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.··ABS,TM.CT· 

Plane-wave destruction filters originate from a local plane-wave model for characterizing seismic 

data. These filters can be thought of as a T -X analog ofF -X prediction-error filters and as an alter-

native to T -X prediction-error filters. The filters are constructed with the help of an implicit finite-
. . . . I 

;. ··, ~!~ j •• ·.:: ;q 

difference scheme for the local plane-wave equation. On several synthetic and real-data examples, 
. ' . :d ' . .,. ~- ~ . . 

I demonstrate that finite-difference plane-wave destruction filters perform well in a~plications such 

as fault detection, data interpolation. and noise attenuation. 

1;. 

; ~ ' ' . ; ~- -, . 
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INTRODUCTION 

· Plane-wave destruction filters, introduced by Claerbout (1992), serve the purpose of characterizing 

seismic images by a superposition of local plane waves. They are constructed as finite-difference 
... ,:..·· .. •·· 

stencils for the plane-wave differential equat~on~ In many cases, a local plane-wave model is a very ... .. .. . . . .': 

convenient representation of seismic data .. Unfortu?a~ely, early experiences with applying plane-

wave destructors for interpolating spati~lly aliased data (Nichols, 1990; Claerbout, 1992) demon-.. ·' : . . 

strated their poor performance in comparison with that of industry-standard F -X prediction-error 

filters (Spitz, 1991). 

For each given frequency, an F -X prediction-ector filter (PEF) can be thought of as a Z-transform 

polynomial. The roots of the polynomial correspond precisely to predicted plane waves (Canales, 

1984). Therefore, F -X PEFs simply represent a spectral (frequency-domain) approach to plane-

wave destruction 1 This powerful a~d efficient approach is, however, not theoretically adequate wh~n 
. . 

the plane-wave slopes or the boundary conditions ~ary both spatially and temporaily. In practice, 

this limitation is addressed by breaking' the data int~ windows and assuming that the ~lopes are 

stationary within each window. 

'':' 

Multidimensional T-X prediction-error filters (Claerbout, 1992, 1999) share the same purpose 

,· 

of predicting local plane waves. They work· well with spatially aliased data and allow for both 

temporal and spatial variability of the slopes. In practice, however, T -X filters appear as very 

mysterious objects, because their construction involves many non-intuitive parameters. The user 

needs to choose a raft of parameters, such as the number of filter coefficients, the gap and the exact 

shape of the filter, the size, number, and shape of local patches for filter estimation, the number 
1The filters are designed to destruct local plane waves. However, in applications such as data interpolation, they are 

often used to reconstruct the missing parts of local waves. The choice of terminology should not confuse the reader. 
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of iterations, and the amounLof regularization. Recently developed techniques for handling non-

stationary PEFs (Crawley et al., 1999) performed well in a variety of applications (Crawley, 2000; 

_:f 1
· ·. • : :.t.> >~- .. , .. t •. -;. - . · ..... -: .,-. -~-~ ·,-._;: ~~, --.,._~--~< ~-:~'-~--- --: .. :~~ ·-~ -._.;· :·--r 

Guitton et al., 2001), but the large number of adjustable parameters still requires a significant level 

of human interaction and remai~s the drll\vback 'ofthe method:· 
. :··· i . • ,_-. 

Clapp et al. ( 1998) have recently revived the original plane-wave destructors for preconditioning 

:J~Ill.~gt:aphic .mob!etpswi~l1 a predefi,~~ djp field (Cl~pp, 20()q). The ,filters. were named .. steering 

filters because of their abilityto ~teer: th~ ,~plution, in.~ne dir~tion oqh~ lociil dips. ,.The Ua.DJy is 

also reminiscent of steerable filters used in medical image processing (Freeman and Adelson, 1991; 

Simoncelli and Farid, 1996). 

:i' '· .. ' -:·· i _;:, ' 1,. 

In this paper, I revisit Claerbout's original technique of finite-difference plane-wave destruc-

tion. First, I develop an approach for increasing the accuracy and dip bandwidth of the method. 

'1\ppiyibg the improved 'filter design to several data regularization problerlis, I discover that the 

finite-difference filters often pei:form· as well as, or even better thim, T -X 'PEFs .. At the same time, 

they keep the number of adjustable parameters to a minimum, and the only estimated quantity has a 

clear physical meaning of the local plane-wave slope. No local windows are required, because the 

cslope is estimated· as a smoothly variable continuous function of the data coordinates. 

Conventio?al methods for estimating plane-wave slopes are based on picking maximum values. 
·---~_t:(r'_:_~ \ :;:;: f ,.: __ ,_ ._ c .: : . . 

of stacking semblance and other cumulative coherency measures (Neidell and Taner, 1971). The . . ' _.:: 

differential approach to slope estimation, employed by plane-wave destruction filters, is related 

to th~ 'differential semblance method (Symes and Carazzone, 1991 ). Its theor~~ical superiority to 

~o~ventional semblance ~easures for the problem of local plane wave detectio~ ha~ been e~tablished 
; . ·. . - .· 

by Symes (1994) and Kim and Symes (1998). 
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· ·HIGH-ORDER PLANE-WAVE DESTRUCTORS · 

Following the physical model of local plane waves, we can define the mathematical basis of the 
. ' . ' ' .·. ' :; t~ ~ . . 

plane-wave destruction filters as the local plane differential equation 
.• ~.! § '.} " ; ' 

' whete P(t ;x) is the wave field, and cr' is the local slope, which may also depend on;t and·.x. ltfthe 

case of a constati.t slope, equation (1) has the1simple general·solution .··;;;:·--
~ ::. 

