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-ABSTRACT:

Plane-wave destruction filters originate from a local plane-wave model for characterizing seismic
data. These filters can be thought of as a T-X analog of F-X prediction-error filters and as an alter-

native to T-X prediction-error filters. The filters are constructed with the help of an implicit finite-
. B T S Coe L T AV BN N
difference scheme for the local plane-wave equation. On several syntheﬁic and real-data examples,

I demonstrate that finite-difference plane-wave destruction filters perform well in applications such
AR s oL

as fault detection, data interpolation, and noise attenuation.



- INTRODUCTION

" Plane-wave destruction filters, introduced by Claerbout (1992), serve the purpose of characterizing
seismic images by a superposition of loc:al‘ plane waves. They are constructed as finite-difference
stencils for the plane-wave di_fferenti_al equationf In many cases, a local plane-wave model is a very |
convenient representation of seismic data. ,Unfortunately, early experiences with applying plane-
wave destructors for interpolating spatlally ahased data (N1chols 1990; Claerbout, 1992) demon-
strated their poor performance in companson w1th that of industry-standard F -X prediction-error

filters (Spitz, 1991).

For each given frequency, an F-X prediction-error filter (PEF) can be thought of as. a Z-transform
polynomial. The roots of the polynomial correspond precisely to predicted plane waves (Canales,
1984) Therefore F-X PEFs srmply represent a spectral (frequency-domaln) approach to plane-
wave destruction! ThlS powerful and efﬁcrent approach is, however, not theoretlcally adequate when
the plane-wave slopes or the boundary condltlons vary both spatrally and temporally. In practlce,
vthi.s. limitation i.s'addressed by' hr‘eal’dng;the data 1nto wmdows an:d: assu:nnn[g that ;the slopes. are
stationary Withih each uvrndotv; : |

Multidimensional 7-X predictron.-e‘r‘ror ﬁlters(Claerbout, 1;92, 1999) share the sarne purpose
of predicting iocal plane waves.’ They worh:well with‘- spatially aliased data and allow for both
temporal and spatial variability of the slope's. In‘practic_e, however, T-X filters appear as very
mysterious objects, because their c.onstruction involves many non-intuitive parameters. The user
needs to choose a raft of parameters, such as the number of filter coerﬁcients, the gap and the exact

shape of the filter, the size, number, and shape of local patches for filter estimation; the number

The filters are designed to destruct local plane waves. However, in applications such as data interpolation, they are

often used to reconstruct the missing parts of local waves. The choice of terminology should not confuse the reader.




of iterations, and the amount of regularization. Recently developed techniques for handling non-
stationary PEFs (Crawley et al., 1999) performed well in a variety of applications (Crawley, 2000;
“Guitton et al,2001), but the large fhumber of ad;ustableparanieters strllrequlres a 51gn1ﬁcantlevel

 of human interaction and remains the drawback of the method. ~~
Clapp et al. (1998) have recently revived the original plane-wave destructors for preconditioning

-tomographic problems with a predefined dip field (Clapp, 2000). The filters, were named, steering

filters because of their ability to steer: the solution.in the direction of.the local dips. The name is

.

-also reminiscent of steerable filters used in medical image processing (Freeman and Adelson, 1991;

Simoncelli and Farid, 1996).

STRTE R T P . P
e B A l' B PR i,

In this paper I revisit Claerbout s ongmal ‘technrone vof ﬁmte drfference. plane Vl/ave destruc—~
tion. First, I develop an approach for increasing the accuracy and dip bandwidth of the method.
Applymg "tlie"improved ‘filter design to several data regularization problen‘j'ls‘, I discover that the
finite-difference ﬁlters'often perform a$ well as, or even better than, T-X PEFs. At the $ame time,
they keep the number of adjustable parar_r_ret_ers toa minimum, and the only estimated quantity has a -
. clear physical meaning of the local plane-wave slope.v No local windows are required, because the

:slope is estimated as a smoothly variable continuous function of the data coordinates.

e

Conventronal methods for est1mat1ng plane wave slopes are based on prckmg maxrmum values_

RO TEL Y “U iz f e St BT A

of stackmg semblance and other cumulatlve coherency measures (Neldell and Taner 1971) The».
) drfferentral approach to slope estimation, employed by plane-wave destruction ﬁlters, is related-
to the drfferennal semblance method (Symes and Carazzone, .199' 1) Its theoretlcalsupenorrty to
conventronal semblance measnres for the problem of local plane wave detect1on hasbeen estabhshed

by Symes (1994) and Klm and.Sym:es ( 1‘99.8)..-



-~ HIGH-ORDER PLANE-WAVE DESTRUCTORS  :

plane-wave destruction filters as the local plane differential equation
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" where P(t,x) is the wave field, and o is the local slope, which may also depénd on't ‘and'x. T the

