

2 2 2u2 (ry) + u3 (ri) 

9 
with (12) 

Clearly, eq 11 captures the exact weak-coupling (high-temperature) limit of the rigorous result given by eq 

9. In the weak-coupling regime, the potential of mean force behaves as a quadratic function of coefficients 

ak(r). At increased interaction strengths where the two dipoles approach a nearly aligned configuration, 

however, there is a crossover from quadratic to linear dependence of the potential of mean force on akCr) . 

Eq 11 fails to predict this saturation behavior. Applicability of the truncated cumulant expansion is there

fore limited to small charges and dipoles, or strong electrostatic screening, and eq 9 must be used for ac

curate charge-dipole interactions between, for example charged proteins. The dipole-dipole term, on the 

other hand, is usually small in comparison with 1IJ3. Hence, the interprotein potential can be reasonably 

approximated by combining the rigorous results for pure charge-charge and charge-dipole interactions with 

the approximate estimate, eq 12, for the dipole-dipole term. For two identical particles, this gives 

2 2 . 
2a2 (rij) + u 3 (rij) 

9 
+ .... (13) 

The weakness of this method, however, lies in its inability to capture adverse correlations between charge

dipole and dipole-dipole terms present when each of the particles carries both a net charge and a dipole. 

For equally charged particles, opposing orientations are favored by charge-dipole and dipole-dipole 
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interactions. Coupling between the two effects is illustrated in Figure 2 which presents the orientational 

correlation function, < cos 91 cos 92 >H' for a pair of colloidal particles with equal dipoles Jll=J12=400 D 

as a function of the charge, 0 < q < 20 eo' located at the centers of both particles, for three different center

to-center separations r12=2, 3, or 4 nm. The variation of < cos 91 cos 92 >H, determined numerically as the 

weighted average 

JIf cos 8· cos 8· e·~v(rg.9;9i4l)sin 8· sin 8· d8· d8· d'" 
I ] I J I ] 'I' 

JJJ e-~v(rf9;.9J$)sin 8
i 
sin 8

j 
d8

i 
d8

j 
dq> 

9; 9j $ 

(14) 

Eq 14 reveals a crossover from attractive dipole-dipole interactions (positive < cos 91 cos 92 >H) at weak 

charges q, to effective dipole-dipole repulsion .(negative < cos 91 cos 92 >H) when strong charge-dipole 

forces impose an unfavorable (anti parallel) dipole-dipole orientation. The angle-averaged charge-dipole 

terms, W qll(r), and the dipole-dipole term, w)l,ir), can therefore be strongly nonadditive and warrant simul

taneous orientation/averaging of the complete potential Vi/r ij,9i,9j ,<j»= vq)l(rij, 9)+v)lq(rji, 9i) 

+v)lll(rij,9i,9j,<j». For a pair of identical particles, Vi/rij,9i,9j,<j» is given by 

(15) 

Coefficients uk(rij) are functions of interparticle separation given by eqs 9 and 12. Considering only the 

second cumulant, and for identical particles, the truncated expansion procedure applied to the potential of 

eq. 15 suggests the pairwise sum: 

2 2 
2U2 (rij) +u3 (rij) 

9 
(16) 

however, the third cumulant corresponding to the potential of eq 15 
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(17) 

contains a nonvanishing tenn <-a/U2 cos29i cos29PHo associated with the coupling of charge-dipole 

and dipole-dipole interactions. Perfonning the integrations, the total potential of mean force is ap

proximately described by: 

with charge-dipole/dipole-dipole coupling tenn being 

In view of eq 9, a somewhat better approximation is 

e-3lC(rirC1ij) 

7 
rij 

2 2 2a2 (rij)+u3 (rij) 

9 

(18) 

• (19) 

When the charge-dipole and dipole-dipole interactions (second and third tenns on the r.h.s. of eq 19 are of 

comparable strength, the mixed charge-dipole/dipole-dipolecontribution (the last tenn on the r.h.s. of eq 

19) can be of similar magnitude (but with opposite sign and shorter range) as the two distinct charge-dipole 

and dipole-dipole tenns. For oppositely charged dipolar particles, on the other hand, the mixed tenn repre

sents an equally strong but attractive contribution. In typical colloidal or protein solutio,ns, with particle 

charges of the order 10 eo' and dipoles of several hundred D, the interactions are often too strong (com

pared to kBD to make the third-order expansion useful for quantitative estimates. Eq 19 is therefore mainly 

applicable at moderate interaction strength. In addition, by identifying the lowest-order coupling tenn, eq 

18 establishes the correct high-temperature behavior needed for validating alternative approximations. 
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II.3 Discrete-orientation approximation 