P(t ,x) = f(t- ax) , (2) 

where f(t) is an arbitrary waveform. Equation (2) is nothing more than a mathematical description 

of a plane wave. 

Ifwe assume that the slope a does not depend on t, we can transform equation (1) fa.~he 

frequency domain •. where it tak~~. the form of the ordinary differential equation . 

;, 

· and has the general solution 
•' _,. 

dP A -· + iroaP = 0 
dx 

P(x) = P(O) eirocrx, 

~' '. ,: ' ' - f-

(4) 

where Pis the Fourier transform of P. The complex exponential term in equation (4) simply repre-
'··t 

~. -

sents a shift of at-trace according to the slope a and the trace separation x. 
_, 

In the frequency domain, the operator for transforming the trace at position x - 1 to the neigh-
-· I ..-- • 4 ~ , , l , 

boring trace2 and at position xis a multiplication by eirocr. In other words, a plane wave can be 
- ·,' 

1. f ;~. 

perfectly predicted by a two-term prediction-error filter in the F -X domain: 

aoP(x) +a1 P(x- 1) = 0, (5) 
~--------------~-----------

. 2For simplicity, it is assumed that x takes integer v~ues that correspond to trace numbering. 
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where a 0 = 1 and a1 = -eiwa. The goal of predicting several plane waves•can.be accomplished 

by cascading ·several two-term filters. In fact, any F -X prediction.,.error filter represented.>in the 

Z-transform notation as 

(6) 

can be factored into a product of two-term filters: 
• ~ ;·.;;! ' ' -~ . 

· A(Z ) r~ ·(• 1 ~ Zx) ·(l :..d Zx)· ..... (l _ Zx ): .. 
; . X - . Z{ ·. - . Z£ .. ... . : ,, Z/v (7) 

where Z1, Z2 , ••• ,ZN are the zeroes of polynomial (6). ·According to equation (5), the phase of each 

zero corresponds to the slopy~Of a loc~l·pla~e wavemuitipiied,)?ythe~uency. Zeroes that are not 

on tl)e unit circle qrrry an addition~,l ~pJitude gain. not included .jn\eqHa,tiqp {3). . ; 
, • • , ; -~ • 

0 
•• • • ' , ; •• • • , !J , •, , ·-' ' I • ' , '•.' ~-. ', _ • l; , ) i,,. ·) ,. , . , • , "I , • ' 

: Inorder·to incorporate tiriie-vatying slope!iiwe need to return to the time dbniain and look for an 

· appropriate·analog of the phase:..shift operator ( 4) and the plane-prediCtion filter (5)~ ·An itnportant 

pmperty·o'f plane-Wave propagation across different traces is that thetcitaleneqtiof the propagating 

wave stays invafiarit tiirO'ughout the process:~ the ·energy 'Of the wave af oiie'tdce is c·ompleteiy 

tr!lnsmi~ted to tJJ.e_next trace. J:hi:;; propef!y, i~ .~ssur~d i~ t.he f~eqqency,,p()m.a!,r~ ~o~ution (4), by the 
• .• _.- ' , ·, . ~ , • • • •. , ~: •• , , • >1, . -~'- • • • . . •~ • , . • , , I . , · e I~ · I . , 

fact that the spectrum of the complex exponential ei~ ~!is ~guaJ ~?ipne:_ !~. fP~:: Hrne ,domain, we .can 

reach an equivalent effect by using an ,alJ-p~ss digital filter. In the Z-transform notation, convolution 
. :·.··:. ' ,,-.. \ . ;' . 

with an all-pass filter takes the form· 

·• ·-);-; 

(8) 
·,_ ·,.:. 

where Px(Z1 ) denotes the Z-transform of the corresponding trace, and therati'c> B(Z1)/ B( 1/Z1)'is an 

all-pass digital filter approximating th~ thne-sl1ift op~J."atoref(J)cr. ,In finite-difference terms, equa-

ti~n (8) represents an implicit finite-difference schellle for solving equation p) with, the initi~~ con-
\' ;,,, 

ditions at a constant x. The coefficients of filter B( Z,) can be determined, for example, by fitting the 
.ii!., :.·.l .l ·' 'c ' , ;·. i ·,: 
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filter frequency response at low frequencies to the response of the phase-shift operator. The Taylor 

series technique (equating the coefficients of the Taylor series expansion around zero frequency) 

yields the expression 

( )
- (1-cr)(2-cr) _1 (2+cr)(2~cr) .(l+cr)(2+cr) 

B3 Zr - 12 ~ + 6 . + 12 Z, (9). 

for a three-point centered filter B3 ( z) and the exp~ession 

Bs(Zr) = ( 1 - cr)(2 -·cr)(3.:... cr)( 4..::.. o:) 'z;-~ + ( 4- cr)(2- cr)(3- cr)( 4 + cr) 
2

t_ 1 + 
1680 ··' . .. 420 

'; 

( 4- cr)(3- cr)(3 + cr)( 4 + cr) 
·: . . '· . 280 . . 1;-. .. .. ! 

( 4- cr)(2 +cr)(3 + cr)( 4 + cr) ( 1 + cr)(2 +cr)(3 -t cr)( 4 + cr) 2 
· · ·• .. , ... ·. 420 · · · · ·Zr+ ··. ,. · 1680 ·· · 2r (lO) 

for a five-point centered'filterB5(t). The derivationofe<}uations (9:10) is detailedinthe appendix. 