S N Pt - S

‘case of a constant slope, equation (1) has the’simple géneral solution:
P(t,x)= f(t—ox), | @)

where f(t) is an arbitrary waveform. Equation (2) is nothing more than a mathematical description

of a plane wave.

hars

If we assume that the slope 6 does not depend on ¢, we can transform equation (1) to.the

frequency domain, where it takes, the form of the ordinary differential equation..

~

dP ~ - . Lo . N oA
—+incP =0 S Cer T T(3)
dx :
- and has the general solution
P(x) = P(0)e™™, @

where P is the F&urier transform of P. The complex exponentiél term in equafion (4)31mply fepre- :

i

sents a shift of a f-trace according to the slope ¢ and the trace separation x.
In the frequency domain, the operator for transforming the trace at position x — 1 to the neigh-

boring trace? and at position x is a multiplication by ¢“°. In other words, a plane wave can be

[EEPRE R

perfectly predicted by a two-term prediction-error filter in the F-X domain:

ap P(x) +alll3(x— 1)=0, (5)

2For simplicity, it is assumed that x takes integer values that correspond to trace numbering.
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‘where ag = 1 and a; = —¢/®%. The goal of predicting several plane waves:can.be aceomplished
‘by cascading :several two-term filters. In fact, any F-X prediction-error filter representedin :the
Z-transform notation as

A(Z) =14 aZtaZi + - +anZy (6)

can be factored into a product of two-term filters:

A(z>—(“§‘)(“§—) -z o

where Z;,72,...,Zy are the zeroes of polynonﬁal (6)."AC<':0'rding'to equation (5), the phase of each
‘Zero correspbn(is to the élﬁi)gj'ojfé 16cajl'l 'pléﬁe‘wﬁve 'muitiﬂiiéd by: thefrequency Zeroes that are not

on the unit circle carry.an additional amplitude gain not included inequation (3). ...
-appropriate-analog of the phase-shift operator (4) and the plane-p‘rédiCtidn filter:(5).* An important |
property-of Vplaﬁe-wave propagation across différent traces is that the total 'fenérgy'ﬁof the propagating
w;ve stays invafiant thiroughoutthe process the energy ‘of the Wave at oné’trace is completely
* transmitted o the next race. This property,is assured in the frequency;domain ﬁqlutién:@z by the
fact that the spectrum of the complex exponential €, is equal to one. Inthetlme ;d§main? we can

reach an equivalent effect by using an all-pass digital filter. In the Z-transform notation, convolution

“* with an‘all-pass filter takes the form.: |

B(z,) |

®)

“where P,(Z,) denotes the Z-transform of the corresponding trace, and the ratio B(Z,)/B(1/Z,)'is an
all-pass digital filter approximating the t_ime-shift,op_g:yatpr_ef‘f"?. In finite-difference terms, equa-
tion (8) represents an implicit finite-difference scheme for solving equation (1) with the initial con-

ditions at a constant x. The coefficients of filter B(Z,) can be determined, for example, by fitting the



“filter frequency response at low frequencies to the response of the phase-shift operator.- The Taylor
series- technique (equating the coefficients of the Taylor series expansion around zero frequency)

yields the expression

(1-0)2-0) , 1, (2+0)2=0) , (1+0)(2+0)

B3(Z) = B A P o )
for a three-point centered filter B3(Z;) and the exp‘ré's;s;ionb B
(1-0)2—0)(3- G)(4 0) (4 -0)(2—0)(3 - G)(4+G)
Bs(z) = 1680 - 420 +
| m @@ ®c+®@+®
2807 : . i S

(4 c)(2+c)(3+c)(4+c) (1+c)(2+c)(3+o)(4+c) (10)
4200 ST 1680

for a five-point centered 'Lﬁli& B5(Z). The derivation of equations (9-10) is detailed in the appendix.
It is easy:to generalize these:equations to longer filters.. Figure 1.shows the phase of the all-pass -
filters B3(Z;)/B3(1/2;) and Bs(Z;)/Bs(1/Z,) for two;vvalue_sw‘ of .the slope G in :comparison‘ with
the exact linear function: of. equation.(4). ,.Ascxp}ec_ted, ‘the, phases’ I_n_atch the exact line at low
vl-_-fljeql-@neiesv and the,accuracy ‘vof the approximation »increases with the lerigth of the filter. ,
Taking both dimensions into-consideration, équation-(8) transforms to the predi¢tibn equation
“analogous to (5) with the 2-D prediction filter

A(Z, z ) —1-z, BI;S’Z{) Can

In order to characterize several plane waves, we can cascade several filters of the form (11) in a
manner similar to that of equation (7‘:).;sIIi;fthe exampieé of this paper, I use a modified version of the

filter A(Z;,Z), namely the filter, .