A rigorous calculation of the potential of mean force requires solving the configuration integral of eq 8, 

employing vij{rij,ei,ej><!» given in eq 15. In the absence of an exact analytic sol~tion of this integral, and 

avoiding the expansion of the Boltzmann factor [questionable for vij(rij,ei,ej><!» close to (or exceeding) 

1I~], we proceed by presuming that the orientation space of the two dipoles can be discretized, with each 

dipole sampling only six principal directions: 8i=0, n, <!>i=O, and 8i=7tl2, <!>i=O, 7tl2, n, or 37t12, as illustrated 

in Figure 3 which shows an orIentation with 9 b 92 and <!> 12 all at nl2. The above discretization reduces the 

integral of eq 8 to a sum of 36 terms. All terms are of simple form because trigonometric functions for al

lowed orientations assume only values 0, 1 or -1. For symmetry reasons, the 36 orientations correspond to 

only eight different energy levels, hence the partition function contains only eight independent terms. After 

some algebra, we arrive at the following compact expression: 

(20) 

where wd(rij) is the intercolloidal potential of mean force in the discrete-orientation approximation. eq 20 

reduces to the exact weak-coupling form, eq 18, when all angle-dependent interactions are small compared 

to thermal energy, 1I~. Similarly, it reproduces a correct strong-coupling limit of fully aligned dipoles 

when either the charge-dipole term, or the dipole-dipole term appreciably exceeds 1I~. For intermediate 

interaction strengths, eq 20 constitutes an approximate interpolation formula between the two extreme re

gimes. At intermediate conditions (characteristic of aqueous protein solutions), however, a more accurate 

approximation can be obtained by exploiting the exact result for the orientation-averaged charge-dipole 

contribution given by eq 9. We use eq 20 to estimate the perturbation of w(r) from a hypothetical reference 

state comprising uncoupled charge-dipole, and dipole-dipole interactions. At conditions typical of aqueous 

protein solutions, the two distinct types of interaction are adequately described by eq 13. We therefore aug

ment eq 13 by including the perturbation term, wp(r), obtained as the difference between the approximate 

potential of mean force from eq 20 and the sum of corresponding charge-dipole and dipole-dipole terms: 
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2 2 
20,2 (r ij) + 0,3 (rij) 

9 

(21 ) 

In the case of extremely strong dipole-dipole interactions (exceeding those observed in typical protein solu

tions), when orientational'saturation gives rise to the crossover from quadratic to linear dependence of the 

dipole-dipole term on <:0., an analogous procedure can be used to avoid the truncated expansion estimate 

for the dipole-dipole interaction. Presuming that the reference state comprises only charge-charge and 

charge-dipole interactions we obtain: 

where 

(22) 

Eq 22 provides a fair description for strongly interacting dipoles, but is less accurate than eq 21 within the 

intermediate range of interaction strengths corresponding to dipolar proteins in dilute electrolyte solutions, 

III. Results and Discussion 

We assess the accuracies of the approximate expressions discussed above by comparison with 'exact' 

results obtained from numerical integration of eq 8 for a broad range of macro ion charges and dipoles. Ex

cept for the simultaneous presence of charge-dipole and dipole-dipole interactions, the numerical solution 

of eq 8 is oJ>tained following the procedure described earlie13. In Figure 4, we present the ratios 

wapCcr)lw(cr) between the approximate potentials of mean force (excluding~he charge-charge term Uqq) 
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Wap(cr), obtained by eqs 13 or 21, and numerical results for w(cr) from eq 8. We cover situations ranging 

from vanishingly small charges and dipole momenta to typical protein charges q- 10 eo and dipole mo

ments 11= 400 D at aqueous-solution conditions, with ambient temperature, T=298 K, c=cp=78.5, and at ~n 

ionic strength for a monovalent salt of 1=0.1 mol dm-3 (close to physiological salt concentration). To in

clude systems with relatively strong interactions, we consider two colloids at a center-to-center separation 

equal to their contact distance of cr=3.0 nm. Situations corresponding to other contact distances or screen

ing strengths can be considered through implicit renormalization of dimensionless parameters, a/r) from 

eqs 9 and 12. We also note that, within given parameter range, eq 13 reproduces almost quantitatively the 

pairwise sum of charge-dipole and dipole-dipole terms determined by exact numerical integration. Its de

viation from unity therefore directly measures the relative error associated with the additivity approxima

tion. According to Figure 4, the assumption of pairwise additivity of charge-dipole and dipole-dipole 

terms) leads to small deviations from the exact result at moderate charges and dipoles (up to - 100 D for 

given (j and K) where the net interaction remains below 1I~. Further increases in colloid charges and di

poles can result in serious errors due to nonadditivity of the dipole forces. At q=10 eo and 11=400 D, the 

relative error exceeds 75%. To illustrate the effect of charge-dipole and dipole-dipole correlations in the 