It is e~sy to geperalize these·equations to longer fiJte~s. Figure l. shows the phl!.se of the all-pass · 

filters BJ(Z)/B3(1/Z) and Bs(Z)/Bs(1/Z) for two,values ofthe slope crincomparison with 

the exact linear function of equation ( 4 ) .. As expected, th~: ph(lse~ D1atch the. exact line at low 

Jreq~encies, and the,acqua,cy of the app~q,J~:imation increases with the length oftbe filter. , 

Taking both dimensions ititb consideration, equatiotr (8) transforms to the prediCtion equation 

. analogous to (5) witli iiie 2-D prediction filter . .· . .:fl .. i• 

(11) 

In order to characterize several plane waves, we can cascade several filters of the form (11) in a 

manner similar to that of equation (7). In :the examples of this paper, I use a modified version of the 

(12) 

/. '' ' ; 

which avoids the m~ed for polynomial division. In case of the 3-point filter (9), the 2-D filter (12) 
... ~-

• '.! '. ' ,.-:·,. •• 

has· exactly six coefficients. It consists of tw,o columns, each column having three coefficients and 



. the second c<;>lumn being a reversed .copy of the first one. When filter (12) is us¢ in data regQlar-

ization problems, it can occasionally cause undesired high-frequency oscillation~ iiqhe solution, 

resulting from the near-Nyquist zeroes of the polynomial B( Z, ). The oscillations are easily removed 

in practice with appropriate low-pass filtering~ 
. ' - - ' '-:.:·'. 

In the neJQ! sec:tipn, I address the problem of estimating the local slope cr with filt~rs ;afform ( 12). 

Estimating ~he s~opeis a 11ecessary step for applying the finite-difference plane-:-~ave filters on real 

·data. 

SLOPE E~TIMATION 

;:. :·· • : . _·; . .;~: . \.! •.. ·: ·; c., :. ' '-. •• •• • , •• , • •, • • ' ,; •• • f , ' ·. r _ 

tloh (12), assunung the local slope cr ts known. In order to deternune the slope, we can define the 

least-squares goal 

C(cr)d ~ 0, (13) . 

where d is the kno~~ data md the approximate eq~ality implies that 'the sohitiori is f~urid by nll~

imizing the power of the left-hand side. Equations (9) and '(10) sho~thatthe slope cr elit€rs i~ the 

:filter coefficients in an essential,ly non-linear way.· Hq~e"'er, one ca~:stillapply the linear iterative 

optimization methods by an analytical linearization of equation (13). The linearization (also known 

·'·-·· 

as the Gauss-Newton iteration) implies solving the linear system 

C'( cro)~crd + C( cro)d ~ 0 (14) 

for the slope increment ~cr. Here cr0 is the initial slope estimate, and C' ( cr) is a convolution with the 

filter, obtained by differentiating the filter coefficients of C( cr) ~ith respect to cr. After systein (14) 

'.: .. . ~ .. 

is solved, the initial slope cr0 is updated by adding ~cr to it, and one can solve the linear problem 



again. Depending on the starting solution, the method may require several non-linear iterations to 

achieve an acceptable convergence. 

The slope cr in equation ( 14) does not have to be constant. We can consider it as varying in both 

' . ' ' 

time and space coordinates. This eliminates the need for local windows but may lead to undesirably_ 

rough (oscillatory) local slope estimates. Moreover, the solution will be undefined in regions of 

-unknown or constant data, because forthese regions the local slope is -not constrained. Both these 

problems are solved by adding a regularization (styling) goal to system (14). The additional goal 

takes the form 

eDAcr~o. (15) 

where D is an appropriate roughening operator and € is a scaling coefficient. For simplicity, I chose . . . ., ' . . ' .. 

D to be the gradient operator. More efficient and sophisticated helical preconditioning techniques 
. : ,. . . . ' 

are available (Claerbout, 1998; Fomel, 2000; Fomel and Claerbout, 2001). 

In theory; estimating two different slopes cr1 and cr2 from the available data is only marginally 

more cqrnplicated than estimating a single slope. The convolution operator becomes a cascade of - ' ,' . . . ~ ' . . . . . ' . . 

~( cr1) an~ C( cr2)~ ang the ~nea?zation yields 

(16) 

The regularization condition should now be applied to both Acr1 and Acr2 : 

(17) 

(18) 

The solution will obviously depend on the initial values of cr1 and cr2 , which should not be equal to 
- .· ,. ~ . . . ..... 

each other. System (16) is generally underdetermined, because it contains twice as many estimated 

parameters as equations: The number of equations corresponds to the grid size ofthe data d, while 
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characterizing variable slopes cr1 and cr2 oQthe same grid involves two griddedfunctions.-However, 

an appropriate choice of the starting solution and the additional regularization ( 17 -18) allow us to 

arrive at a practical solution: 

The application examples of the next section d~mqnstntte that when the system of eq11ations ( 14-. ' ' -.- ' . . ~. ' - . ; . , . ' ' . . . 

-15)or (16:-18) are optimized in the least-squares sense in a cycle qf sev:erallin_earization iterations, it 
'. • . . . - : ~- ·. . ~ t , ·,. ;- . . ' • 

--·leads.tp,smooth and:n'!liableslope estimate~. The regul~atioq,c9_nditions (15):and (17-18) assure 
'. ' '~ • , · • '• ' .} ' ~ .' : ' , ' c 1' 1 • ' • ' • ··' , ; :- • ·' ' • • ' ·, 

.. a smooth extrapolation of the slope to the regions of unknown or constant data. 