C(Z2) = AZIZ)B(Z) = B(YZ)=ZB(Z), T (12)
which avoids the need for polynomial division. In case of the 3-point filter (9), the 2-D filter (12)
. has 'Léxéctly siﬁ(:éoefﬁéi‘e:nt's-. It con31sts Of two éolﬁmﬁs, e‘akcrhﬁc‘oiumxll haviﬁg three coefficients and

6



.the second: column being a reversed copy of the first one. When filter (12) is used in _déta regular-
ization problems, it can occasionally cause undesired high-frequency oscillations in the solution,
resulting from the near-Nyquist zeroes of the polynomial B(Z; ). The oscillations are easily removed

in practice with appropriate low-pass filtering.’

In the next section, I address the problem of estimating vthg local s_l_ope o with filters of form (12).
Estimating the slope is.a necessary step for applying the finite-difference plane-wave filters.on real

data' ‘":::', ol

* SLOPE ESTIMATION

Let us denote by C(O‘) 'iﬁéloﬁerator of EonVol\'}ihg the dafa ‘with thie 2—DﬁlterC(Z,,Zx)of éqi;a-
tion (12), assuming the local si_op?a & is known. In order to determine the slope, we can define the
least-squares goal

C(o)d~0, T s 13y

where d is the known data and the approximate equality implies that the soliition is found By min-

Afilter coefficients in an esséntial;ly non-linear way.- However, one can.still.apply the linear iterative

optimizZation methods by an analytical linearization of equation (13). T_he linearization (also known
as the Gauss-Newton iteration) implies Solving thé llnear system

C'(60) Asd + C(cp)d ~ 0 . a9

for the slope increment Ac. Here oy is the initial slope estimate, and C'(o) is a convolution with the

filter, obtained by différentiéting the ﬁlter‘cvo'éfﬁcien-t's of V‘C(IO') w1th réspéct-"tlb' o. After system '('14)

is solved, the initial siope 6(;‘i‘s' hbdated bry zidding A t01t .and one can solve the linear pfobiem



again. Depending on the starting solution, the method may require several non-linear iterations to
‘achieve an acceptable convergence.

Thg ‘slope”‘q in"e"qx‘lat.ion (14) doés nof have to bé cdﬁs£ant§ We can ébnsider it: as; varying iﬂ both
time and space coordinates. This eliminates the needvfor local wiﬁddv?s. bﬁt ﬁlay lead to undesifaibiy.
rough (oscillatory) local slope estimates. Moreover, 'the;‘solution'will be undefined in regions of

‘unknewn or constant -data, because for these regions the local slope is-not constrained. B(‘)'til these
problems are solved by adding a regularization (styling) goal to system (14). The additional-goal
takes the form

eDAG~0, | - (15)

where D is an appropriate roughening operator and € is a scaling coefficient. For simplicity, I chose
D to be the gradient operator. More efficient and sophisticated helical p'_recondition_ing techniques

are available (Ciaerbout, 1998, Fomel, 2000, Fomel and Claerbout, 2001).

- In theory, estimating two different slopes 0} and 6, from the available data is only marginally,

more complicated than estimating a single slope. The convolution operator becomes a ca_scadq of .