weak-coupling regime, Figure 5 compares total potentials of mean force from various approximate ex

pressions and the results of the pairwise-additivity assumption. We also include the exact results obtained 

by numerical integration of eq 8, and predictions of eqs 13, 19 and 21. In the weak-interaction regime, the 

predictions of the truncated-cumulant-expansion method, eq 19, as well as the discrete-orientation pertur

bation model, eq 21, agree quantitatively with exact numerical data. Both approximations correctly de

scribe the deviations from pairwise additivity of charge-dipole and dipole-dipole terms which, in the given 

case, amount to up to 20% of the total interaction. The inclusion of the nonadditivity correction considered 

in eq 19 will, however, not prevent the breakdown of the the truncated expansion approach at conditions 

when interactions become comparable to 1I~. 

The results of the perturbation method, eq 21, on the other hand, remain close to the exact numerical 

results (the ratio waprcr)lw(cr) shown in Figure 4 remains relatively close to unity) at all practically rel

evant conditions. Unlike the truncated-cumulant-expansion given byeqs 13 or 19, this approximation re

mains applicable at strong-coupling regimes. Figure 6 further illustrates the performance of the perturba

tion method at relatively high dipole moments (11=400 D, and charges, q=8eo). The distance dependence of 

the approximate potential of mean force from eq 21 (dashed-dotted curve in Figure 6) is similar to that ob

tained from the exact numerical solution of eq 8 (thick solid curve in Figure 6). Truncated expansion ap

proach, eq 19 (thin solid line in Figure 6), overestimates the nonadditivity correction. It is interesting to 
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note the strong deviations in the net potential of mean force from the pairwise sum of the angle-averaged 

charge-dipole and dipole-dipole terms (dashed cirves in Figure 6). This feature is captured by eq 21. In 

view of its accuracy for relatively strong interactions, eq 21 provides a useful approximation for analytic 

calculations of the phase behavior in systems containing strong dipoles and charges, e.g. solutions of ion

ized proteins27 ,28. 

A pertinent example demonstrates the importance of a self-consistent account of the various contribu

tions to electrostatic interactions in protein solutions and related colloidal systems. In Figure 7, we present 

complete electrostatic potentials of mean force (including the monopole interaction) from eq 21 for a pair 

of identical model proteins with varying macroion charge q, and fixed dipole moment 1l=380 D. The pro

teins are separated by the contact distance 0=3 nm. The relative permittivity of the macroions tp is 4, and 

the salt concentration is varied from zero to 0.5 mol dm-3 corresponding to a Debye screening parameter of 

1C - 0.23 A-l. As implied in eqs 4-7, the screening of electrostatic interactions is strongest for monopole

monopole interaction and weakest for the dipole-dipole term. As a consequence, different contributions to 

the total interaction can dominate at different salt concentrations. Figure 7 shows an example where direct 

charge-charge repulsion represents the strongest term at high dilution, while attractive dipolar interactions 

prevail above a threshold salt concentration. Upon a further increase in the ionic strength, the attraction 

reaches an extremum and then gradually decreases. The minimum in the interprotein potential of mean 

force as a function of ionic strength is consistent with the non monotonic salt effects observed in measure

ments of cloud temperatures in lysozyme solutions29-31 , diffusion coefficients of lysozyme and 

concanavalin3! ,32, activity of lactoglobulin33, and association equilibria in insulin solutions34. Clearly, 

other important phenomena such as Van der Waals and hydrophobic interactions!,!9, and isotropic Cou

lombic effects35-37 observed in multivalent salts, can contribute to interprotein attraction, shifting the 

observed29-34 extrema towards higher salt concentrations. The solution behavior is determined by a deli

cate balance between Coulombic repulsion of protein charges and different attractive contributions; each of 

these should be included in accurate calculations .. 

Comparisons of the results from various approximate expressions with numerical solutions of eq 8, 

presented in Figures 4-6, provide an estimate of the numerical accuracy of the approximate methods intro

duced in Section II. In what follows, we evaluate the consequences of some of the model simplifications 

introduced in the above methods. These include the replacement of discrete charge distributions on the 

macroion by an idealized point-charge/point-dipole representation, the application of Debye-Hueckel 

screening of charges and dipoles, and the approximate account of dielectric inhomogeneities in the solu

tion. While we defer permittivity effects38 to future studies, we assess the effect of the first two 
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simplifications by a brief comparison of analytic predictions with the results of recent Monte Carlo 

simulations24 for a model mimicking the charge distribution of a globular proteins in a simple electrolyte. 