APPLICATION EXAMPLES 
.. ·- ~ 

In this section, I eX'amine the performance ofthe finite-difference plane-destruction filters on several 

test applications. The general framework for applying these filters consists of the two ·steps: 

1. Estimate the dominant local slope (or a set of local slopes) from the data. This step follows 
·-:- .· 

the least-squares optimization embedded in equations (14) or (16). Thanks to the general 

regularization technique of equations (15 ) and (17-18), locally smooth slope estimates are 
< ':•' • ••• • • ' • ~' •• 

obtained without any need for breaking the data into local windows. Of course, local windows 
t'-

can be employed for other purposes (parallelization, memory management, etc.) Selecting 

appropriate initial values for the local slopes can speed up the computation and steer it towards 
·' . ), - -· ',. ' ·. ,-, ' 

desirable results. It is easy to incorporate additional constraints on the local slope values. 

2. Using the estimated slope, app1y non-stationary plane-w,flve de~trucHqn filters for the partie-
• ,. --·1 • . .• ·- ' • '.. -. 1 . 

ular application purposes. In the fault. deh!ction applicatipn, we silllply look at Jhe output of 
. . . :. . -; . . . ,.-. . '· :. . •' ; ' 

plane-wave destruction. ln the interpolation application, tl;le filters (lfe used to c;:onstrain the 
' • ' . ' . \ ' ." ' . . - ' ' I . • ·. . . ' ~ •· ' . • ' ' •· ' ' ,. . ' 

missing data. In the noise attenuation application,,they,characterize the coherent signal and 

noise components in the data. 



A description of these particular applications follows next. 

Fault detection 

The use of prediction-error filters in the problem of detecting local discontinuities was suggested 

by Claerbout (1994; 1999), and further refined by Schwab et al. (1996) and Schwab (1998). Bednar 

( 1998) used siinple plane-destruction filters in a similar setting to compute coherency attributes. 

To test the performance of the improved plane-wave destructors, I chose several examples from 

Claerbout ( 1999). Figure 2 introduces the first example. The left plot of the figure shows a synthetic 
_{' 

model, which resembles sedimentary layers with a plane unconformity and a curvilinear fault. The 

model contains 200 traces of200 samples each. The right plot shows the .corresponding texture 

(Claerbout and Brown, 1999), obtained.by·co:Qvolving a field ofrandom numbers with the inverse 

of plane-wave destruction filters. The inverses are constructed using helical filtering techniques 

(Claerbout, 1998; Fomel, 2000). Texture plots allow us to quickly access the ability of the destruc-
', .. ·· 

tion filters to characterize the main locally plane features in the data. The dip field was estimated by 

the linearization method of the previous section. The dip field itself and the prediction residual [the 

left-hand side of equation (13)] are shown in the left and right plots of Figure 3respectively. We ob-

serve that the texture plot does reflect the dip structure of the input data, which indicates that the dip 

field was estimated correctly. The fault and unconformity are clearly visible both in the dip estimate 

and in the residual plots. Anywhere outside the slope discontinuities and the boundaries, the resid-

ual is close to zero. Therefore, it can be used directly as i fault detection measure. Comparing the 

residual plot in Figure 3 with the analogous plot of Claerbout(1994, 1999); reproduced in Figure 4, 

establishes a superior performance ofthe improved finite-difference destructors in comparison with 

that of the local T -X prediction-error filters. 
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The left ,plot in Figure 5 introduces a simpler syQthetic test. The model is ,composed of Un~ar 

events with two conflicting slopes. A regularized dip neld estimation attempts to smooth the esti-

mated dip in the places where it is not constrained by the data (the left plot of Figure 6.) The effect 

of smoothing is clearly seen in the texture image (the right plot in Figure 5)~ Th~·corresponding 

residual (the right plot of Figure 6) shows suppressed linear events and highlights the places of 

their intersection. Residuals are large at intersections because a single dominant dip model fails to 
:;: 

adequately represent both conflicting dips. 

The )eft plot in Figure 7 shows a real shot gather: a portion of Yilmaz and Cumro ( 1983) data set 
. . .· : . . '_.,·· :.. ' . , ·'· I; 

27. The initial dip in thedip estimation program was set to zero. Tqerefore, the texture image (the 
:;,' , , '• '< I •' I , - • ' :·,' ·, 

right plot itt Figure 7) contains zero-dipping plane waves .in the places of no data. Everywhere else 
•, .. . . - . ,._. ' 

the dipis accurately estimated from t~e.data. The data ~ontain a missing trace at about 0,7 km,off~yt 
. . ' ' . . .' •. .. ; .·' 

~nd a ~ligqtly shifted (possibly mispositioned) trace at about 1.1 km offset. The mispositioned trace 

is clearly visible in the dip estimate (the left plot in Figure 8), and the missi~g trace is emphasizecUn 

the residual image (the right plot in Figure 8). Additionally, the residual image reveals the forward 

and back-scattered surface waves, hidden under more energetic reflections in the input data . 

. Figq~e 
1
9 shows a stacked time section from the Gulf of Mexico and, its correspon4in~ .t~xture. 

r}fhe t~~,p.~:re plot demonstrates that the estimated dip (the left plot of Figure l 0) refle~ts t~e qp~nan,t 

,~ocal dip in the data. After the plane .waves with the dominant dip are removed, many .hidd,en 
, '.: .·. . .. '! .. · • - . .. . 

,fliffr,actions appear in theresidual image (the right plot in Figure 10.) '!'he enhanc~ ?lffract~on 

t<Vents qm be used, for example, for estimating the medium velocity (Harlan et al, 1984). _ • 
< • .. ·.• ·, ' . - ·• I I ., ' . ' ' -, 

, '+ Overall; the examples of this subsection show that the finite-difference plane-wave destructors 

provide a reliable tool for enhancement of discontinuities and conflicting slopes iri seismic images. 