'

C(01) a4 C(02),and te inarzationyild
. ‘C’('Efil)“C('Gz)Adl‘«_i+C(c‘n ).C'(Gz)Adzd-l_—’v'C(csf)'C(cz)vd ~ 0 ST 16)

JThe %e_guiériéétiéﬁ ;:o)nditi.o-n s‘héu;d now be App}ied to l;oth Aoy andv;o;: ) |
eDAo., z O ;. ' | an

eDAc, ~ 0. | )

The solution will obviously depend on the initial values of G; and &,, which should not be equal to

each other. System (16) is generally underdetermined, because it contains twice as many estimated

t

parameters as equations: The number of equations corresponds to the grid size of the data d, while

8




- characterizing variable slopes 6, and &, on the same grid involvestwo gridded functions.-However,
an apprbpriate choice of the starting solution and the additional regularization (17-18) allow us to

arrive at a practical solution:

The application examples of the next section demonstrate that when the system of _eqp_atidns (14-
~15) or (16-18) are optimized in the least-squares sense in a cycle of several linearization iterations, it
- leads to.smooth and reliable slope estimates. The regularization conditions (15) and (17-18) assure

-« a smooth extrapolation of the slope to the regions of unknown or constant data.
" APPLICATION EXAMPLES

In this section, I examine the performance of the finite-differénce plane-destiiction filters on several

test applications. The general framework fofapplying these filters consists of the two steps:

1. Esti’maté ¥he dominant lééai slop;e (of é set of .local slopes) from» the datq. Thisv étep follows
the least-squares optimizationr.é;n:be-dde';iz m e;]uzlftic;r.ls.(l4). of (176)..‘: Thani%s to t.ﬁe geriefal
fegulaﬁiati;ﬁ tevcrl‘mi‘que’;); equat10ns(15) and(17-18), 'loc.alllysrﬁc;oih’ slope e.:stirvnat}es‘a.re
’ obfainéd withqut any nee;i. for breakmg the da'ta mto lc;‘c,z;l.w.i‘hd»owvs. Of course, iéﬁal Windéws :
caﬁ be érﬁployed flor other purposes(parallehzatlon, mérr;ory rﬁ/aﬁa:geme;ltz,. -evtc.) éélectiﬂg
:a;;propriate initial v;lll‘levs fof tﬁe local slo‘pes éan sb.et;; 1;p the compu;tiofl anci ‘steer it tO\%/,afds
desirable? results. It is easy to incorporate additioqal cor_nstraints on the local slope values_.

2. Using the estimated slope, apply I}Qrglv-svtat_(iqn‘;ary plane-wave Q¢§t§qction filters for the partic-
ular applicatign purposes. In the fault_,detg;:tipn gpplicggign, vye:vvs_impl_’y lqok at the output of
planev—wave_dest‘ruc‘\tioq. In th_ve*,,intequlatéop_v_@'ppltica;i‘o'n, the ﬁltersare l{lvsed, to c_onstfa_in the
missing data. In the noise attenuation applicatic_)n,_;hey,icharacteri;zc the coherent signal and

noise components in the data.



- A-description of these particular applications follows next. .

Fault detection

The use of prediction-error filters in the problem of detecting local discontinuities was suggested
by Claerbout (1994 1999), and further refined by Schwab et al. (1996) and Schwab (1998). Bednar

(1998) used simple plane-désthCtiOn filters in a similar setting to compute coherency attributes.
By oo

To test the performance ot the.;mproved plane-waue destructots I chose sevetal e)tamples from
Claerbout (1999). Figure 2 introduees the ﬁrst exathple. The left plot of the figure shows a synthetic
model, which resembles sedimentary layers with a plane unconformity and a curvilinear fault. The
model contains 200 traces of .200 samplesaeach. The right plot-shows the ,corresponding‘ texture
(Claerbout and Brown, 1999), obtained by:convolving a field of random numbers with the inverse
of plane-wave destruction filters. The ihverses are constructed using helical filtering techniques
(Claerbout 1998; Fomel 2000) Texture plots allow us to qutckly access the ab111ty of the destruc-
tion filters to charactenze the main locally plane features in the data The d1p ﬁeld was estimated by
the linearization method of the previous. sectlon The dip ﬁeld 1tself and. the predtetlon res1dual [the
left hand side of equatlon (13)] are: shovt'n nt the lett ahd nght plots of F1gttre 3 tespectwely We ob-
serve that the texture plot does reﬂect the d1p structure of the 1nput data whlch indicates that the dip
field was estimated eorreetly. ’l‘he fault ahd uhconformlty are clearly \tlslhle both in the d1p :sumate
and in the residual plots. Anyuvhere joutside the' slope diseontihuitles and the _boundaries, the resid-
ual is close to zero. Therefore; if can be used'dir‘ec'tly as 4 fault detection measure. Comparing the
residual plot in Figure 3 with the ahalogou's plot of Claerbout (1994, 1999); reproduced in Figure 4,
establishes a superior performance of the impto{'ed’ﬁnite-dlfferenee destructors in comparison with