Simulations considered24 the average force for an isolated pair of macroions characterized by small contact 

distance a = 2 nm, each macroion carrying ten ionic groups with net charge 8 eo and dipole 11=380 or 490 

D. As shown in Figure 8, the discrete-orientation scheme leading to eq 22 provides a fair estimate of the 

magnitude and the range of the overall intercolloidal force de~pite the shortcomings of the theory. Clearly, 

due to the point-charge representation of small ions implied in the Debye-Hueckel approximation, the 

theory cannot capture the oscillations in the average force associated with the layering of simple ions be

tween adjacent macroions. A more powerful liquid state theory that considers simple ions as an indepen

dent molecular species of finite size would be needed for further improvement. To illustrate, in Figure 8 

we also include intercolloidal forces obtained from the Hypernetted-Chain (HNC) approximation25,27,39,40 

using the primitive model25 of an asymmetric electrolyte augmented with the angle-averaged charge

dipole and dipole-dipole potentials between colloidal particles from eq 21. That model accounts for the fi

nite size of simple ions, at-=OA nm. The calculated forces (dashed curves in Figure 8) reveal the onset of 

counterion layering between the two macroions. The effect is, however, weaker than that found by simula

tion because the preaveraged charge-dipole and dipole-dipole potentials retain the screening functions from 

the Debye~Hueckel approximation. Integral-equation theories for mixtures with strong angle-dependent 

interactions41 -45 appear promising for more rigorous descriptions of intercolloidal forces. Such descriptions 

should discriminate between different distributions of fixed macroion charges, going beyond simple dipole

dipole and charge dipole interactions, while also regarding the screening ions on an equal footing with the 

colloidal particles. 
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Figure Captions 

Figure 1. Schematic representation of interacting particles. 

Figure 2. Orientation correlation functions, < cos 91 cos 92 >H' for a pair of dipolar macroions with net 

dipoles J-l=400 D at contact distances 0'=2 (solid), 3 (dashed), or 4 nm (dotted curve), as functions of mac

roion charge q. Electrolyte concentration is 0.1 mol dm-3. 

Figure 3. Discrete-orientation model of interacting dipoles (showing orientation 9 1=92=<\> 12=1rI2). 

Figure 4. Comparison at contact, between approximate intercolloidal potentials of mean force (excluding 

the charge-charge interaction), wap(O'), obtained by assuming pairwise additivity of angle-averaged 

charge-dipole and dipole-dipole terms, eq 13 (upper surface), or by simultaneous orientation-averaging ac

cording to the perturbation method described by eq 21 (lower surface) as functions of macroion charges, q, 

and dipole moments, J-l. The colloid diameter 0'=3 nm and electrolyte concentration is 0.1 mol dm-3. All 

results are divided by the exact numerical result of eq 8, such that deviations from unity measure the inac

curacies of the two approximations. 

Figure 5. Distance dependence of the intercolloidal potentials of mean force for particles carrying charges 

q=2 eo and dipoles J.l=200 D in 0.1 mol dm-3 univalent electrolyte solution. The macroiondiameter 0'=3 

nm: exact numerical results, eq 8 (thick solid), truncated expansion, eq 19 (thin solid), perturbation ap

proximation, eq 21 (thick dashed-dotted), additivity approximation based on exact numerical results for 

distinct charge-dipole and dipole-dipole terms (thick dashed), and additivity approximation based on the 

cumulant expansion method, eq 13 (thin dashed curve). 

Figure 6. Distance dependence of the intercolloidal potentials of mean force for particles carrying charges 

q=8 eo and dipoles J.l=400 D in 0.1 mol dm-3 univalent electrolyte solution. The macroion diameter 0'=3 

16 



nm: exact numerical results, eq 8 (thick solid), truncated cumulant expansion, eq 19 (thin solid), perturba

tion approximation, eq 21 (thick dashed-dotted), additivity approximation based on exact numerical results 

for distinct charge-dipole and dipole-dipole terms (thick dashed), and additivity approximation based on 

cumulant expansion approach, eq 13 (thin dashed curve). 

Figure 7. Potentials of mean force between identical colloidal particles of diameter 0'=3 nm, each carry

ing a dipole Jl=380 D, for several values of colloid charge q, as functions of the Debye-Hueckel screening 

parameter K. 

Figure 8. Comparison between simulated intercolloidal forces from reference 24 and predictions of the 

discrete-orientation model for colloidal particles of diameter 0'=2 nm, charge q=8 eo and dipole Jl=380 or 

490 D in 0.125 mol dm-3 univalent electrolyte solution. Symbols denote simulation results at lower (dia

monds) or higher (squares) dipole momenta. Solid curves correspond to the analytic estimates from eq 22. 

Dashed curves describe results from the HNC approximation for a colloid/electrolyte mixture with direct 

colloid-colloid potentials including the orientation-averaged charge-dipole and dipole-dipole contribution 

from eq 22. The units offorce are kBTIlB' where IB is the Bjerrum length (0.714 nm). 
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Bratko et aI, Figure 1 
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