The estimation step of the fault detection procedure produces an image of the local dominant dip 
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field, which may have its own interpretational value. An extension to 3-D is possible, as outlined 

by Schwab ( 1998), Clapp (2000); and Fomel (2000). 

Trace interpolation beyond aliasing 

Spitz (1991) popularized the application of prediction-error filters to regular trace interpolation and 

showed how the spatial aliasing restriction can be overcome by scaling the lower frequencies ofF -X 

PEPs. An analogous technique for T-X filters was developed by Claerbout (1992, 1999) and was 

applied for 3-D interpolation with non-stationary PEFs by Crawley (2000). The T -X technique im

plies stretching the filter in all directions so that its dip spectrum is preserved while the coefficients 

are estimated at alternating traces~ After the filter is estimated, it is scaled back and used for inter

polating missing traces between the known ones. A very similar method works for finite~difference 

plane wave destructors, only we need to take special care ofthe aliased dips at the dip estimation 

stage. 

A simple synthetic example of interpolation beyond aliasing is shown in Figure 11. The input 

data are clearly aliased and non-stationary. To take the aliasing into account, I estimate the two dips 

present in the data with the slope estimation technique of equations (16) and (17-18). The first dip 

·corresponds to the ·true slope, while the second dip corresponds to the aliased dip component. In 

this 'example, the true dip is non-negative everywhere alld is easily distinguished from the aliased 

one. In the more general case, an additional interpretation may be required to determine 'which of 

the dip components is contaminated by aliasing. Throwing away the aliased dip and interpolating 

intermediate traces with the true dip produces the accurate interpolation result shown in the right 

plot of Figure 11. Three additional traces were inserted between each of the neighboring input 

traces. 
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Figure 12 shows a marine 2-D shot gather from a deep wa,ter Gulf of Mexico survey before and 

after subsampling in the offset direction. The data are similar to those used by Crawley (2000). 
. .· .. 

The shot gather has long-period multiples and complicated diffraction events caused by a salt body. 

The amplitudes of the hyperbolic events are not as uniformly distributed as in the synthetic case 
. '' ,., . - "";. ; .' 

of Figure 11. Subsampling by a factor of two (the right plot in Figure 12) causes clearly visible 
. . ... 

aliasing in the steeply dipping events. The goal of the experiment is to interpolate the missing traces 
'". :.::. .·' ' 

in the subsampled data and to compare the result with the o.riginal.gather shown in the left plot of 
- . c • ' { ·'- -· ' l 

Figure 12. 

A straightforward application of the dip estimation equations ( 16-18) applied to aliased data can 
·_; • ~ ' ~ ·.: :~··; • ' l I ; • .. • 

easily lead to erroneous aliased dip estimation because the aliased dip may get picked instead of the 
' • . r ~ . ;: • • ,· .' ' 

true dip. In order to avoid this problem, I chose a slightly more complex strategy. The algorithm for 
. ,, . . . :: . .. ·. 

trace interpolation of aliased data consists of the following steps: 

1. Applying Claerbout's T-X methodology, stretch a two-dip plane-wave destruction filter and 

estimate the ~ips from decim(,lted data. 

· 2. The second estimated dip will be degraded by alia~ing. Ignore this initi~l second-dip estimate. 

3. Estimate the second dip component again by fixing the first dip component and using it as 
' i: - '·· 

the initial estimate of the second component. ·This trick prevents the nonlinear estimation 

algorithm from picking the wrong (aliased) dip in the data. 

4. Downscale the estimated two-dip filter and use it for interpolat~ng missing traces. 
! . . . . 

The two estimated dip compbnents are shown in Figure 13. The first component contains only 

positive dips. The second component coincides with the first one in the areas where only a single 

dip is present in the data. In other areas, it picks the complementary dip, which has a negative value 
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for back-dipping hyperbolic diffractions, 

Figure 14 shows the interpolation result and the difference between the interpolated traces and 
r ~· 

the original traces, plotted at the same dip v~iue. The method succeeded in the sense that it is 

impossible to di~tinguish interpolated tracesfrom the interpolation result alone. However: it is not 

ideal, because some of the original energy is missing in the output. A close-up comparison between 

the original and th~ inteipolatedtn1ces in Figure 15 shows that impeif~tion in more detail. Some 

· ·- , . : 111· .'; . • . 
of the steepest events in the middle of the section are poorly interpolated, and in some of the other 

places, the second dip component is continued instead of the first one. 

On~ could improve the interpolation res~lt considerably by including another dimension. To 

achieve a better result, we cim us~ a pair of plane~wave destructors, one predicting iocal plane 

waves in ~he offset direction and the other predicting local plane waves in the shot direction. 

Signal and noise separation 

Signal and noise separation and noise attenuation are yet another important application of plane-

wave prediction filter~. A random noise attentipn has been. successfully addressed by Canales 
. . . ' ' . ' . ' ' } . ·- . . : 

(1984), Gulunay (1986), Abma and Claerbout (1995), Soubaras (1995), and others. A more chal-

lenging problem of coherent noise attenuation has only recently joined the circle of the prediction 
'I' 

technique applications (Spitz, 1999; Brown and Clapp, 2000; Guitton et al., 2001). 

The problem has a very clear interpretation in terms of the local dip components. If two compo-

' ; .1 ~I ~ ,' , : ; ' , 

nents, s 1 and s2 are estimated from the data, and we can interpret the first component as signal, and 

the second co~ponent as t~pise, then the signal and noise separation problem reduces to solving the 
l . . . . . . . 

least-squares system. 