that of the local T-X prediction-error filters.
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The left plot in Figure 5 introduces a simpler synthetic test. The model is.composed: of linear
events with two conflicting slopes. A regularized dip field estimation attempts to smooth the esti-
mated dip in the places where it is not constrained by the data (the left plot of Figure 6.) The effect
of smoothing is clearly seen in the texture image (the right plot in Figure 5):° The corresponding
: residual (the right plot of Figu;e 6) shows suppressed linear events e_md highlights the places of
;héir it;t;;;ection. Residuals are largc; at interséctidn; be;:ause .a; smgle dommantdlpmodel falls ;0
édequat;i).l- ;epreseni ibotlrn ;oﬁi{ictiﬁg bdips.' ]

. The left plot in Figure 7 sh‘o_vgs areal shot gather: a portion of Yilmaz and égn_mp (1_9‘8’3‘) data set
27 The initial dip in the dip estimation program was set to zero. Therefore, the texture ixpage (the
nght plot in_Figl_lre 7) :contaihs zem_—dipp__ing plane waves in the places .o,_f no data. Ev_e;'ywhquf_: else
thedip is ac;curatevlyvesvtimat:ed frg_m ghe__giata. The data pqntain a _missing trace at about 0.7 km Offset :
anda s,ligh(FIy shiftefi (possibly m_isp_oéition@) trace at about 1.1 km offset. The mispositioned trace
is clearly vi.sible in the dip estimate (the left plot in Figure 8), and the missing trace is emphasizegl, in
the residual image (the right plot in Figure 8). Additionally, the residual -im;elge reveals the forward

and back-scattered surface waves, hidden under more energetic reflections in the input data.

. Figure 9 shows a stacked time_sc;ction from the Gulf of Mexico and.its corresponding texture.
. The texture plot vde;nonstrat‘eé' that the estimated dip (the left plot of Figurg 10) reflects the anﬁna;}t
. Jlocal dip in the dél_té. After the plane waves with the dominant dip are removed, many hidden
,Qil_ffgacti_on_s_ appear in‘the_:, residual image (the ﬁght plot in Figure 10.) "I_‘hqe;phancgd _qﬁiffracﬁt‘ip:n

. -events can be used, for example, for estimating the medium velocity (Harlan et al., 1934). ,,,';:; ‘

“r3t  Overill; the examples of this subsection show- that the finite-difference plane-wave destructors
provide a reliable tool for enhancement of discontinuitiés and conflicting slopes in seismic images.

The estimation step of the fault detection procedure produces an image of the local dominant dip

11



field, which may have its own interpretational value. An extension to 3-D is possible, as outlined

“by Schwab (1998), Clapp (2000); and Fomel (2000).

Trace interpolation beyond aliasing

: Spiti (1991) popuiarized the épplicati;)n of prediction-ex%of ﬁlterg to .rAegularr trace‘ iﬂtefpolation and

| Lé"hvowecrl héw tiné sﬁatial aliasing resfriction (;an be overcomé ny scahng the l<;wer freqqéricies of F -X
PEFs. An analogous technique for T-X filters was developed by"(‘Z‘l‘a’erbo:l.lt (1992,1999) and w;s
applied for 3-D interpolation with non-stationary PEFs by Crawley (2000). The T-X "techn:iqixe im-
‘plies stretching the filter in all directions so that itsdip' spectrum is bresérved while the coefficients
are estimated at alternating traces. After the filter is estimated, it is scaled back and used for inter-
‘polating missing traces between the known ones. A very similar method works for finite-difference
plane wave destructdrs,'o’niy we need to take special care of the aliased dips at the dip estimation
stage.

A simple synthetic exémple of iﬁterbolation beyond aliasing is shbwn iﬁ Figlire 11. 'fﬁe inbﬁt
data are cleérly aiiased and hc.)n-lstati(.)nary. To tai«: thé éliasing into accounf, I estimate the tw; dip.s
present in the data with the slope estimation technique of equations (16) and (17-18). The first dip