C(st)dt ~ 0, (19) 

14 



. (20) 

for the unknown signal and noise components d1 and d2 of the input data d: 

(21) 

. The scalar parameter· E 'in equation (20) reflects' the signal tb noise ratiO; 'We di'n coriibiiie &qua-

tions (19-20) and (21) in the explicit system for the noise component d2: · ~- i·;; 

',,'_;· (22) 

'ec(s2)d2' ,~.· o .. (23) 

Figure 16 shows a simple example ofthe described approach. I estimated two dip components 

~:rtom tn:t~ 'input sYrithetiC data and sepctrated the corrbsponding events' by· sol\i-ing the least.-sqi.iares 

. s'js(em{22~23).· The ·separation restilt·isvisua:Ily perfect. 

Figure 17 presents a significantly more complicated case: a receiver line from of a 3-D land shot 

'gather fromSautii Atab'ia, coritaniinated with three-dim~risional ground-roll~ \vhich appears' hyper-

;bolic in th~ctoss~section. The same dataset·has'l>een·usedpreviously by Brown artd:Clapp.(:iOOO). 

The ground~toll noise ·and· the· reflection 'events have·. a ·significantly different 'frequency: content,.· 

which might suggest separating them on the base of frequency alone. The result of frequency-based 
,\' , ... ; 

.. separation, shown in Figure 18 is, however, not ideal: part of the noise remains in the estimated 
. :"1' .. 

signal after the separation. Changing theE parameter in equation (23) could clean up the signal 

purpose, I adopted the following algorithm: 

.. '· ,L Use,a frequency-based separation (or, alternatively,· a simple low-'-.pass 4iltering) to obtain an 

initial estimate of the ground-roll noise. 
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''. · 2. Select a window around the initial noise. The further separation will happen only in that 

window. 

3. Estimate the noise dip from the initial noise estimate. 

,; 4. ~.stimat~:the signa! dip in the selected data window as the.complimentary dip.;component ~o 

the already known noise dip. 

5. Use the signal and noise dips together with the signal and noise frequencies to perform the 

final separation. This is achieved by cascading single-dip plane-wave destruction filters with 

local 1-D three-coefficient PEFs aimed at destroying a particular frequency . 

. J;hesepru;ation result is shown in Figure 19. The separation goal has. been fully achieved:, the 

estimated ground-roll noise is free of the signal con:,.ponents, .and the ~stima,teg signal is free. oqh,e 

noise. 

TheJeft plot in Figure 20. shows anoth~r test example: a, spot ga,ther .from Yjlmaz and Cqmro 

(19~3), which is contaminated by nearly linearlow-velocitynoise. I.n thiscase,;,asip1ple djp-based 

sepc:p-ation was sufficient for achieving a good result. The algorithm proc~d.s.'\S follows:. 

1. Bandpass the original data with an appropriate low-pass filter to obtain an initial noise esti-

mate (the right plot in Figure 20.) 

2. Esti~ate the loc~lnqise dip from the initial noisemodyl. · .. 

3~ Estimate the signai dip from' the input data· as the· complimentarydi{J' compoiienho the already. 

known noise dip. 

4: Estimate the noise by an iterative optimization of system (22~23) and subtract it from the data 

to get the signal estimate. 
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Figure 21 shows th¢ separation result The signala11d noise componen~s are accurately 'separated. 

The examples in this subsection show that ~hen the sign:al andn6ise compbneiits have distinctly 

. d;ifferent loc~l. slopes, 'We can succes~fuJly sep¥.,.te theJ:l! with pl~e-:wavedestruction filters. 

CONCLUSIONS 

·processing multtdirilensiorial seislrik d<'lta: dn's~veral ex~ples, I showed tlieii good performance 

in sucH problems a5 faulfdetectitiii~;firissing da& l.nteipolatioil,and'noise ~ttenuation. Although only 

2~0 examples were demori~tiatetl;1 ii'is str~ightfotWard to'extend'tb:e m6thod to 3~:0 applications by 

considering two orthogonal plarr~-wave-'slopei · · · 

The sirriilarltied ~ddiff~rences betwee~ :plane-wa~~ dest;.uctors andT -X p~ecticti~n-error filters 

can be sunimari~6d as f~ltows: 
_,.. 

' ' . ~. ·~ -_·. { ~ j . : · •.. :. 

Similarities: 
• J_ ' •• • •• ~ • s .. ' 

! ·--~ . 

'- .. - • -Both types of filters 'operate:in ~the originaltime;aiJ.d-spad~ doinain of recorded: data . 

.• Both filters·:aim to predkt locaLplane-wave:events inthe'data . .-, ·. > • -

; ! • ; • -. ' .• :; ! ·' - ,; ; j ~ • • • ,· . ; : •.. -

• In most problems, one filter type can be replaced by the other, and certain techniques, such as 

Claerb'o~t;~ trace int~rpol~~i~n· method, are co~on for both approaches. 

Differences: . ,. . .'\~ ' . ·~.I •q ~ : 

• The design of .-plane-wave ~destructors -is ·,purely. :deterministic and follows the_ plane-.wave 

differential_equation. The design Qf T-X PEF ,has statistical roots, in U1e framework of the 
' ;-·; .. , .· ,~~ i 1 , ... ·_.~~ . -~--... ) .. ,;·_:·: ;.' .-. __ ,•: ~ ' ·. 
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maximum.:.entropy spectral analysis (Burg, 1975);' In principle, T-XPEF can characterize 

01ore complex ,s~gnals than local plane waves .. 