‘corresponds to the true slope, while the second dip corresponds to the-aliased dip component. In
‘this example, the true dip is non-negative everywhere and is easily distinguished from the aliased
one. In the more géﬂeral case, an additional interpretation may be required to detéfmine'%\'v'hic‘ﬁ."qf
the dip components is contaminated by aliésing. Throwing away the aliased dip and interpolating
intermediate traces with the true dip produces the accurate interpolation result shown in vthev-righvt
plot of Figure 11. Three additional traces were inserted between each of the neighboring input

traces. -

12



Figure 12 shows a marine 2-D shot gather from a deep water Gulf of.ngico survey before and
after subsamplﬁng in the offset directipn. The da_jtgAare» similar to those used by Crawley (2000).
The shot gather has long-period multiples and complicated diffragtiop events caqsed by a salt body.
The amplitudes of -the; hyperbolic events are Ppt as ;qpifqpfr}ly dxstrlbuted gs_in the synt:hetic _che
of Figure 11. -Subsampling by a factpr of two .(thg_ri'ght p'lot ir_1. Flgure .1‘.2)__kcavus¢s clearly \?isii:l_)le
aligsing in the steeply dipping -ev_envts.‘ Ttllggoal of the .ﬁgpel‘i.g;e::nt is to intefpolate the nﬁssipg_ traces
ip the §1_1bsampled data a‘nd.to ;:ompayg thg .r_es'ultz with the Qr_igiggl‘vg_z}the.,r._shoyytix in thq left plot of

Figure 12.

A straightforward application of the dip estimation_gqua;iops (16-18) applied to aliased data can
‘easily lead to erroneous aliased dip estimation because the aliased dip may get picked instead of the
true dip. In order to avoid this problem, I chose a slightly more complex strategy. The algorithm for

trace interpolation of aliased data consists of the following steps:

1. Applying Claerbout’s T-X methodology, stretch a two-dip plane-waire destruction filter and

- estimate the dips from decimated data.
2. The second estimatéd dip will be degraded by aliasing. Ignore this initial second-dip estimate.
3. Estimate the second dip component again by fixing the first dip component and using it as
the ‘initial estimate of the second component. This trick prevents the nonlinear estimation
algorithm from picking the wrong (aliased) dip in the data.
4. Downscale the estimated two-dip filter and use it for interpolét:mg missing traces.
The two estimated dipj comﬁbnénts are shown in Figure 13. The first component contains only
positive dips. The second component coincides with the first one in the areas where ohly a single

dip is present in the data. In other areas, it picks the complementary dip, which has a negative value

13



for back-dipping hyperbolic diffractions. -

T

Figure léi shows the interpolation result and the difference between the interpolated'traces and
the original traces, plotted at the same clrp i;alue. The. method succeeded in the sense that it is
impossible to distinguish.in‘terpolated traces.'fromthe interpolation res.ult.al.one.l: HoWever;' 1t is not
ideal, becanse some of the originalenerg};is .mis:sing in the outpnt. Aclose—up comparison betwe_en
the original and the:}'inter'polated tracesiniliigure‘rlS'shows. that imperfectibn in more detail. Some
of the ;steepest events in the mrddle of the Vse‘ction' are poorly iriterpolated; and in some'of the other
places, the second dip component is continued instead of the first one.

‘ ‘On\e' could 1mprove the interpolation resnlt con:siderabl)l by includingdanother dimension. To
achieve a better result, We can .usej'a pair of plane:wave deStl‘l.l.CtOI'.S,. one predicting local plane

waves in the offset direction and the other predicting local plane waves in the shot direction.

Signal and noise separation

Signal and noise separation and noise attenuation are _yet another important application of plane-
~wave prediction ﬁlters A random noise attention has been successfully addressed by Canales
(1984) Gulunay (1986), Abma and Claerbout (1995) Soubaras (1995), and others A more chal-
lengmg problem of coherent noise attenuation has only recently Jomed the c1rcle of the predrctron
technique applications (Spitz, 1999; Brown and'Clapp, 2000; Guitton et al., 2001).
The problem has a very clear interpretation in terms of the local dip components. If two compo-
nents, s; and sz are estlmatedfrom the dat;a,and wecan vinterpret the ﬁrst component as s.ign.al, and
the second component as noise, then the signal and noise separation problem reduces to solving the

least-squares system

Cls)dy ~ 0, (19)



CeC(sp)dy & O - e 7(20)
for the unknown signal and noise components d; and d; of the input data d:
" dl+d2= d LT : SRR A £ VS S I \(21)

"The 'scalar parameter € in equation (20) reflects'the signal to noise ratio. "We ¢in combine &qua-

tions (19-20) and (21) in the explicit system for the noise component d;: - -7 BRAERE

C(S1)d2 - C(S])d7 - A S L L (22)
Gel)dy w0 )

Figure 16 shows a simple example of the described approach. I estimated two dip components
“from thé'input synthefic data and separated the Corrésponding eveiits by ‘solving the léast-squires

§ysfem’(22:23). The separation resultis visually perféct.

Figure 17 presents a significantly more complicated case: a réceiver line from of a 3-D land shot

“gdther from Saudi Arabia, coritaminated with three-dimérisional ground-roll, whih appears hyper-
“bolic in thé ctoss:section. The same dataset has'beén used previously by Brown‘and'Clapp (2000).

¢ The ground-ioll noise-and the reflection évents have a significaiitly differént ‘fregiiéncy contént,

*.+~ which might suggest separating them on the base of frequency alone. The result of frequency-based

~F D T [ i
L Lo L BT MR LF N T A R S

separation, shown in Figure 18 is, however, not ideal: part of the noise remains in the estimated

IR EIRCES LY A IR A

Pl

signal after the separation. Changing the € parameter in equation (23) could clean up the signal
_ estimate, but it would also bring some Of the signal into the subtracted n6iss:“A better $trdtegy is to

separate the events by using both the difference in frequency and.the difference in slope. For that

SRS L e '-A[A.'~I<’: R RN Saed AT T e LaadeMin Lo Ty A T

purpose, I adopted the following algorithm:-

-1 Use.a frequency-based separation (or, alternatively, a simple low-pass filtering) to obtain an
initial estimate of the ground-roll noise.
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"+.°2. Select a window around the initial noise. “The further separation will happen only in that

‘window.
.. 3. Estimate the noise dip from the initial noise estimate.

. 4. :_Estimate the signal dip in the selected data window-as the complimentary dip.component to

the already known noise dip.

.~ 5. Use the signal and noise dips together with the signal and noise frequencies to perform the
final separation. This is achieved by cascading sihgle—dip plane-wave destruction filters with

local 1-D three-coefficient PEFs aimed at destroying a particular frequency.

.The separation result is shown in Figure 19.. The separation goal has been fully-.achieved:‘ the
estimated ground-roll noise is free of the signal components, and the estimated signal is free of.the
noise.

- The left plot in Figure 20 shows another test.example: a shot. gather from Yjlmaz and Cumro

-(1983), which is contaminated by nearly linear low-velocity. noise. In this case,.a simple dip-based

separation was sufficient for achieving a good result. The algorithm proceeds as follows: . . ..«
1. Bandpass the original data with an appropriate low-pass filter to obtain an initial noise esti-
mate (the right plot in Figure 20.) ‘
2. 'Est,i_n_late!:‘tlilc local noise dip from the initial noise model. .
3. Estimate the signal dip from the input data as the complimentary dip Component to the dlready
known noise dip.

- 4. Estimate the noise by an iterative optimization of system (22-23) and subtract it from the data

to get the signal estimate.

16



Figure 21 shows the separation result.. The signal and noise components are accurately ‘separated.

The examples in this subsection show that when the Sign‘ai and noise éorﬁpéﬁéﬁ& havédistinctly
different local slopes, we can successfully separate them with plane-wave destruction filters. .

NI TEPARS

CONCLUSIONS o

. Planewave destruction filters with an'improved finite:difference design ¢an be'a valuable tool in
‘processing multidimensional seismic data. On'séveral examples, I showed their good performance
‘in suchi problems as fault "détéétidﬁ?irﬁssiﬁ’g dafa interpolatiofi; and noise attenuation. Although only
2D examples weré demonstiated; it is sfrhigﬁffoﬁzifd to'extend the méthod to 3-D applications by
considering two orthogonal plane-wave siopes.
The s1nnlar1t1es and Jdi'ffér'én'ce's: between :p'l'ane-vii;gé;ies..ltﬁiétbrvs and T-X ;)lfédiétiénQerror filters

" can be summarized as follows:
‘ ) H .J~ . : . :_,:f.-,“;.;{.: T i
Similarities:

it I I F VNS TS B N £ S SR ULALEE SRR SR P

-3+~ ¢ Both types of filters operatein the original:time-and-space doimain of recorded: data.