• -In the case of PEF, we estimate filter coefficients .. hi the case of plane~ wave destructors, the 

estimated quantity is the local plane-wave slope. Several important distinctions follow from 

that difference: 

',' 
. ~. c., ,The.,filter:-esti~pation pfoblem.i~ linear .. The.slop~,estimation probleD,l, in. the case of the 

' ' I ! ' ' <, .,> ' • > •' • • • • • • ~ • ' • , - '-' , • < f ' 

improved filter design, is, non-linear, but allows for an iterative linearizatiqn. In general, 

, non-lii;\eari~y ~s jill 1lndesifiible featqre because of ~ocal minii~a and the depend~nce on 

i11itial conditions. H()wever, we can sometimes use it creatively. For. exampl~, i.t. helped . --. ' ~ ' .. ·- ' - . ' 

to avoid aliased dips in the trace interpo~atio~exalllple. 

- Non-stationarity is handled gracefully in the local slope estimation. No local windows 
• : . I' f.;_;,... .: ., .· . - : .. · ' ' : ) . >' ·~, ,- . . • 

are required to produce a smoothly varying estimate of the loc~l slope. This is a much 
:;,· .'< - .•• -. -· 

more difficult issue for PEFs because of the largely under-determined problem. 

- Local slope has a clearly interpretable physical meaning, which allows for easy quality 

. :control·of the results. The coefficients of T-X PEFscare much mdre difficult to interpret. 

• The efficiency of the two.appt"oaches .is.difficult to COfllpare. ;Plane~ wave destructors are gen-

erally more efficient to apply because of the small number of filter coefficients. However, they 
-r: ... , . . . ; ,._ 

may require more computation at the estimation stage because of the non-linearity problem. 
. -~ . : _, -~ . ' . . . ' ' . ~ ... 
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APPENDIX A 

DETERMINING FILTER COEFFICIENTS BY TAYLOR EXPANSION 

This appendix details the derivation of•equatiops (9)and ( l'O)>The tnain'ideat<f'match the ftequeilty 

r~sponses of the approximate plane-wave f].l,ters tq the response of the exact phase-shift operator at 
f ' ~~ 

low frequencies. 

The Taylor series expansion of the phase~sqift :operatoreiwcr around the zero frequency ro = 0 
'y,.; 

takes the form 

-; ;· ~: 

B3(Zr) .. 

B3(I/Zr) 
. . : ; ... :. . ~ 

. '. :., .·.. . . . ~ ·. '.. . ~ 

. Matching the corresponding terms of expansions (A-1) and (A-2), we arrive at the system of non-

linear equations 

(J 
2(bl-b_t) 

ho+h-1 +b1 

4(bl-b-l? 

(bo +b-1 +bt)
2 

r 

2 (b1- b_l) [b~- bo (b-1 + bt) +4 (b:_ 1 - 4b_l b1 + bi)] 

(bo+bC:..1 +b1)3 

(A-3) 

(A-4) 

{A-5) 

System (A-3-A-5) does not uniquely constrain the filter coefficients b-1, bo, and b1 because equa-

tion (A-4) simply follows from (A-3) and because all the coefficients can be multiplied simultane-

ously by an arbitrary constant without affecting the ratios in equation (A-2). I chose an additional 



constraint in the form 

(A-6) 

which ensures that the filter B3(Z,) does not alter the zero frequency component. System (A-3-A-5) 

with the additional constraint (A. -q) resolves uniquely to tlte coefficient~ of filter (9) in tl}e ml!in text: 

b-t 
(1- cr)(2- cr) 

(A-7) 
12 

(2 + cr)(2- cr) ~' 

bo 
6 

(A-8) 

' ' ~. . ·{ 1 + cr)(2+ cr) 
bt 

12 
(A-9) 

The Bs filter of equation.(lOfis constructed in a'completely ana1ogous way, using longer Taylor 

expansions to constrain the additional coefficients. Generalization to longer filters is straightfor.-
-. - ,: . . . ~- .; . ,( ' ; ' . . ': ' . ·.-·-~ . 

ward. 

The technique of this appendix aims at matching the filter responses at low frequencies. One 

might construct different filter families by employing other criteria: for filter design (least squares 
;'1. 

fit, equiripple, etc.). 

·!. . •f :,_; 

.~ > .. 

. . · ~ . 

f! 
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LIST OF F~GURES 

1 Phase of the implicit finite-difference shift operators in comparison with the exact so1u-

tion. The left plot corresponds to the slope of cr = 0.~1 the right plot to cr = 0.8. 
· .. '.';.: . :~~: ' ·.'. i).~-;!:.~ -:J')',; . .. ·.,·. · ,,1 ~:~'!):;, : ... ·~·;." .. : ·:r_;. .;' .. '' ·.; 

2 Synthetic sedimentary model. Left plot: Input data. Right plot: Its texture. The texture is 
~~ '·. ,,. ·· -:··-~ .~ .. - (:.r· ~-! .1· ••. :! v ;_ :::,~.L, -.,.,, · - ' 

computed by convolving a field number with the inverse of plane-wave destruction filters. It high-
···:·"<.<i~- ·,;:~.,- ;~::, :_~::' .'·~-· ·: .. ~.; ;;>,·-~· :·~-' ... ,:, .. -".< --~·,;· .1··: \-~:.1·;: ~~:: 'i: ,·:·····. ·.:·f{~~,:.: .... ' ) '•' >:~ •, •' 

lights the position of estimated local plane waves. 

3 Synthetic sedimentary mod~l. Left plot: Estimated dip field. Right plot: Pred~ction resid-
-· >l;':·i-' :~~,_: .. , _:.,; __ ~~;- J;-:·•__,.,1·; -=i.. i·::_;,.• 

ual. Large absolute residual indicates the location of faults. 
;_ ·:c:-:.· :;; _.,; · ... , ,;.; ._· zr!~ -~':< · .- · ; ·.\."' (d-.. --~ ':~~-~-:. : ... {~:~~-( : -:;..::.cd ::(· ··t. :.;>:: 

4 Prediction residual of the 11-point prediction-error filter estimated in local 20x6 windows 
.! ~~;!,:"~. ;_ .. ·.~ .. ~:. -~~· r ' ·;-,' 

(reproduced from (Claerbout, 1999)).To be compared with the right plot in Figure 3 . 
. ·:,·:-; ···; · · ~ ,.,_ ·;;· ~- ."· .-- .. -.·· .J -~::;-:"f..'.···:~·:!·~- ..• 1~.·-~_.;.l<.r· ·:·:·,·: ~:' ·--.~·-l.;·· 

5 Conflicting dips synthetic. Left plot: Input data. Right plot: Its texture. 

6 Conflicting dips synthetic. Left plot: Estimated dip field. Right plot: Prediction resid- · 
. . ; ; . . ,-;, ~ • ·"' ~· ' •. :_: ·-~ ,. ' . . ? :·· . • '. ' ' 

ual.Large absolute residual indicates the location of conflicting dips. 

7 Real shot gather. Left plot: Input data. Right plot: Jts texture. ~ 
: · ., , -~-. ; ~·:-.:_: -:·: ;~__;·· · .-::o··LJ.:f_.r.i r:· ··._ ... · ~t ··:<-:i ~: , _ 

8 Real shot gather. Left plot: Estimated dip field. Right plot: Prediction residua!. The resid-
,. ..... ' r<~ft·:i •. -~"" .:.".i·::_;_;.r(~~~~ ~~.)f£~~:.; ; ::.i. . ~-,-·.~- J ~ :· '·: .• • 

ual highlights surface waves hidden un4er domil).ant refi~tion events in the original data; 
' • -_.,.._.H;;_.:/ i><l?- ~~', ·. ::~~~:.-~;:.. ' •'· j)J; > 

9 Time section from the Gulf of Mexico~ Left plot: Input data. Right plot: Its texture. The 
~: ~ ·. __ --~; -~··1·/ ·-·~~~~~r~r-,.;~ ·_ .· ~-:....:·. :. ·--~. .j· ·~· :, ~_.-:,. • • '· ·.- ··i: 

texture plot shows dominant local dips estimat.ed from the data. 
; '' • . '1 _"'"·, ), 't· :i·f.· ~--' ·.·.! .; .: / 

10 Time section from the Gulf of Mexico. Left plot: E~!timated dip field. Right plot: Pre-

diction residual. The residual highlights diffraction events hidden under dominant reflections in the 

original data. 

11 Synthetic example of interpolation beyond aliasing with plane-wave destruction filters. 

Left: input aliased data, right: interpolation output.Three additional traces were inserted between 



each of the neighboring input traces. • . 
• "'""'! ' "': ... - ~ ..... 

~ •• ' ... .... c ,. •• -~ 

12 2-D marine shot gather. Left: original. Right: subsampled by a factor of two in the offset 

j' r ~ ..... , ·; . t ' ~ ' • , -;~ H ,, ' ' 
direction. 

13 
' ' ,:, .·Lot .. ;j) .C.i; ,, I ~' l! ·!~i·; •:' ,.,, : f·,: .. :.:1 . 

Two components of the estimated dip field for the decimated 2-D marine shot gather. 

14 
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Left: 2-D marine shot gather after trace interpolation. Right: Difference between the inter-

':'L11 •; :~'• _; - ~l•.)'.;,'"f'~·,l..~-.1'*!;~ dfl'_,.'tf~J..-.!•!1~.,~ .. _· •'''· .·,~ 
polated and the original gather. The error is zero at the location of original traces and fairly random 

• I 

at the location of inserted traces. 

- f ~'\~ .. ' ::"' .... ,!, ... ~; '1 ~ . ; :.. L ··;( •t f .... lt\l . t --. r•·l ''J;1~- . ! 
15 Close-up comparison ofthe interpolated (right) and the original data (left) . 

. · .. H.:·r .. j.r , rl.: ,,; .tt ~ L t J..,t. 1- ·,,, , :· l· ~:r • .t··:_i ' 
16 Simple example of dip-based single and noise separation. From left to right: ideal signal, 

f. ,r~-. II t f. 1 ·,.dt f'; f '· _.~ ; r<..t..!; .... ~-t •!;· ~1· i, 

input data, estimated signal, estimated noise. 

-' ; '~! ·.t~·,~ .,6' t -~~,., ~ 'I• ...•. f.~ .,:,w 
17 Ground-roll-contaminated data from Saudi Arabian sand dunes. A reciever cable out of a 

3-D shot gather. 

·, ~.l.b • I ~ • ~ I r l~' 
18 Signal and noise separation based on frequency .. Top: estimated signal. Bottom: estimated 

-. r , ~ . ~, n. · '• ,. 
'•' 

noise. 

• ~ t-!~ •:}_ -: ....... :~ ..... ~.;J· :~ ·:·'"" . 

19 Signal and noise separation based on both apparent dip and frequency in the considered 

I ~ - 'f;•. l.~._,~j' ~ \)_ .~' :' .:~ ~ ' 

receiver cable. Top: esti!_Ilated sigrial. Bottom: estimated noise. 

,.'~,it..:tl'<;•. .~ 0 .'J' 0 ,1)~ ~ (~ .j-,. 1·~, I ~·Iff trl:,_; 
20 Left: Input noise-contaminated shot gather. Right: Result of low-pass filtering. The til-

.:>d;' --'' J/"'-.: ,-·! '!'tt<r· i,;Tj . _t, •'~;~' [I ,.· 
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