.o Both filters:aim to predict local:plane-wavéieventsin the'data.~ " 2w

¢ In most problems, one filter type can be replaced by the other, and certain techniques, such as

N

Claerbout’s trace iﬁterpoiéfig)n method, are common for both >a'ppr‘o-ac'hes. ‘
" Differences: RN E I

¢ The design of plane-wave destructors +is ‘purely.deterministic and follows the plane-wave

differential equation. The design of T-X PEF has statistical roots in the framework of the

EEEY SO
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“‘maximum-entropy spectral analysis (Burg, 1975)." In-principle, T-X PEF can characterize

~ more complex signals than local plane waves.

o -In the case of PEF, we estimate filter coefficients. In the case of plane-wave destructors, the
estimated quantity is the local plane-wave slope. Several important distinctions follow from

that difference:

; -, The filter-estimation problem is linear. The slope estimation problem, in the case of the
improved filter design, is:Illon-liI‘le.ar, but allows for an iterative linearization. 1;1 general,

- :mon-linearity is an undesirable feature because of local minima and the dependence on

. initial conditions. However, we can sometimes usé it creatively. For example, it hélped

to avoid aliased dips in the trace interpolation example..

_— Non-stationarity is handled gracefully in the local slope estimation. No local windows
are réquired to produce a smoothly varying estimate of the ;chl slope. This '_is a much

more difficult issue for PEFs because of the largely under-determined problem.

— Local slope has a clearly interpretable physical meaning, which allows for easy quality

.-control-of the results. The:coefficients of T-X PEFs:are much more difficult to interpret.

e The efficiency of the two.approaches is.difficult to-compare.;Plane-wave destructors are gen-
erally more efficient to apply because of the small number of filter coefficients. However, they

may require more computation at the estimation stage beca_usé of the non-linearity problem.
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APPENDIX A Pt SIS ” LR T AR L]

DETERMINING FILTER COEFFICIENTS BY TAYLOR EXPANSION

This appendix détails the derivation of‘*e'qilaﬁojns (9) and (10).-The fain‘ideato match the frequency
responses of the approXimate plane-wave filters to thebrespon§e of the exact phase-shift operatdr at
low frequencies. o
.. The Taylor series expansion of the-phase:shift operator ¢°® around the zero frequency ® = 0

_ takes the form

2 3 n3
L . . 0) O P LS S
i i@ 0@ = S i e O (@) st AT (AR

bl ey mips i RS EA
The Taylor expanswn ‘of the s1x-p01nt 1mphclt ﬁmte dlfference operator takes the férm

By(Z) _ baZ'+bo+biZ _ b7 +bo+bi e
B3(1/Zz) ) blzz+bo+b_12 ! b1e"‘”+bo+b 1e‘“’ e

2’(b—1—b1)(0 2(b-1—b1) ‘o
botber+br (b°+b—1+b1) I T R R L FEL SO FLW IO
'(b““b') [65 - b" (b- 1+b1)4(bz —4b_1b1+b1 )] “’3 ;.v,A,._.(A-yz)’
3(bo+b_1+b1)’ R SRR

1
~
o

- Matching the corresponding terms of expansions (A-1) and (A-2), we arrive at the system of nori-

linear equations
2(b1—b_y)
_ A-3
L bo+b_1+b ¢ : )
4 LY
2 Ahi-b) | » (A-4)
(bo+b—1+b1)
2(b B2 —bo (b + 1) +4 (b2, —4b_1 by +b
o = (b1 —b 1) [B§—bo (b_1+b1)+4 ( 1bi+ I (A5)

(bo+by+b1)
System (A-3-A-5) does not uniquely constrain the filter coefficients b1, bo, and by because equa-
tion (A-4) simply follows from (A-3) and because all the coefficients can be multiplied simultane-

ously by an arbitrary constant without affecting the ratios in equation (A-2). I chose an additional
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constraint in the form

Bs(1)=b_i+bo+b1 =1, (A6)

which ensures that the filter B3(Z) does not alter the zero frequency component. System (A-3-A-5)

with the additional constraint (A-6) resolves uniquely to the-coefficients of filter (9)-in the main text:

b1 = 12 ’ . ._(é-ﬂl)
bo = QJ%@—_Q; S
| b1.=b '(-li(%(zz_-*-gl | ;7:(A-9)

The B:s filter of equation (10)'is constructed in a ?completely analogous way, using longer Taylor
expansions to._cpnstligin the additional coe\:_fﬁ-c;i.et‘l;s, / &}eneralizagi;qlll (tq_!oqger filters is ;t_;aighg@;.
ward. |

The technique of this appendix v‘avimsv at matching t.h_'e. 'ﬁltgr fre‘s.:'po:nses at low fré(iuénéies. One
might construct different filter families by eﬁploying 6the; cri;é;ri;vfor ﬁiter design (least squares

fit, equiripplc;,v"etv.c.)z n | -

L Teg i i e
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